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Abstract

Recent advances in Fully Homomorphic Encryption (FHE) allow for a practical evaluation
of non-trivial functions over encrypted data. In particular, novel approaches for combining
ciphertexts broadened the scope of prospective applications. However, for arithmetic circuits,
the overall complexity grows with the desired precision and there is only a limited space for
parallelization.

In this paper, we put forward several methods for fully parallel addition of multi-digit in-
tegers encrypted with the TFHE scheme. Since these methods handle integers in a special
representation, we also revisit the signum function, firstly addressed by Bourse et al., and we
propose a method for the maximum of two numbers; both with particular respect to paral-
lelization. On top of that, we outline an approach for multiplication by a known integer.

According to our experiments, the fastest approach for parallel addition of 31-bit encrypted
integers in an idealized setting with 32 threads is estimated to be more than 6× faster than
the fastest sequential approach. Finally, we demonstrate our algorithms on an evaluation of a
practical neural network.

Index terms—Fully homomorphic encryption; TFHE scheme; parallelization; parallel addition

1 Introduction

Fully Homomorphic Encryption (FHE) is a technique that allows to evaluate arbitrary function
over encrypted data. Since the breakthrough by Gentry [16], FHE is experiencing a remarkable
boom. Hand by hand with the development of new schemes, the range of proposed applications is
still growing, reaching use cases like cloud-assisted neural network inference [4, 10, 18, 20, 24, 28].

∗This paper is to be presented at ACM CODASPY’22, April 24–27, 2022, Baltimore, MD, USA. This is the
full version of the paper including appendices. The proceedings version of this paper can be found at https:

//doi.org/10.1145/3508398.3511527.
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Related Work

Since their very beginnings, FHE constructions build upon encryption schemes that add certain
amount of noise to the message. With each homomorphic operation, the amount of noise grows,
which can—at some level—prevent the correct decryption of the message. The key invention by
Gentry to counter this problem is a method referred to as bootstrapping, which aims at refreshing
the noise to a certain, fixed level. Initially, bootstrapping was a very costly operation [17], however,
nowadays, modern schemes achieve convenient execution times on an ordinary hardware, which
makes practical applications feasible [4, 10, 18, 20, 24, 28, 5, 9, 19].

Among other somewhat/fully homomorphic schemes like BGV [6], BFV [15], CKKS [8], or
FHEW [14], we have chosen the TFHE Scheme by Chillotti et al. [9], which is fully homomorphic,
hence versatile, and which achieves the fastest bootstrapping times (under 0.1 s). As a convenient
benefit, the TFHE bootstrapping procedure is capable of evaluating a Look-Up Table (LUT) at no
additional cost; referred to as Programmable Bootstrapping (PBS; [10]), or functional bootstrap-
ping [19]. However, the size of the TFHE message space (hence that of the evaluated LUT) is fairly
limited: the bootstrapping complexity grows roughly exponentially with the guaranteed message
bit-length [24].

Problem Statement

In a recent paper [11], authors identify altogether eight limitations of TFHE, among them is the
limited message space size (point B in [11]). To overcome this limitation, several authors suggest to
split a long input into smaller chunks and then evaluate a series of LUTs: either using the binary
message space for arbitrary functions [9], or using a multivalue message space for the comparison
of unbounded integers [5], for integer addition [24, 28], or for arbitrary functions [19, 11]. Another
limitation of TFHE, which is not fully addressed yet, is the fact that the bootstrapping operation
is not multi-thread friendly (point C in [11]; resolved to certain extent).

In this paper, we focus on this particular drawback: we suggest to mitigate its impact by par-
allel execution of several instances of TFHE bootstrapping on specifically tailored inputs. Namely,
we focus on integer addition, for which we propose a method that can process encrypted inputs
completely in parallel, independent of the input length. Our method is based on a meta-algorithm
by Chow et al. [12], which allows to build custom algorithms for parallel addition, and which uses
a non-standard integer representation. Although the representation is non-standard, it does not
limit us to only addition: indeed, we revisit and outline parallel algorithms for signum, maximum,
and scalar multiplication in this representation. We keep this representation across all presented op-
erations and we avoid unnecessary conversions, which cannot be done in parallel. Our methods aim
at improving the applicability of arithmetic circuits, which can be used, e.g., for statistics or neural
network evaluation. With our approach and sufficient resources, evaluation using high-precision
integers becomes no more a limit.

Our Contributions

We put forward several approaches to parallelize various operations over TFHE-encrypted integer
inputs. The main idea behind the newly proposed algorithms is to (i) convert the input integers into
a special multi-digit representation, (ii) encrypt each digit with TFHE, and (iii) execute dedicated
algorithms to evaluate integer operations over the encrypted digits in parallel. More specifically:
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• We propose two families of algorithms for parallel addition of encrypted integers depending on
the underlying representation: the first family operates over a base-2 representation, whereas
the second one sets the base to 4.

• For each family, three incremental strategies are outlined: The goal of the first strategy is
to choose the smallest message space of the underlying TFHE; The second strategy aims at
decreasing the number of bootstraps by allowing slight increase on the TFHE message space;
Finally, the third strategy develops an algorithm with the minimum number of bootstrap
operations (two in this context).

• We suggest an improvement to the standard addition with carry as implemented in the TFHE
Library [27] by introducing ternary logical gates, which decreases the number of bootstraps
from five to two.

• We revisit an algorithm for signum by Bourse et al. with respect to the special integer repre-
sentation, and we employ this method to construct a new algorithm for the maximum of two
integers.

• Finally, we outline an approach for the multiplication of an encrypted number by a known
integer, which we employ for a demo evaluation of a neural network over encrypted input
data.

• A thorough comparison of the proposed and revisited algorithms is provided both in terms of
analytical complexity and experimental execution time, with particular respect to paralleliza-
tion. It follows from our experiments that we can achieve more than 6× faster addition of
31-bit integers (using 32 parallel bootstrapping threads) compared to the standard addition
with carry.

Paper Outline

In Section 2, we recall algorithms for addition of multi-digit integers, in particular those paralleliz-
able, and we provide a brief overview of the TFHE scheme and its variants. Next, we propose several
approaches for the transformation of algorithms for integer addition, signum and maximum of two
numbers into the TFHE-encrypted domain in Section 3. In Section 4, we compare and benchmark
the proposed methods and we discuss the results. Finally, we conclude the paper in Section 5.

2 Preliminaries

In this section, we discuss the choice of an algorithm for parallel addition of multi-digit integers.
Next, we revisit two variants of the TFHE Scheme: (i) one with the binary message space, and (ii)
one with a multivalue message space.

2.1 Algorithms for Multi-Digit Integer Addition

Before we deal with algorithms for multi-digit integer addition, we briefly recall a notation used for
integer representation and we introduce two auxiliary functions. Note that we provide a complete
overview of notation in Appendix A.
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Integer Representation

For a base β ∈ N, β ≥ 2, we call x ∈ {0, 1, . . . , β − 1}n, x = (xn−1 . . . x1x0•)β , the standard base-β
representation of X ∈ N iff

X =

n−1∑
i=0

βixi. (1)

For i out of the range [0, n), we assume xi = 0.

Threshold Functions

Let b ∈ N. We introduce the following functions:

fb(x) =


−1 . . . x ≤ −b,
0 . . . − b < x < +b,

+1 . . . + b ≤ x,

(2)

gb(x) =


−1 . . . x = −b,
0 . . . x ̸= ±b,

+1 . . . x = +b.

(3)

We will use the notations x ⋛ ±b and x ≡ ±b for fb(x) and gb(x), respectively.

2.1.1 Standard Addition with Carry

In Algorithm I, we recall the standard sequential algorithm for addition with carry, using the
standard integer representation with base β ∈ N, β ≥ 2. Recall that ÷ stands for integer division,
i.e., a÷ b = ⌊a/b⌋, b ̸= 0.

Algorithm I Addition with carry using the standard integer representation.

Input: base-β representations x,y ∈ {0, . . . , β − 1}n of X,Y ∈ N0, for some n ∈ N,
Output: base-β representation z ∈ {0, . . . , β − 1}n+1 of Z = X + Y .

1: c← 0
2: for i = 0, 1, . . . , n− 1 do
3: wi ← xi + yi + c
4: zi ← wi mod β
5: c← wi ÷ β

6: zn ← c
7: return z

2.1.2 Algorithms for Parallel Addition

In 1961, Avizienis [3] presented a parameterizable algorithm for parallel addition of multi-digit
integers. Later in 1978, Chow et al. [12] further improved the algorithm so that the algorithm can
work with smaller alphabets and even with the minimum base β = 2.
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The algorithms input the integers in a special representation: unlike the standard base-β rep-
resentation, which uses the alphabet Aβ = {0, 1, . . . , β − 1}, this representation uses an alphabet,
which (i) contains negative numbers (represented with bars, e.g., 2̄ = −2), which (ii) is symmetric
around zero (e.g., Ā = {2̄, 1̄, 0, 1, 2}), and which (iii) leads to a redundant number representation.
We can illustrate redundancy on two different representations of the integer 2, using base β = 4 and
the aforementioned alphabet Ā, as follows: (12̄•)4 = 1·41+(−2)·40 = 0·41+2·40 = (02•)4. Finally
in 1999, Kornerup [23] showed that a redundant number representation is a necessary condition for
a parallel addition algorithm to exist.

In this paper, we aim at turning chosen variants of the parallel addition algorithm into the TFHE-
encrypted domain. We have chosen the bases β equal to a power of two, which yields particularly
efficient conversions from and into the standard binary representation, namely:

(a) β = 2 and Ā2 = {1̄, 0, 1}, and

(b) β = 4 and Ā4 = {2̄, 1̄, 0, 1, 2}.

Find the selected parallel addition algorithms as Algorithms IIa (base β = 2) and IIb (base β = 4).

Algorithm IIa Parallel addition with β = 2 and Ā2 = {1̄, 0, 1}.
Input: (2, Ā2)-representations x,y ∈ Ā2

n
of X,Y ∈ Z, for some n ∈ N,

Output: (2, Ā2)-representation z ∈ Ā2
n+1

of Z = X + Y .

1: for i ∈ {0, 1, . . . , n} in parallel do
2: wi ← xi + yi ▷ sync threads
3: qi ← wi ⋛ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1) ▷ sync threads
4: zi ← wi − 2qi + qi−1

5: return z

Algorithm IIb Parallel addition with β = 4 and Ā4 = {2̄, 1̄, 0, 1, 2}.
Input: (4, Ā4)-representations x,y ∈ Ā4

n
of X,Y ∈ Z, for some n ∈ N,

Output: (4, Ā4)-representation z ∈ Ā4
n+1

of Z = X + Y .

1: for i ∈ {0, 1, . . . , n} in parallel do
2: wi ← xi + yi ▷ sync threads
3: qi ← wi ⋛ ±3 ∨ (wi ≡ ±2 ∧ wi−1 ⋛ ±2) ▷ sync threads
4: zi ← wi − 4qi + qi−1

5: return z

Note 1. In both Algorithms IIa and IIb on line 3, we abuse notation and we combine the functions
x ⋛ ±b and/or x ≡ ±b′ with logical operations. Unless +1 meets −1 in such an expression, we
treat +1’s or −1’s as a logical 1’s and we keep their positive or negative signs, respectively. In case
−1 does meet +1 (e.g., −1 ∧+1), we evaluate the expression as 0.

E.g., for wi = +1 and wi−1 = −2 in Algorithm IIa, we have 0 ∨ (+1 ∧ −1) = 0 ∨ 0 = 0.

Thread Synchronization In Algorithms IIa and IIb, it is not always necessary to synchronize
the threads, as commented on lines 2 and 3. There are two alternative approaches:
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1. Each worker i calculates all required intermediate values itself (i.e., wi, wi−1, wi−2, qi, and
qi−1), then synchronization is not needed. Or,

2. each worker calculates his wi, waits for others, takes wi−1 from his neighbor and calculates
qi, waits for others, takes qi−1 from his neighbor and finally he calculates zi.

The decision, which approach to choose, must be made with respect to the target platform and the
cost of each operation, in particular after turning the calculations into the TFHE domain.

Conversion from Binary to Redundant For the conversion from the standard binary repre-
sentation b to the redundant (4, Ā4)-representation, we can apply the following procedure (note
that no conversion is needed for the (2, Ā2)-representation):

1. split b into blocks bi of 2 bits,

2. if bi = 3 then xi ← 2 and yi ← 1,
otherwise xi ← bi and yi ← 0,

3. run Alg. IIb on x = (xn . . . x1x0•)4 and y = (yn . . . y1y0•)4.

It follows that the conversion from the binary to the redundant representation can be done in
parallel.

Conversion from Redundant to Binary For the opposite direction, there does not exist a
parallel algorithm. Indeed, the existence of such a parallel algorithm would contradict the im-
possibility of parallel addition with a non-redundant number representation – this poses the only
non-parallelizable step.

We outline an approach for this conversion only for the (4, Ā4) variant. It may proceed as
follows:

1. for each i from 0 do:

2. if xi < 0 then xi ← xi + 4 and xi+1 ← xi+1 − 1.

Clearly, the value of the represented number does not change as well as the resulting alphabet is
{0, 1, 2, 3}, except for the leading (n-th) position: xn may end up to be equal to −1, which happens
for a negative number. In such a case, the rest of the number representation (xn−1 . . . x0)4 is
already in the standard complement code. Depending on the desired width of the resulting integer
representation, we can keep rolling i until it reaches the width. E.g., for an 8-bit representation,
we have (2̄2̄2̄•)4 → (1̄3112•)4 ∼ (int8_t)(0b11’01’01’10) = −42.

2.2 The TFHE Scheme

The TFHE encryption scheme by Chillotti et al. [9] is based on a particular variant of the famous
Learning With Errors (LWE) scheme, which was first introduced by Regev [26]. The variant,
named TLWE, operates over a torus plaintext space: denoted by T, the torus refers to R/Z, i.e.,
the fractional part of real numbers, or reals modulo 1. In a nutshell, TLWE encrypts a plaintext
value µ ∈ T into a ciphertext c = (a, b) ∈ Tn × T (also referred to as the TLWE sample) as follows:
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(i) draw a uniformly random mask a ∈ Tn, (ii) draw an error term e ∈ T with a zero-centered
Gaussian distribution with the standard deviation α ∈ R+

0 , and (iii) set b as

b = s · a+ µ+ e, (4)

where s ∈ {0, 1}n is the TLWE secret key. For a detailed description of TFHE, we refer to [9].
The most important feature of TFHE is the so-called bootstrapping. The original purpose of

bootstrapping is to reduce the magnitude of a noise, which must be present in TLWE ciphertexts
for security reasons, and which grows with each homomorphic addition operation. As a convenient
byproduct, bootstrapping is inherently capable of evaluation of a negacyclic function, i.e., a function,
for which it holds f(x + 1/2) = −f(x), x ∈ T. Using certain message representations in the
torus, bootstrapping can be either used for the homomorphic evaluation1 of logical gates [9], or for
the evaluation of multivalue Look-Up Tables (LUTs) and/or their compositions [4, 5, 7, 19]. In
the following sections, we refer to these variants as the Binary TFHE and the Multivalue TFHE,
respectively.

2.3 Binary TFHE

Chillotti et al. [9] proposed to map the logical values 0 and 1 into the torus plaintext space
[−1/2,+1/2) as −1/8 and +1/8, respectively. Such torus representations are then encrypted with
the underlying TLWE. Next, these samples enter various logical gates, which apply homomorphic
addition and bootstrapping operations, yielding an encryption of the original ±1/8 representation
(with a small amount of noise).

2.3.1 Binary Logical Gates

Using the aforementioned representation together with homomorphic addition and bootstrapping,
in [9], authors suggest to evaluate basic binary logical gates over bits encrypted as TLWE samples
c and d, c,d ∈ Tn × T, as follows (we are listing only selected gates):

¬ c (NOT) : −c (requires no bootstrapping), (5)

c ∧ d (AND) : c+ d− 1/8 ≷ 0, (6)

c ∨ d (OR) : c+ d+ 1/8 ≷ 0, and (7)

c⊻d (XOR) : 2(c+ d) + 1/4 ≷ 0. (8)

For the “≷” comparison with 0, they evaluate the following (negacyclic) bootstrapping function:

f(x) =

{
−1/8 . . . x ∈ [−1/2, 0),

+1/8 . . . x ∈ [0,+1/2).
(9)

With a pen and paper, it is easy to verify that the gates indeed yield the desired result in the
original ±1/8 encoding.

1N.b., this feature makes TFHE fully homomorphic.
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2.3.2 The MUX Gate

In addition to the binary logical gates, TFHE implements the MUX gate, defined as follows:

MUX(a, b, c) = a ? b : c, (10)

i.e., the standard ternary expression. The MUX gate is implemented using a translation into the
standard binary logical gates as

MUX(a, b, c) = (a ∧ b)⊻(¬a ∧ c), (11)

hence it requires three bootstraps.

Note 2. The values −1/8 and +1/8, which represent logical 0 and 1 in the torus, respectively, are
1/4 apart from each other, i.e., we have an equivalent of 4 values uniformly spread across the torus.
This mandates certain bounds on the noise magnitude to guarantee correct decryption and we will
need this later for the comparison with the multivalue TFHE.

In addition, note that during the homomorphic evaluation of the logical gates (except for the
NOT gate), a homomorphic addition of two values is performed before bootstrapping. This im-
plies other requirements on the amount of noise in the freshly encrypted, or bootstrapped samples.
Interestingly, the XOR gate only scales everything by a factor of 2.

2.4 Multivalue TFHE

In their original paper [9], Chillotti et al. outlined an approach for the evaluation of multivalue LUTs.
In the core, the method is based on the evaluation of logical gates using the binary TFHE, however,
they introduce interesting packing techniques, which aim at reducing the overall complexity.

For most algorithms presented in this paper, we will employ the multivalue variant of TFHE and
related LUT evaluation techniques. As opposed to the binary TFHE, which encrypts ±1/8, in the
multivalue TFHE, we split the torus into 2π equal parts, where π stands for the desired bit-precision
of the message. We will refer to the torus values {0/2π, 1/2π, . . . , (2π−1)/2π} directly as the plaintext
space of the multivalue TFHE to avoid confusion in subsequent algorithms. Each of these values
will represent a number from Z2π .

2.4.1 Notation for Custom Functions

Let us introduce a notation for custom functions represented by a list of function values. Let
f : Z2π → Z2π be a negacyclic function and let f ∈ Z2π−1

2π be the list of function values on [0, 2π−1),
the rest is given by its negacyclicity. Then for x ∈ Z2π , we denote f(x) as f [x]. In addition,
for unused function values (i.e., outside of the domain of f), we use the symbol ◦, which can
be set to, e.g., zeros. Finally, in case we only know a lower bound on π, we use the symbol ∥
to denote the place to be filled with an appropriate number of ◦’s (if applicable), including the
negacyclic extension. E.g., for π = 3, the vector (1, 2 ∥−3) represents the negacyclic function given
by (1, 2, ◦, 3,−1,−2, ◦,−3).

2.4.2 Noise Growth

As already outlined, in the TLWE encryption scheme, certain amount of noise (error) must be
added to the message; cf. (4). The error term is additive with respect to the homomorphic addition
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operation, while it must not exceed certain bound to decrypt correctly. Based on the expected
noise growth, the TFHE parameters must be tuned accordingly to prevent message damage. We
will consider the noise growth with respect to error variance.

Let us assume that each fresh(ly bootstrapped) sample has a constant amount of noise in terms
of error variance. Then, since error variance is additive with quadratic weights, we can express the
error growth after homomorphic addition as the sum of squared weights. We refer to this quantity
as the quadratic weight and we denote its logarithm by 2∆. E.g., for 1 · x − 3 · y + 2 · z, we have
the quadratic weight equal to 12 + 32 + 22 = 14 and 2∆ = log2(14). For the binary TFHE, we have
2∆ = log2(2) = 1; cf. Note 2. Note that ∆ itself is intended to express the bit-length of standard
deviation.

2.4.3 Evaluating Multi-Word Input LUTs

Recently, Guimarães et al. [19] proposed to distinguish two approaches for the homomorphic evalu-
ation of multi-word input LUTs: (i) a tree-based method, and (ii) a chaining method. The tree-based
method is based on a method referred to as the TLWE-to-TRLWE key switching and it aggregates
intermediate outputs in the next-level LUTs, which makes it suitable for the evaluation of arbi-
trary functions. On the other hand, the chaining method has a fixed set of LUTs organized in a
chain, while it linearly-combines intermediate outputs with the next level inputs, hence it is more
functionally restricted. Compared to the tree-based method, the chaining method has smaller error
growth and it seems particularly suitable for functions with simple, carry-like logic (e.g., standard
addition with carry). In this paper, we will be using the chaining method.

3 Parallel Operations over Encrypted Multi-Digit Integers

In this section, we first revisit the standard addition with carry, for which we propose an im-
proved binary variant. The core of this section is the design of algorithms for parallel addition of
TFHE-encrypted multi-digit integers. On top of the addition algorithms, we outline a method for
multiplication of an encrypted integer by a known integer, referred to as scalar multiplication. We
also comment on other operations, how they may proceed in the non-standard number representa-
tion that is used for parallel addition, with particular respect to their parallelization. Namely, we
select the signum function and the maximum of two numbers, which can be employed for a neural
network evaluation. In contrast to many other works, we provide our algorithms in the cleartext
domain, which simplifies their reading and understanding. For each algorithm, we provide a com-
plexity analysis: we summarize the requirements on the (multivalue) TFHE parameters (plaintext
space, quadratic weights) and we evaluate the number of bootstraps, the ideal number of threads,
and the circuit depth.

The Big Picture

Before going into the details, we outline the big picture of prospective application of the parallelized
operations in the encrypted domain and we provide some technical observations. In five steps, we
summarize the data flow from the user (U), through the cloud (C), and back to the user:

(U) convert sensitive data into selected redundant integer representation (e.g., (4, Ā4)),
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(U) encrypt converted data digit-by-digit with TFHE using appropriate parameters; send it for
processing to the cloud,

(C) evaluate function f over the encrypted data; send the (still encrypted) result back to the user,

(U) decrypt result (still in the redundant representation),

(U) convert result back to the native representation.

See Figure 1 for a detailed overview of the whole life-cycle.

Input: X ∈ ZM : X = (Xi)
M
i=1, M ∈ N

Input: f : ZM → ZN , N ∈ N, f decomposed to additions/subtractions/signums/maximums

xi =
(
x
(i)
mi−1 . . . x

(i)
1 x

(i)
0 •

)
2

binary representation of Xi (plain)

user
↓ (P) convert from binary to (4, Ā4)

x′
i =

(
x′(i)

m′
i−1 . . . x

′(i)
1 x′(i)

0 •
)
4

(4, Ā4)-representation of Xi (plain)

↓ (P) encrypt digits into c
(i)
ji

= TFHE.Encr
(
x′(i)

ji

)
Ci =

(
c
(i)
m′

i−1, . . . , c
(i)
1 , c

(i)
0

)
(4, Ā4)-representation of Xi (encrypted) ↓

↓ (P∗) homomorphically evaluate decomposed f cloud

Dk =
(
d
(k)
n′
k−1, . . . ,d

(k)
1 ,d

(k)
0

)
(4, Ā4)-representation of Yk (encrypted) ↓

↓ (P) decrypt digits into y′
(k)
lk

= TFHE.Decr
(
d
(k)
lk

)
user

y′
k =

(
y′

(k)
n′
k−1 . . . y

′(k)
1 y′

(k)
0 •

)
4

(4, Ā4)-representation of Yk (plain)

↓ (S) convert from (4, Ā4) to binary

yk =
(
y
(k)
nk−1 . . . y

(k)
1 y

(k)
0 •

)
2

binary representation of Yk (plain)

Output: Y = f(X) ∈ ZN : Y = (Yk)
N
k=1, N ∈ N

Figure 1: Flow of data X: from the user, where X gets encrypted, through the server, where
a function f is homomorphically evaluated over the encrypted data, back to the user, where the
result is decrypted and it yields the desired Y = f(X). For each step, we stress whether: (P) it
can be done in parallel in a constant number of steps, or (P∗) it may involve parallel reduction,
which requires O(log n) steps (whenever sgn or max is evaluated), or (S) it can only be computed
sequentially.

Minimizing the Plaintext Space

As previously mentioned, the TFHE bootstrapping function is inherently negacyclic, therefore we
need to deal with this limitation, in case we need to evaluate a function that is not negacyclic.
In [7, 19], authors suggest to employ only one half of the plaintext space, which is the generic
approach. On the other hand, Klemsa et al. [22] suggest to exploit any possible overlap of the
negacyclic extension (cf. Figure 3 in their paper), which may lead to plaintext space savings. Recall
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that the complexity of the multivalue TFHE grows roughly exponentially with the plaintext precision
π [24], therefore our aim is to use as little π as possible, given the function. Let us discuss the
functions x ⋛ ±b, x ≡ ±b (as introduced in (2) and (3)) and a shifting trick.

Observation 1. For the negacyclic extension of both x ⋛ ±b and x ≡ ±b on the desired domain
[−a,+a], where a ≥ b > 0, we choose the range [−a − b, a + b), which is the minimal range
for x ⋛ ±b, and which is sufficient for x ≡ ±b. We set the negacyclic extension function f ,
f : [−a− b, a+ b)→ {−1, 0, 1}, on the non-negative half of the domain as follows:

f(x) =


0 x ∈ [0, b− 1],

1 x ∈ [b, a],

0 x ∈ [a+ 1, a+ b− 1].

(12)

It can be easily verified that the negacyclic extension of f includes the function x ⋛ ±b on the
domain [−a,+a]; cf. Appendix B.

Observation 2. Thanks to the cheap additive homomorphism, one may also shift the function by
a constant, if this helps to find the negacyclic extension on a smaller domain. E.g., the function
f : Z4 → Z4, f(0) = 1, f(1) = 2, f(2) = 1, f(3) = 0, is not negacyclic, but f(x)− 1 is. Therefore,
it is not needed to extend the domain to Z8—it is sufficient to use the negacyclic f(x)− 1 over Z4

and add +1 to the result.
Moreover, it is possible to apply the shifts by 1/2, which allows to evaluate other functions as

well. E.g., f : Z4 → Z4, f(0) = 0, f(1) = 0, f(2) = 1, f(3) = 1 can be evaluated using the shift by
−1/2. N.b., this trick is in principle used by Chillotti et al. for their construction of binary logical
gates.

3.1 Addition with Carry Revisited

First, let us revisit the standard addition with carry. We focus on the evaluation of zi and c
in the main for-loop in Algorithm I, given xi, yi and c from the previous round (wi is only an
auxiliary variable, which does not need to be explicitly calculated). In the TFHE Library [27],
there are actually two approaches implemented, however, both work with base β = 2 and both
need 5 bootstraps of the binary TFHE, hence we cover both as Strategy I-A. Next, we propose an
improvement to this strategy, which employs our ternary gates and which requires only 2 bootstraps
per bit, referred to as Strategy I-B. Finally, we revisit the approach by Guimarães et al., who use
base β = 4 and the multivalue TFHE with π = 3, referred to as Strategy I-C.

3.1.1 Strategy I-A: Original TFHE Library

In the TFHE Library, zi ← xi ⊻ yi ⊻ c is evaluated using two XOR gate bootstraps. Next, two
approaches to update the carry c are implemented: either

1. without the MUX gate as
c = (xi · yi) + (c · wi), or (13)

2. with the MUX gate as
c = wi ? c : (xi · yi). (14)

Either way requires 5 bootstraps per digit (1 bit) in total. Find the variant without the MUX gate
in Algorithm I-A, where we additionally propose a simple parallelization.
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Algorithm I-A Addition with carry, β = 2 and 5 bootstraps using binary TFHE (variant without
MUX; [27]).

Input: one bit of each addend xi and yi, previous carry ci−1,
Output: one bit of result zi, new carry ci.

1: in parallel do ▷ our suggestion
2: t← xi ⊻ yi
3: u← xi ∧ yi
4: in parallel do ▷ our suggestion
5: zi ← t⊻ ci−1

6: v ← t ∧ ci−1

7: ci ← u⊻ v
8: return (zi, ci)

Analysis As outlined in Note 2, for the binary TFHE, we need an equivalent of π = 2 and 22∆ = 2
(see Section 2.4.2 for the parameter 2∆). We propose to calculate the pairs (t, u) and (zi, v) in
parallel, hence we make use of 2 threads and they require 3 steps per digit.

3.1.2 Strategy I-B: Ternary Gates

Let us introduce the following ternary logical gates:

XOR3(a, b, c) := a⊻ b⊻ c, and (15)

2OF3(a, b, c) := (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c), (16)

where the latter is true iff at least two of the input variables are true. These gates can be evaluated
using the binary TFHE encoding (i.e., ±1/8) in a single bootstrap as follows:

XOR3(a,b, c) : − 2(a+ b+ c) ≷ 0, and (17)

2OF3(a,b, c) : (a+ b+ c) ≷ 0, (18)

cf. (9) for the “≷” comparison with zero in the binary TFHE. With these gates, 2 bootstraps per
digit (1 bit) are sufficient; see Algorithm I-B.

Algorithm I-B Addition with carry, β = 2 and 2 bootstraps using binary TFHE.

Input: one bit of each addend xi and yi, previous carry ci−1,
Output: one bit of result zi, new carry ci.

1: in parallel do
2: zi ← XOR3(xi, yi, ci−1)
3: ci ← 2OF3(xi, yi, ci−1)

4: return (zi, ci)

Analysis Like in the previous strategy, we have an equivalent of π = 2 for the binary TFHE.
However, unlike binary logical gates of the binary TFHE, our ternary logical gates require three
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samples to be added before bootstrapping, which yields the quadratic weight 22∆ = 3. Next, we
suggest to calculate (zi, ci) in parallel, making use of 2 threads, which only run one bootstrapping
(per digit).

3.1.3 Strategy I-C: Switching to Base 4

Guimarães et al. [19] suggest an addition algorithm that uses base β = 4 and the multivalue
TFHE with π = 3. For the comparison with other methods, we rewrite (and fix) this method into
the cleartext domain, as well as we suggest to bootstrap the result one more time, which is not
performed in the original method.

Algorithm I-C Addition with carry, β = 4 and 2 bootstraps using multivalue TFHE with π = 3
([19]; corrected, modified).

Input: 2-bit digit of each addend xi and yi,
Input: previous result zi−1, previous carry ci−1,
Output: 2-bit digit of result zi, new carry ci.

1: wi ← xi + yi + ci−1

2: in parallel do
3: zi−1 ← zi−1 ▷ bootstrap with identity
4: ci ←

(
− 1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
[wi] +

1
2

5: zi ← wi − 4 · ci
6: return (zi, ci)

Remarks On line 4, Observation 2 is applied. I.e., ci evaluates as 0 or 1 if wi < 4 or wi ≥ 4,
respectively.

Analysis Due to line 5, we have 22∆ = 19. Next, since we bootstrap in parallel, we make use of
2 threads and we only need one bootstrapping step per digit.

3.2 Parallel Addition

Next, we discuss the two chosen variants of parallel addition algorithm as per Algorithms IIa (β = 2)
and IIb (β = 4). Using the multivalue TFHE with a sufficiently large plaintext space, we suggest to
evaluate wi and zi via additive homomorphism. For the evaluation of qi, which is non-linear, and
which is illustrated in Figures 2 and 3, respectively, we propose the following three strategies for
each variant of the parallel addition algorithm:

1. using the smallest plaintext space possible (π2 = 3, π4 = 4) and 5 bootstraps as Strategy IIa-D
and IIb-G, respectively,

2. using larger plaintext space (π2 = 4, π4 = 5) and 4 bootstraps as Strategy IIa-E and IIb-H,
respectively, and

3. using π2 = 5, π4 = 7 and only 2 bootstraps as Strategy IIa-F and IIb-I, respectively.
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Figure 2: Value of qi = qi(wi−1, wi) as per Algorithm IIa.
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Figure 3: Value of qi = qi(wi−1, wi) as per Algorithm IIb.

Bootstrapping Strategy

We propose the following bootstrapping strategy:

1. from each addition algorithm, return a freshly bootstrapped sample,

2. otherwise, use as little bootstraps as possible,

Ad (1): even with only additions, which do not require bootstrap implicitly, we need to bootstrap
time to time anyways; this way, we better control the quadratic weight. Ad (2): in particular, we
will not bootstrap after additions, i.e., we will only use bootstrapping to evaluate functions like
x ⋛ ±b etc.

We calculate required quadratic weight after we construct a complete algorithm. N.b., our
bootstrapping strategy does not guarantee the best trade-off between the number of bootstraps
and the quadratic weight, which affects the TFHE parameters, which in turn affect the time needed
for bootstrapping.

3.2.1 Strategy IIa-D and IIb-G: Smallest Plaintext Space

In the first pair of strategies, we aim at using the smallest plaintext space that is needed for the
representation of wi = xi+yi. For β = 2 and for β = 4, we have |Ā2+ Ā2| = |{2̄, 1̄, . . . , 2}| = 5 and
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|Ā4 + Ā4| = |{4̄, 3̄, . . . , 4}| = 9, respectively. It follows that π2 ≥ 3 and π4 ≥ 4 is necessary solely
for the representation of wi. We outline the strategies for β = 2 and β = 4 in Algorithms IIa-D
and IIb-G, respectively.

Algorithm IIa-D Parallel addition with β = 2, π2 = 3 and 5 bootstraps.

Input: (wi−1, wi) ∈ {2̄, 1̄, . . . , 2}2,
Output: qi = wi ≡ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1).
1: in parallel do
2: r1 ← wi ⋛ ±2
3: r2 ← wi ≡ ±1
4: r3 ← wi−1 ⋛ ±1
5: r23 ← r2 + r3 ≡ ±2
6: return qi ← r1 + r23

Algorithm IIb-G Parallel addition with β = 4, π4 = 4 and 5 bootstraps.

Input: (wi−1, wi) ∈ {4̄, 3̄, . . . , 4}2,
Output: qi = wi ⋛ ±3 ∨ (wi ≡ ±2 ∧ wi−1 ⋛ ±2).
1: in parallel do
2: r1 ← wi ⋛ ±3
3: r2 ← wi ≡ ±2
4: r3 ← wi−1 ⋛ ±2
5: r23 ← r2 + r3 ≡ ±2
6: return qi ← r1 + r23

Analysis In terms of Observation 1, we have a = 2 and b = 2 due to both lines 2 and 5 of
Algorithm IIa-D, hence we need at least the range [−4,+4) to cover the cleartexts in Strategy IIa-
D. Note that other lines of Algorithm IIa-D can be covered by this cleartext range, too. Similarly
for Strategy IIb-G, we have a = 4 and b = 3 due to line 2 of Algorithm IIb-G, i.e., Observation 1
mandates the cleartext range [−7,+7). Hence these ranges can be covered using the plaintext space
with π2 = 3 and π4 = 4, respectively, i.e., the originally estimated bounds are sufficient.

In terms of freshly bootstrapped samples, the result writes as zi = xi + yi − β(r
(i)
1 + r

(i)
23 ) +

r
(i−1)
1 +r

(i−1)
23 , which yields the quadratic weights 22∆2 = 12 and 22∆4 = 36. In accordance with our

bootstrapping strategy, we apply one more bootstrap to the resulting zi with the identity mapping,
hence in total, we have 4+1 bootstraps. Note that for both β = 2 and β = 4, the identity mapping
on Āβ fits within respective πβ . Both algorithms make use of 3 threads (per digit of z), while
running in 2 + 1 bootstrapping steps (one is for the final bootstrap).

3.2.2 Strategy IIa-E and IIb-H: Save One Bootstrap

In this pair of strategies, we reduce the number of bootstraps by one, while we keep the plaintext
space reasonably small, see Algorithms IIa-E and IIb-H for β = 2 and β = 4, respectively. As
opposed to previous algorithms (e.g., Algorithm IIa-D), we calculate the intermediate value r23 in
two bootstraps instead of three.
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Algorithm IIa-E Parallel addition with β = 2, π2 = 4 and 4 bootstraps.

Input: (wi−1, wi) ∈ {2̄, 1̄, . . . , 2}2,
Output: qi = wi ≡ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1).
1: in parallel do
2: r1 ← wi ⋛ ±2
3: r2 ← 2 · (wi ≡ ±1) ▷ scale f1 by 2

4: r23 ← wi−1 + r2 ⋛ ±3
5: return qi ← r1 + r23

Algorithm IIb-H Parallel addition with β = 4, π4 = 5 and 4 bootstraps.

Input: (wi−1, wi) ∈ {4̄, 3̄, . . . , 4}2,
Output: qi = wi ⋛ ±3 ∨ (wi ≡ ±2 ∧ wi−1 ⋛ ±2).
1: in parallel do
2: r1 ← wi ⋛ ±3
3: r2 ← 3 · (wi ≡ ±2) ▷ scale f2 by 3

4: r23 ← wi−1 + r2 ⋛ ±5
5: return qi ← r1 + r23

Remarks We comment on line 3 of both Algorithms IIa-E and IIb-H that the bootstrapping
functions f1 and f2 (as per (2)) shall be scaled by 2 and 3, respectively. I.e., we bootstrap directly
with the values {−2, 0,+2} and {−3, 0,+3}, respectively. This prevents noise growth that would
occur in case of scalar multiplication of the resulting sample.

Analysis By Observation 1 and due to line 4 of both Algorithms IIa-E and IIb-H, we need the
ranges [−7,+7) and [−12,+12), respectively, which fit within π2 = 4 and π4 = 5. The quadratic
weights remain equal to 12 and 36, respectively, exactly as in the previous strategies. Compared to
the previous strategies, we save one bootstrap – we have 3 + 1 bootstraps. Finally, each algorithm
employs 2 threads (per digit) and runs in 2 + 1 bootstrapping steps.

3.2.3 Strategy IIa-F and IIb-I: qi in Single Bootstrap

In this pair of strategies, we evaluate qi in a single bootstrap as a rounded linear function. Indeed,
qi can be expressed for β = 2 and β = 4 as

q
(2)
i =

⌊1
7

(
w

(2)
i−1 + 3w

(2)
i

)⌉
, and (19)

q
(4)
i =

⌊ 1

27

(
w

(4)
i−1 + 6w

(4)
i

)⌉
, (20)

respectively; cf. Figures 2 and 3. With these coefficients, the minimum distance from ±1/2 is the

largest possible. E.g., for w
(4)
i−1 = 1 and w

(4)
i = 2, we round 13/27 to zero, which is by 1/54 from 1/2.

Find this approach in Algorithms IIa-F and IIb-I, respectively.

Note 3. How did we derive (19) and (20)? We noticed that the values of qi = qi(wi−1, wi) form
slant stripes of −1/0/+1; cf. Figures 2 and 3. These values can then be obviously expressed as a
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rounded linear function with the slope given by the normal vectors (1, 3) and (1, 6), respectively, we
only need to tune the leading coefficient. We do that by evaluating two neighboring corner values:
e.g., for β = 2, we have the corner values at (wi−1, wi) = (0, 1), which gives wi−1+3wi = 3, and at
(1, 1), which gives wi−1 +3wi = 4, respectively. Hence by setting the coefficient to 1/7 and rounding
to integers, we obtain the desired 0 and 1 at the positions (0, 1) and (1, 1), respectively. Similarly,
we obtain the coefficient 1/27 for β = 4.

Algorithm IIa-F Parallel addition with β = 2, π2 = 5 and 2 bootstraps.

Input: (wi−1, wi) ∈ {2̄, 1̄, . . . , 2}2,
Output: qi = wi ≡ ±2 ∨ (wi ≡ ±1 ∧ wi−1 ⋛ ±1).
1: return qi ← wi−1 + 3wi ⋛ ±4

Algorithm IIb-I Parallel addition with β = 4, π4 = 7 and 2 bootstraps.

Input: (wi−1, wi) ∈ {4̄, 3̄, . . . , 4}2,
Output: qi = wi ⋛ ±3 ∨ (wi ≡ ±2 ∧ wi−1 ⋛ ±2).
1: return qi ← wi−1 + 6wi ⋛ ±14

Analysis By Observation 1, we need the ranges [−12,+12) and [−42,+42), respectively, which
can be covered by π2 = 5 and π4 = 7. Next, we have the quadratic weights equal to 20 and
74, respectively, due to the calculation of the expression on line 1 of each algorithm. Indeed, the
expression rewrites in terms of freshly bootstrapped samples as xi−1 + yi−1 + 3/2β · (xi + yi). As
intended, the number of bootstraps drops down to 1 + 1 and each algorithm employs single thread
(per digit).

3.3 Scalar Multiplication

By scalar multiplication we understand (homomorphic) multiplication of an encrypted integer X by
a known integer k:

k ⊙ TFHE.Encr(X) ≈ TFHE.Encr(k ·X). (21)

Note that homomorphic addition is sufficient for this operation – we may employ the schoolbook
double-and-add approach.

On top of the standard (and näıve) double-and-add, we suggest a two-step optimization:

1. in the binary representation of k, replace any series of 1’s (of length 2 and more; take the
longest possible) with 0’s preceded by 1 and concluded by 1̄ (e.g., . . . 01110 . . .→ . . . 1001̄0 . . .;
n.b., the value of k remains unchanged) – repeat this step until there are no neighboring 1’s,

2. replace any occurrence of 1̄1 with 01̄.

Further optimizations are possible (e.g., exploit repeated patterns), however, this is out of the scope
of this paper. To calculate the result, we shift (and possibly negate) x accordingly to the optimized
representation of k, then we use selected addition algorithm to aggregate the shifted (and negated)
values. Find our method in Algorithm III, which is also given in the cleartext domain.
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Note that for β = 2, shifting x by b bits is equivalent to appending/prepending (depends on
endianity) a series of b trivial samples of 0 to x. For β = 4, we suggest to pre-compute double of x
as y = x⊕ x, then we append/prepend ⌊b/2⌋ trivial samples of 0 to x or y, depending whether b is
even or odd, respectively.

Algorithm III Scalar Multiplication.

Input: k,X ∈ Z (k to be cleartext, X to be encrypted)
Output: Z = k ·X.

1: k← standard binary repres. of |k|
2: while 01n ⊑ k for some n > 1 do ▷ ⊑ . . . substring
3: for longest such n, replace 01n with 10n−11

4: replace every 11 ⊑ k with 01

5: Z ← 0
6: for each ki ∈ k, ki ̸= 0
7: Z ← Z + ki · (X ≪ i) ▷ X shifted, (negated)
8: ▷ use favorite parallel alg.

9: return sgn(k) · Z

3.4 Number Comparison & Related Operations

Due to the different nature of the non-standard integer representation for parallel addition, we
discuss some other common operations in this representation. Namely, we provide a closer look at
number comparison, signum and maximum of two numbers.

3.4.1 Number Comparison

In both of our redundant representations, it shows that direct lexicographic comparison may fail.
Let us provide an example for the (4, Ā4)-representation:

(121•)4 = 25 > 23 = (22̄1̄•)4, (22)

although 1 < 2 at the leading position of each number. However, we can subtract the numbers (we
can do this in parallel), and then we can compare the result with zero, which works as expected.
I.e., the sign of the leading digit determines the sign of the result. We discuss the signum function
next.

3.4.2 Signum

Let us recall a method by Bourse et al. [5], which is originally intended to compare two integers
X,Y ∈ N0: given X and Y in the standard base-β representation as x,y ∈ An

β , n ∈ N, where each
digit is encrypted with sufficient plaintext space (namely π ≥ 3 and capable of holding Aβ −Aβ),
they suggest to subtract y from x digit-by-digit, yielding a representation z ∈ (Aβ − Aβ)

n =
{−β + 1, . . . , β − 1}n of Z = X − Y ∈ Z. Their method is based on the following observation:

sgn
(n−1∑

i=0

ziβ
i
)
= sgn

(n−1∑
i=0

sgn(zi)2
i
)
, (23)
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where we obtain a shorter number representation on the right-hand side, hence we can proceed
recursively by re-grouping it into larger digits.

Note that the alphabet of z is symmetric around zero, in addition, for both β = 2, 4, we have
Āβ ⊊ Aβ−Aβ . It follows that the method by Bourse et al. can be applied directly with both of our
redundant representations (2, Ā2) and (4, Ā4); find it in Algorithm IV. Importantly, their algorithm
is parallelizable using parallel reduction, which takes O(log n) time in parallel; cf. Figure 1 in their
paper.

Algorithm IV Signum over (β,Aβ −Aβ)-representation [5].

Input: (β,Aβ −Aβ)-representation z ∈ (Aβ −Aβ)
n of Z ∈ Z, for some n ∈ N,

Input: plaintext bit-precision π ≥ 3,
Output: sgn(Z).

1: γ ← π − 1
2: function SignParallelReduceγ(a, k)
3: if k = 1 then
4: return a0 ⋛ ±1
5: for j ∈ {0, 1, . . . , ⌈k/γ⌉} in parallel do
6: for i ∈ {0, 1, . . . , γ − 1} in parallel do
7: sγj+i ← 2i ·

(
aγj+i ⋛ ±1

)
▷ scale f1 by 2i

8: bj ←
∑γ−1

i=0 sγj+i ▷ (parallel reduction)

9: SignParallelReduceγ(b, ⌈k/γ⌉)
10: return SignParallelReduceγ(z, n)

Remarks In case we want to use this algorithm for number comparison (i.e., we aim at evaluating
the signum of X − Y ), we can save one layer of bootstrapping by changing the identity function,
which is applied in the last step of each parallel addition algorithm, to the signum function scaled
by an appropriate power of two; cf. line 7 of Algorithm IV. Then we can skip this line during the
first recursion level.

Next, we comment on line 8 that parallel reduction might be considered to evaluate the sum.
However, since the evaluation does not involve bootstrapping and π is relatively small, we find the
possible effect of this option negligible.

Finally, we comment on the prospective usage of signum over the (2, Ā2)-representation as the
activation function in a neural network, where the result gets multiplied by a known scalar. It shows
that multiplication of a sample, which encrypts s ∈ Ā2 = {−1, 0, 1}, by a known scalar w is fairly
easy: it is sufficient to copy-paste the sample to the positions of 1’s in the binary representation of
w and fill the rest with zeros. Note that other representations cannot apply this trick.

Analysis The evaluation of signum on line 7 requires no extra plaintext space (over what is
needed for the representation of a’s), since signum is a negacyclic function. Indeed, we need the
range [−2γ + 1, 2γ − 1], which fits π = γ + 1. Due to line 8 and thanks to the trick on line 7 (i.e.,
include 2i into the bootstrapping function), we have 22∆ = γ. For the full parallelization, we need
n threads, then the algorithm runs in ⌈logγ(n)⌉+ 1 bootstrapping steps. To get the total number

19



of bootstraps (per digit, respectively), we introduce the following functions:

S(n, γ) = n+
⌈n
γ

⌉
+

⌈ n

γ2

⌉
+ . . .+

⌈ n

γ⌈logγ(n)⌉

⌉
, (24)

s(n, γ) = 1/n · S(n, γ). (25)

3.4.3 Maximum

Next, we outline an approach, how to pick a maximum of two numbers X and Y represented in
(2, Ā2) or (4, Ā4) and encrypted with the multivalue TFHE with π2 ≥ 4 or π4 ≥ 5, respectively.
Find our method in Algorithms Va and Vb, respectively. In each algorithm, the call of Sign-
ParallelReduce+γ changes line 4 of Algorithm IV, so that it outputs +1 for all non-negative a0’s
(including 0), i.e., it outputs s ∈ {±1}. Recall the notation introduced in Section 2.4.1, which is
used on lines 6 and 7 of each algorithm.

Algorithm Va Maximum over (2, Ā2)-representation with π2 ≥ 4 bits of plaintext space.

Input: (2, Ā2)-representations x,y ∈ Ā2
n
of X,Y ∈ Z, for some n ∈ N,

Output: max{X,Y }.
1: r← x− y ▷ use favorite parallel alg.
2: γ ← π2 − 1
3: s← SignParallelReduce+γ (r, n+ 1)
4: for i ∈ {0, 1, . . . , n− 1} in parallel do
5: in parallel do
6: t← (◦,−1, 0, 1∥ 0, 0, 0)[xi + 2s]
7: u← (◦,−1, 0, 1∥ 0, 0, 0)[yi − 2s]

8: mi ← t+ u

9: return m

Algorithm Vb Maximum over (4, Ā4)-representation with π4 ≥ 5 bits of plaintext space.

Input: (4, Ā4)-representations x,y ∈ Ā4
n
of X,Y ∈ Z, for some n ∈ N,

Output: max{X,Y }.
1: r← x− y ▷ use favorite parallel alg.
2: γ ← π4 − 1
3: s← SignParallelReduce+γ (r, n+ 1)
4: for i ∈ {0, 1, . . . , n− 1} in parallel do
5: in parallel do
6: t← (◦,−2,−1, 0, 1, 2∥ 0, 0, 0, 0, 0)[xi + 3s]
7: u← (◦,−2,−1, 0, 1, 2∥ 0, 0, 0, 0, 0)[yi − 3s]

8: mi ← t+ u

9: return m

Analysis Since the test vectors on lines 6 and 7 of Algorithm Va cannot be overlapped, we need
π2 ≥ 4. Similarly, we need π4 ≥ 5 in Algorithm Vb. Next, in addition to the requirements of the
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selected parallel addition algorithm and SignParallelReduce+γ , we have: 2 + 1 bootstraps per

digit in total, 22∆2 = 5 and 22∆4 = 10, respectively, 2n threads for the full parallelization, which
runs in 1 + 1 bootstrapping steps. N.b., using the trick described in Remarks for Signum, we save:
one bootstrap per digit and one bootstrapping level from the circuit depth.

3.5 Neural Network Evaluation

Scalar multiplication, addition, maximum and signum is a set of operations, which is sufficient for
the evaluation of a simple neural network over encrypted input data. Moreover, it offers two used
activation functions: signum, and ReLU (rectified linear unit), which is defined as ReLU(X) =
max{0, X}.

4 Experimental Results

In this section, we put forward the results of two experimental setups: first, we compare all proposed
algorithms for addition, and second, we select an addition algorithm and compare it with other
operations. For both setups, we provide a brief discussion.

4.1 Experiment Setups

We implemented all presented algorithms for addition in the branch param-sets in our experimental
library2, which builds upon the Concrete Library [13] by Zama3 – a state-of-the-art implementation
of the TFHE scheme.

In the first set of experiments, we compare all proposed algorithms for addition of TFHE-
encrypted multi-digit integers, whereas in the second set of experiments, we choose and fix an
algorithm for addition, and we compare it with algorithms for scalar multiplication, signum and
maximum, and we also demonstrate evaluation of a neural network. We run our experiments
on a 12-threaded Intel Core i7-7800X processor and for all algorithms, we input 31-bit integers
encrypted with TFHE. Note that for all algorithms (except for those for addition with carry), there
is still much space for improvement if more threads are available.

Note 4. We derive the TFHE parameter sets for our nine algorithms for addition in our technical
paper [21] (they are originally intended for this paper, hence they are using the same letters).
According to the LWE Estimator by Albrecht et al. [1, 2], our parameters achieve between 90 and
95 bits of security, i.e., they are comparable with each other.

2Available at https://github.com/fakub/parmesan/tree/param-sets.
3https://zama.ai
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With carry (Alg. I) Parallel (Alg. IIa) Parallel (Alg. IIb)

Algorithm I-A I-B I-C IIa-D IIa-E IIa-F IIb-G IIb-H IIb-I
Base β 2 4 2 4

Plaintext bits π 2 2 3 3 4 5 4 5 7
Quad. weight 22∆ 2 3 19 12 12 20 36 36 74

#BS per digit 5 2 1 + 1 4 + 1 3 + 1 1 + 1 4 + 1 3 + 1 1 + 1
#threads 2 2 2 3(n2 + 1) 2(n2 + 1) n2 + 1 3(n4 + 1) 2(n4 + 1) n4 + 1
Circuit depth 3n2 n2 n4 2 + 1 2 + 1 1 + 1 2 + 1 2 + 1 1 + 1

[ms] per BS 40 42 64 61 68 79 76 81 > 346
Cost per bit [ms] 200 84 64 310 270 160 190 160 > 350
Est. best time (31-bit) [ms] 3 700 1 300 1 000 180 200 160 230 240 > 690

Real time [ms]
3 740 1 290 1 020 1 190 1 280 686 914 826 > 1 780

(31-bit integers, 12 threads)

Table 1: Comparison of algorithms for addition of multi-digit integers encrypted with TFHE. nβ stands for the digit-length
of the integers in base β; BS stands for bootstrapping; Cost per bit expresses the estimated processor time per 1 bit of inputs;
Estimated best time assumes enough threads, ideal parallelization and neglects other operations than BS. Experiments were
executed on a 12-threaded Intel Core i7-7800X processor. For Algorithm IIb-I, only lower estimates are given; cf. Note 5.

Addition Scalar Mul. by 121 Signum Maximum NN Eval.
(Alg. IIa-F) (Alg. III) (Alg. IV) (Alg. Va) (Sect. 3.5)

22∆ 20 20 π − 1 = 4 max{20, π − 1, 5} = 20 —

#BS per digit 1 + 1 — s := s(n2, π − 1) s+ 4 —
#threads n2 + 1 n2 + 1 n2 2n2 —
Circuit depth 1 + 1 — ⌈logπ−1(n2)⌉+ 1 ⌈logπ−1(n2)⌉+ 4 —

Cost per bit [ms] 160 — 79 · s 79 · (s+ 4) —
Est. best time (n2-bit) [ms] 160 — 79 · (⌈logπ−1(n2)⌉+ 1) 79 · (⌈logπ−1(n2)⌉+ 4) —

Real time [ms]
686 1 407 619 2 028

01:16
(31-bit int’s, 12 threads) [hh:mm]

Table 2: Summary of parallel algorithms for addition, scalar multiplication by 121, signum, maximum and neural network
evaluation (cf. Appendix C for its specification) over the (2, Ā2) representation. Using fixed TFHE parameters with π = 5 and
22∆ = 20, running on a 12-threaded Intel Core i7-7800X processor (79ms per BS). See (25) for the definition of s(n, γ).
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4.2 Results & Discussion

First, for the comparison of algorithms for addition, we provide an overview of their basic parameters
together with their experimental performance results in Table 4.1. The results show that for different
usage scenarios, different strategies might show to be the most suitable. Indeed, the redundant
representation introduces certain computational overhead, which can be mitigated by sufficient
number of threads; a brief discussion of two extreme cases follows.

In case there is only a limited space for the parallelization of bootstrapping and/or if the
computation costs are the priority, we would recommend Algorithms I-B or I-C, since they have
the lowest cost per bit as well as the total time with only two threads. However, our signum and
maximum algorithms could not be used with these addition algorithms due to the small π.

On the other hand, in case there are sufficient parallel resources and the total time is the
priority, parallel addition is worth starting from only a few bits: assuming ideal parallelization
and our TFHE parameters, Algorithm IIa-F becomes faster than Algorithm I-C from as short as
5-bit integers. Indeed, Algorithm I-C runs 64 · n4 = 192ms (a 5-bit word occupies 3 digits in base
4), whereas Algorithm IIa-F runs 79 · 2 = 158ms. For the addition of 31-bit (signed) integers,
parallel addition using Algorithm IIa-F, with 32 threads and ideal parallelization, is assumed to be
already more than 6× faster than the sequential Algorithm I-C. For any other setup, one can easily
calculate the best trade-off. However, since future enhancements of the TFHE parameter setup can
be expected, hence the ratio between the timings of individual setups may change, our experimental
results shall not be percepted as definitive.

Note 5. With the Concrete Library, the parameters for π = 7 have shown to be insufficient for the
correctness of the results and still they show the worst timings, both in terms of cost per bit and
estimated best time. Therefore we decided not to consider this scenario any more, since fixing the
parameters would only lead to yet worse results.

Second, for a comparison of selected algorithm for parallel addition with scalar multiplication,
signum and maximum, we have chosen Algorithm IIa-F:

1. it has sufficient π2 ≥ 4 (required for maximum), and

2. it shows the best times as well as the best cost per bit among all of our parallel algorithms.

For scalar multiplication, we use k = 121 = (0111′1001•)2, which rewrites as (1000′1̄001•)2. Finally,
we demonstrate the aforementioned operations on an evaluation of a realistic—yet experimental—
neural network for arrhythmia detection (16 inputs, 1 hidden layer of 38 perceptrons, 16 outputs;
taken from Mansouri et al. [25]) (find its detailed structure in Appendix C). For an overview of the
parameters and respective experimental results, see Table 4.1.

Note 6. We have chosen neural network evaluation due to the currently limited set of operations,
and it serves for demonstration purposes only: the coefficients are not optimized for homomorphic
calculations, nor do we perform any rounding or packing. Moreover, as shown by Bourse et al.
[4], neural networks achieve fairly good results even when errors occur during their evaluation.
Therefore a standard torus-based (unlike our digit-based) encryption with TFHE can be employed to
achieve much faster evaluation times.
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5 Conclusion

We proposed several strategies, how selected algorithms for parallel addition of multi-digit integers
can be turned into the TFHE-encrypted domain. Our strategies balance between two conflicting
motivations: either to limit the plaintext space, or to reduce the number of bootstraps. In addition,
we revisited the algorithm for signum by Bourse et al., which turns out to work with the special
integer representations that are used for parallel addition, and we presented an algorithm for the
maximum of two integers that are given in this representation. As a by-product, we outlined an
algorithm for addition with carry with base β = 2, which uses 2 instead of 5 bootstraps and only
slightly tuned TFHE parameters. Based on our experiments, we have concluded that the fastest
parallel addition approach can be faster than the fastest sequential one starting from as short
as 5-bit integers; for 31-bit integers, it is already more than 6× faster. Finally, on top of the
parallel addition algorithm, we proposed a method for scalar multiplication and we demonstrated
a combination of our methods on an evaluation of a neural network over encrypted input data.

Future Directions & Open Problems

Our aim is to focus on other multi-digit arithmetic operations in the redundant representation,
over encrypted data, with particular respect to their parallelization. E.g., we aim at implementing
and optimizing algorithms for multiplication and squaring, on top of that, rounding or reduction
modulo 2k does not show to be as straightforward as in the standard binary representation.

As pointed out in the discussion to Table 4.1, the optimality of the (multivalue) TFHE pa-
rameters, given the security level, the plaintext precision and the 2∆ parameter, remains an open
question – advances might be expected in the future. Also, we did not consider any packing tech-
nique that could possibly greatly improve the evaluation time of a more complex circuit consisting
of several independent arithmetic operations.
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The authors thank Dr. Jan Legerský for his valuable comments. The authors also thank the
anonymous referees for their helpful suggestions. This work was supported by the 3IA Côte d’Azur
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A List of Symbols & Notations

Here we provide a complete list of symbols and notations used throughout this paper:

N . . . positive integers, i.e., {1, 2, 3, . . .},

a÷ b . . . integer division, i.e., a÷ b = ⌊a/b⌋, b ̸= 0,

x ⋛ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (2),

x ≡ ±b . . . comparison of x with ±b, b ∈ N, it outputs {−1, 0,+1} as per (3),
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a⊻ b . . . logical XOR of a and b,

MUX(a, b, c) . . . evaluates as a ? b : c (i.e., the standard ternary expression),

(1, 3, ◦,−2∥−3, 1) . . . notation for a custom negacyclic function; cf. Section 2.4.1,

π . . . bit-length of the multivalue TFHE message/plaintext space,

2∆ . . . logarithm of quadratic weight, which is the sum of squared weights; cf. Section 2.4.2,

(xn−1 . . . x1x0•)β . . . base-β representation of
∑n−1

i=0 βixi,

x̄ . . . negated integer used in redundant number representation, e.g., (11̄•)2 = 2− 1 = 1,

Aβ . . . alphabet for the standard base-β representation, Aβ = {0, 1, . . . , β − 1},

Āβ . . . alphabet for a redundant representation, given explicitly in Section 2.1.2 for β = 2, 4.

B The Domain for x ⋛ ±b
We show that the negacyclic function f , f : [−a− b, a+ b)→ {−1, 0, 1}, a ≥ b > 0, defined on the
non-negative half of the domain as

f(x) =


0 x ∈ [0, b− 1],

1 x ∈ [b, a],

0 x ∈ [a+ 1, a+ b− 1],

contains the function x ⋛ ±b on the domain [−a, a].
For x ∈ [0, a], the claim follows from the definition of f . By the negacyclic property of f , we

have f(x) = −f(x+ a+ b), i.e., for x ∈ [−a, 1], the function equals

−f(x+ a+ b) =

{
−1 x ∈ [−a,−b],
0 x ∈ [−b+ 1, 1],

and the claim follows. Find an example for a = 6 and b = 2 in Figure 4.

C Structure of the Experimental NN

For demonstration purposes, we evaluated a realistic—yet experimental—neural network for ar-
rhythmia detection (taken from Mansouri et al. [25]). At its input, the network expects 16 signed
integers up to 11 bits long, denoted as x ∈ Z16. Next, a fully connected hidden layer with 38
perceptrons and with the ReLU activation function follows – we get the intermediate values as

p = ReLU
(
WI · x+ bI

)
, (26)

where WI ∈ Z38×16 stores the weights of the connections and bI ∈ Z38 stands for the vector of
biases. Finally, the output layer is also fully-connected and it consists of 16 values calculated as
y = WO · p+ bO. Find the structure depicted in Figure 5.
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Figure 4: Extension of x ⋛ ±2 on the domain [−6, 6] to a negacyclic function f . The negacyclic
property is outlined with a dotted arrow for f(−6) = −f(−6 + 8).
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Figure 5: Structure of an experimental neural network for arrhythmia detection: an input layer
with 16 inputs, a fully-connected hidden layer with 38 perceptrons using the ReLU activation
function, and a fully-connected output layer with 16 outputs (without the activation function).
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