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Increasing the Fault Coverage of a Truncated Test Set

IRITH POMERANZ, Purdue University

Defect-aware, cell-aware, and gate-exhaustive faults are described by input patterns of subcircuits or cells

that are expected to activate defects. Even with single-cycle faults, an n-input subcircuit can have up to 2n

faults with unique fault detection conditions, resulting in a large test set. Such a test set may have to be

truncated to fit in the tester memory or satisfy constraints on test application time. In this case, a loss of fault

coverage is inevitable. This article considers the test set denoted by T1 obtained after truncating a larger test

set denoted by T0. Suppose that the truncation reduces the set of detected faults from the set denoted by D0

to the set denoted by D1. The procedure described in this article modifies the tests inT1 to gain the detection

of faults from D0\D1, even at the cost of losing the detection of faults from D1. The goal is to reduce the

fault coverage loss by computing a test set denoted by T2 that detects a set of faults denoted by D2 such

that |T2 | = |T1 | and |D2 | > |D1 |. Experimental results for benchmark circuits demonstrate the ability of the

procedure to increase the coverage of gate-exhaustive faults over several iterations.
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1 INTRODUCTION

New technologies give rise to new types of defects [1–7] that can be modeled as defect-aware
[8, 9], cell-aware [10–14] or gate-exhaustive [15–19] faults. These types of faults are described
by input patterns of subcircuits or cells. The input patterns are such that they are expected to
activate defects. In the case of defect-aware and cell-aware faults, the input patterns are selected
by analyzing the layout of the subcircuit. In the case of gate-exhaustive faults, all of the input
patterns are considered important. A fault associated with an input pattern pi of a subcircuitGi is
detected by assigning pi to the inputs of the gate and propagating a fault effect from the output of
Gi to an observable output.

Even with single-cycle faults, an n-input subcircuit can have up to 2n faults. The faults have
unique detection conditions since they are associated with different input patterns of the subcircuit.
As a result, a large test set may be obtained. In this case, the test set may have to be truncated
to fit in the tester memory or satisfy constraints on the test application time. Before truncation,
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Fig. 1. Test set truncation.

a test generation procedure may achieve complete or close-to-complete fault coverage for the
fault model(s) of interest. However, the number of tests in the test set may be excessive even if
test compaction is used [20–23]. It is then necessary to truncate the test set. Truncation reduces
the number of tests and, along with it, the fault coverage. As a result, the fault coverage after
truncation is not complete. The procedures described in [24, 25] reorder a test set before it is
truncated to steepen its fault coverage curve. With a steeper fault coverage curve, a higher fault
coverage is obtained after truncation. However, a loss of fault coverage is inevitable when a test
set is truncated.

This article considers the test set obtained after truncation. Suppose that a test setT0 is truncated
into a test set T1. Suppose further that the set of detected faults is reduced from D0 to D1. This is
illustrated by Figures 1(a) and 1(b). With the process from [24, 25],T1 ⊂ T0. Therefore, D1 is limited
by the tests included inT0. To remove this limitation, the procedure described in this article modi-
fies the tests inT1 to gain the detection of faults fromD0\D1, even at the cost of losing the detection
of faults from D1. The goal of the procedure is to obtain a test set T2 that detects a set of faults D2

such that |T2 | = |T1 | and |D2 | > |D1 |. This is illustrated by Figure 1(c). Thus, the goal is to reduce
the fault coverage loss that occurred when the test set was truncated by modifying the tests. In an
iterative process, the procedure produces test setsTk , for k ≥ 2, such that |Tk | = |Tk−1 | and |Dk | >
|Dk−1 |, with reduced fault coverage loss. Figure 1(d) shows the test set T3 and the set of detected
faultsD3. Since the number of tests inT0 is determined by a test-generation procedure, and the num-
ber of tests in Tk , for k ≥ 1, is determined by constraints on the tester memory or test application
time, the procedure described in this article does not attempt to change the number of tests in Tk .

The procedure is applied to a compact test set for single stuck-at faults and single-cycle gate-
exhaustive faults. Truncation is performed after the test set is reordered using a procedure simi-
lar to the one from [25]. Truncation is done such that the stuck-at fault coverage is maintained.
However, the single-cycle gate-exhaustive fault coverage decreases inevitably when the number
of tests is reduced. The procedure described in this article is applied to increase the single-cycle
gate-exhaustive fault coverage of the truncated test set.

Gate-exhaustive faults are interesting for this study since the number of faults is large, and
many of them are undetectable. In addition, there are large variations among different circuits in
the percentage of tests that need to be added to a stuck-at test set to detect gate-exhaustive faults.
Since it is not known in advance how many tests will be needed, tests are generated for all of the
faults. Truncation may then remove different percentages of tests for different circuits and result
in a different loss of fault coverage for different circuits. This allows the procedure described in this
article to be studied over a large range of truncated test sets. The same procedure is applicable with
other fault models and when several different fault models are targeted [26–30]. To demonstrate
the broader applicability of the procedure, it is applied to a randomly selected subset of all of the
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gate-exhaustive faults. Cell-aware faults also constitute a subset of gate-exhaustive faults when
the same cells or gates are used.

For further illustration, the procedure is applied to a compressed launch-on-shift test set that
targets single stuck-at, transition, single-cycle, and two-cycle gate-exhaustive faults. In this case,
truncation is performed such that it maintains the stuck-at and transition fault coverage. However,
the coverage of gate-exhaustive faults of both types may be reduced. For the description of the
algorithm developed in this article, single-cycle tests for stuck-at and single-cycle gate-exhaustive
faults are considered as a concrete example. Compressed two-cycle tests for four fault models are
considered later.

The article is organized as follows. Section 2 describes the problem addressed in this article.
Section 3 provides an overview of the procedure used for solving it. Section 4 provides details
of its implementation. Section 5 presents experimental results for benchmark circuits consider-
ing single-cycle tests. Section 6 discusses experimental results for compressed two-cycle tests.
Section 7 presents concluding remarks.

2 PROBLEM FORMULATION

The procedure described in this article accepts a test set T0 that detects a set of faults D0. The set
D0 consists of single-cycle gate-exhaustive faults as well as single stuck-at faults. The procedure
truncates T0 to obtain the test set T1 and then modifies T1 to obtain the test set T2. Truncation of
T1 and modification of T2 are performed such that T1, and then T2, detect all of the single stuck-
at faults in D0. This is justified by the fact that complete coverage of single stuck-at faults is a
minimum requirement for testing a circuit.

Fault simulation with fault dropping ofD0 underT0 yields, for every test ti ∈ T0, a set of detected
stuck-at faults denoted by Dsa (ti ), and a set of detected gate-exhaustive faults denoted by Dдe (ti ).
Before truncating T0, its tests are ordered from high to low size of Dsa (ti ). For the same size of
Dsa (ti ), the tests are ordered from high to low size of Dдe (ti ). With this order, the first tests in T0

detect all of the single stuck-at faults. The remaining tests detect only gate-exhaustive faults. In
both cases, the tests are ordered such that tests appearing earlier detect more faults.

After reordering the tests, fault simulation is carried out again to update the sets Dsa (ti ) and
Dдe (ti ). Reordering and fault simulation are repeated until no further changes to the order of the
tests are obtained.

Considering the ordered test setT0, and a parameter 0 < θ < |T0 |, a truncated test setT1 includes
the first θ tests fromT0. Fault simulation with fault dropping of D0 underT1 yields a set D1 ⊂ D0 of
detected faults. The value of θ is selected such thatD1 includes all the single stuck-at faults fromD0.

Figures 1(a) and (b) demonstrate the truncation of T0 into T1. The test set T1 excludes the tests
in T0\T1 to reduce the number of tests. As a result, it loses the detection of the faults in D0\D1.
Reordering of T0 ensures that T1 loses the detection of as few faults as possible. However, a loss
in fault coverage is inevitable when the test set is truncated. In addition, the selection of T1 is
performed without modifying the tests in T0. Even though T0 is optimized for the detection of D0,
the truncated test setT1 may not be optimized for the detection of D1. Thus, with the same number
of tests, it may be possible to detect more faults if different tests are used.

The possibility of detecting more faults is illustrated by Figure 1(c). The test setT2 has the same
size asT1. It detects a set of faults D2 ⊂ D0 that is larger than D1. The computation ofT2 is the goal
of the procedure described in this article. The same procedure is applied iteratively to produce test
sets T3, T4, . . . with increased sets of detected faults. Figure 1(d) illustrates the case of T3.

Problem Formulation: Given a test set T0 that detects a set of faults D0, and a truncated test set
T1 that detects a set of faults D1 ⊂ D0, compute a test set T2 with a set of detected faults D2 ⊆ D0

such that |T2 | = |T1 | and |D2 | > |D1 |.
ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 6, Article 54. Pub. date: June 2022.
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Fig. 2. Procedure for increasing the fault coverage after truncation.

3 PROCEDURE OVERVIEW

The procedure described in this article uses the gate-exhaustive faults in D0\D1 as targets for the
modification of the tests inT1. The goal is to increase the numbers of gate-exhaustive faults the tests
in T1 detect. In this process, the procedure accepts losing the detection of gate-exhaustive faults
from D1 if it can detect gate-exhaustive faults from D0\D1 in their place such that the number of
detected gate-exhaustive faults is increased. This proceeds as illustrated by Figure 2 and described
next.

3.1 Procedure

LetT1 = {t0, t1, . . . , tn−1}. Fault simulation with fault dropping yields sets of detected faults Dsa (ti )
and Dдe (ti ) for every test ti ∈ T1. The procedure constructs a test set T2 by considering the tests
from T1 one by one. Every test is modified before it is added to T2, as described next.

Initially, T2 = ∅, and U = D0\D1 includes the gate-exhaustive faults that are detected by T0 but
not by T1. When a test ti ∈ T1 is considered, the goal of the procedure is to compute a new test
tmod
i that satisfies the following conditions.

(1) tmod
i detects all of the faults from Dsa (ti ). This is important for ensuring that all of the single

stuck-at faults detected by T0 (and T1) are also detected by T2.
(2) tmod

i detects as many faults as possible from the set Dдe (ti ) ∪ U . This condition allows the
procedure to substitute gate-exhaustive faults in D1 with gate-exhaustive faults inU if this results
in an increase in the gate-exhaustive fault coverage ofT2. Without modification, tmod

i = ti detects
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the faults in Dдe (ti ). Therefore, the minimum number of gate-exhaustive faults that tmod
i will

detect is |Dдe (ti ) |. By optimizing tmod
i , the procedure may increase the number of detected gate-

exhaustive faults, thus increasing the gate-exhaustive fault coverage of T2 relative to T1.
The computation of tmod

i can be done by a test generation procedure targeting the faults in
Dsa (ti ) ∪ Dдe (ti ) ∪U . A different implementation is described in Section 4.

After computing tmod
i , the procedure includes it in T2. It updates U to include gate-exhaustive

faults from Dдe (ti ) whose detection was lost, and exclude new gate-exhaustive faults that tmod
i

detects. The updated set is (U ∪ Dдe (ti )) \ Dдe (tmod
i ).

Next, for i < j < n, the procedure simulates the faults in Dsa (tj ) ∪Dдe (tj ) under tmod
i . If a fault

f ∈ Dsa (tj ) is detected by tmod
i , the procedure removes the fault from Dsa (tj ). Similarly, if a fault

f ∈ Dдe (tj ) is detected by tmod
i , the procedure removes the fault from Dдe (tj ). This is important

since having fewer faults in Dsa (tj ) and Dдe (tj ) ensures that tj is easier to modify later.
Experimental results indicate that a test ti close to the beginning of T1 cannot be modified to

increase Dдe (ti ) significantly. The reason is that the sets Dsa (ti ) and Dдe (ti ) are large for tests
that appear at the beginning of the test set, and the flexibility to modify them is low. To avoid
the computational effort of attempting to modify tests that cannot be modified, the procedure
attempts to modify tests starting from tm/4, where m is the number of tests for stuck-at faults in
T1. The procedure copies t0, . . . , tm/4−1 from T1 to T2 unmodified. It attempts to modify the tests
tm/4, . . . , tn−1.

Using the same process for k > 2, the procedure uses Tk−1 to compute a modified test set Tk

with an increased gate-exhaustive fault coverage. This continues until the gate-exhaustive fault
coverage of Tk is equal to that of Tk−1.

3.2 Example

To illustrate the procedure, benchmark circuit s1423 is considered in Table 1. The test set T0 con-
tains 118 tests, including 38 tests for stuck-at faults. The test set detects 1653 gate-exhaustive faults.
It is truncated into a test set that contains 76 tests and detects 1599 gate-exhaustive faults. The pro-
cedure considers the tests t9, t10, . . . , t75. Some of these tests are shown in Table 1. The first column
of Table 1 shows the index of a test ti . This is followed by the number of gate-exhaustive faults
detected by ti . Column init shows the number of faults detected by ti initially, when ti is first
considered. Column modi f y shows the number of faults detected by ti after it is modified. Col-
umnmove shows the number of faults detected by ti after the procedure simulates under ti faults
that are detected by tests appearing later than ti . This moves detected faults from later tests to ti .
Column f rom shows the indices of the tests from which faults are moved to ti .

When t9 is considered, the procedure finds that it detects 38 gate-exhaustive faults. Modifying
t9 does not result in the detection of new faults, and no faults are moved from later tests.

When t10 is considered, the procedure finds that it detects 43 gate-exhaustive faults. Modifying
t10 does not result in the detection of new faults. One fault is moved from t18 to t10. Later, when t18

is considered, this allows the procedure to modify it such that it detects one new fault.
Five faults are moved from t21 to tests that appear earlier, one to each of t11, t12, and t17, and

two to t13. When t21 is considered, the procedure finds that it detects four gate-exhaustive faults.
Modifying t21 results in the detection of one new fault, and four faults are moved from later tests
to t21.

Additional examples are shown in Table 1. After the construction of T2 is complete, the test set
detects 1629 gate-exhaustive faults.

It is also interesting to consider the subsets of gate-exhaustive faults detected by a test ti before
and after it is modified. The test t65 of s1423 is considered in Table 2. Before the test is modified,
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Table 1. Example of Computing T2

i init modify move from

9 38 38 38
10 43 43 44 (18)
11 31 31 32 (21)
12 42 42 43 (21)
13 24 26 28 (21)
14 35 35 35
15 21 21 21
16 21 21 21
17 19 19 22 (21, 27, 41)
18 17 18 18
19 15 17 17
20 12 12 12
21 4 5 9 (22, 42, 50, 66)
22 10 12 13 (34)

29 4 7 8 (46)
30 3 4 4
33 5 7 7
35 3 4 4
36 2 3 3
37 1 3 3
42 7 8 8
49 4 5 6 (57)
50 2 3 3

Table 2. Example of Detected Faults

i step detected

65 init (689,10011011) (706,10001) (986,00011)
modify (689,10011011) (706,10001) (986,00101) (1421,10011)

it detects three faults. After it is modified, it detects four faults. The faults are shown in Table 2
in the format (Ga ,pb ), where Ga is the index of a gate, and pb is the input pattern assigned to the
gate inputs to activate the fault.

In the case of t65, to allow a new fault, (1421,10011), to be detected, the fault (986,00011) is
replaced with the fault (986,00101).

4 TEST MODIFICATION

This section describes the computation of a modified test tmod
i based on a test ti with subsets of

detected faults Dsa (ti ) and Dдe (ti ). As before, the set of gate-exhaustive faults whose detection
was lost by the truncation of the test set and not recovered is denoted byU . The advantage of the
procedure described in this section over test generation that targets the faults inDsa (ti )∪Dдe (ti )∪
U is that it keeps tmod

i as close as possible to ti . In particular, it does not lose the detection of any
fault from Dsa (ti ) and, thus, does not need to target these faults again. In addition, it does not
lose the detection of a fault from Dдe (ti ) unless it can detect a different gate-exhaustive fault in its

place. Consequently, tmod
i detects as many faults from Dдe (ti ) as possible.
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The procedure starts with tmod
i = ti . It modifies tmod

i by complementing its bits one by one.

After bit b is complemented, let the test tmod
i,b

be obtained. To decide whether the complementation

of bit b is acceptable, the procedure performs fault simulation as follows.
(1) The procedure simulates Dsa (tmod

i ) under tmod
i,b

. If any fault is not detected, the complementa-

tion of bit b is not acceptable. This condition ensures that all of the single stuck-at faults detected
by T0 (and T1) are also detected by T2.
(2) The procedure simulates Dдe (tmod

i ) ∪ U under tmod
i,b

. Let the subset of detected faults be

Dдe (tmod
i,b

). If |Dдe (tmod
i,b

) | < |Dдe (tmod
i ) |, the complementation of bit b is not acceptable. This

condition ensures that the number of detected gate-exhaustive faults is not decreased by the
modification.

If both checks indicate that tmod
i,b

is acceptable, the procedure assigns tmod
i = tmod

i,b
. Faults in

Dдe (tmod
i,b

) ∩U are removed from U , and faults in Dдe (tmod
i ) \ Dдe (tmod

i,b
) are added to U to keep

the set U up-to-date. The set U is updated by assigning U = (U ∪ Dдe (tmod
i )) \ Dдe (tmod

i,b
).

All of the bits of tmod
i are considered a constant number of times. The constant four is used for

the experiments. This is based on the experimental observation that fewer than four passes over
the bits of a test are typically needed before no additional improvements in the subsets of detected
faults can be achieved.

5 EXPERIMENTAL RESULTS FOR SINGLE-CYCLE TESTS

This section presents the results of applying the procedure for increasing the fault coverage of
a truncated test set to benchmark circuits using single-cycle tests for stuck-at and single-cycle
gate-exhaustive faults.

The set of gate-exhaustive faults is the one computed in [19]. In addition, in a separate experi-
ment, a quarter of the gate-exhaustive faults from [19] are selected randomly and used as target
faults. This demonstrates a case that is closer to the case in which cell-aware faults are used. In
the case of cell-aware faults, assuming the same cells or gates, a subset of gate-exhaustive faults
are identified as important for every gate; only these faults are included in the set of target faults.

The test set T0 consists of a compact test set for single stuck-at faults, topped off with tests
for gate-exhaustive faults from [19]. Only tests that detect additional gate-exhaustive faults are
included in T0. The set D0 includes all of the stuck-at and gate-exhaustive faults detected by T0.

The set of detectable gate-exhaustive faults in D0 is taken as the universe of gate-exhaustive
faults for the computation of a percentage of detected faults, which is referred to as the gate-
exhaustive fault efficiency. The test set is reordered and then truncated as described in Section 2
using a parameter 0 < θ < |T0 |. Values of θ are selected as follows.

Let θ0 be the number of tests in a compact test set for single stuck-at faults. After reordering,
these tests appear at the beginning of T0. For μ = 2 and 3, the procedure is applied with θ = μθ0.
The rationale for this selection is as follows.

With θ = 2θ0, the number of additional tests available for detecting gate-exhaustive faults is
the same as the number required for detecting single stuck-at faults. The case in which θ = 3θ0

illustrates the situation in which a larger test set can be accommodated.
For some benchmark circuits, θ = 2θ0 results in the removal of a large percentage of tests from

T0. For other circuits, the percentage of tests removed is smaller. The use of θ = 3θ0 results in lower
percentages of tests being removed fromT0. The percentage of tests removed determines the fault
coverage loss for gate-exhaustive faults. Overall, the use of θ = 2θ0 and 3θ0, and the selection of
gate-exhaustive faults, result in a large range of different truncated test sets, with different fault
coverages, that bring out the ability of the procedure described in this article to increase the fault
coverage in different situations.
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Table 3. Experimental Results |T1 |/|T0 | < 35%

circuit inp μ k tests %tests s.a. g.exh gap ntime

s38417 1664 2 1 206 12.61 99.680 80.784 0.000 12.58
s38417 1664 2 2 206 12.61 99.680 85.846 26.343 811.73
s38417 1664 2 50 206 12.61 99.680 88.409 39.682 43091.31

s38417 1664 s2 1 206 19.25 99.680 81.811 0.000 11.52
s38417 1664 s2 2 206 19.25 99.680 91.297 52.153 603.25
s38417 1664 s2 28 206 19.25 99.680 94.916 72.050 19760.49

b20 527 2 1 852 20.86 95.586 90.162 0.000 17.94
b20 527 2 2 852 20.86 95.766 90.871 7.200 270.33
b20 527 2 23 852 20.86 95.807 91.341 11.983 5702.19

s15850 611 2 1 236 21.55 97.511 83.332 0.000 9.20
s15850 611 2 2 236 21.55 97.511 85.618 13.717 339.24
s15850 611 2 32 236 21.55 97.511 88.705 32.237 10060.41

simple_spi 146 2 1 72 23.38 100.000 67.806 0.000 5.19
simple_spi 146 2 2 72 23.38 100.000 74.063 19.434 76.12
simple_spi 146 2 7 72 23.38 100.000 74.747 21.558 432.94

b14 280 2 1 706 25.35 95.966 86.763 0.000 10.65
b14 280 2 2 706 25.35 96.193 86.955 1.455 205.40
b14 280 2 6 706 25.35 96.205 87.128 2.764 984.46

s9234 247 2 1 286 28.66 93.946 85.674 0.000 13.72
s9234 247 2 2 286 28.66 93.946 87.703 14.167 192.38
s9234 247 2 14 286 28.66 93.946 88.819 21.955 2477.91

b20 527 3 1 1278 31.29 95.586 92.650 0.000 16.97
b20 527 3 2 1278 31.29 95.773 92.905 3.468 388.78
b20 527 3 13 1278 31.29 95.812 93.123 6.435 5310.94

s15850 611 3 1 354 32.33 97.511 90.083 0.000 9.32
s15850 611 3 2 354 32.33 97.511 91.042 9.673 528.24
s15850 611 3 53 354 32.33 97.511 93.833 37.818 26999.10

simple_spi 146 s2 1 72 32.43 100.000 72.138 0.000 9.86
simple_spi 146 s2 2 72 32.43 100.000 90.679 66.545 148.57
simple_spi 146 s2 6 72 32.43 100.000 93.820 77.818 818.14

i2c 145 2 1 90 33.46 100.000 88.819 0.000 5.94
i2c 145 2 2 90 33.46 100.000 91.986 28.325 71.56
i2c 145 2 12 90 33.46 100.000 92.812 35.714 822.56

sasc 132 2 1 44 34.65 100.000 74.347 0.000 5.17
sasc 132 2 2 44 34.65 100.000 79.323 19.396 135.33
sasc 132 2 6 44 34.65 100.000 79.853 21.463 720.33

The results are shown in Tables 3 to 7 as follows. The circuits are arranged from low to high
value of |T1 |/|T0 | ·100, which is the percentage of tests fromT0 included inT1 after truncation. Each
table has a different range of the percentage |T1 |/|T0 | · 100.

There are several rows for every circuit, corresponding to T1, T2, and the final test set obtained
by the procedure from Figure 2.

For every test set, after the circuit name, column inp shows the number of inputs. Column μ
shows the value of this parameter. When only a quarter of the gate-exhaustive faults are considered,
the value of μ is preceded by an “s.” Column k shows the iteration of the procedure.
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Table 4. Experimental Results 35% ≤ |T1 |/|T0 | < 45%

circuit inp μ k tests %tests s.a. g.exh gap ntime

simple_spi 146 3 1 108 35.06 100.000 80.598 0.000 7.63
simple_spi 146 3 2 108 35.06 100.000 85.436 24.935 163.88
simple_spi 146 3 7 108 35.06 100.000 86.348 29.634 978.63

spi 274 2 1 804 35.34 99.992 83.994 0.000 14.72
spi 274 2 2 804 35.34 99.992 86.461 15.411 236.57
spi 274 2 23 804 35.34 99.992 88.720 29.524 4549.54

wb_dma 738 2 1 130 36.93 100.000 91.571 0.000 15.83
wb_dma 738 2 2 130 36.93 100.000 95.179 42.814 765.61
wb_dma 738 2 12 130 36.93 100.000 96.282 55.894 9745.93

b14 280 3 1 1059 38.03 95.966 89.029 0.000 10.74
b14 280 3 2 1059 38.03 96.211 89.241 1.931 299.23
b14 280 3 9 1059 38.03 96.228 89.324 2.692 2340.71

s15850 611 s2 1 236 38.94 97.511 87.190 0.000 9.51
s15850 611 s2 2 236 38.94 97.511 92.066 38.063 556.88
s15850 611 s2 13 236 38.94 97.511 96.076 69.369 6684.05

systemcaes 928 2 1 240 39.41 99.997 91.324 0.000 11.54
systemcaes 928 2 2 240 39.41 99.997 92.465 13.147 445.55
systemcaes 928 2 7 240 39.41 99.997 92.798 16.990 3251.41

s38584 1464 2 1 284 40.51 95.567 94.141 0.000 9.41
s38584 1464 2 2 284 40.51 95.567 96.558 41.261 1329.47
s38584 1464 2 20 284 40.51 95.567 97.379 55.266 31337.49

b15 483 2 1 850 41.04 98.938 88.247 0.000 14.82
b15 483 2 2 850 41.04 98.938 91.518 27.831 344.13
b15 483 2 24 850 41.04 98.938 92.840 39.083 7524.47

sasc 132 s2 1 44 42.72 100.000 79.608 0.000 6.75
sasc 132 s2 2 44 42.72 100.000 98.042 90.400 125.00
sasc 132 s2 4 44 42.72 100.000 98.858 94.400 415.00

s9234 247 3 1 429 42.99 93.946 90.849 0.000 13.82
s9234 247 3 2 429 42.99 93.946 91.988 12.451 314.57
s9234 247 3 12 429 42.99 93.946 92.463 17.639 2815.32

systemcaes 928 s2 1 240 43.56 99.997 92.152 0.000 13.49
systemcaes 928 s2 2 240 43.56 99.997 98.498 80.859 255.73
systemcaes 928 s2 8 240 43.56 99.997 99.495 93.560 2781.03

Column tests shows the number of tests in Tk . This number does not change with k . Column
%tests shows the number of tests in Tk as a percentage of the number of tests in T0, |Tk |/|T0 | · 100.

Column s .a. shows the stuck-at fault coverage. Column д.exh shows the gate-exhaustive fault
efficiency. Column дap measures the improvement in the gate-exhaustive fault efficiency as
|Dk |− |D1 |
|D0 |− |D1 | · 100%. The denominator is the gap between D1 and D0. The numerator is the extent

to which the gap is covered byTk . The ratio is the percentage improvement in the gate-exhaustive
fault efficiency gap. This metric has a range of 0% to 100% even when the fault efficiency achieved
by D1 is high, and the maximum improvement possible in the fault efficiency is low. For exam-
ple, when the fault efficiency is increased by 1% from 50% to 51%, the improvement in the gap is
(51 − 50)/(100 − 50) · 100 = 2%. When the fault efficiency is increased by 1% from 90% to 91%, the
improvement in the gap is (91 − 90)/(100 − 90) · 100 = 10%.
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Table 5. Experimental Results 45% ≤ |T1 |/|T0 | < 55%

circuit inp μ k tests %tests s.a. g.exh gap ntime

des_area 367 2 1 232 45.05 100.000 84.062 0.000 25.05
des_area 367 2 2 232 45.05 100.000 89.429 33.677 316.13
des_area 367 2 28 232 45.05 100.000 92.541 53.202 9420.62

s5378 214 2 1 222 45.12 98.867 86.650 0.000 10.63
s5378 214 2 2 222 45.12 98.867 91.894 39.277 178.22
s5378 214 2 21 222 45.12 98.867 93.496 51.282 3543.05

b20 527 s2 1 852 47.05 95.586 90.961 0.000 17.85
b20 527 s2 2 852 47.05 95.963 92.618 18.330 517.56
b20 527 s2 21 852 47.05 96.049 94.029 33.948 9696.21

des_area 367 s2 1 234 47.46 100.000 87.078 0.000 9.56
des_area 367 s2 2 234 47.46 100.000 98.685 89.822 162.72
des_area 367 s2 9 234 47.46 100.000 99.954 99.645 1465.40

wb_dma 738 s2 1 132 47.65 100.000 92.385 0.000 8.28
wb_dma 738 s2 2 132 47.65 100.000 99.077 87.879 442.68
wb_dma 738 s2 6 132 47.65 100.000 99.667 95.623 2931.31

s38584 1464 s2 1 284 48.71 95.567 94.921 0.000 9.50
s38584 1464 s2 2 284 48.71 95.567 99.434 88.850 1223.90
s38584 1464 s2 8 284 48.71 95.567 99.832 96.690 8719.52

i2c 145 3 1 135 50.19 100.000 94.822 0.000 8.14
i2c 145 3 2 135 50.19 100.000 96.062 23.936 116.21
i2c 145 3 5 135 50.19 100.000 96.613 34.574 457.21

s13207 700 2 1 474 51.02 98.869 90.880 0.000 9.44
s13207 700 2 2 474 51.02 98.869 94.591 40.693 750.51
s13207 700 2 9 474 51.02 98.869 95.298 48.449 7042.33

i2c 145 s2 1 90 51.72 100.000 90.077 0.000 8.00
i2c 145 s2 2 90 51.72 100.000 96.031 60.000 119.09
i2c 145 s2 6 90 51.72 100.000 97.354 73.333 665.82

sasc 132 3 1 66 51.97 100.000 86.746 0.000 5.17
sasc 132 3 2 66 51.97 100.000 92.659 44.615 161.83
sasc 132 3 4 66 51.97 100.000 93.026 47.385 502.33

spi 274 3 1 1206 53.01 99.992 90.798 0.000 15.03
spi 274 3 2 1206 53.01 99.992 92.946 23.343 276.91
spi 274 3 25 1206 53.01 99.992 94.644 41.792 5770.38

b15 483 s2 1 850 53.26 98.938 90.626 0.000 12.14
b15 483 s2 2 850 53.26 98.938 96.943 67.391 295.02
b15 483 s2 20 850 53.26 98.941 99.049 89.855 5475.68

Column ntime shows the normalized runtime for the computation ofT1,T2, . . . ,Tk . The normal-
ized runtime is the runtime divided by the runtime for fault simulation of T0. The runtime for T1

includes the reordering of T0 before it is truncated.
The following points can be seen from Tables 3 to 7. With both values of μ, and considering all

or a subset of the gate-exhaustive faults, the size of T1 as a percentage of T0 varies significantly
with the circuit. The gate-exhaustive fault efficiency of the truncated test set also varies with the
circuit. Overall, Tables 3 to 7 show a wide range of truncated test sets. In several cases at the end
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Table 6. Experimental Results 55% ≤ |T1 |/|T0 | < 70%

circuit inp μ k tests %tests s.a. g.exh gap ntime

s9234 247 s2 1 286 55.00 93.946 89.364 0.000 14.37
s9234 247 s2 2 286 55.00 93.946 94.349 46.875 313.39
s9234 247 s2 8 286 55.00 93.946 95.394 56.696 2089.03

wb_dma 738 3 1 195 55.40 100.000 96.942 0.000 15.91
wb_dma 738 3 2 195 55.40 100.000 97.968 33.543 822.42
wb_dma 738 3 11 195 55.40 100.000 98.372 46.751 9747.42

tv80 372 2 1 1016 55.46 99.688 95.320 0.000 13.89
tv80 372 2 2 1016 55.46 99.692 96.958 34.992 196.87
tv80 372 2 35 1016 55.46 99.709 98.210 61.742 6512.72

systemcaes 928 3 1 360 59.11 99.997 94.908 0.000 11.62
systemcaes 928 3 2 360 59.11 99.997 95.683 15.231 511.46
systemcaes 928 3 11 360 59.11 99.997 96.248 26.327 7023.50

usb_phy 112 2 1 64 60.95 100.000 95.860 0.000 6.00
usb_phy 112 2 2 64 60.95 100.000 98.318 59.375 122.00
usb_phy 112 2 4 64 60.95 100.000 98.512 64.062 406.25

s5378 214 s2 1 222 60.99 98.867 90.660 0.000 9.66
s5378 214 s2 2 222 60.99 98.867 98.319 82.000 189.65
s5378 214 s2 7 222 60.99 98.867 99.626 96.000 1143.46

s13207 700 s2 1 474 61.24 98.869 92.832 0.000 10.09
s13207 700 s2 2 474 61.24 98.869 98.755 82.632 904.42
s13207 700 s2 7 474 61.24 98.869 99.774 96.842 5691.81

b15 483 3 1 1275 61.56 98.938 96.101 0.000 14.88
b15 483 3 2 1275 61.56 98.941 97.529 36.636 433.02
b15 483 3 30 1275 61.56 98.941 98.262 55.416 12260.40

b14 280 s2 1 708 63.38 95.966 90.087 0.000 10.85
b14 280 s2 2 708 63.38 96.147 91.551 14.767 360.93
b14 280 s2 12 708 63.38 96.246 92.681 26.166 3860.31

spi 274 s2 1 806 64.64 99.992 88.636 0.000 12.96
spi 274 s2 2 806 64.64 99.992 97.589 78.780 87.33
spi 274 s2 7 806 64.64 99.992 99.889 99.024 452.95

des_area 367 3 1 348 67.57 100.000 93.868 0.000 20.55
des_area 367 3 2 348 67.57 100.000 98.360 73.254 420.62
des_area 367 3 21 348 67.57 100.000 99.801 96.758 9237.82

s5378 214 3 1 333 67.68 98.867 94.819 0.000 10.72
s5378 214 3 2 333 67.68 98.867 97.511 51.952 222.10
s5378 214 3 12 333 67.68 98.867 98.849 77.778 2482.85

of Table 7, no truncation is needed with the limit on the number of tests. These cases are included
for completeness.

In most of the cases, the procedure described in this article is able to increase the gate-exhaustive
fault efficiency ofT1 significantly. Even when the fault efficiency achieved byT1 is high, the increase
captured by the gap coverage is large.

The normalized runtime increases with the number of iterations. Per iteration, it is similar for
circuits of different sizes with different gate-exhaustive fault efficiencies. This indicates that the
procedure scales similar to a fault simulation procedure.
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Table 7. Experimental Results |T1 |/|T0 | ≥ 70%

circuit inp μ k tests %tests s.a. g.exh gap ntime

s13207 700 3 1 711 76.53 98.869 97.840 0.000 9.21
s13207 700 3 2 711 76.53 98.869 98.934 50.655 982.02
s13207 700 3 13 711 76.53 98.869 99.528 78.166 13141.73

tv80 372 s2 1 1016 80.70 99.688 97.234 0.000 13.85
tv80 372 s2 2 1016 80.70 99.702 99.112 67.895 162.86
tv80 372 s2 11 1016 80.70 99.719 99.782 92.105 1503.57

tv80 372 3 1 1524 83.19 99.688 98.996 0.000 13.93
tv80 372 3 2 1524 83.19 99.705 99.316 31.884 266.10
tv80 372 3 12 1524 83.19 99.709 99.589 59.058 2907.29

usb_phy 112 s2 1 64 85.33 100.000 98.705 0.000 6.33
usb_phy 112 s2 2 64 85.33 100.000 100.000 100.000 103.33

systemcdes 320 2 1 156 89.14 100.000 99.646 0.000 18.80
systemcdes 320 2 2 156 89.14 100.000 100.000 100.000 280.84

aes_core 788 2 1 416 89.46 100.000 99.741 0.000 28.41
aes_core 788 2 2 416 89.46 100.000 100.000 100.000 293.94

usb_phy 112 3 1 96 91.43 100.000 99.612 0.000 8.00
usb_phy 112 3 2 96 91.43 100.000 99.935 83.333 199.67

aes_core 788 s2 1 416 95.41 100.000 99.928 0.000 19.65
aes_core 788 s2 2 416 95.41 100.000 100.000 100.000 183.65

s35932 1763 2 1 40 100.00 89.781 100.000 - 5.69

s35932 1763 3 1 40 100.00 89.781 100.000 - 5.77

s35932 1763 s2 1 39 100.00 89.781 100.000 - 6.81

systemcdes 320 3 1 175 100.00 100.000 100.000 - 15.93

systemcdes 320 s2 1 150 100.00 100.000 100.000 - 16.16

aes_core 788 3 1 465 100.00 100.000 100.000 - 28.33

When the number of iterations is large, it is typically possible to terminate the procedure after a
smaller number of iterations with a significantly reduced runtime and a small loss in fault efficiency.
This can be seen from the increase in the fault efficiency achieved in iteration k = 2 compared with
the final iteration. To demonstrate this point more clearly, the results of all of the iterations for
s38417 with μ = 2 are shown in Figure 3. There is a circle in Figure 3 for every iteration, showing the
normalized runtime divided by 1000 on the horizontal axis, and the gate-exhaustive fault efficiency
on the vertical axis. Figure 3 demonstrates that an earlier termination condition is possible with a
small loss in fault efficiency.

6 EXPERIMENTAL RESULTS FOR COMPRESSED LAUNCH-ON-SHIFT TESTS

This section presents the results of applying the procedure for increasing the fault coverage of
a truncated test set to benchmark circuits using compressed launch-on-shift tests for stuck-at,
transition, single-cycle and two-cycle gate-exhaustive faults.

The set of single-cycle gate-exhaustive faults is the same as the one used in Section 5. To de-
fine two-cycle gate-exhaustive faults, the gate and input pattern from every single-cycle gate-
exhaustive fault is used for the second pattern of one or more faults. Every input pattern of the
same gate that differs from the second pattern in the value of a single input is used as a first pattern.
The resulting two-cycle gate-exhaustive fault is considered if the two input patterns yield different
values on the output of the gate.
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Fig. 3. Results for s38417 with μ = 2.

The test setT0 targets the four fault models. The detected faults are included in D0. The remain-
ing single-cycle and two-cycle gate-exhaustive faults are removed from consideration.

When T0 is truncated, the test set T1 detects all of the stuck-at and transition faults detected
by T0. A loss of fault coverage occurs for single-cycle and two-cycle gate-exhaustive faults. The
number of tests in T1 is determined using μ = 2, with θ0 being the number of tests in a compact
test set for single stuck-at and transition faults.

When T1 is modified to increase the set D1 of faults that it detects, the procedure considers
single-cycle and two-cycle gate-exhaustive faults together. Thus, it accepts a modification that
detects more faults of one type and fewer of the other type if the overall number of detected
faults is increased. To capture the overall effect, a combined fault efficiency is computed for gate-
exhaustive faults of both types.

The tests in T0 are launch-on-shift tests that are compressed into seeds for an LFSR. To modify
tests and increase their sets of detected faults, the procedure complements bits of the seeds that
produce them. Thus, the number of bits that need to be considered is significantly smaller than the
number of inputs and equal to the number of LFSR bits. Complementing bits of the compressed
tests, instead of complementing bits of the applied tests, ensures that the tests remain applicable
under the same test data compression approach.

The results are presented in Table 8. The format is similar to that of Tables 3 to 7. Column
LFSR shows the number of LFSR bits used for compressed tests. The fault coverage metrics
reported in Table 8 are the following. Column s .a. shows the stuck-at fault coverage. Column
trans shows the transition fault coverage. Column д.exh1 shows the single-cycle gate-exhaustive
fault efficiency. Column д.exh2 shows the two-cycle gate-exhaustive fault efficiency. Column
д.exh12 shows the combined single-cycle and two-cycle gate-exhaustive fault efficiency. Column
дap measures the improvement in the gate-exhaustive fault efficiency considering both types of
faults.

Table 8 shows improvements in the gap coverage that are similar to those in Tables 3 to 7.
To increase the gate-exhaustive fault efficiency considering both types of gate-exhaustive faults

together, the procedure may allow the fault efficiency for single-cycle faults to decrease while
increasing the fault efficiency for two-cycle faults. To avoid this effect, it is possible to consider
the two fault types separately and require that the number of detected faults would not decrease
for either one of them as compressed tests are modified.
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Table 8. Experimental Results for Four Fault Models and Compressed Tests

circuit inp LFSR μ k tests %tests s.a. trans g.exh1 g.exh2 g.exh12 gap ntime
b14 280 128 2 1 978 42.65 96.263 95.390 92.381 88.240 90.486 0.000 7.24
b14 280 128 2 2 978 42.65 96.269 95.390 91.795 95.534 93.506 31.745 74.22
b14 280 128 2 25 978 42.65 96.269 95.390 91.828 99.289 95.243 50.000 1550.84
s15850 611 57 2 1 852 48.44 97.511 93.052 91.308 97.251 93.686 0.000 8.48
s15850 611 57 2 2 852 48.44 97.511 93.052 90.848 98.999 94.109 6.706 14.72
s15850 611 57 2 17 852 48.44 97.511 93.052 92.213 99.609 95.172 23.542 118.13
spi 274 44 2 1 1468 50.73 99.992 98.112 92.154 77.677 87.450 0.000 15.06
spi 274 44 2 2 1468 50.73 99.992 98.112 90.878 87.866 89.899 19.515 24.59
spi 274 44 2 27 1468 50.73 99.992 98.112 92.307 93.155 92.582 40.896 257.26
s5378 214 36 2 1 630 53.16 98.867 93.022 98.520 74.765 91.173 0.000 11.41
s5378 214 36 2 2 630 53.16 98.867 93.022 98.208 77.515 91.808 7.195 20.06
s5378 214 36 2 22 630 53.16 98.867 93.022 98.894 84.267 94.370 36.220 192.40
s13207 700 47 2 1 1050 54.63 98.869 90.599 96.796 88.042 94.976 0.000 10.22
s13207 700 47 2 2 1050 54.63 98.869 90.599 96.863 90.364 95.512 10.666 17.04
s13207 700 47 2 21 1050 54.63 98.869 90.599 98.273 93.308 97.241 45.083 146.64
tv80 372 109 2 1 1702 57.81 99.723 95.612 98.849 84.954 93.156 0.000 11.78
tv80 372 109 2 2 1702 57.81 99.723 95.612 98.470 88.008 94.184 15.017 34.19
tv80 372 109 2 76 1702 57.81 99.730 95.633 98.820 94.805 97.175 58.718 1925.82
usb_phy 112 18 2 1 182 58.90 100.000 97.395 100.000 86.567 94.291 0.000 8.20
usb_phy 112 18 2 2 182 58.90 100.000 97.395 99.805 89.289 95.336 18.301 24.50
usb_phy 112 18 2 11 182 58.90 100.000 97.395 99.870 94.118 97.425 54.902 159.20
i2c 145 43 2 1 304 62.94 100.000 96.247 98.923 84.002 93.292 0.000 10.28
i2c 145 43 2 2 304 62.94 100.000 96.247 97.790 90.474 95.029 25.897 41.02
i2c 145 43 2 13 304 62.94 100.000 96.270 98.011 95.807 97.179 57.949 364.21
s9234 247 75 2 1 710 65.80 93.946 87.736 95.770 99.312 96.936 0.000 15.25
s9234 247 75 2 2 710 65.80 93.946 87.736 95.685 99.656 96.992 1.847 41.63
s9234 247 75 2 6 710 65.80 93.946 87.752 95.721 99.853 97.081 4.749 152.35
sasc 132 13 2 1 182 65.94 100.000 99.543 98.775 88.526 95.911 0.000 7.85
sasc 132 13 2 2 182 65.94 100.000 99.543 98.530 91.053 96.440 12.950 18.54
sasc 132 13 2 11 182 65.94 100.000 99.543 98.857 93.263 97.293 33.813 108.69
simple_spi 146 38 2 1 248 68.32 100.000 97.906 94.135 94.602 94.245 0.000 7.59
simple_spi 146 38 2 2 248 68.32 100.000 97.906 94.557 95.458 94.770 9.123 36.85
simple_spi 146 38 2 15 248 68.32 100.000 97.906 95.535 97.258 95.941 29.474 373.48
b20 527 119 2 1 1328 71.09 95.675 94.194 98.591 99.336 98.877 0.000 15.10
b20 527 119 2 2 1328 71.09 95.677 94.196 98.532 99.711 98.985 9.607 47.82
b20 527 119 2 13 1328 71.09 95.693 94.215 98.609 99.894 99.103 20.087 388.14
systemcdes 320 14 2 1 438 73.74 100.000 99.867 100.000 96.292 98.479 0.000 9.29
systemcdes 320 14 2 2 438 73.74 100.000 99.867 99.978 96.387 98.505 1.717 12.34
systemcdes 320 14 2 10 438 73.74 100.000 99.867 99.978 96.785 98.668 12.446 48.52
wb_dma 738 47 2 1 536 75.49 100.000 98.496 99.434 91.216 96.720 0.000 9.65
wb_dma 738 47 2 2 536 75.49 100.000 98.496 98.996 93.801 97.280 17.083 24.60
wb_dma 738 47 2 28 536 75.49 100.000 98.526 99.241 96.450 98.319 48.752 377.57
b15 483 113 2 1 1564 75.78 98.915 96.289 98.976 98.866 98.941 0.000 12.94
b15 483 113 2 2 1564 75.78 98.915 96.297 98.899 99.351 99.044 9.718 46.39
b15 483 113 2 21 1564 75.78 98.918 96.311 98.956 99.832 99.236 27.887 858.86
aes_core 788 28 2 1 2002 78.54 100.000 99.251 100.000 97.541 98.927 0.000 17.73
aes_core 788 28 2 2 2002 78.54 100.000 99.251 100.000 97.646 98.973 4.269 20.15
aes_core 788 28 2 38 2002 78.54 100.000 99.251 100.000 98.630 99.402 44.269 152.32
s38584 1464 98 2 1 1360 81.49 95.567 90.417 100.000 96.870 98.720 0.000 17.80
s38584 1464 98 2 2 1360 81.49 95.567 90.417 99.829 97.984 99.075 27.710 26.41
s38584 1464 98 2 43 1360 81.49 95.567 90.417 99.949 99.536 99.780 82.822 400.18
s38417 1664 111 2 1 2088 85.36 99.680 98.200 99.283 99.560 99.378 0.000 23.07
s38417 1664 111 2 2 2088 85.36 99.680 98.200 99.201 99.848 99.424 7.301 32.14
s38417 1664 111 2 25 2088 85.36 99.680 98.200 99.465 99.972 99.640 42.035 298.86
systemcaes 928 29 2 1 750 91.35 99.997 99.519 99.771 98.996 99.501 0.000 12.97
systemcaes 928 29 2 2 750 91.35 99.997 99.519 99.728 99.317 99.585 16.822 22.24
systemcaes 928 29 2 17 750 91.35 99.997 99.519 99.875 99.525 99.753 50.467 179.52
des_area 367 14 2 1 736 96.08 100.000 99.765 99.891 99.795 99.866 0.000 10.89
s35932 1763 13 2 1 240 97.56 89.781 88.666 100.000 99.980 99.990 0.000 14.07
s35932 1763 13 2 2 240 97.56 89.781 88.666 100.000 99.987 99.993 33.333 15.31
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7 CONCLUDING REMARKS

This article considered a test setT1 obtained after truncating a larger test setT0 to fit tester memory
limits or satisfy constraints on test application time. Truncation causes the set of detected faults to
decrease fromD0 toD1. Without modifying the tests inT0, the setD1 is limited by the tests included
inT0. The procedure described in this article modifies the tests inT1 to gain the detection of faults
from D0\D1, even at the cost of losing the detection of faults from D1. The goal is to obtain a test
setT2 that detects a set of faults D2 such that |T2 | = |T1 | and |D2 | > |D1 |. In an iterative process, the
procedure produces test setsTk , for k ≥ 2, such that |Tk | = |Tk−1 | and |Dk | > |Dk−1 |. Experimental
results were presented for gate-exhaustive faults in benchmark circuits to demonstrate the ability
of the procedure to increase the fault coverage of a truncated test set.
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