
TOGA: A Neural Method for Test Oracle Generation
Elizabeth Dinella

∗

University of Pennsylvania

edinella@seas.upenn.edu

Gabriel Ryan
∗

Columbia University

gabe@cs.columbia.edu

Todd Mytkowicz

Microsoft Research

toddm@microsoft.com

Shuvendu K. Lahiri

Microsoft Research

shuvendu@microsoft.com

ABSTRACT
Testing is widely recognized as an important stage of the software

development lifecycle. Effective software testing can provide bene-

fits such as bug finding, preventing regressions, and documentation.

In terms of documentation, unit tests express a unit’s intended

functionality, as conceived by the developer. A test oracle, typi-

cally expressed as an condition, documents the intended behavior

of a unit under a given test prefix. Synthesizing a functional test

oracle is a challenging problem, as it must capture the intended

functionality rather than the implemented functionality.

In this paper, we propose TOGA (a neural method for Test Oracle

GenerAtion), a unified transformer-based neural approach to infer

both exceptional and assertion test oracles based on the context of

the focal method. Our approach can handle units with ambiguous

or missing documentation, and even units with a missing implemen-

tation. We evaluate our approach on both oracle inference accuracy

and functional bug-finding. Our technique improves accuracy by

33% over existing oracle inference approaches, achieving 96% over-

all accuracy on a held out test dataset. Furthermore, we show that

when integrated with a automated test generation tool (EvoSuite),

our approach finds 57 real world bugs in large-scale Java programs,

including 30 bugs that are not found by any other automated testing

method in our evaluation.

ACM Reference Format:
Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri.

2022. TOGA: A Neural Method for Test Oracle Generation. In 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 21–29, 2022,
Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3510003.3510141

1 INTRODUCTION
Unit testing is a critical aspect of software development. Effective

unit tests for a component (a method, class, or module) can provide

documentation, find bugs, and prevent regressions. In terms of doc-

umentation, unit tests express the unit’s intended functionality, as

conceived by the developer. Documenting the unit’s functionality

∗
Performed this work while interning at Microsoft. Equal contributor.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00

https://doi.org/10.1145/3510003.3510141

through a test conveys the unit’s intended usage. The test also

serves as a mechanism for detecting functional bugs during devel-

opment. When executed, a test checks for mismatches between

intended and implemented functionality. Such a mismatch causes a

test failure, indicating a bug in the implementation. Furthermore,

unit tests can alert the developer when future code changes intro-

duce bugs. Effective (unit) testing during development can prevent

release of buggy software and reduce costs by billions of dollars

[29].

A unit test is composed of two parts: a prefix, which drives the

unit under test to an interesting state, and an oracle, which specifies

a condition that the resultant state should satisfy. A sufficiently

expressive test suite should document functionality under both

normal invocations where the precondition is met, and exceptional
behaviors where the precondition is violated. Figure 1 shows two

examples of unit tests for a stack class. The tests document a

normal invocation (Figure 1a) and an exceptional invocation (Fig-

ure 1b). Figure 1a shows a normal invocation of the unit where

the test prefix instantiates a stack and makes sequential calls to

push and pop. The test oracle, highlighted in red, asserts that the

stack’s isEmpty method should return true at the resultant state.
If the unit contains a bug related to the tested behavior (e.g., if pop

always fails to remove an item from the stack), this test can aid in

detecting the bug. On the other hand, Figure 1b shows the unit’s

expected behavior when the precondition of pop is not satisfied. In

this case, the intended behavior of calling pop on an empty stack
is to raise an exception. As such, the test oracle is the expected

exception. The try-catch structure ensures that the unit does indeed

raise an exception. If the unit contains a bug and does not raise an

exception, the test will fail by executing Assert.fail().

public void testPop () {
Stack <int > s = new Stack <int >();
int a = 2;

s.push(a);
s.pop();

bool empty = s.isEmpty ();
assertTrue(empty);

}

(a) Normal invocation of pop

public void testPop () {
try {
Stack <int > s = new Stack <int >();
s.pop();

Assert.fail (); //fail
} catch (Exception e) {
//pass

}
}

(b) Exceptional invocation of pop

Figure 1: Unit tests of a Stack class. The test oracles are highlighted
in red. A correct implementation of Stack will be empty after a se-
quential push and pop and must raise an exception if pop is called
on an empty stack.

ar
X

iv
:2

10
9.

09
26

2v
2 

 [
cs

.S
E

] 
 2

0 
A

pr
 2

02
2

https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

It is clear that testing has immense benefits. However, authoring

high quality unit tests is time consuming. On average, developers

spend 15% of their time writing tests [7]. As such, extensive work

has been devoted to automated unit test generation [10, 16, 22, 36].

However, test generation tools have no definitive knowledge of the

developer’s intended program behavior. This creates a challenge

for generating functional test oracles. Instead, these tools consider

program crashes and undesirable exceptions (e.g. null dereference

or out of bound array accesses) as the test oracles. These tests are ca-

pable of finding numerous safety bugs in the unit’s implementation,

but are not sufficient to find violations of intended functionality

and thus do not replace the need for manual unit tests.

Complimentary to automated test generation tools, extensive

work has been devoted to test oracle creation from documenta-

tion and comments [2, 13, 23, 28, 37]. We refer to these techniques

as specification mining methods for test oracle generation. These

methods rely on a restricted structure of documentation and a set

of handcrafted rules to infer exceptions and assertions for a unit.

However, given that users do not follow a prescribed format for

writing documentation, or omit them altogether, these methods fail

to extract interesting oracles on most real-world software compo-

nents. In our evaluation, we show that these methods cannot infer

bug-finding assertions for a benchmark of real world Java projects.

Recently, neural generative models have shown promise in gen-

erating functional test oracles [32–34]. Neural methods are more

flexible than specification mining approaches as they do not rely

on fixed patterns. This flexibility makes neural generative mod-

els robust to imprecise or even missing documentation. However,

we find in our evaluation that these methods struggle to generate

accurate oracles due to the large space of possible assertions.

In summary, an effective test generation approach must infer

both exception and assertion oracles that accurately reflect devel-

oper intent, and find bugs in real world programs. Additionally,

such an approach must gracefully handle cases with ambiguous or

missing documentation, or even missing implementations.

We propose a neural approach to infer both exceptional and

assertion bug finding test oracles: TOGA. To address the limitations

of existing neural generative methods, we propose a new approach

that reformulates the oracle generation problem as a ranking over

a small set of highly likely, possible oracles. We base our approach

on the empirical observation that oracles in developer-written unit

tests typically follow a small number of common patterns. We

describe a taxonomy on these patterns and define a simple grammar

that expresses this taxonomy. We use this grammar along with

type-based constraints to restrict the space of candidate oracles

and produce well-formed test oracles satisfying syntactic and type

correctness. To perform ranking, we develop a two-step neural

ranking procedure using pretrained transformers finetuned to score

candidate oracles.

We evaluate our approach on both test oracle inference and bug-

finding. Our technique improves accuracy by 33% over existing

oracle inference approaches, achieving 96% accuracy on a held out

test dataset that fits our grammar and constraints, and 69% accuracy

on an overall assertion benchmark, a relative improvement of 11%

over existing methods. Furthermore, we show that when integrated

with a randomized test generation tool (EvoSuite), our approach

finds 57 real world bugs in Java benchmark, Defects4J [14]. Our

approach finds 30 bugs that are not found by any other automated

testing method in our evaluation. We provide an open source im-

plementation of TOGA at https://github.com/microsoft/toga.

Contributions. In summary, this paper:

(1) Introduces a transformer (neural network) based approach

to generating both exceptional and assertion oracles without

relying on the unit’s implementation.

(2) Derives adapted datasets for exceptional and assertion oracle

training that incorporate method signatures and docstrings.

These datasets are included in our open source release.

(3) Implements TOGA, an end-to-end test generation technique

that integrates neural test oracle generation with the auto-

mated test generation tool, EvoSuite.

(4) Performs an extensive evaluation on test oracle inference.

We demonstrate that our approach improves oracle inference

accuracy by 33% and finds 57 real world bugs, including 30

bugs that are not found by any other method in our evalua-

tion.

2 RELATEDWORK
We broadly categorize related work on unit test generation into

(i) automated test generation methods, (ii) specification mining

methods, and (iii) neural methods.

2.1 Automated Test Generation Tools
Automated unit test generation techniques use a combination of

black-box or white-box techniques to generate interesting test pre-
fixes for a unit. For example, tools such as Randoop [21, 22] use

random fuzzing of APIs of a unit to construct test prefixes that

drives the unit to interesting states. Fuzzers such as AFL [36] use

fuzzing on the data inputs of a method to derive interesting val-

ues to drive a method. Korat [18] performs test generation for

data structure inputs based on lazy unfolding of the type structure.

PeX [31] performs concolic execution [12, 24] to enumerate paths

in a program and synthesize inputs using a constraint solver to

derive inputs.

However, none of these tools explore the generation of test ora-
cles to find functional bugs in a unit. They rely on program crashes

(from implicit or explicit assertions present in the code), or use

exception type heuristics to distinguish between desirable and un-

desirable behavior. For example, null dereferences or out of bounds

exceptions may be considered as undesirable. Regression Oracles,
used by tools such as EvoSuite [10, 11], are intended to find future
bugs and assume the unit under test is correctly implemented. This

assumption allows for generating assertions from observed exe-

cution behavior. However, expecting a correct implementation is

not always a safe assumption. When the implementation is buggy,

the regression oracles are incorrect with respect to the intended

behavior. That is, regression oracles are incapable of catching non-

exceptional bugs, introducing false negatives.

Consider the example in Figure 2a that shows a buggy no-op

implementation of stack pop. Figure 2b shows a generated unit

test with a regression oracle. The test creates a stack and makes

sequential push and pop calls. Since the pop method has a buggy no-

op implementation, the stack will have one element after executing

https://github.com/microsoft/toga


TOGA: A Neural Method for Test Oracle Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

class Stack() {

public void pop () {
// NO-OP

}

...

}

(a) Buggy implementation.

public void testPop () {
Stack <int > s = new Stack <int >();
int a = 2;

s.push(a);
s.pop();

bool empty = s.isEmpty ();
assertFalse(empty);

}

(b) Regression oracle test.

public void testPop () {
try {
Stack <int > s = new Stack <int >();
s.pop();
//pass

} catch (Exception e) {
//fail
Assert.fail ();

}
}

(c) Safety oracle test.

Figure 2: Regression and safety oracles for a buggy pop method. The regression oracle (employed by EvoSuite) assumes that the current
behavior is correct, resulting in an incorrect oracle asserting that the stack is non-empty. The safety oracle (employed by Randoop) assumes
that any non-crashing behavior is correct. As such, it results in an incorrect oracle asserting that an exception should not be raised when
calling pop on an empty stack. Correct oracles for pop are shown in Figure 1.

pop. Thus, the regression oracle is an incorrect assertion: the stack

should not be empty.

Similarly, qualifying any exceptional output as a bug (Safety
Oracle) can fail on correctly implemented methods, causing false

positives, (e.g., the intended behavior of calling pop() on an empty

method is to throw an exception). Figure 2c shows a generated unit

test with a safety oracle. A method that relies on safety oracles

will also generate a passing test on the buggy pop implementation.

Since pop is implemented as a no-op, an exception will not be raised

when calling pop on an empty stack. In this case, the test oracle is

implicit and asserts that an exception will not be thrown.

Therefore although automated test generation techniques find

numerous non-functional bugs, and are useful for detecting regres-

sion bugs for future code changes, they are not a substitute for

manually written unit tests documenting intended functionality.

2.2 Specification Mining Methods
Specification mining works [2, 13, 23, 28, 37] aim to generate test

oracles that accurately reflect the intended behavior (as in Figure 1).

Unlike randomized test generation methods, specification mining

approaches do not have any knowledge of the unit’s implementa-

tion and as such, do not require execution. Instead, they rely on

docstring documentation. Specification mining methods typically

define a set of natural language docstring patterns. These patterns

cannot capture all docstrings as program comments can be written

flexibly without any necessary syntax or structure.

@Tcomment [28] defines natural language patterns along with

heuristics to infer nullness properties. However, it cannot gener-

alize to other property or exception types. An example heuristic

@Tcomment employs is: generate an “expected NullPointerExcep-

tion” oracle if the keyword @param has the words null and not
within 3 words of each other. ToraDocu [13] uses a combination of

pattern, lexical, and semantic similarity matching. Unlike @TCom-

ment, ToraDocu is not limited to nullness properties. However,

ToraDocu can only generate oracles for exceptional behavior. JDoc-

tor [2] is an extension of ToraDocu that can also generate asser-

tion oracles. More recently, MeMo [3] uses equivalence phrases in

javadoc comments to infer metamorphic relations (e.g., sum(x,y)
== sum(y,x)), which are also used as test oracles. These methods

can precisely determine oracles when code comments fit their ex-

pected patterns, but do not generalize when comments fall outside

these patterns.

Lastly, C2S [37] generates JML specifications from docstrings.

C2S does not manually define patterns, but instead performs a

search over JML tokens. However, C2S relies on a developer writ-

ten test prefix to filter candidate assertions. C2S has performance

improvements over JDoctor in terms of specification synthesis ac-

curacy, but does not improve performance in bug finding.

On average, real-world Java projects lack precisely structured

docstring documentation. In our evaluation, we show that specifi-

cation mining methods struggle to infer bug-finding oracles for a

benchmark of real world Java projects.

Invariant Mining. There is a long line of work in deriving pro-

gram invariants for the observed execution behavior of the pro-

gram. These include systems such as Daikon [8] and DySy [6],

which extends the derived program invariants with symbolic execu-

tion. Recently, EvoSpex [19, 20] combines observed executions with

mutations to generate samples of both valid and likely invalid pro-

gram states and applies a genetic algorithm to infer invariants for

method postconditions. GAssert [30] also utilizes an evolutionary

approach to make inferred program invariants more accurate and

compact. These approaches can be used to generate specifications

and associated test oracles from the inferred invariants, but because

they are based on the execution/symbolic behavior of the current

implementation they will generate regression oracles, and cannot

detect if bugs are already present in the unit under test.

2.3 Neural Methods
Recently, neural models have shown promise in generating test

oracles and even entire unit tests. In contrast to specificationmining

methods, neural methods are not tied to hard coded patterns and

can generalize to flexibly written docstrings. Furthermore, unlike

randomized test generation tools, neural methods do not necessarily

require knowledge or execution of the unit under test.

We refer the reader to CodeBERT [9] for a discussion on the

transformer architectures as applied to code. A transformer, like

a recurrent neural network, maps a sequence of text into a high

dimensional representation, which can then be decoded to solve

downstream tasks. While not originally designed for code, trans-

formers have found many applications in software engineering [4,

15, 26, 27].

ATLAS is a neural-network-based approach to generate assertion

oracles. Given a test prefix and the unit under test, ATLAS [34]

generates assertions using a recurrent neural network. ATLAS relies

on the unit’s implementation and does not have any knowledge of



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

the docstring documentation. ATLAS exclusively targets assertion

oracle generation and does not attempt to infer any exceptional

oracles.

Subsequent methods [17, 33, 35] have improved upon ATLAS by

using a transformer-based seq2seq architecture pretrained on natu-

ral language and code. A transformer seq2seq model outperforms

ATLAS in terms of inference accuracy. However, in section 5, we

show that in combination with a test prefix generator, it struggles

to find real world bugs in Java projects.

Lastly, AthenaTest [32] is a transformermodel approach to gener-

ate entire unit tests including both prefixes and oracles. AthenaTest

takes as input the unit’s context (e.g., surrounding class, method

signatures, etc.), and implementation. Like the previous neural

methods, it does not have any knowledge of the docstring docu-

mentation and relies on the implementation for inferring intended

behavior.

3 STRUCTURE OF AN ORACLE
Our approach addresses the limitations of existing neural methods

by employing a ranking architecture over a set of candidate test

oracles, rather than a generative model. In this section we develop

a grammar for describing this set of test oracles. We first describe

a taxonomy of commonly occurring oracle structures based on a

qualitative investigation of a unit test dataset, and then use this

taxonomy to inform the construction of our oracle grammar.

We develop a taxonomy of common oracle structures based on

unit tests frommethods2test [1], a dataset of Java unit tests collected

from GitHub. We describe methods2test in Section 4.2

Unit test oracles typically test either exceptional behavior (i.e.,

verifying an expected exception is raised) or return behavior (asser-

tion oracles). Additionally, an implicit exception oracle is usually

present in tests with assertion oracles. That is, a test with an asser-

tion oracle is not expected to raise an exception.

Taxonomy:We develop the following taxonomy of oracle usage,

drawn from our observations of almost 200K developer-written

tests. To develop this taxonomy, we manually inspected 100 random

samples and categorized the most frequently occurring types of

oracles we observed. To ensure that our grammar generalized well

and did not overfit to our 100 inspected samples, we evaluated the

proportion of tests in the dataset that fit the grammar (Section 5.2).

(1) Expected Exception Oracles. Expected exception oracles

verify that executing the test prefix with some invalid usage

raises an exception. They are most frequently expressed with

the following structure:

try {
Unit.methodcall(invalidInput );
Assert.fail ();

} catch (Exception e) {
verifyException(e, ExceptionType );

}

(2) Assertion Oracles. Assertion oracles verify correct return

behavior, although they will also fail if any exception is

thrown. We observe several common assertion patterns:

(a) BooleanAssertions.Boolean assertions are used to check
some property of the unit under test is true/false. They
are typically asserted directly on method return values:

Unit.methodcall(input );
assertTrue(Unit.getStatus ());

(b) Nullness Assertions. Nullness assertions usually check

the return value of a method call that processes some

input.

assertNotNull(Unit.processInput(input ));
assertNull(Unit.processInput(invalidInput ));

(c) Equality Assertions.Developers typically write equality
assertions to check the return value of a single method

call. The return value is usually checked against a constant

or literal representing the expected value. In many cases,

especially when the unit under test incorporates some

data structures, the expected value was previously passed

as an argument to some method in the test prefix.

String msg = "foo";
Unit.sendMessage(msg);
assertEqual(Unit.getLastMessage (), msg);

As we demonstrate in Section 5.2 this taxonomy captures a major-

ity of tests (82% of a large dataset of developer written tests). This

coverage could potentially be expanded by including other asser-

tion types (e.g., AssertSame), however, in developing the oracle

taxonomy, our goal is not to express the entire grammar of Java

test oracles. Instead, we aim to identify a minimal syntactic subset

which represents many semantically equivalent oracles. Such a

grammar greatly restricts the output space for the oracle generator

to consider.

Uncommon oracles. We note several other patterns that occur

more rarely, including equality assertions on arrays or assertions on

multiple method calls (as opposed to a method call and a constant).

We also note that there are some assertion patterns that we did not

observe in any unit test, although they are often used to express

invariants within programs. These include assertions with logical

connectives and assertions with inequality constraints.

Test oracle grammar. Based on the taxonomy of common oracle

structures, we develop a restricted grammar that expresses com-

monly used test oracles.

Test T := O(P)
Prefix P := statement | P; P
Oracle O(P) := E(P) | R(P)
Except Oracle E(P) := try{P; fail();} catch(Exception e){}
Return Oracle R(P) := P; A
Assertion A := assertEquals(const|var,expr) |

assertTrue(expr) | assertFalse(expr) |
assertNull(expr) | assertNotNull(expr)

Intuitively, TOGA is a code-generation model for tests that is ex-

plicitly designed to exploit the structure of a unit test. This grammar

succinctly describes a set of test oracles that are possible candidates

for generation. In particular, given a test prefix 𝑃 , we can synthe-

size either an exceptional oracle 𝐸 (𝑃) or an assertion oracle on the

return value of a method 𝑅(𝑃). Further the assertion oracle can be

constructed using one of the five assert* constructs when instan-

tiated with the return value and other constants and variables.



TOGA: A Neural Method for Test Oracle Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

In the sections that follow, we demonstrate how to (i) prune this

set, using type constraints, and (ii) rank the resulting possible test

oracles using neural models.

4 TOGA: NEURAL TEST ORACLE GENERATION
In this section we present our approach for inferring test oracles

that reflect developer intent. Unlike previous works, TOGA is capable
of inferring both exception and assertion oracles. Furthermore, TOGA
can handle units with vaguely written or absent docstrings, or even

absent implementation. Our approach infers test oracles from only a

given test prefix and unit context. Unit context may refer to method

signature(s), or a docstring (if present). Notably, the unit context

need not include the unit’s implementation.

4.1 Method Overview
TOGA depicted in Figure 3 contains two key components: the Excep-

tional Oracle Classifier and the Assertion Oracle Ranker.

The Exceptional Oracle Classifier, described further in Section 4.2,

is a pretrained transformer model fine-tuned on a binary decision

task. The model decides if an exception should be thrown according

to the developer intent conveyed through the unit context. If the

classifier infers that the given test prefix should raise an excep-

tion, TOGA has found an exceptional oracle and can now generate a

complete test. The resulting test has the Expected Exception Oracle
format shown in Section 3. Otherwise, the classifier predicts that

the input should not raise an exception and TOGA continues in the

test generation process by invoking the Assertion Oracle Ranker.

The Assertion Oracle Ranker, described in Section 4.3, similarly

uses a pretrained transformer model backbone. To address the

limitations of existing neural assertion generation methods, our

approach treats oracle inference as a ranking over a small set of

possible common oracles. We base our approach on our observed

taxonomy and defined grammar described in Section 3. We use this

grammar along with type-based constraints to restrict the space of

candidate oracles and enforce syntactic and type correctness. The

model is is fine-tuned on ranking the set of candidate assertions

given the test prefix and unit context. Each assertion in the set is

ranked, and the highest ranked candidate is selected as the assertion

oracle. Lastly, TOGA generates a test with the given test prefix and

the inferred assertion oracle.

4.2 Exceptional Oracle Classifier
As mentioned previously, the Exceptional Oracle Classifier is based

on a pretrained BERT transformer model. In particular, we use the

CodeBERT [9] model trained on both natural language and code

masked language modelling. To train the Exceptional Oracle Clas-

sifier we fine-tune the pretrained model on the task of exceptional

oracle inference. The fine-tuning is performed using a supervised

dataset 𝐷 = ((𝑝, 𝑐), 𝑙)1, ...(𝑝, 𝑐), 𝑙)𝑛) where 𝑝 is a test prefix, 𝑐 is a

unit context, and 𝑙 is a binary label (𝑙 ∈ 0, 1). A label of 1 indicates

that the sample should raise an exception while a label of 0 indicates

that it should not raise an exception.

Methods2Test* dataset. Our training dataset 𝐷 is variation of the

Methods2Test dataset [32], we call Methods2Test*. As the name sug-

gests, Methods2Test is a corpus of unit methods and corresponding

developer written unit tests extracted from over 91K open source

Java projects. Originally created to train AthenaTest, Methods2Test

is structured for the translation task from methods to tests. We

adapt Methods2Test to our setting of exception oracle inference.

Our adapted dataset, Methods2Test*, has modifications in both the

input methods and developer written tests. The input method’s im-

plementation is removed, and the method docstring (if present) is

added. The tests are modified to remove any exception or assertion

oracles. These stripped oracles are used to create binary labels for

expected exceptions. Lastly, we normalize the test method name to

prevent potential information leakage. For example, a test method

named testThrowsException would leak label information to the

model. To remedy this, we rename all tests to follow the format:

testN where N is a positive integer. In summary, Methods2Test* is

a supervised dataset for exception oracle inference. It excludes unit

implementation and includes docstrings if present. Our resulting

dataset contains a training set of more than 432,000 labeled samples.

4.3 Assertion Oracle Ranker
The Assertion Oracle Ranker is also based on the pretrained Code-

BERT [9] model. To train the Assertion Oracle Ranker we fine-

tune the pretrained model on the task of assertion oracle infer-

ence. The fine-tuning is performed using a supervised dataset

𝐷 = ((𝑝, 𝑐, 𝑎), 𝑙)1, ...(𝑝, 𝑐, 𝑎), 𝑙)𝑛 where 𝑝 is a test prefix, 𝑐 is a unit

context, 𝑎 is a candidate assertion and 𝑙 is a binary label (𝑙 ∈ 0, 1).
A label of 1 indicates that the given candidate assertion accurately

reflects developer intent. For a given 𝑝 and 𝑐 only one 𝑎 can have

a label of 1. The other assertions in the candidate set will have a

negative label.

Atlas* dataset. Our training dataset 𝐷 is a variant of the Atlas

dataset [34]. Atlas is a corpus of test case prefixes, corresponding

method units, and assertions. Atlas was collected from 9K open

source Java projects on GitHub. We modify Atlas to create our vari-

ant dataset Atlas*. Similar to our construction of Methods2Test*,

we remove the method implementation, normalize the test method

name, and remove the assertion from the test case. Then, we gen-

erate a set of assertion candidates for each sample and construct

our labels to indicate the correct assertion in the set. Our negative

samples are also taken from the candidate set of assertions. In total

the resulting Atlas* dataset contains over 170,000 labeled (𝑝, 𝑐, 𝑙)
samples for supervised training.

4.4 Candidate Assertion Set Generation
To generate a candidate set of assertions, we use our grammar

along with type-based constraints to restrict the space of candidate

oracles and enforce syntactic and type correctness. Based on the

return value of the unit under test, we iteratively construct a set of

candidate assertions. Our assertion candidate generation algorithm

is shown in Algorithm 1. If the assertion that is being added requires

an additional value (assertEquals), our approach draws likely

candidates from Global and Local Dictionaries.

Global Constant Dictionary. The Global Constant Dictionary

contains the most frequently occurring constant values in the train-

ing data. Our global dictionary contains the top K values of each

type. The use of a global dictionary is inspired by our observation

that the vast majority of constants in test asserts are a few common

values. For example, over 90% of the integer constants in asserts in



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

Exceptional Oracle Classifier


Exception Expected


Exception 

Not Expected


Test Prefix

Method Context


Assertion Oracle Ranker

Figure 3: Overall TOGA framework. The system takes as input a test prefix and a unit context. The unit context contains method signature(s)
and docstrings, but not the implementation. It outputs a unit test with an inferred test oracle. The system has two main components: the
Exceptional Oracle Classifier and the Assertion Oracle Ranker.

the ATLAS dataset are one of the top 10 most frequently occurring

integer values.

Local Dictionary. In addition to the global constant dictionary,

we also build a local dictionary based on values that appear in

the test prefix. Note that these values are not necessarily constants.

Variables that appear in the test prefix are also valid local dictionary

entries. The use of a local dictionary is based on the observation

that many assertions check against values that were previously

passed as arguments to methods called in the test prefix.

At inference time, our method makes calls to the Assertion Ora-

cle Ranker for each assertion in the set of candidates. The model

outputs a predicted label along with a confidence score. We use this

confidence score in post-processing to select the highest ranked

assertion. The test prefix along with the selected assertion oracle is

output as the generated test.

4.5 End-to-End EvoSuite integration
We have described a method, TOGA, to infer functional test oracles

given a test prefix and unit context. However, in order to catch

bugs, a test prefix that exercises the buggy behavior is necessary.

To obtain a high quality test prefix, we use the randomized test

generation tool EvoSuite. As mentioned in Section 2.1 EvoSuite

generates a set of tests guided by coverage. We extract test prefixes

by stripping EvoSuite’s oracles from each test. In cases where a

test contains multiple assertions, we extract the test prefix for each

assertion individually. For each of the generated test prefixes, we

invoke TOGA to infer a test oracle. In combination with a large set of

prefixes that attempt to cover the entirety of the unit, our approach

is able to generate functional test oracles that find real world bugs.

When we obtain prefixes from EvoSuite, we assume that prefixes

will be written in EvoSuite’s standardized format. This allows us to

identify the variables on which EvoSuite generated assertions in

the extractRetVal method (Algorithm 1).

Lastly, we apply a confidence threshold to the assertion oracle

ranker to suppress low confidence assertions. In these cases, only

the exception oracle is applied to the test. Conceptually, this allows

the model to avoid generating incorrect assertions in cases where

the model believes all the candidate assertions are incorrect.

Algorithm 1 Assertion Template Creation

1: procedure CreateCandidateTemplates(GlobalDict, k, test)
2: 𝑐𝑠 ← ∅ ⊲ Template Candidates

3: retVal = extractRetVal(test)

4: t = type(retVal)

5: LocalDict = createLocalDict(test)

6: if retVal is an object then
7: 𝑐𝑠 ← 𝑐𝑠 ∪ assertNull(retVal)
8: 𝑐𝑠 ← 𝑐𝑠 ∪ assertNotNull(retVal)
9: else if retVal is a boolean then
10: 𝑐𝑠 ← 𝑐𝑠 ∪ assertTrue(retVal)
11: 𝑐𝑠 ← 𝑐𝑠 ∪ assertFalse(retVal)
12: for globalVal ∈ GlobalDict.get(t) do
13: 𝑐𝑠 ← 𝑐𝑠 ∪ assertEquals(globalVal, retVal)

14: for localVal ∈ LocalDict.get(t) do
15: 𝑐𝑠 ← 𝑐𝑠 ∪ assertEquals(localVal, retVal)

16: return 𝑐𝑠

17:

18: procedure CreateLocalDict(test)
19: LocalDict = { }

20: for val in getValue(test) do ⊲ Loop over all values in prefix

21: LocalDict[type(val)] += {val}

22: return LocalDict

23:

24: procedure extractRetVal(test)
25: assign = getLastLine(test) ⊲ last line will be an assignment

26: retVal = getLHS(assign)

27: return retVal

5 EVALUATION
Research Questions. We consider the following research ques-

tions in our evaluation:

RQ1 Is TOGA’s grammar representative of most developer-written

assertions?

RQ2 Can TOGA infer assertions and exceptional behavior with

high accuracy?

RQ3 Can TOGA catch bugs with low false alarms?



TOGA: A Neural Method for Test Oracle Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

5.1 Evaluation Setup
Datasets.Our evaluation uses theAtlas* andMethods2Test* datasets

described in sections 4.3 and 4.2 respectively. For exceptional ora-

cle inference, we evaluate on a Methods2Test* held-out test set of

size 53,705. For assertion oracle inference, we evaluate on an Atlas*

held-out test set of size 8,024.

Bug Benchmark.We evaluate real-world bug finding on the De-

fects4J [14] benchmark. Defects4J is a benchmark of 835 bugs from

17 real world Java projects. Each sample in the benchmark includes

both buggy and fixed code versions. Each fixed program version is

based on a minimal patch to fix the bug, and passes all the project

tests, while each buggy program version fails at least one test. Each

bug is based on an error that was logged in the project’s issue

tracker, involves source code changes, and is reproducible (i.e., with

a deterministic test). The benchmark also includes utilities for gen-

erating and evaluating test suites on the programs to determine if

generated tests pass on the fixed versions and catch bugs.

Test environment. The evaluation was conducted on a Linux

machine with Intel(R) Xeon(R) E5-2690 v3 CPU (2.60GHz) and

112GB main memory. As in the Defects4J environment, we use JDK

8.

5.2 RQ1: Oracle Grammar
We evaluate RQ1 on the original ATLAS dataset, which contains

a total of 188,157 assertions mined from Java projects. To answer

RQ1, we parse each assertion and check if it can be expressed in

the grammar based on the assertion method name and structure

of the AST. After excluding 695 samples that fail to parse, we find

that 154,523 (82%) can be expressed by our grammar.

Of the 32,938 (18%) of assertions that cannot be expressed in our

grammar, the majority (23,913, 13%) use assertion methods that we

do not include (e.g., assertThat, assertSame). In many cases (74%

based on a manual inspection of 50 samples), the non-matching

assertions appear to be symbolically equivalent to assertions ex-

pressible in our grammar (Figure 4).

assertThat(counter.get(), CoreMatchers.equalTo (2))
vs.
assertEquals(counter.get(),2)

Figure 4: The first assertion highlighted in red cannot be expressed
in our grammar. However, the equivalent assertion highlighted in
green, does fit our grammar.

Other assertions that did not match our grammar (5%) include

equality assertions on expressions rather than variables or literals.

For example:

assertEquals(id1.hashCode(),id2.hashCode())

Although we deliberately exclude generic assertions like these from

our grammar, we note for a test executing in a deterministic en-

vironment, an equivalent property could be enforced through a

syntactic rewrite.

Result 1: 82% of the developer-written assertions in the ATLAS

dataset are in our grammar, and many other assertions are se-

mantically equivalent to assertions expressed in our grammar.

5.3 RQ2: Oracle Inference Accuracy
To answer RQ2, Tables 1 and 2 reports accuracy results on a held-

out test set. We include results for both exceptional and return test

oracle inference.

For exceptional oracle inference (Table 1), our experimental setup

involves the Methods2Test* dataset described in Section 4.3. There

are no neural techniques for exceptional oracle inference that we

are aware of. Instead, we include a random baseline (weighted

coin) to illustrate the complexity of the problem space. The coin

performs a random choice weighted on the distribution in our

training set. In our training set, we observed that 80% of samples

are non-exceptional. As such, the coin predicts negative labels

frequently (and usually correctly), but rarely predicts a positive.

The coin performs similarly to our approach in terms of accuracy,

but significantly worse in terms of F1 score, as it rarely predicts a

positive label correctly.

For assertion oracle inference (Table 2), our experimental setup

involves the Atlas* dataset described in Section 4.2. The accuracy

metric is syntactic: a suggestion is considered correct if it is an exact

lexical match. As a baseline, we compare to a sequence-to-sequence

(seq2seq) return test oracle model [33]. The seq2seq model is a

transformer pre-trained on natural language and code with a beam

search decoder. In contrast to our approach which performs ranking

over a set of template assertions, the seq2seq model generates a

test oracle token by token. As such, the model suffers due to the

large space of possible oracles. We report results on two held out

test sets: an Overall set and an In-Vocab set. The in-vocab set is

the subset of the overall set that can be expressed by our grammar

and vocabulary based on the local and global dictionaries. Our

model achieves 96% accuracy on the in-vocab set compared to 63%

by the seq2seq model, and 69% overall accuracy, an 11% relative

improvement over the seq2seq model.

Result 2: Our assertion oracle inference model achieves over 69%

accuracy compared to 62% accuracy from existing approaches.

Our exceptional inference model achieves 86% accuracy with an

F1 score of .39 relative to a weighted coin baseline’s .15 F1 score.

Vocabulary size ablation.We perform an study on K, the vocab-
ulary size of our global dictionary, to examine the tradeoff between

generating a larger number of assertion candidates and ranking the

assertion candidates accurately. Figure 5 shows the overall model

accuracy, percent of samples supported by the vocabulary, and ac-

curacy on samples supported by the vocabulary evaluated on the

ATLAS* test set.

For K=0, the global dictionary is unused and only variables and

constants in the local dictionary are considered the assertion gen-

eration. Using only the local dictionary can still generate correct

assertion candidates for approximately 50% of the samples in the

test set. Increasing K causes the model accuracy to decline slightly,

but causes overall accuracy to improve because more correct asser-

tion candidates are generated using the global dictionary. Once the



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

Approach Accuracy Precision Recall F1-Score

TOGA Model 86% .55 .30 .39

Weighted Coin 76% .15 .13 .15

Table 1: RQ2: Evaluation of Exceptional Oracle Inference

Approach In-Vocab Accuracy Overall Accuracy

TOGAModel 96% 69%

Seq2Seq 63% 62%

Table 2: RQ2: Evaluation of Assertion Oracle Inference

Approach Bugs Found (TPs) FPR

EvoSuite + Ground Truth 120 0%

EvoSuite + TOGA (Ours) 57 25%

Randoop 20 87%

EvoSuite + seq2seq 6 46%

AthenaTest 0 15%∗

EvoSuite + JDoctor 1 0.4%

Table 3: RQ3: Overall Bug Finding. ∗AthenaTest FPR based on 5
projects

vocabulary becomes too large however, the model accuracy starts

to drop off, and setting higher Ks reduces overall accuracy.
In RQ2, we set K=8 based on tuning on the ATLAS* validation

set. This setting achieves the best tradeoff between high model

accuracy on the candidate set, and supporting a large set of likely

assertions.

0 2 4 6 8 10
K

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

/Te
m

pl
at

e 
Ra

tio

Overall Accuracy
Matched Template Accuracy
% Assertions in Templates

Figure 5: Evaluation of global dictionary size K on overall accuracy.
Matched Template Accuracy indicates model accuracy when the
candidate assertion set included the correct assertion. % Assertions
in Templates indicates the percentage of dataset assertions that ap-
pear in the candidate assertion set for a given K.

Exception Exception Assertion

Approach Raised Not Raised Failure

EvoSuite + Ground Truth 45 27 51

EvoSuite + TOGA (Ours) 39 5 14

Randoop 20 0 0

EvoSuite + seq2seq 0 0 6

AthenaTest 0 0 0

EvoSuite + JDoctor 1 0 0

Table 4: RQ3: Number of bugs found by oracle type. Note that some
bugs can be detected by multiple oracle types.

5.4 RQ3: Bug Detection
To answer RQ3, we run our end-to-end test generation system,

integrated with EvoSuite. As described in section 4.5, the system

uses EvoSuite to generate test prefixes guided by coverage. Our

models are invoked to generate the test oracles.

Baselines.We consider the following baselines in this evaluation:

(1) Randomized Test Generation. To represent randomized

test generation we run Randoop [22], which is a widely used

and actively maintained test generation tool used for bug

finding. We also run EvoSuite [10] as a baseline, although

EvoSuite’s intended use case for regression testing limits

its ability to find bugs present in the program. We run both

Randoop and EvoSuite for 3 minutes per tested program,

following the procedure used in [25].

(2) Neural Test/Oracle Generation. To test neural methods,

we compare with a seq2seq transformer finetuned to gen-

erate assertions [33]. We also evaluate against a whole-test

generation model, AthenaTest [32].

(3) Specification Mining. We use JDoctor’s open source im-

plementation to evaluate specification mining approaches.

JDoctor supports exception oracle generation by parsing spe-

cific patterns in docstrings [2]. We integrate the generated

oracles with the same EvoSuite-generated tests used by TOGA
in this evaluation. Note that we do not evaluate on C2S [37]

because the implementation is not publicly available.

Evaluation setting.We evaluate RQ 3 on the Defects4J [14] bench-

mark. To evaluate the effectiveness of oracles in detecting bugs

present in the program, the generated tests are run on a buggy

version of the unit under test. We consider a bug is found if a gen-

erated test both fails on the buggy program and passes on the fixed

program. Since each fixed program is distinguished from the buggy

program by a minimal patch fixing the specific bug, a test must be

failing due to the specific bug if it only fails on the buggy version.

For the oracle generation methods in the evaluation that require

a test prefix (TOGA, seq2seq, JDoctor), we evaluate on a set of bug-
reaching EvoSuite test prefixes that exercise buggy behavior (and

therefore can detect a bug given the right test oracle). We obtain

this bug-reaching test prefix set by running EvoSuite with default

settings (i.e., coverage-guided) on the fixed program versions to

generate regression tests, and then selecting tests that fail the buggy

program version, indicating they exercise buggy behavior. We ex-

tract these tests’ prefixes as an evaluation set. Methods evaluated

on this set are denoted "EvoSuite + <method>" in Tables 3 and 4.



TOGA: A Neural Method for Test Oracle Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

It is important to note that our evaluation setting is fundamen-

tally different from the regression evaluation setting in which the

Defects4J benchmark is most often used. In a regression evaluation,

tests are generated on the fixed program version and evaluated on

the buggy version. Regression studies of randomized test genera-

tion tools report finding larger numbers of bugs than in our setting

as they use regression assumptions to generate higher quality or-

acles [25]. In our setting where tests are generated on the buggy

program version, regression test oracles will not find bugs as they

assume the observed buggy behavior is correct.

In addition to evaluating the number of bugs found, we use per-

test metrics as defined in [2]. These metrics include false positives

to evaluate the performance of an oracle generation method from

a usage perspective. A method that generates many erroneously

failing tests will not usable in a realistic application setting where a

developer must inspect each failure to determine if they represent

real bugs or false alarms.

A failing test is considered a “positive” while a passing test is a

“negative”. However, a “positive” does not necessarily indicate that

the oracle caught the bug. A failing test can indicate one of two

things:

(1) True Positive - The test has a correct oracle and fails due

to the buggy implementation.

(2) False Positive - The test has an incorrect oracle and fails

on the correct functionality of the unit in the fixed version.

To distinguish between these cases, we run the same test on the

unit’s fixed version. If the test fails on the fixed version, we can

safely assume the test has an incorrect oracle, and is a FP.

Similarly, a passing test can indicate one of two things:

(1) True Negative - The test has a correct oracle and is testing

correct functionality.

(2) False Negative - The test has an incorrect oracle and is

testing buggy functionality.

Again, to distinguish between these cases, we run the same test on

the unit’s fixed version. If the test fails on the fixed version, we can

safely assume the test has an incorrect oracle, and is a FN.

We summarize the meaning of these metrics in Figure 6. In our

evaluation, we summarize these metrics in the False Positive (FPR),

which represents the rate of incorrectly failing tests on non-buggy

code. A high FPR implies that a developer will need to validate

many tests that have no utility and thus is a good metric for a

bug-finding tool.

Figure 6: Bug Finding Metrics

Discussion of RQ3 Results. Table 3 reports overall bug finding

performance. EvoSuite + Ground Truth is a measure of EvoSuite’s

ability to generate bug-reaching tests. These tests were generated

from the fixed program versions with regression oracles to obtain

ground truth. We use this to distinguish between EvoSuite prefix

generation performance from test oracle generation performance.

EvoSuite + Ground Truth detects 120 bugs, indicating the best

possible performance that any of the oracle generation methods

can achieve on the EvoSuite test prefixes.

TOGA finds 57 total bugs, including 30 that are not found by any

other method in our evaluation. The next best performing method,

Randoop, finds 20 bugs but with a much higher false positive rate.

Of the two tested neural methods, AthenaTest does not generate any

bug-finding tests. The seq2seq model run on EvoSuite-generated

test prefixes finds 6 bugs, but incurs a higher error rate. The speci-

fication mining tool, JDoctor, only finds one bug, but is the most

precise oracle generation method in the evaluation.

Table 4 reports a breakdown of bug finding performance on

three different bug types: unexpected exception raised, expected

exception not raised, and assertion failures. TOGA’s ability to infer

exception oracles correctly is critical to its bug finding performance.

Overall 44 of the bugs it finds are exceptional, and 5 involve ex-

pected exceptions not being raised. None of the other methods

in the evaluation detect any expected exception not raised bugs.

Of the other evaluated methods, AthenaTest and JDoctor are both

capable of generating expected exception bugs in principle but in

practice do not generate any in the evaluation. For raised (unex-

pected) exceptions, TOGA exception model correctly identifies 39/45

of them are unexpected exceptions. This demonstrates the value

of using a neural model for exception oracle generation, which is

more flexible than the fixed rules used by a tool like Randoop.

TOGA also identifies 14 assertion bugs. The only other method in

the evaluation to generate assertion oracles that catch bugs is the

seq2seq generative model, which catches 6 bugs. This shows that

while TOGA ranking-based oracle generation procedure is effective

for bug finding, its overall performance in bug finding comes from

providing a unified method for oracle generation that can detect all

three types of bugs. In contrast, none of the methods in the evalu-

ation are successful in generating oracles for more than one type

of bug, although JDoctor and AthenaTest can in theory generate

oracles for all three classes of bugs.

The AthenaTest and seq2seq assertion generation models do not

effectively find bugs. This evaluation illustrates the challenges in

neural oracle generation. In practice we found that both Athen-

aTest’s whole test generation and the seq2seq assertion model

generated many tests and oracles that were not executable. The

AthenaTest authors noted this issue in their evaluation, where they

found that only 16% of the generated test cases were executable

without errors and actively tested the unit under test [32]. The

oracle generation model generated 34% executable oracles, and of

these we observed that a further 5% were tautologies, resulting

in an overall yield of 29% potentially meaningful oracles. In con-

trast, the ranked oracle generation used by TOGA always generates

oracles that are executable and exercise the unit under test. Note

that due to the large volume of generated test candidates (30 per

tested method) that must be individually compiled and run when

following the procedure in [32], we estimate the false positive rate

of AthenaTest on five projects and otherwise only generate tests

specifically on methods exercising buggy code.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

class KeyedValues () {
public void removeValue(int i){

this.keys.remove(i);
this.values.remove(i);

// Bug , misses update
if (i < this.keys.size ()) {

rebuildIndex ();
}

}
public int itemCount () {

return this.index.size ();
}

}

(a) Buggy implementation.

public void testKeyedValues () {

KeyedValues kv;
kv = new KeyedValues ();

Short short = new Short (2);
kv.insertValue (0, short0 , 2);
kv.removeValue (0);

// Asserts buggy itemCount 1
// is correct and misses bug
assertEquals (1,kv.itemCount ());

}

(b) Regression oracle test.

public void testKeyedValues () {
try {

KeyedValues kv;
kv = new KeyedValues ();

Short short = new Short (2);
kv.insertValue (0,short0 ,2);
kv.removeValue (0);

// No exception raised
} catch (Exception e) {

fail (); // misses bug
}

}

(c) Safety oracle test.

public void testKeyedValues () {

KeyedValues kv;
kv = new KeyedValues ();

Short short = new Short (2);
kv.insertValue (0, short0 , 2);
kv.removeValue (0);

// Asserts itemCount should be 0
// Test fails and identifies bug
assertEquals (0, kv.itemCount ());

}

(d) TOGA generated oracle.

Figure 7: Different types of test oracles for a bug in the removeValue method from the Java Chart project. The bug causes a data structure to
return an incorrect item count when the most recently added item is removed. Although the test input exposes this behavior, regression and
safety oracles will generate a false negative by passing the buggy behavior, either by generating an incorrect assert statement or because the
bug does not cause any exceptions to be thrown. Only the oracle generated by TOGA correctly asserts that itemcount should be 0 after an item
is inserted and removed detects the bug. TOGA is the only system in our evaluation that correctly identifies this bug.

public void testStack () {
try {

NumberUtils.
createNumber("0XT");

// Safety Oracle
} catch (Exception e) {

fail ();
}

}

(a) Safety oracle test.

public void testStack () {
try {

NumberUtils.
createNumber("0XT");

// Expected Exception
fail("expecting exception");

} catch (Exception e) {
verifyException(e,

NumberFormatException );
}

}

(b) TOGA generated oracle.

Figure 8: Generated oracles testing a buggy createNumber method
in the Java Lang project. The bug prevents a NumberFormatException
from being raised on an invalid input. The oracle generated by TOGA
correctly checks that an exception should be raised on the invalid
input, and fails when no exception is raised due to the bug. A safety
oracle cannot detect the absence of an exception. TOGA is the only
system in our evaluation that detects this bug.

The specification mining method, JDoctor also does not effec-

tively find bugs, but it generates oracles precisely. JDoctor only

produces an exceptional test oracle if there is a docstring comment

indicating specific behavior. However, on the projects in the De-

fects4J benchmark, this approach only succeeds in generating test

oracles to catch a single bug. We observed that in practice, many

buggy methods either had vaguely worded docstrings or lacked

docstrings entirely, and JDoctor created few test oracles as a result.

JDoctor’s inability to generate sufficient oracles to effectively find

bugs illustrates why robustness to vague or missing docstrings is

a important requirement for effective oracle generation. In many

cases, the bugs detected by TOGA occurred on methods that lacked

docstrings entirely, where any specification mining approach would

not be able to identify them.

EvoSuite vs. TOGA Performance: Finding bugs requires both test

prefixes that reach buggy behavior and oracles that correctly iden-

tify the bug. For the oracle generation methods in this evaluation,

we distinguish the performance of the test prefix generator (Evo-

Suite) by evaluating the generated test prefixes with the ground

truth oracles. Out of the 835 bugs in the Defects4J benchmark, the

EvoSuite generated tests reach 120 bugs. That is, overall EvoSuite

+ TOGA misses 715 Defect4J bugs due to EvoSuite not generating

reaching test prefixes, and 63 bugs due to TOGA not generating cor-

rect oracles. This result highlights that generating test prefixes to

reach buggy code remains a challenging open problem, and im-

proving the test prefix generator used with TOGA could have large

impact on bug detection performance.

TOGAExceptionOracle ErrorAnalysis: For a single focalmethod,

EvoSuite often generatesmultiple test cases. For some focalmethods

(~10%), EvoSuite generates both exceptional and non-exceptional

input states. However, TOGA rarely predicts (4%) differing exception

oracles for the same focal method, regardless of input state. This

observation suggests that TOGA is conditioning primarily on the

focal method signature rather than particular input states.

TOGA Assertion Oracle Error Analysis: We performed a man-

ual analysis of ground truth oracles and found that of 229 total

assertion oracles, 31 were predicted correctly. The remaining 198

predictions can be broken down as follows: 106 of the ground truth

assertions could not be expressed with the given vocabulary, 13

could not be expressed with the grammar, and 9 were not predicted

because TOGA incorrectly predicted an exceptional oracle. In the

remaining 70 samples, the ground truth oracle could be expressed

by the vocab and grammar, but the model made the wrong predic-

tion, resulting in an in-vocab accuracy of 31% on the bug-reaching

EvoSuite tests. This is significantly lower than TOGA’s 96% in-vocab

accuracy on ATLAS*. The difference in performance suggests that

the distribution of tests in ATLAS* is very different from EvoSuite’s

generated tests. A model trained specifically on EvoSuite generated

(test, oracle) pairs instead of ATLAS* pairs may result in better

performance.

Result 3: Our approach finds 57 bugs in real world Java projects,

30 of which are not found by any other method in the evaluation.

5.4.1 Case Studies. We consider two case studies of bugs that are

detected by TOGA in our evaluation but not by other methods.

Assertion bug case study. The first case study, shown in Figure 7

involves a bug in a key-value store used in the Chart Java project.

The buggy method, shown in Figure 7a, contains incorrect logic

that prevents the data structure from updating its index when the

most recently added item is removed. This causes the itemCount()



TOGA: A Neural Method for Test Oracle Generation ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

method to return an incorrect count, because it bases the item count

on the index.

The EvoSuite-generated test for this method shown in Figure

7b uses a regression oracle and generates an assertion based on

the observed execution behavior. Because the method is buggy,

this results in an incorrect assertion being generated, which not

only fails to catch the bug but also could potentially make future

detection of the bug more difficult. Figure 7c shows a simplified

version of an unexpected exception oracle, which is the approach

used by Randoop in the evaluation.

In contrast to these two approaches, TOGA generates the correct

oracle by performing a ranking over a small number of assertions

on integers and the return value of kv.itemCount(). This identi-
fies that after calling removeValue(0), the most likely assertion is

assertEquals(0, kv.itemCount()).
Expected exception case study. Figure 8 illustrates how TOGA is

able to catch an expected exception bug detected in our evaluation.

The bug in the NumberUtils.createNumber method of the Java

Lang project prevents the method from correctly detecting invalid

inputs and raising an exception. The exception ranking model pre-

dicts that the createNumber("0XT") call should raise an exception

based on the method signature and context, and TOGA generates

an oracle based on this prediction to pass the test if an exception

is raised on fail otherwise. In contrast, a safety oracle that checks

for unexpected exceptions cannot detect this type of bug where a

raised expected is desired behavior. 5 of the bugs found the TOGA in
the evaluation are expected exception bugs, and no other tool in

evaluation finds any expected exception bugs.

5.5 Threats to Validity
We consider three potential sources of bias that could conceivably

threaten the validity of our results: (i) test dataset bias, (ii) bug

dataset bias, and (iii) bias from EvoSuite performance. Both of the

unit test datasets ATLAS and Methods2Test sourced tests from

publicly available Java projects, and filtered their results using

heuristics such as GitHub star count and presence of matching focal

methods to select tests for inclusion. Bias in these datasets towards

specific applications or types of tests may effect the validity of RQ1

and RQ2. However, we note that these datasets are large (sourced

from 91K open source Java projects in the case of Methods2Test),

and therefore likely to be representative of common patterns in

Java unit testing.

Our RQ3 bug evaluation dataset, Defects4J, is much smaller

with 835 samples from 17 projects due to difficulty in constructing

minimal bug samples, so bias towards specific applications or bug

types is possible. However, Defects4J only contains large, widely

used projects and difficult real-world bugs, so evaluations on this

benchmark are likely to be indicative of real world performance on

large software projects.

Finally, bias in EvoSuite’s test prefix generation is also a potential

threat to validity for RQ3. EvoSuite can only generate bug-reaching

tests for a fraction of the Defects4J bugs (120 out of 835), and may be

biased towards classes of bugs that are easier to reach with coverage

guided exploration.

6 LIMITATIONS
Grammar and Vocabulary: TOGA makes the tradeoff of support-

ing a restricted set of commonly used oracles, but predicting oracles

in that set accurately. A limitation of this approach is that TOGA
can only generate oracles that can be expressed by the grammar

and exclusively contain values that appear in the vocabulary. We

conducted a manual analysis of TOGA predictions in RQ3. When

TOGA did not correctly predict a bug-finding assertion, in 54% of

the cases the assertion value did not appear in the vocabulary, and

in 8.5% of cases the assertion could not be expressed in the grammar.

For example, TOGA could not predict the following ground truth

assertion as the string literal is not contained in either the global

or local dictionaries:

assertEquals("\"qDxD_5>q,)`dEgM", string0)

While our grammar limitation is strict, we found that approaches

with unlimited vocabularies also did not correctly predict these

oracles.

Out of distribution training: TOGA is also limited by its depen-

dence on datasets of (primarily) developer-written unit tests for

both training and vocabulary learning. However, the RQ3 test set is

taken from EvoSuite, an out of distribution sample set. As a future

direction, TOGA could be trained on an EvoSuite generated dataset

for a model that more closely fits an end-to-end automated testing

distribution.

Dependencies on EvoSuite: TOGA assumes a particular structure

of the test prefixes generated by EvoSuite to select the variable to

assert on. However, as long as the assertion variable is specified

to TOGA and defined somewhere in the test prefix, the test prefix

could conceivably have any format. Therefore, integrating TOGA
with another test generation method might require integrating a

suitable mutation analysis tool such as PIT [5] to select variables

on which to generate assertions.

7 CONCLUSION
This paper presents TOGA, a neural technique to infer both exception
and assertion test oracles from a given test prefix and unit context.

TOGA is a two step transformer based architecture that is capable of

generating oracles for units without implementation or docstrings.

It improves upon generative neural assertion oracle inference tech-

niques by ranking a small set of likely candidate assertions. When

integrated with a random test generation tool (EvoSuite) to obtain

prefixes, TOGA finds 57 real world bugs, out-performing existing

test oracle inference techniques. Additionally, this paper presents

two datasets for future work in neural exception and assertion test

oracle inference.

ACKNOWLEDGEMENTS
We would like to thank Michele Tufano and Alexey Svyatkovskiy

for their help with the ATLAS and Methods2Test datasets and

running AthenaTest, and helpful discussions and feedback.

REFERENCES
[1] [n.d.]. Methods2Test. https://github.com/microsoft/methods2test.

[2] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.

Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating Code

Comments to Procedure Specifications. In Proceedings of the 27th ACM SIGSOFT

https://github.com/microsoft/methods2test


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri

International Symposium on Software Testing and Analysis (Amsterdam, Nether-

lands) (ISSTA 2018). Association for Computing Machinery, New York, NY, USA,

242–253. https://doi.org/10.1145/3213846.3213872

[3] Arianna Blasi, Alessandra Gorla, Michael D. Ernst, Mauro Pezzè, and Antonio

Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in

Javadoc comments for test automation. Journal of Systems and Software 181
(2021), 111041. https://doi.org/10.1016/j.jss.2021.111041

[4] Colin B. Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and

Neel Sundaresan. 2020. PyMT5: multi-mode translation of natural language and

Python code with transformers. arXiv:2010.03150 [cs.LG]

[5] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-

thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).

In Proceedings of the 25th International Symposium on Software Testing and Analy-
sis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,

New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[6] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy.

In 2008 ACM/IEEE 30th International Conference on Software Engineering. IEEE,
281–290.

[7] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and

Problems. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 201–211. https://doi.org/10.1109/ISSRE.2014.11

[8] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,

Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic

detection of likely invariants. Science of computer programming 69, 1-3 (2007),

35–45.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming

Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.

CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

arXiv:2002.08155 [cs.CL]

[10] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole Test

Suites. In International Conference On Quality Software (QSIC). IEEE Computer

Society, Los Alamitos, CA, USA, 31–40. https://doi.org/10.1109/QSIC.2011.19

[11] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated

unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 1–42.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed au-

tomated random testing. In Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005, Vivek Sarkar and Mary W. Hall (Eds.). ACM, 213–223. https:

//doi.org/10.1145/1065010.1065036

[13] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Au-

tomatic Generation of Oracles for Exceptional Behaviors. In Proceedings of the
25th International Symposium on Software Testing and Analysis (Saarbrücken,
Germany) (ISSTA 2016). Association for Computing Machinery, New York, NY,

USA, 213–224. https://doi.org/10.1145/2931037.2931061

[14] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of

existing faults to enable controlled testing studies for Java programs. In ISSTA
2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis. San Jose, CA, USA, 437–440. Tool demo.

[15] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.

2020. Learning and Evaluating Contextual Embedding of Source Code.

arXiv:2001.00059 [cs.SE]

[16] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2020. Automated Unit

Test Generation for Python. In Proceedings of the 12th Symposium on Search-
based Software Engineering (SSBSE 2020, Bari, Italy, October 7–8) (Lecture Notes in
Computer Science, Vol. 12420). Springer, 9–24. https://doi.org/10.1007/978-3-030-

59762-7_2

[17] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,

Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the

usage of text-to-text transfer transformer to support code-related tasks. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
336–347.

[18] Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid.

2007. Korat: A Tool for Generating Structurally Complex Test Inputs. In 29th
International Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007. IEEE Computer Society, 771–774. https://doi.org/10.1109/

ICSE.2007.48

[19] Facundo Molina. 2020. Applying learning techniques to oracle synthesis. In

2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1153–1157.

[20] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo Frias. 2021.

EvoSpex: An evolutionary algorithm for learning postconditions. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1223–1235.

[21] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random

testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815–816.

[22] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.

Feedback-directed random test generation. In ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering. Minneapolis, MN, USA, 75–84.

[23] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit

Paradkar. 2012. Inferring method specifications from natural language API

descriptions. In 2012 34th International Conference on Software Engineering (ICSE).
815–825. https://doi.org/10.1109/ICSE.2012.6227137

[24] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit

testing engine for C. In Proceedings of the 10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9,
2005, Michel Wermelinger and Harald C. Gall (Eds.). ACM, 263–272. https:

//doi.org/10.1145/1081706.1081750

[25] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?

an empirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 201–211.

[26] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.

IntelliCode Compose: Code Generation Using Transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)

(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,

1433–1443. https://doi.org/10.1145/3368089.3417058

[27] Alexey Svyatkovskiy, Todd Mytkowicz, Negar Ghorbani, Sarah Fakhoury, Eliz-

abeth Dinella, Christian Bird, Neel Sundaresan, and Shuvendu Lahiri. 2021.

MergeBERT: Program Merge Conflict Resolution via Neural Transformers.

arXiv:2109.00084 [cs.SE]

[28] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:

Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In Proceed-
ings of the Fifth IEEE International Conference on Software Testing, Verification
and Validation (ICST 2012). Montreal, Canada, 260–269.

[29] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastructure for

Software Testing. (05 2002).

[30] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020.

Evolutionary Improvement of Assertion Oracles (ESEC/FSE 2020). Association
for Computing Machinery, New York, NY, USA, 1178–1189. https://doi.org/10.

1145/3368089.3409758

[31] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation

for .NET. In Tests and Proofs - 2nd International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4966),
Bernhard Beckert and Reiner Hähnle (Eds.). Springer, 134–153. https://doi.org/

10.1007/978-3-540-79124-9_10

[32] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel

Sundaresan. 2021. Unit Test Case Generation with Transformers and Focal

Context. arXiv:2009.05617 [cs.SE]

[33] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2020.

Generating Accurate Assert Statements for Unit Test Cases using Pretrained

Transformers. arXiv:2009.05634 [cs.SE]

[34] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-

vanyk. 2020. On learning meaningful assert statements for unit test cases. Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(Jun 2020). https://doi.org/10.1145/3377811.3380429

[35] RobertWhite and Jens Krinke. 2020. Reassert: Deep learning for assert generation.

arXiv preprint arXiv:2011.09784 (2020).
[36] Michal Zalewski. 2015. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/

afl/

[37] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,

Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural

Language Comments to Formal Program Specifications. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (Virtual Event, USA) (ES-
EC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 25–37.

https://doi.org/10.1145/3368089.3409716

https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1016/j.jss.2021.111041
https://arxiv.org/abs/2010.03150
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ISSRE.2014.11
https://arxiv.org/abs/2002.08155
https://doi.org/10.1109/QSIC.2011.19
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2931037.2931061
https://arxiv.org/abs/2001.00059
https://doi.org/10.1007/978-3-030-59762-7_2
https://doi.org/10.1007/978-3-030-59762-7_2
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/3368089.3417058
https://arxiv.org/abs/2109.00084
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://arxiv.org/abs/2009.05617
https://arxiv.org/abs/2009.05634
https://doi.org/10.1145/3377811.3380429
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3368089.3409716

	Abstract
	1 Introduction
	2 Related Work
	2.1 Automated Test Generation Tools
	2.2 Specification Mining Methods
	2.3 Neural Methods

	3 Structure of an Oracle
	4 TOGA: Neural Test Oracle Generation
	4.1 Method Overview
	4.2 Exceptional Oracle Classifier
	4.3 Assertion Oracle Ranker
	4.4 Candidate Assertion Set Generation
	4.5 End-to-End EvoSuite integration

	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: Oracle Grammar
	5.3 RQ2: Oracle Inference Accuracy
	5.4 RQ3: Bug Detection
	5.5 Threats to Validity

	6 Limitations
	7 Conclusion
	References

