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ABSTRACT
Code search is a widely used technique by developers during soft-
ware development. It provides semantically similar implementa-
tions from a large code corpus to developers based on their queries.
Existing techniques leverage deep learning models to construct
embedding representations for code snippets and queries, respec-
tively. Features such as abstract syntactic trees, control flow graphs,
etc., are commonly employed for representing the semantics of
code snippets. However, the same structure of these features does
not necessarily denote the same semantics of code snippets, and
vice versa. In addition, these techniques utilize multiple different
word mapping functions that map query words/code tokens to
embedding representations. This causes diverged embeddings of
the same word/token in queries and code snippets. We propose a
novel context-aware code translation technique that translates code
snippets into natural language descriptions (called translations).
The code translation is conducted on machine instructions, where
the context information is collected by simulating the execution
of instructions. We further design a shared word mapping func-
tion using one single vocabulary for generating embeddings for
both translations and queries. We evaluate the effectiveness of our
technique, called TranCS, on the CodeSearchNet corpus with 1,000
queries. Experimental results show that TranCS significantly out-
performs state-of-the-art techniques by 49.31% to 66.50% in terms
of MRR (mean reciprocal rank).

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.
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1 INTRODUCTION
Software development is usually a repetitive task, where same
or similar implementations exist in established projects or online
forums. Developers tend to search for those high-quality implemen-
tations for reference or reuse, so as to enhance the productivity and
quality of their development [4, 5, 16]. Existing studies [5, 56] show
that developers often spend 19% of their time on finding reusable
code examples during software development. Code search (CS) is
an active research field [7, 18, 41, 49, 54, 56, 62–64, 67], which aims
at designing advanced techniques to support code retrieval services.
Given a query by the developer, CS retrieves code snippets that
are related to the query from a large-scale code corpus, such as
GitHub [17] and Stack Overflow [26]. Figure 1 shows an example.
The query “how to calculate the factorial of a number” in Figure 1(a)
is provided by the developer, which is usually a short natural lan-
guage sentence describing the functionality of the desired code
snippet [35]. The method/function [27, 48, 56, 62] in Figure 1(b) is
a possible code snippet that satisfies the developer’s requirement.

1 public long factorial (int number) {
2 long factorial = 0;
3 int i = 0;
4 for (; i <= number; i++) {
5 factorial = factorial * i;
6 }
7 return factorial;
9 }

how to calculate the factorial of a number.

(b) A Code Snippet 𝑠!(a) A Query

Figure 1: An Example of Query and Code Snippet

Existing CS techniques can be categorized into traditional meth-
ods that use keyword matching between queries and code snippets
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such as information retrieval-based code search [4, 27, 40, 51, 54]
and query reformulation-based code search [22, 31, 36, 37, 48, 52],
and deep learning methods that encode queries and code snippets
into embedding representations capturing semantic information.
Traditional methods simply treat queries and code snippets as plain
texts, and retrieve query-related code snippets by only looking at
matched keywords. They fail to capture the semantics of both query
sentences and code snippets. Deep learning (DL) methods transform
input queries and code snippets into embedding representations.
Specifically, for a given query, all the words in the query sentence
are first represented as word embeddings and then fed to a DLmodel
to produce a query embedding [18, 56]. For a code snippet, multiple
aspects are extracted as features, such as tokens, abstract syntactic
trees (ASTs), and control flow graphs (CFGs). These features are
transformed into corresponding embeddings and processed by an-
other DL model to produce a code embedding [12, 18, 56, 64, 67].
The code search task is hence to find similar pairs between query
embeddings and code embeddings. While DL methods surpass tra-
ditional methods in capturing the semantics of queries and code
snippets, their performances are still limited due to the insufficiency
of encoding semantics and the embedding discrepancy between
queries and code snippets. Existing techniques miss either data
dependencies among code statements like MMAN [62] or control
dependencies such as DeepCS [18], CARLCS-CNN [56], and TabCS
[64]. Furthermore, the embedding representations of code snippets
are largely different from those of query sentences written in natu-
ral language, causing semantic mismatch during the code search
task. For example, MMAN [62] uses different word mapping func-
tions (that map a word or token to an embedding representation)
to encode queries, and tokens, ASTs, and CFGs in code snippets.
For the widely used word length in both queries and code snip-
pets, the embedding representations are different in those word
mapping functions, leading to poor code search performance as we
will discuss in Section 3 and experimentally show in Section 5.2.2.

We propose a novel context-aware code translation technique
that translates code snippets into natural language descriptions
(called translations). Such a translation can bridge the represen-
tation discrepancy between code snippets (in programming lan-
guages) and queries (in natural language). Specifically, we utilize
a standard program compiler and a disassembler to generate the
instruction sequence of a code snippet. However, the context infor-
mation such as local variables, data dependency, etc., are missed
from the instruction sequence. We hence simulates the execution of
instructions to collect those desired contexts. A set of pre-defined
translation rules are then used to translate the instruction sequence
and contexts into translations. Such a code translation is context-
aware. The translations of code snippets are similar to those de-
scriptions in queries, in which they share a range of words. We
hence design a shared word mapping mechanism using one sin-
gle vocabulary for generating embeddings for both translations
and queries, substantially reducing the semantic discrepancy and
improving the overall performance (see results in Section 5.2.2).

In summary, we make the following contributions.

• We propose a context-aware code translation technique that
transforms code snippets into natural language descriptions
with preserved semantics.

• We introduce a shared word mapping mechanism, which
bridges the discrepancy of embedding representations from
code snippets and queries.
• We implement a code search prototype called TranCS. We
evaluate it on the CodeSearchNet corpus [25] with 1,000
queries. Experimental results show that TranCS improves the
top-1 hit rate of code search by 67.16% to 102.90% compared
to state-of-the-art techniques. In addition, TranCS achieves
MRR of 0.651, outperforming DeepCS [18] andMMAN [62] by
66.50% and 49.31%, respectively. The source code of TranCS
and all the data used in this paper are released and can be
downloaded from the website [58].

2 BACKGROUND
2.1 Machine Instruction
Since the context-aware code translation technique we propose is
performed at the machine instruction level, we first introduce the
background about machine instructions.

A program runs by executing a sequence of machine instruc-
tions [11]. A machine instruction consists of an opcode specifying
the operation to be performed, followed by zero or more operands
embodying values to be operated upon [33, 45]. For example, in Java
Virtual Machine, istore_2 is a machine instruction where istore
is an opcode whose operation is “store int into local variable", and
2 is an operand that represents the index of the local variable. Ma-
chine instructions have been widely used in software engineering
activities, such as malware detection [3, 11, 45], API recommenda-
tion [47], code clone detection [60], program repair [15], and binary
code search [65]. Machine instructions are generated by disassem-
bling the binary files, such as the .class file in Java. Therefore, it is
also called bytecode [15, 47, 57] or bytecode mnemonic opcode [60]
in some of the works mentioned above. For ease of understanding,
the terminology “instruction” is used uniformly in this paper.

2.2 Deep Learning-based Code Search

Code Snippets

Query Query Encoder

Code Encoder

𝒆"

Similarity

𝐸$

Figure 2: A General Framework of DL-based CS techniques

As shown in Figure 2, we can observe that deep learning (DL)-
based CS techniques usually consist of three components, a query
encoder, a code encoder, and a similarity measurement component.
The query encoder is an embedding network that can encode the
query 𝑞 given by the developer into a 𝑑-dimensional embedding
representation 𝒆𝑞 ∈ R𝑑 . To train such a query encoder, existing
DL-based CS techniques have tried various neural network archi-
tectures, such as RNN [18], LSTM [62], and CNN [64]. In DL-based
CS studies, it is a common practice to use code comments as queries
during the training phase of the encoder [18, 56, 62]. Code com-
ments are natural language descriptions used to explain what the
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code snippets want to do [24]. For example, the first line of Fig-
ure 3(a) is a comment for the code snippet 𝑠𝑎 . Therefore, we do
not strictly distinguish the meaning of the two terms comment and
query, and use the term comment during encoder training, and
query at other times. The code encoder is also an embedding net-
work that can encode 𝑛 code snippets in the code corpus 𝑆 into
corresponding embedding representations 𝑬𝑆 ∈ R𝑛×𝑑 . In existing
DL-based CS techniques, the code encoder is usually much more
complicated than the query encoder. For example, the code encoder
of MMAN [62] consists of three sub-encoders that are built on the
LSTM [23], Tree-LSTM [59], and GGNN [32] architectures with the
goal of encoding different features of the code snippet, e.g., tokens,
ASTs, and CFGs. The similarity measurement component is used
to measure the cosine similarity between 𝒆𝑞 and each 𝒆𝑠 ∈ 𝑬𝑠 . The
target of DL-based CS techniques is to rank all code snippets in 𝑆

by the cosine similarity [18]. The higher the similarity, the higher
relevance of the code snippet to the given query.

3 MOTIVATION
In this section, we study the limitations of commonly used represen-
tations of code snippets as well as the representation discrepancy
between code snippets and comments in existing works [18, 62].

1 // calculate the sum of an int array
2 public int calArraySum(int[] array) {
3 int sum = 0;
4 int i = 0;
5 for (; i < array.length; i++) {
6 sum = sum + array[i];
7 }
8 return sum;
9 }

// calculate the  sum of an int array 1
public int calArraySum(int[] array) { 2

int result = 0; 3
int index = 0; 4
while(index < array.length) { 5

result = result + array[index]; 6
index++; 7

} 8
return result;} 9

(a) Code Snippet 𝑠" (b) Code Snippet 𝑠#

Figure 3: Code Snippets
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(a) 𝑠" ’s AST (b) 𝑠#’s AST

Figure 4: Abstract Syntactic Trees

Figure 3 shows two code snippets for calculating the sum of a
given int array. Figure 3(a) uses a for statement to loop over all the
elements in the array (line 5) and add their values to variable sum
(line 6). Figure 3(b) employs a while statement for the same task
(lines 5-8). Semantically, the two code snippets have the exact same
meaning. In Figure 4, we show the abstract syntax trees (ASTs) for
the above two code snippets 𝑠𝑎 (left figure) and 𝑠𝑏 (right figure),

3: factorial(number)

4: factorial=1

5: counter=1

6: for(counter<=number)

endfor

9: return factorial

7: factorial=factorial*counter

6: counter++

False True

3: calArraySum(array)

4: sum=1

5: i=1

6: for(i<=array.length)

endfor

9: return sum

7: sum=sum+array[i]

6: i++

False True

(a) 𝑠!’s CFG (b) 𝑠"’s CFG

Figure 5: Control Flow Graphs

respectively. Observe that the sub-trees circled in dotted lines are
different for the two code snippets. Such representations cause the
inconsistency of code semantics, leading to inferior results in code
search as we will show in Section 5.2.1. Control flow graph (CFG)
is also commonly used for representing code snippets. Figure 5 de-
picts the CFGs for the two code snippets 𝑠𝑎 and 𝑠1 (see Figure 1(b)
in Section 1). The task of 𝑠1 is to calculate the factorial of a given
number, while 𝑠𝑎 is to calculate the sum of a given array. The two
code snippets have completely different goals. However, the CFGs
shown in Figure 5 have the same graph structure, which cannot
differentiate the semantic difference between the two code snippets.
This example delineates the insufficiency of utilizing CFGs for rep-
resenting code semantics. Our experimental results in Section 5.2.1
show that a state-of-the-art technique MMAN [62] leveraging ASTs
and CFGs has a limited performance.

Existing techniques leverage deep learning models (i.e., the en-
coders introduced in Section 2.2) for code search, where code snip-
pets and comments need to be transformed into numerical forms
in order to train those models and produce desired outputs. A com-
mon way is to build vocabularies for code snippets and comments,
and construct corresponding numerical representations (e.g., word
embeddings). A word mapping function is a dictionary with the key
of a token in code snippets or a word in comments (from vocabular-
ies) and the value of a fixed-length real-valued vector. DeepCS [18]
builds four mapping functions for method names (MN), API se-
quences (APIs), tokens, and comments, separately. MMAN [62]
utilizes four different mapping functions for tokens, ASTs, CFGs,
and comments, respectively. The embeddings in these mapping
functions are randomly initialized and learned during the train-
ing process of the encoder. Such a learning procedure introduces
discrepant embedding representations for a same key (e.g., a code
token). For instance, ASTs are composed of code tokens, which
share a portion of same keys with the token vocabulary. Token
names can also appear in comments. For example, more than 50%
of keys appear in both code snippets and comments vocabularies
used by DeepCS and MMAN. Inconsistent embeddings for same
words/tokens can lead to unsuitable matches between code snip-
pets and comments, causing poor performance of code search (see
Section 5.2.2).
Our solution. We propose a novel code search technique, called
TranCS, that better preserves the semantics of code snippets and
bridges the discrepancy between code snippets and comments. Dif-
ferent from existing techniques that leverage ASTs and CFGs, we
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0: push int constant 0.
1: store int 0 into local variable sum/result.
2: push int constant 0.
3: store int 0 into local variable i/index.
4: load int value from local variable i/index.
5: load reference array/array from local variable array/array.
6: get length of array array/array.
7: if and only if int value is greater or equal to int length then go to 22.
10: load int value_1 from local variable sum/result.
11: load reference array/array from local variable array/array.
12: load int value_2 from local variable i/index.
13: load int value_3 from array/array[value_2].
14: int result is int value_1 add int value_3; push result into value_4.
15: store int value_4 into local variable sum/result.
16: increment local variable i/index by constant 1.
19: goto 4.
22: load int value_5 from local variable sum/result.
23: return int value_5 from method.

Figure 6: Code Translations of 𝑠𝑎 and 𝑠𝑏

directly translate code snippets into natural language sentences.
Specifically, we utilize a standard program compiler and a disassem-
bler to generate the instruction sequence of a code snippet. Such a
sequence, however, lacks the context information such as local vari-
ables, data dependency, etc. We propose to simulate the execution
of instructions to collect those desired contexts. A set of pre-defined
translation rules are then used to translate the instruction sequence
and contexts into natural language sentences. Details can be found
in Section 4. Figure 6 showcases the translations of the two code
snippets 𝑠𝑎 and 𝑠𝑏 by TranCS. The different colors denote different
variable names used in 𝑠𝑎 (blue) and 𝑠𝑏 (red). The numbers/words in
bold (e.g., value and 22) denote the data and control dependencies
among instructions. Observe that the translations of 𝑠𝑎 and 𝑠𝑏 are
the same except for local variable names. The overall semantics
described by the sentences in Figure 6 are the same. The transla-
tions are similar to those descriptions in comments, in which they
share a range of words. We hence design a shared word mapping
function using one single vocabulary for generating embeddings
for both code snippets and comments, substantially reducing the
semantic discrepancy and improving the overall performance (see
results in Section 5.2.2).

4 METHODOLOGY
4.1 Overview
Figure 7 illustrates the overview of our TranCS. The top part shows
the training procedure of TranCS and the bottom part shows the
usage of TranCS for a given query. During the training procedure of
TranCS, two types of input data are leveraged: comments and code
snippets. The comments in Figure 7 are natural language descrip-
tions that appear above the code snippet (e.g., Javadoc comments),
not in the code body. These comments are input to TranCS in pairs
with the corresponding code snippets to train CEncoder and TEn-
coder. For comments, TranCS transforms them into vector represen-
tations 𝑽𝐶 using a sharedwordmapping function. For code snippets,
they are different from natural language expressions such as com-
ments. In this paper, we aim to build a homogeneous representation

Code Snippets

Comments

Instructions

𝒆"

①
Translations

Query

𝒆$

(a) Context-aware Code Translation (b) Model TrainingInput Output

𝒆%

𝒆&$,𝒆($, …

Top-k Code Snippets
𝒆$

(1) Training of TranCS

𝑽"

𝑽$

0: iconst_0
1: istore_2
… ② ③

④ CEncoder

CEncoder
(2) Deployment of TranCS

TEncoder

③

④

𝑣%

Figure 7: Framework of TranCS

between comments and code snippets, which can better capture the
shared semantic information of these two types. Specifically, we
propose a context-aware code translation, which translates code
snippets into natural language descriptions as shown in the dotted
box (details are discussed in Section 4.2). The natural language de-
scriptions translated from code snippets are also transformed into
vector representations 𝑽𝑇 using the same shared word mapping
function. TranCS leverages the two vector representations 𝑽𝐶 and
𝑽𝑇 for building two encoders (i.e., CEncoder and TEncoder) that
generate embeddings with preserved semantics for both comments
and code snippets. CEncoder takes in the comment vector repre-
sentations 𝑽𝐶 and produces concise embedding representations 𝒆𝐶
that preserves semantic information from the comments. TEncoder
generates embedding representations 𝒆𝑇 for code snippets. Details
of training these two encoders are elaborated in Section 4.3. When
TranCS is deployed for usage, it takes in a query from the developer
and passes it to CEncoder, which produces an embedding 𝒆𝑞 for
the query. TranCS then compares the query embedding 𝒆𝑞 with
those code embeddings 𝒆𝑇 from the training set. A top-k selection
method is leveraged for providing code snippets to the developer,
which are semantically similar to the query.

4.2 Context-aware Code Translation
The goal of context-aware code translation is to translate code
snippets into natural language descriptions according to the pre-
defined translation rules. As shown in the dotted box of Figure 7,
this phase consists of two steps. In step ➀, given code snippets,
TranCS utilizes a standard compiler and disassembler to generate
their instruction sequences. In step ➁, TranCS applies the pre-
defined translation rules to translate the instruction sequences into
natural language descriptions. We discuss the two steps in detail in
the following sections.

4.2.1 Instruction Generation. In this step, TranCS takes in code
snippets and produces their instruction sequences. In practice, for
a given code snippet, TranCS first utilizes a standard program com-
piler and disassembler to generate the disassembly representation
of the code snippet. For example, TranCS integrates javac version
1.8.0_144 (a compiler) and javap version 1.8.0_144 (a disassem-
bler) to generate the disassembly representations for code snippets
written in the Java programming language. For the code snippets
that can not be compiled, the main reason is due to the lack of
class/method definitions around them. We use JCoffee [20] to make
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them compilable by adding class/method definitions around them
to complement the missing pieces. Then, TranCS parses the disas-
sembly representation and extracts the instruction sequence. For
example, Figure 8(a) shows an instruction sequence, which is gen-
erated by inputting the code snippet shown in Figure 3(a) into
TranCS.

0: iconst_0
1: istore_2
2: iconst_0
3: istore_3
4: iload_3
5: aload_1
6: arraylength
7: if_icmpge 22
10: iload_2
11: aload_1
12: iload_3
13: iaload
14: iadd
15: istore_2
16: iinc 3, 1
19: goto 4
22: iload_2
23: ireturn

(a) Instruction Sequence

0: push int constant [pc].
1: store int [ps] into local variable [pv].
2: push int constant [pc].
3: store int [ps] into local variable [pv].
4: load int [ps] from local variable [pv].
5: load reference [ps] from local variable [pv].
6: get length of array [ps].
7: if int [ps] is greater or equal to int [ps] then go to [pi].
10: load int [ps] from local variable [pv].
11: load reference [ps] from local variable [pv].
12: load int [ps] from local variable [pv].
13: load int [ps] from array [ps].
14: int result is int [ps] add int [ps]; push int result.
15: store int [ps] into local variable [pv].
16: increment local variable [pv] by constant [pc].
19: goto [pi].
22: load int [ps] from local variable [pv].
23: return int [ps] from method.

(b) Translation Rules

Figure 8: An Example of Instruction Sequence and Transla-
tion Rules. [pc] and [pv] indicate filling in a constant and
variable, respectively. [ps] indicates filling a value popped
from the operand stack, while [pi] indicates filling in an in-
struction index.

In addition to the instruction sequence, TranCS also extracts
the local variable table from the disassembly representation, which
will be used in the subsequent instruction translation process. For
example, Listing 1 shows an example of a local variable table (Lo-
calVariableTable) that presents the local variables involved in the
code snippet in detail, and is generated along with the instruction
sequence in Figure 8(a). Details about the usage of local variables
are introduced in Section 4.2.2.

1 LocalVariableTable:

2 Start Length Slot Name Signature

3 0 24 0 this LCalArraySum;

4 0 24 1 array [I

5 2 22 2 sum I

6 4 20 3 i I

Listing 1: An Example of Local Variable Table

4.2.2 Instruction Translation. In this step, TranCS takes in instruc-
tion sequences and produces their natural language descriptions. In
this section, we first introduce the translation rules used in TranCS,
then introduce the instruction context, and finally present how
TranCS implements context-aware instruction translation.

Translation Rules (TR). TR used in TranCS is manually con-
structed based on the instruction specification. In practice, to con-
struct TR, we collected all operations and descriptions of instruc-
tions from the machine instruction specification, such as Java Vir-
tual Machine Specification [33]. An operation is a short natural

language description of an instruction. For example, the instruction
istore’s operation is:

“store int into local variable.”
From this operation, we can know the behavior of istore is to
store an int value into a local variable. A description is a long
natural language description of an instruction, which details the
interaction of the instruction on the local variables and operand
stack. For example, istore’s description is:
“The index is an unsigned byte that must be an index into the local variable
array of the current frame. The value on the top of the operand stack must
be of type int. It is popped from the operand stack, and the value of the

local variable at index is set to value.”
From this description, we can know that istore first pops an
int value from the operand stack and then stores the value into
the index-th position of the local variable array. If we only use
the operation as the translation of the instruction, the translation
will be inaccurate due to the loss of some important context. If
we only use the description as the translation of instructions, the
translation will be too long. However, research in the field of natural
language processing (NLP) reminds us that capturing the semantics
of long texts is more difficult than short texts [2, 61]. Based on
the above, we strive to make the instruction translation short and
relatively accurate. Therefore, we use the operation as the basis,
combing the context specified in the description, to manually collate
a translation for each instruction. Such a translation delicately
balances shortness and accuracy. For example, the translation we
collate for the instruction istore as follows:

“store int [ps] into local variable [pv].”
where [ps] and [pv] denote placeholders that specifies the position
where the context will be filled, and details about instruction context
are discussed in SectionContext-aware Instruction Translation.
For example, Figure 8(b) shows the result of TranCS using TR to
translate the instruction sequence in Figure 8(a).

Instruction Context. The context of an instruction consists of
constants, local variables, and data and control dependencies with
other instructions. Constants and local variables are directly deter-
mined by operands. As shown in Figure 8(a), an opcode is followed
by zero or more operands. An operand can be a constant, or an
index of a local variable, or an index of an instruction. For example,
in Figure 8(a), the operand 0 following the opcode iconst repre-
sents a constant, while the operand 2 following the opcode istore
represents the index of the local variable 𝑠𝑢𝑚 shown in Listing 1;
Control dependencies between instructions are explicitly passed
through the indices of the instruction. The indices are also directly
specified by operands. For example, the operand 22 following the
opcode if_icmpge represents the index of the instruction iload_2
at line 22 in Figure 8(a). Data dependencies between instructions
are implicitly passed through the operand stack. As described in
Section Translation Rules (TR), with the guidance of the descrip-
tion, we can know how each instruction interacts with the operand
stack, such as popping or pushing data. If the instruction 𝑖𝑎 pops
(i.e., uses) the data that is pushed onto the operand stack by the
instruction 𝑖𝑏 , then we say that 𝑖𝑎 is data dependent on 𝑖𝑏 . For
example, Figure 9(a) shows the changes of the operand stack as
the opcode sequence in Figure 8 interacts with the operand stack.
The values in the operand stack are the carriers that reflect data
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dependencies between instructions. Figure 9(b) shows the data and
control dependencies between the instructions in Figure 8(a). In
this figure, nodes represent instructions; the labels of nodes are
instructions’ indices; the solid and dashed edges represent data and
control dependencies, respectively.

array

value_1

value

array

value

value_4 value_5

4:iload_3

0

0:iconst_0 1:istore_2

0

2:iconst_0 3:istore_3 5:aload_1

6:arraylength

length

value

7:if_icmpge22

value_1

10:iload_2 11:iload_1 12:iload_3

value_2

array

value_1

13:iaload

value_3

value_1

14:iadd 15:istore_2 16:iinc 3 1 19:goto 4 22:iload_2 23:ireturn

0

1 3

7

10

2

4

5

6

1112

1314

15

16

19

22

23

(a) Changes of the Operand Stack (b) Instruction Dependency Graph

Figure 9: An Example of the Changes of the Operand Stack
and Instruction Dependency Graph

Context-aware Instruction Translation. The basic idea of
context-aware instruction translation is to simulate the execution
of instructions by statically traversing the instruction sequence
from top to down. In the traversal process, we collect the context
of each instruction, which will be used to update the TR-based
translations of the current or other related instructions.

In the actual execution of instructions, a frame is created when
the corresponding code snippet is invoked [34]. A frame contains a
local variable array and a last-in-first-out stack (i.e., operand stack).
The sizes of the local variable array and the operand stack are de-
termined at compile-time. The local variable array stores all local
variables used in the instructions. For example, the local variables
shown in Listing 1 are used in the instruction sequence shown in
Figure 8(a). The indices of the local variable array corresponds to
that in LocalVariableTable shown in Listing 1, where the ‘Slot’ col-
umn presents indices of the local variables. The names and indices
of local variables are determined at compile-time, but their values
are dynamically updated with the execution of the instructions.
The values in the operand stack are also dynamically updated with
the execution of the instructions. As mentioned earlier, the con-
text of an instruction includes constants, local variables, data and
control dependencies. Among them, constants, local variables and
control dependencies are closely related to instructions’ operands.
They can be easily determined by the operands (for constants) or
by retrieving the instruction sequence (for control dependencies)
using the index specified by the operand. However, determining
the values of local variables is a challenging task because they are
dynamically updated with the execution of the instruction. Anal-
ogously, the determination of data dependencies is a challenging
task because they are implicitly passed through the operand stack.
The values in operand stack are also dynamically updated with
the execution of the instruction. Therefore, we need to know in
advance how the instruction interacts with the local variable array
(e.g., setting value) or the operand stack (e.g., popping or pushing
data). In practice, we obtain such information from the description

of each instruction. The description of each instruction has been
introduced when we introduced the translation rules earlier. With
the guidance of the description, we divide the instructions into the
following four categories according to whether they interact with
the local variable array or the operand stack.

Category 1, expressed as I𝑆 . In I𝑆 , the instruction only interacts
with the operand stack. I𝑆 can be subdivided into the following
three types:

I𝑃𝑈 . In this type, the interaction is to push the operand onto
the operand stack.

I𝑃𝑂 . In this type, the interaction is to pop values from the
operand stack.

I𝑃𝑂𝑈 . In this type, the interaction is composed of popping
values from the operand stack, performing the operation,
and pushing the result of the operation to the operand stack.

Category 2, I𝑉 . In I𝑉 , the instruction only interacts with the
local variable array. The interaction is to load the value from the
local variable array, or store the new value into it. This type of in-
struction does not interact with the operand stack. For example, the
instruction iinc 3, 1 only interacts with the local variable specified
by the first operand, not with the operand stack.

Category 3, I𝑆𝑉 . In I𝑆𝑉 , the instruction interacts with the operand
stack as well as the local variable array. For example, the instruction
istore_2 first loads the integer value from the operand stack, and
then stores the value into a local variable.

Category 4, I𝑂 . In I𝑂 , the instruction neither interacts with the
operand stack nor with the local variable array, such as the instruc-
tion goto and nop. Table 1 shows the categories of instructions.

Based on the above classification, TranCS uses Algorithm 1 to
perform context-aware instruction translation. TranCS takes an
instruction sequence (𝐼 ), translation rules (𝑇𝑅), a local variable
array (𝑉 ), and the depth of the operand stack (𝑑) as inputs. 𝑇𝑅, 𝑉
and 𝑑 have been introduced earlier. TranCS first initializes an stack
with a depth of 𝑑 to store intermediate results produced during
traversing 𝐼 (line 1). TranCS then traverses 𝐼 from top to down
(lines 2 – 33). For each 𝑖 ∈ 𝐼 , TranCS first generates its translation
𝑡 based on 𝑇𝑅 (line 3). Then, TranCS extracts the operands from
𝑖 (line 4). The operands are used to update 𝑆 and 𝑡 in subsequent
processes. TranCS determines 𝑖’s category according to the pre-
defined categories shown in Table 1. According to 𝑖’s category,
TranCS uses different processes to update 𝑆 and 𝑡 (line 5 – 31).
For example, Figure 9(a) shows an example of the changes of the
operand stack when TranCS traverses the instruction sequence
shown in Figure 8(a) from top to down. After traversing all the
instructions in 𝐼 , the algorithm finishes and outputs 𝐼 ’s translations
𝑇 . For example, Figure 6 shows the translation generated by TranCS
for the instruction sequence shown in Figure 8(a).

4.3 Model Training
The goal of model training is to train two encoders, which will be
deployed to support code search service. This phase consists of
two steps as shown in Figure 7. In step ➂, given translations and
comments, TranCS transforms them into vector representations 𝑽𝐶
and 𝑽𝑇 using a shared word mapping function. In step ➃, TranCS
leverages 𝑽𝐶 and 𝑽𝑇 to train CEncoder and TEncoder.
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Table 1: The Category of Instructions

.

Category I𝑆
I𝑉 I𝑆𝑉 I𝑂

Type I𝑃𝑈 I𝑃𝑂 I𝑃𝑂𝑈

Instructions

aconst_null,
anewarray,

iconst, fconst,
bipush,

dconst_<d>,
fconst_<f>,
iconst_<i>,
jsr, jsr_w,
lconst_<l>,
ldc, ldc_w,
ldc2_w, new,

sipush

areturn, if_icmpge,
ireturn, athrow,
dreturn, freturn,
if_acmp<cond>,
if_icmp<cond>,

if<cond>, ifnonnull,
ifnull, invokedynamic,

invokeinterface,
invokespecial, invokestatic,

invokevirtual, ireturn,
ishl, ishr, lookupswitch,
lreturn, monitorexit, pop,

pop2, putfield,
putstatic, tableswitch

aaload, arraylength, baload,
caload, d2f, d2i, d2l, dadd,

daload, dcmp<op>, ddiv, dmul,
dneg, drem, dsub, dup, dup_x1,
dup_x2, dup2, dup2_x1, dup2_x2,
f2d, f2i, f2l, fadd, faload, fcmp<op>,
fdiv, fmul, fneg, frem, fsub, getfield,
getstatic, i2b, i2c, i2d, i2f, i2l, i2s,
iadd, iaload, iand, idiv, imul, ineg,
instanceof, ior, irem, isub, iushr,
ixor, l2d, l2f, l2i, ladd, laload, land,
lcmp, ldiv, lmul, lneg, lor, lrem,

lshl, lshr, lsub, lushr, multianewarray,
lxor, newarray, saload, swap

iinc,
wide

aastore, aload,
aload_<n>, astore

astore_<n>,
bastore, castore, dastore,

dload, dload_<n>,
dstore, dstore_<n>,

fastore, fload,
fload_<n>, fstore,
fstore_<n>, iastore,
iload, iload_<n>,
istore, istore_<n>,
lastore, lload,

lload_<n>, lstore,
lstore_<n>, sastore

goto,
checkcast,
goto_w,
nop,
ret,

return

Algorithm 1 Context-aware Instruction Translation
Input: An instruction sequence, 𝐼 ; Translation Rules,𝑇𝑅;

A local variable array,𝑉 ; The depth of the operand stack, 𝑑 .
Output: Instruction Translation,𝑇 ;
1: 𝑆 ← initialize an empty operand stack with a depth of 𝑑 .
2: for each 𝑖 in 𝐼 do
3: 𝑡 ← generate the TR-based translation of 𝑖 based on𝑇𝑅;
4: 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ← extract the operands from 𝑖;
5: if 𝑖 ∈ I𝑃𝑈 then
6: 𝑆 ← push 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 onto 𝑆 ;
7: 𝑡 ← replace [pc] in 𝑡 with 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
8: end if
9: if 𝑖 ∈ I𝑃𝑂 then
10: 𝑣𝑎𝑙𝑢𝑒𝑠 ← pop values from 𝑆 by 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
11: 𝑡 ← replace [ps] in 𝑡 with 𝑣𝑎𝑙𝑢𝑒𝑠 ;
12: end if
13: if 𝑖 ∈ I𝑃𝑂𝑈 then
14: 𝑣𝑎𝑙𝑢𝑒𝑠 ← pop values from 𝑆 by 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
15: 𝑡 ← replace [ps] in 𝑡 with 𝑣𝑎𝑙𝑢𝑒𝑠 ;
16: 𝑛𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 ← do operation;
17: 𝑆 ← push 𝑛𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 onto 𝑆 ;
18: end if
19: if 𝑖 ∈ I𝑉 then
20: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← get variable from𝑉 by 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
21: 𝑡 ← replace [pv] in 𝑡 with 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ;
22: end if
23: if 𝑖 ∈ I𝑆𝑉 then
24: 𝑣𝑎𝑙𝑢𝑒𝑠 ← pop values from 𝑆 by 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
25: 𝑡 ← replace [ps] in 𝑡 with 𝑣𝑎𝑙𝑢𝑒𝑠 ;
26: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ← get variable from𝑉 by 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
27: 𝑡 ← replace [pv] in 𝑡 with 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ;
28: end if
29: if 𝑡 contains [pi] then
30: 𝑡 ← replace [pi] in 𝑡 with 𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 ;
31: end if
32: 𝑇 ← 𝑇 ∪ {𝑡 }
33: end for
34: output𝑇 ;

4.3.1 Shared Word Mapping. In TranCS, both translations and
comments are natural language sentences. Sentence embedding
is generated based on word embedding [43, 50]. Word embedding
techniques can map words into fixed-length vectors (i.e., embed-
dings) so that similar words are close to each other in the vector
space [42, 43].

A word embedding technique can be considered a word mapping
function𝜓 , which can map a word𝑤𝑖 into a vector representation
𝒘𝑖 , i.e.,𝒘𝒊 = 𝜓 (𝑤𝑖 ). As aforementioned, both translations and com-
ments are natural language sentences, so we design a shared word
mapping function. To implement such a𝜓 , we build a shared vocab-
ulary that includes top-𝑛 frequently appeared words in translations
and comments. We further transform the vector representations
of the words into an embedding matrix 𝐸 ∈ R𝑛×𝑚 , where 𝑛 is the
size of the vocabulary,𝑚 is the dimension of word embedding. The
embedding matrix 𝐸 = (𝜓 (𝒘1), ...,𝜓 (𝒘𝑖 ))𝑇 is initialized randomly
and learned in the training process along with the two encoders.
Based on this embedding matrix, TranCS can transforms transla-
tions and comments into the vector representations 𝑽𝐶 and 𝑽𝑇 . A
simple way of sentence vector representations is to view it as a bag
of words and add up all its word vector representations [30].

4.3.2 Encoder Training. In this section, we first introduce the ar-
chitecture of CEncoder and TEncoder, then present how to jointly
train the two encoders.

Encoder Architecture. As described in Section4.3.1, in TranCS
both translations and comments are natural language sentences.
Therefore, we can use the same sequence embedding network to
design comment encoder (CEncoder) and translation encoder (TEn-
coder) instead of designing different embedding networks for them
as the previous DL-based CS techniques, such as DeepCS [18] and
MMAN [62]. In practice, TranCS applies the LSTM architecture to
design CEncoder and TEncoder. Consider a translation/comment
sentence 𝑠 = 𝑤1, · · · ,𝑤𝑁 𝑠 comprising a sequence of 𝑁 𝑠 words,
TranCS first uses the shared word mapping function to produce
vector representations 𝒗𝑠 . Then, TranCS passes 𝒗𝑠 to the encoder
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(i.e., CEncoder or TEncoder) that generates embeddings 𝒆𝑠 . The
hidden state 𝒉𝑠

𝑖
of the 𝑖-th word in 𝑠 is calculated as follows:

𝒉𝑠𝑖 = 𝐿𝑆𝑇𝑀 (𝒉𝑠𝑖−1,𝒘𝑖 ) (1)

where𝒘𝑖 represents the vector of the word𝑤𝑖 and comes from the
embedding matrix 𝐸.

In addition, TranCS uses attention mechanism proposed by Bah-
danau et al. [1] to alleviate the long-dependency problem in long
text sequences [2]. The attention weight for each word𝑤𝑖 is calcu-
lated as follows:

𝛼𝑠𝑖 =
𝑒𝑥𝑝 (𝑓 (𝒉𝑠

𝑖
) · 𝒖𝑠 )∑𝑁 𝑠

𝑗=1 𝑒𝑥𝑝 (𝑓 (𝒉𝑠𝑗 ) · 𝒖𝑠 )
(2)

where 𝑓 (·) denotes a linear layer; 𝒖𝑠 denotes the context vector
which is a high level representation of all words in 𝑠 ; and · denotes
the inner project of 𝒉𝑠

𝑖
and 𝒖𝑠 . The context vector 𝒖𝑠 is randomly

initialized and jointly learned during training. Then, 𝑠’s final em-
bedding representation 𝒆𝑠 can be calculated as follows:

𝒆𝑠 =
𝑁 𝑠∑︁
𝑗=1

𝛼𝑠𝑖 · 𝒉
𝑠
𝑖 (3)

Joint Training. Now we present how to jointly train the two
encoders (i.e., CEncoder and TEncoder) of TranCS to transform
both translations and comments into a unified vector space with a
similarity coordination. We follow a widely adopted assumption
that if a translation and a comment have similar semantics, their
embedding representations should be close to each other [18, 56, 62].
In other words, given a code snippet 𝑠 whose translation is 𝑡 and a
comment 𝑐 , we want it to predict a high similarity between 𝑡 and 𝑐
if 𝑐 is a correct comment of 𝑠 , and a little similarity otherwise.

In practice, we first translate all code snippets into translations.
Then, we construct each training instance as a triple ⟨𝑡, 𝑐+, 𝑐−⟩: for
each translation 𝑡 there is a positive comment 𝑐+ (a ground-truth
comment of 𝑠) and a negative comment 𝑐− (an incorrect comment of
𝑠). The incorrect comment 𝑐− is selected randomly from the pool of
all correct comments. When trained on the set of ⟨𝑡, 𝑐+, 𝑐−⟩ triples,
TranCS predicts the cosine similarities of both ⟨𝑡, 𝑐+⟩ and ⟨𝑡, 𝑐−⟩
pairs and minimizes the ranking loss [10, 14]:

L(\ ) =
∑︁

⟨𝒕,𝒄+,𝒄− ⟩∈𝐺
𝑚𝑎𝑥 (0, 𝛽 − 𝑐𝑜𝑠 (𝒕, 𝒄+) + 𝑐𝑜𝑠 (𝒕, 𝒄−)) (4)

where \ denotes the model parameters; 𝐺 denotes the training
dataset; 𝛽 is a small and fixed margin constraint; 𝒕 , 𝒄+ and 𝒄− are
the embedded vectors of 𝑡 , 𝑐+ and 𝑐−, respectively. Intuitively, the
ranking loss encourages the cosine similarity between a transla-
tion and its correct comment to go up, and the cosine similarities
between a translation and incorrect comments to go down.

4.4 Deployment of TranCS
After the two encoders (i.e., CEncoder and TEncoder) are trained,
we can deploy TranCS online for code search service. Figure 7(2)
shows the deployment of TranCS. For a search query 𝑞 given by the
developer, TranCS first uses the shared word mapping function to
transform it into vector representation 𝒗𝑞 . TranCS further passes
𝒗𝑞 into CEncoder to generate the embedding 𝒆𝑞 . Then, TranCS

measures the similarity between 𝒆𝑞 and each 𝒆𝑡 ∈ 𝒆𝑇 . The similarity
is calculated as follows:

𝑠𝑖𝑚(𝑞, 𝑡) = 𝑐𝑜𝑠 (𝒆𝑞, 𝒆𝑡 ) = 𝒆𝑞 · 𝒆𝑡
∥𝒆𝑞 ∥ ∥𝒆𝑡 ∥ (5)

TranCS ranks all 𝑻 by their similarities with 𝑞. The higher the simi-
larity, the higher relevance of the code snippet to 𝑞. Finally, TranCS
outputs the code snippets corresponding to the top-𝑘 translations
to the developer.

5 EVALUATION AND ANALYSIS
We conduct experiments to answer the following questions:

RQ1. What is the effectiveness of TranCS when compared with
state-of-the-art techniques?

RQ2. What is the contribution of key components in TranCS,
i.e., context-aware code translation and shared word map-
ping?

RQ3. What is the robustness of TranCS when varying the
query length and code length?

5.1 Experimental Setup
5.1.1 Dataset. We evaluate the performance of our TranCS on a
corpus of Java code snippets, collected from the public CodeSearch-
Net corpus [9]. Actually, we have considered the dataset released by
baselines (i.e., DeepCS [18] and MMAN [62]). However, the dataset
of DeepCS only contains the cleaned Java code snippets without the
raw data, unable to generate the CFG for MMAN. And the dataset
of MMAN is not publicly accessible.

We randomly shuffle the dataset and split it into two parts, i.e.,
69,324 samples for training and 1,000 samples for testing. It is worth
mentioning a difference between our data processing and the one
in [18]. In [18], the proposed approach is verified on another isolated
dataset to avoid the bias. Since the evaluation dataset does not have
the ground truth, they manually labelled the searched results. As
possible subjective bias exists in manual evaluation [7, 62], in this
paper, we also adopt the automatic evaluation. Figure 10(a) and (b)
show the length distributions of code snippets and comments on
the training set. For a code snippet, its length refers to the number
of lines of the code snippet. For a comment, its length refers to
the number of words in the comment. From Figure 10(a), we can
observe that the lines of most code snippets are located between 20
to 40. This was also observed in the quote in [38] “Functions should
hardly ever be 20 lines long”. From Figure 10(b), it is noticed that
almost all comments are less than 20 in length. This also confirms
the challenge of capturing the correlation between short text with
its corresponding code snippet. Figure 10(c) and (d) show the length
distributions of code snippets and comments on testing data. We
can observe that, despite shuffling randomly, the distributions of
data sizes (i.e., lengths) in the two data sets are consistent, so we
can conclude that the testing set is representative.

5.1.2 Evaluation Metrics. In the evaluation, we consider the com-
ment of the code snippet as the query, and the code snippet it-
self as the ground-truth result of code search, which is similar
to [21, 56, 62] but different from [7, 18]. During the testing time,
we treat each comment in the 1,000 testing samples as a query, the
code snippet corresponding to the query as the correct result, and
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Figure 10: Length Distributions

the other 999 code snippets as distractor results. We adopt two
automatic evaluation metrics that are widely used in code search
studies [7, 18, 21, 56, 62] to measure the performance of TranCS,
i.e., success rate at 𝑘 (SuccessRate@k) and mean reciprocal rank
(MRR).

SuccessRate@k measures the percentage of queries for which
the correct result exists in the top 𝑘 ranked results [28, 62], which
is computed as follows:

SuccessRate@k =
1

|𝑄 |

|𝑄 |∑︁
𝑖=1

𝛿 (𝐹𝑅𝑎𝑛𝑘𝑄𝑖
≤ 𝑘) (6)

where 𝑄 denotes a set of queries and |𝑄 | is the size of 𝑄 ; 𝛿 (·) de-
notes a function which returns 1 if the input is true and returns 0
otherwise; 𝐹𝑅𝑎𝑛𝑘𝑄𝑖

refers to the rank position of the correct result
for the 𝑖-th query in𝑄 . SuccessRate@k is important because a bet-
ter CS technique should allow developers to discover the expected
code snippets by inspecting fewer returned results. The higher the
SuccessRate@k value, the better the code search performance.

MRR is the average of the reciprocal ranks of results of a set of
queries 𝑄 [56, 62]. The reciprocal rank of a query is the inverse of
the rank of the correct result. MRR is computed as follows:

MRR =
1

|𝑄 |

|𝑄 |∑︁
𝑖=1

1

𝐹𝑅𝑎𝑛𝑘𝑄𝑖

(7)

The higher the MRR value, the better the code search performance.
Meanwhile, as developers prefer to find the expected code snip-

pets with short inspection, we only test SuccessRate@k and MRR
on the top-10 (that is, the maximum value of 𝑘 is 10) ranked list
following DeepCS [18] and MMAN [62]. In other words, when the
rank of 𝑄𝑖 is out of 10, then 1/𝐹𝑅𝑎𝑛𝑘𝑄𝑖

is set to 0.

5.1.3 Baselines. In this paper, we compare the following baselines:
• DeepCS [18]. DeepCS is one of the representative DL-based
CS techniques. DeepCS uses two kinds of model architecture
to design the code encoder to embed three aspects of the
code snippet, i.e., two RNNs for method names and API

sequences, and a multi-layer perceptron (MLP) for tokens.
Its query encoder also uses RNN architecture.
• MMAN [62]. MMAN is one of the state-of-the-art DL-based
CS techniques. MMAN uses multiple kinds of model architec-
tures to design the code encoder to embed multiple aspects
of the code snippet, i.e., one LSTM for Token, a Tree-LSTM
for AST, and a GGNN for CFG. Its query encode uses LSTM
architecture.

5.1.4 Implementation Details. To train our model, we first shuffle
the training data and set the mini-batch size to 32. The size of the
vocabulary is 15,000. For each batch, the code snippet is padded
with a special token ⟨𝑃𝐴𝐷⟩ to the maximum length. We set the
word embedding size to 512. For LSTM unit, we set the hidden size
to 512. The margin 𝛽 is set to 0.6. We update the parameters via
AdamW optimizer [29] with the learning rate 0.0003. To prevent
over-fitting, we use dropout with 0.1. In TranCS, the comment and
the code snippet share the same embedding weights. All models
are implemented using the PyTorch 1.7.1 framework with Python
3.8. All experiments are conducted on a server equipped with one
Nvidia Tesla V100 GPU with 31 GB memory, running on Centos
7.7. All the models in this paper are trained for 200 epochs, and we
select the best model based on the lowest validation loss.

5.2 Evaluation Results
In this section, we present and analyze the experimental results to
answer the research questions.

5.2.1 RQ1: Effectiveness of TranCS. Table 2 shows the overall
performance of TranCS and two baselines, measured in terms of
SuccessRate@k and MRR. The columns SR@1, SR@5 and SR@10
show the results of the average SuccessRate@k over all queries
when 𝑘 is 1, 5 and 10, respectively. The column MRR shows the MRR
values of the three techniques. From this table, we can observe that
for SR@k, the improvements of TranCS to DeepCS are 102.90%,
45.80% and 32.48% when 𝑘 is 1, 5, and 10, respectively. The improve-
ments to MMAN are 67.16%, 35.94%, and 25.42%, respectively. For
MRR, the improvements TranCS to DeepCS and MMAN are 66.50%
and 49.31%, respectively. We can draw the conclusion that under
all experimental settings, our TranCS consistently achieves higher
performance in terms of both two metrics, which indicates better
code search performance.

Table 2: Overall Performance of TranCS and Baselines

Tech SR@1 SR@5 SR@10 MRR

DeepCS 0.276 0.524 0.622 0.391
MMAN 0.335 0.562 0.657 0.436
TranCS 0.560 0.764 0.824 0.651

The CodeSearchNet corpus also provides 99 realistic natural
languages queries and expert annotations for likely results. Each
query/result pair was labeled by a human expert, indicating the
relevance of the result for the query. We also conduct experiments
on 99 queries provided by the CodeSearchNet corpus for the Java
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programming language. We use the same metric, normalized dis-
counted cumulative gain (NDCG [55]), to evaluate baselines and
TranCS. Our TranCS achieves NDCGof 0.223, outperformingDeepCS
(0.138) and MMAN (0.173) by 62% and 30%, respectively.

Table 3: Contribution of Key Components in TranCS

Tech SR@1 SR@5 SR@10 MRR

TokeCS 0.247 0.477 0.586 0.359
TranCS (CCT) 0.352 0.569 0.664 0.455

TokeCS (SWM) 0.264 0.483 0.592 0.370
DeepCS (SWM) 0.295 0.511 0.615 0.399
TranCS (CCT+SWM) 0.560 0.764 0.824 0.651

5.2.2 RQ2: Contribution of Key Components. We experimentally
verified the effectiveness of two key components of TranCS i.e.,
context-aware code translation (CCT) and shared word mapping
(SWM). In Table 3, TranCS(CCT) and TranCS(CCT+SWM) are two
special versions of TranCS, among which the former uses two differ-
ent word mapping functions to transform instruction translations
and comments to vector representations, while the latter uses SWM.
In other words, if it is only CCT, TranCS uses two vocabularies. In
the case of CCT+SWM, TranCS uses a shared vocabulary. More-
over, numerous existing studies [53, 56, 68] including DeepCS [18]
and MMAN [62] have shown that tokens of code snippets play a
key role in code search tasks. Therefore, we assume that this is a
scenario where the code snippet is not translated, and we directly
pass the tokens of the code snippet into the model to train the
code encoder. The effectiveness of the token-based CS technique
(TokeCS) is shown in the second line of Table 3. To demonstrate
the effectiveness of SWM, we also tried to apply SWM to TokeCS,
DeepCS and MMAN. To apply SWM to TokeCS, we use a unified
word mapping function to transform tokens and comments. In
DeepCS, the author uses four word mapping functions to transform
the MN, APIS, Token and comments into vector representations. To
apply SWM to DeepCS, we first merge the four vocabularies into a
shared vocabulary by extracting the union of them. Then, we use a
unified word mapping function to transform MN, APIS, Token and
comments. In MMAN, the author not only uses LSTM architecture
to embed tokens, but also uses Tree-LSTM and GGNN to embed
AST and CFG, while the three architectures cannot share a word
mapping function. Therefore, SWM can not be applied to MMAN.
The effectiveness of Toke(SWM), DeepCS(SWM) are shown in lines
4–5 of Table 3. From the lines 2–3 of Table 3, we can observe that
for SR@k, the improvements of TranCS(CCT) to TokeCS are 42.51%,
19.29% and 13.31% when 𝑘 is 1, 5, and 10, respectively. For MRR,
the improvement to TokeCS is 26.74%. Therefore, we can conclude
that CCT contributes to TranCS. For SR@k, the improvements of
TranCS(CCT+SWM) to TranCS(CCT) are 59.09%, 34.27% and 24.10%.
For MRR, the improvement of TranCS(CCT+SWM) to TranCS(CCT)
is 43.08%. Therefore, we can conclude that SWM contributes to
TranCS. Besides, we can also observe that SWM also has slight
improvements to TokeCS and DeepCS. Therefore, we can draw the
conclusion that SWM and CCT, which promote each other, improve
the performance of TranCS jointly.

5.2.3 RQ3: Robustness of TranCS. To analyze the robustness of
TranCS, we studied two parameters (i.e., code length and comment
length) that may have an impact on the embedding representations
of translations and comments. Figure 11 shows the performance of
TranCS based on different evaluation metrics with varying param-
eters. From Figure 11, we can observe that in most cases, TranCS
maintains a stable performance even though the code snippet length
or comment length increases, which can be attributed to context-
aware code translation and shared word mapping we proposed.
When the length of the code snippet exceeds 20 (a common range
described in Section 5.1.1), the performance of TranCS decreases
as the length increases. It means that when the length of the code
snippets or comments exceeds the common range, as the length
continues to increase, it will be more difficult to capture their se-
mantics. Overall, the results verify the robustness of our TranCS.
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Figure 11: Robustness of TranCS

6 CASE STUDY

1 void swapElementInList(List<Integer> list, int i, int j) {
2 int element = list.get(i);
3 list.set(i, list.get(j));
4 list.set(j, element);
5 }

(b) Code Snippet 𝑠!

(c) Code Snippet 𝑠"

swap two elements in the list

(a) Query q

1 void swapElementInList(List<Integer> list, int i, int j) {
2 Collections.swap(list, i, j);
3 }

Figure 12: Example of Two Code Snippets Implementing the
Same Functionality

This is a case to study the performance of TranCS in retrieving
code with implantation difference. Figure 12(b) and (c) show two
code snippets that implement the same functionality, i.e., swap-
ping two elements in the list. The first one (𝑠1) implements the
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functionality from scratch, and the second one (𝑠2) directly calls
the external API 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝑠𝑤𝑎𝑝 (). We use TranCS to convert the
two code snippets into corresponding translations, which are very
different, meaning TranCS can effectively differentiate semantically
similar code but differs in APIs used. This is because TranCS re-
serves API information (e.g., name, parameter) when generating
code translation. For example, as shown in Figure 13, the trans-
lations produced by TranCS reserve the information of the API
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝑠𝑤𝑎𝑝 () invoked by 𝑠2, including the parameters (e.g.,
list) and the method name swap.

0: load reference list from local variable list.
1: load int i from local variable i.
2: load int j from local variable j.
3: invoke class Collections static method swap.
4: return void from method.

Figure 13: Translations of the Code Snippet 𝑠2

7 THREATS TO VALIDITY
The metrics used in this paper are SuccessRate@k and MRR for
evaluating the effectiveness of TranCS and existing techniques.
These are the same metrics adopted in MMAN [62]. We do not use
another metric Precision@k that measures the percentage of rel-
evant results in the top 𝑘 returned results for each query [18]. This
is due to the constraint that the relevant results need to be labelled
manually, which is empirically less feasible and can introduce hu-
man biases. We hence focus on the two metrics SuccessRate@k
and MRR in the paper.

TranCS is currently only evaluated on Java programs and may re-
quire modifications for extending to other programming languages.
The core contribution of TranCS is the context-aware code trans-
lation technique. To realize the context-aware code translation,
TranCS requires a set of translation rules, such as the operations
and descriptions of instructions. In order to extend TranCS to other
programming languages, corresponding translation rules need to
be designed and provided. We plan to evaluate the performance of
TranCS on these programming languages in future work.

8 RELATEDWORK
Early CS techniques were based on IR technology, such as [4, 27, 40,
51, 54]. These techniques simply consider queries and code snippets
as plain text and then use keyword matching. To alleviate the prob-
lem of keyword mismatch [8, 22] and noisy keywords [19], many
query reformulation(QR)-based CS techniques [22, 31, 36, 37, 48, 52]
have been proposed one after another. For example, the words
from WordNet [44], or Stack Overflow [48] are used to expand user
queries. However, QR-based CS techniques consider eachword inde-
pendently, while ignoring the context of the word. In addition, both
IR-based and QR-based CS techniques only treat the code snippet as
plain text, and cannot capture the deep semantics of the code snip-
pet. To better capture the semantics of queries and code snippets,
deep learning (DL)-based CS techniques [7, 13, 18, 25, 53, 56, 62, 66]

have been proposed one after another. Gu et al. [18] first apply DL
to the code search task. They first encode both the query and a
set of code snippets into corresponding embeddings using MLP
or RNN, and then rank the code snippets according to the cosine
similarity of embeddings. Other DL-based CS techniques are similar
to DeepCS [18] with only a difference in choosing the embedding
architecture. For example, to capture the semantics of other aspects
of the code snippet, MMAN [62] integrates multiple embedding
networks (i.e., LSTM, Tree-LSTM and GGNN) to capture semantics
of multiple aspects, such as Token, AST, and CFG. CodeBERT [13],
CoaCor [66], and baselines in CodeSearchNet Challenge [25] only
treat the code snippet as plain text (token sequence), which miss
richer information such as APIs, AST, and CFG, etc. TBCNN [46] is
a tree-based convolutional neural network that encodes the AST
of the code snippet. Our baseline MMAN has encoded AST us-
ing tree-based neural networks and is inferior to our TranCS. All
these works have a similar idea that first transforms both code
snippets and queries into embedding representations into a uni-
fied embedding space with two encoders, and then measures the
cosine similarity of these embedding representations. However,
TranCS differs from previous work in two major dimensions: 1)
TranCS first translates the code snippet into semantic-preserving
natural language descriptions. In this case, the generated transla-
tions and comments are homogeneous. 2) Based on code translation,
TranCS naturally uses a shared word mapping mechanism, which
can produce consistent embeddings for the same words, thereby
better capturing the shared semantic information of translations
and comments.

9 CONCLUSION
In this paper, we propose a context-aware code translation tech-
nique, which can translate code snippets into natural language
descriptions with preserved semantics. In addition, we propose a
shared word mapping mechanism to produce consistent embed-
dings for the same words/tokens in comments and code snippets,
so as to capture the shared semantic information. On the basis
of context-aware code translation and shared word mapping, we
implement a novel code search technique TranCS. We conduct com-
prehensive experiments to evaluate the effectiveness of TranCS, and
experimental results show that TranCS is an effective CS technique
and substantially outperforms the state-of-the-art techniques.

In future work, we will further explore the following two dimen-
sions: (1) as shown in Figure10, statistical results on large-scale
data sets show that most code snippets have no more than 20 lines.
Within this range, TranCS is robust and stable. Constructing repre-
sentations of long code snippets is still an open problem, and we
leave it to future work. (2) LSTM encoder is just a component of
TranCS, which can be easily replaced with more advanced (includ-
ing pre-trained) models in [6, 39]. We will explore more advanced
models in future work.
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