
The University of Manchester Research

Towards Practical Robustness Analysis for DNNs based
on PAC-Model Learning

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Li, R., Yang, P., Huang, C.-C., Sun, Y., Xue, B., & Zhang, L. (in press). Towards Practical Robustness Analysis for
DNNs based on PAC-Model Learning. In International Conference on Software Engineering (ICSE)

Published in:
International Conference on Software Engineering (ICSE)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:30. Apr. 2024

https://research.manchester.ac.uk/en/publications/8229f13b-ffbd-46d4-8788-97ad6ee2ebcd

Towards Practical Robustness Analysis for DNNs based on
PAC-Model Learning

Renjue Li
lirj19@ios.ac.cn

SKLCS, Institute of Software, CAS
University of Chinese Academy of

Sciences
China

Pengfei Yang∗
yangpf@ios.ac.cn

SKLCS, Institute of Software, CAS
China

Cheng-Chao Huang
chengchao@nj.iscas.ac.cn

Nanjing Institute of Software
Technology, ISCAS

Pazhou Lab
China

Youcheng Sun
youcheng.sun@qub.ac.uk
Queen’s University Belfast

United Kingdom

Bai Xue
xuebai@ios.ac.cn

SKLCS, Institute of Software, CAS
University of Chinese Academy of

Sciences
China

Lijun Zhang∗
zhanglj@ios.ac.cn

SKLCS, Institute of Software, CAS
University of Chinese Academy of

Sciences
China

ABSTRACT

To analyse local robustness properties of deep neural networks
(DNNs), we present a practical framework from a model learn-
ing perspective. Based on black-box model learning with scenario
optimisation, we abstract the local behaviour of a DNN via an
affine model with the probably approximately correct (PAC) guar-
antee. From the learned model, we can infer the corresponding
PAC-model robustness property. The innovation of our work is the
integration of model learning into PAC robustness analysis: that is,
we construct a PAC guarantee on the model level instead of sample
distribution, which induces a more faithful and accurate robustness
evaluation. This is in contrast to existing statistical methods with-
out model learning. We implement our method in a prototypical
tool named DeepPAC. As a black-box method, DeepPAC is scalable
and efficient, especially when DNNs have complex structures or
high-dimensional inputs. We extensively evaluate DeepPAC, with 4
baselines (using formal verification, statistical methods, testing and
adversarial attack) and 20 DNN models across 3 datasets, including
MNIST, CIFAR-10, and ImageNet. It is shown that DeepPAC out-
performs the state-of-the-art statistical method PROVERO, and it
achieves more practical robustness analysis than the formal ver-
ification tool ERAN. Also, its results are consistent with existing
DNN testing work like DeepGini.

CCS CONCEPTS

• Security and privacy → Software and application security;
• Computing methodologies→ Artificial intelligence.

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510143

KEYWORDS

neural networks, PAC-model robustness, model learning, scenario
optimization

ACM Reference Format:

Renjue Li, Pengfei Yang, Cheng-Chao Huang, Youcheng Sun, Bai Xue, and Li-
jun Zhang. 2022. Towards Practical Robustness Analysis for DNNs based
on PAC-Model Learning. In 44th International Conference on Software Engi-
neering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510143

1 INTRODUCTION

Deep neural networks (DNNs) are now widely deployed in many
applications such as image classification, game playing, and the
recent scientific discovery on predictions of protein structure [58].
Adversarial robustness of a DNN plays the critical role for its trust-
worthy use. This is especially true for for safety-critical applications
such as self-driving cars [69]. Studies have shown that even for a
DNN with high accuracy, it can be fooled easily by carefully crafted
adversarial inputs [64]. This motivates research on verifying DNN
robustness properties, i.e., the prediction of the DNN remains the
same after bounded perturbation on an input. As the certifiable
criterion before deploying a DNN, the robustness radius should be
estimated or the robustness property should be verified.

In this paper, we propose a practical framework for analysing
robustness of DNNs. The main idea is to learn an affine model
which abstracts local behaviour of a DNN and use the learned
model (instead of the original DNN model) for robustness analysis.
Different from model abstraction methods like [4, 17], our learned
model is not a strictly sound over-approximation, but it varies from
the DNN uniformly within a given margin subject to some specified
significance level and error rate. We call such a model the probably
approximately correct (PAC) model.

There are several different approaches to estimating the max-
imum robustness radius of a given input for the DNN, including
formal verification, statistical analysis, and adversarial attack. In
the following, we will first briefly explain the pros and cons of
each approach for and its relation with our method. Then, we will
highlight the main contributions in this paper.

https://doi.org/10.1145/3510003.3510143
https://doi.org/10.1145/3510003.3510143

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

Bound via formal verification is often too conservative. A DNN
is a complex nonlinear function and formal verification tools [7,
33, 38, 59, 60, 68, 84] can typically handle DNNs with hundreds to
thousands of neurons. This is dwarfed by the size of modern DNNs
used in the real world, such as the ResNet50 model [26] used in our
experiment with almost 37 million hidden neurons. The advantage
of formal verification is that its resulting robustness bound is guar-
anteed, but the bound is also often too conservative. For example,
the state-of-the-art formal verification tool ERAN is based on ab-
stract interpretation [60] that over-approximates the computation
in a DNN using computationally more efficient abstract domains.
If the ERAN verification succeeds, one can conclude that the net-
work is locally robust; otherwise, due to its over-approximation, no
conclusive result can be reached and the robustness property may
or may not hold.

Estimation via statistical methods is often too large. If we weaken
the robustness condition by allowing a small error rate on the
robustness property, it becomes a probabilistic robustness (or quan-
titative robustness) property. Probabilistic robustness characterises
the local robustness in a way similar to the idea of the label change
rate in mutation testing for DNNs [71, 72]. In [5, 6, 11, 44, 74, 75, 78],
statistical methods are proposed to evaluate local robustness with
a probably approximately correct (PAC) guarantee. That is, with
a given confidence, the DNN satisfies a probabilistic robustness
property, and we call this PAC robustness. However, as we are going
to see in the experiments (Section 5), the PAC robustness estima-
tion via existing statistical methods is often unnecessarily large. In
this work, our method significantly improves the PAC robustness
bound, without loss of confidence or error rate.

Bound via adversarial attack has no guarantee. Adversarial attack
algorithms apply various search heuristics based on e.g., gradient
descent or evolutionary techniques for generating adversarial in-
puts [1, 13, 43, 85]. These methods may be able to find adversarial
inputs efficiently, but are not able to provide any soundness guar-
antee. While the adversarial inputs found by the attack establish an
upper bound of the DNN local robustness, it is not known whether
there are other adversarial inputs within the bound. Later, we will
use this upper bound obtained by adversarial attack, together with
the lower bound proved by the formal verification approach dis-
cussed above, as the reference for evaluating the quality of our
PAC-model robustness results, and comparing them with the latest
statistical method.

Contributions. We propose a novel framework of PAC-model
robustness verification for DNNs. Inspired by the scenario optimi-
sation technique in robust control design, we give an algorithm
to learn an affine PAC model for a DNN. This affine PAC model
captures local behaviour of the original DNN. It is simple enough
for efficient robustness analysis, and its PAC guarantee ensures the
accuracy of the analysis. We implement our algorithm in a proto-
type called DeepPAC. We extensively evaluate DeepPAC with 20
DNNs on three datasets. DeepPAC outperforms the state-of-the-art
statistical tool PROVERO with less running time, fewer samples
and, more importantly, much higher precision. DeepPAC can assess
the DNN robustness faithfully when the formal verification and
existing statistical methods fail to generate meaningful results.

Organisation of the paper. The rest of this paper is organized as
follows. In Sect. 2, we first introduce the background knowledge.We
then formalize the novel concept PAC-model robustness in Sect. 3.
The methodology is detailed in Sect. 4. Extensive experiments have
been conducted in Sect. 5 for evaluating DeepPAC. We discuss
related work in Sect. 6 and conclude our work in Sect. 7.

2 PRELIMINARY

In this section, we first recall the background knowledge on the
DNN and its local robustness properties. Then, we introduce the
scenario optimization method that will be used later. In this fol-
lowing context, we denote 𝑥𝑖 as the 𝑖th entry of a vector 𝒙 ∈ R𝑚 .
For 𝒙 ∈ R𝑚 and _ ∈ R, we define 𝒙 + _ as (𝑥0 + _, . . . , 𝑥𝑚 + _)⊤.
Given 𝒙,𝒚 ∈ R𝑚 , we write 𝒙 ≤ 𝒚 if 𝑥𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, . . . ,𝑚. We use
0 to denote the zero vector. For 𝒙 ∈ R𝑚 , its 𝐿∞-norm is defined
as ∥𝒙 ∥∞ := max1≤𝑖≤𝑚 |𝑥𝑖 |. We use the notation 𝐵(�̂�, 𝑟) := {𝒙 ∈
R𝑚 | ∥𝒙 − �̂� ∥∞ ≤ 𝑟 } to represent the closed 𝐿∞-norm ball with the
center �̂� ∈ R𝑚 and radius 𝑟 > 0.

2.1 DNNs and Local Robustness

A deep neural network can be characterized as a function𝒇 : R𝑚 →
R𝑛 with 𝒇 = (𝑓1, . . . , 𝑓𝑛)⊤, where 𝑓𝑖 denotes the function corre-
sponding to the 𝑖th output. For classification tasks, a DNN labels an
input 𝒙 with the output dimension having the largest score, denoted
by 𝐶𝒇 (𝒙) := arg max1≤𝑖≤𝑛 𝑓𝑖 (𝒙). A DNN is composed by multiple
layers: the input layer, followed by several hidden layers and an
output layer in the end. A hidden layer applies an affine function
or a non-linear activation function on the output of previous layers.
The function 𝒇 is the composition of the transformations between
layers.

Example 2.1. We illustrate a fully connected neural network
(FNN), where each node (i.e., neuron) is connected with the nodes
from the previous layer. Each neuron has a value that is calculated
as the weighted sum of the neuron values in the previous layer,
plus a bias. For a hidden neuron, this value is often followed by an
activation function e.g., a ReLU function that rectifies any negative
value into 0. In Fig. 1, the FNN characterizes a function𝒇 : R2 → R2.
The weight and bias parameters are highlighted on the edges and
the nodes respectively. For an input 𝒙 = (𝑥1, 𝑥2)⊤ ∈ [−1, 1]2, we
have 𝒇 (𝒙) = (𝑓1 (𝒙), 𝑓2 (𝒙))⊤.

Input 1

Input 2

Output 1

Output 2

3

5

−10

−4

3

1

9

7

[−1, 1] −9 14

[−1, 1] −10 −10

Figure 1: An FNN with two input neurons, two hidden neu-

rons and two output neurons.

For a certain class label ℓ , we define the targeted score difference
function 𝚫 as

𝚫(𝒙) = (𝑓1 (𝒙) − 𝑓ℓ (𝒙), . . . , 𝑓𝑛 (𝒙) − 𝑓ℓ (𝒙))⊤ . (1)

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Straightforwardly, this function measures the difference between
the score of the targeted label and other labels. For simplicity, we
ignore the entry 𝑓ℓ (𝒙) − 𝑓ℓ (𝒙) and regard the score difference func-
tion 𝚫 as a function from R𝑚 to R𝑛−1. For any inputs 𝑥 with the
class label ℓ , it is clear that 𝚫(�̂�) < 0 if the classification is correct.
For simplicity, when considering an 𝐿∞-norm ball with the center
�̂� , we denote by 𝚫 the difference score function with respect to the
label of �̂� . Then robustness property of a DNN can therefore be
defined as below.

Definition 2.2 (DNN robustness). Given a DNN 𝒇 : R𝑚 → R𝑛 , an
input �̂� ∈ R𝑚 , and 𝑟 > 0, we say that 𝒇 is (locally) robust in 𝐵(�̂�, 𝑟)
if for all 𝒙 ∈ 𝐵(�̂�, 𝑟), we have 𝚫(𝒙) < 0.

Intuitively, local robustness ensures the consistency of the be-
haviour of a given input under certain perturbations. An input
𝒙 ′ ∈ 𝐵(�̂�, 𝑟) that destroys the robustness (i.e. 𝚫(𝒙 ′) ≥ 0) is called
an adversarial example. Note that this property is very strict so that
the corresponding verification problem is NP-complete, and the
exact maximum robustness radius cannot be computed efficiently
except for very small DNNs. Even estimating a relatively accurate
lower bound is difficult and existing sound methods cannot scale
to the state-of-the-art DNNs. In order to perform more practical
DNN robustness analysis, the property is relaxed by allowing some
errors in the sense of probability. Below we recall the definition of
PAC robustness [5].

Definition 2.3 (PAC robustness). Given a DNN 𝒇 : R𝑚 → R𝑛 , an
𝐿∞-norm ball 𝐵(�̂�, 𝑟), a probability measure P on 𝐵(�̂�, 𝑟), a signifi-
cance level [, and an error rate 𝜖 , the DNN 𝒇 is ([, 𝜖)-PAC robust
in 𝐵(�̂�, 𝑟) if

P(𝚫(𝒙) < 0) ≥ 1 − 𝜖 (2)
with confidence 1 − [.

PAC robustness is an statistical relaxation and extension of DNN
robustness in Def. 2.2. It essentially only focuses on the input sam-
ples, but mostly ignores the behavioral nature of the original model.
When the input space is of high dimension, the boundaries between
benign inputs and adversarial inputs will be extremely complex and
the required sampling effort will be also challenging. Thus, an accu-
rate estimation of PAC robustness is far from trivial. This motivates
us to innovate the PAC robustness with PAC-model robustness in
this paper (Sect. 3).

2.2 Scenario Optimization

Scenario optimization is another motivation for DeepPAC. It has
been successfully used in robust control design for solving a class
of optimization problems in a statistical sense, by only consider-
ing a randomly sampled finite subset of infinitely many convex
constraints [9, 10].

Let us consider the following optimization problem:

min
𝜸 ∈Γ⊆R𝑚

𝒃⊤𝜸

𝑠 .𝑡 . 𝑓𝝎 (𝜸) ≤ 0, ∀𝝎 ∈ Ω,
(3)

where 𝑓𝝎 is a convex and continuous function of the𝑚-dimensional
optimization variable 𝜸 for every 𝝎 ∈ Ω, and both Ω and Γ are
convex and closed. In this work, we also assume that Ω is bounded.
In principle, it is challenging to solve (3), as there are infinitely many

constraints. Calafiore et al. [9] proposed the following scenario
approach to solve (3) with a PAC guarantee.

Definition 2.4. Let P be a probability measure on Ω. The scenario
approach to handle the optimization problem (3) is to solve the
following problem. We extract 𝐾 independent and identically dis-
tributed (i.i.d.) samples (𝝎𝑖)𝐾𝑖=1 from Ω according to the probability
measure P:

min
𝜸 ∈Γ⊆R𝑚

𝒃⊤𝜸

s.t.
𝐾∧
𝑖=1

𝑓𝝎𝑖
(𝜸) ≤ 0.

(4)

The scenario approach relaxes the infinitely many constraints
in (3) by only considering a finite subset containing 𝐾 constraints.
In [9], a PAC guarantee, depending on 𝐾 , between the scenario
solution in (4) and its original optimization in (3) is proved. This
is further improved by [10] in reducing the number of samples 𝐾 .
Specifically, the following theorem establishes a condition on 𝐾
for (4) which assures that its solution satisfies the constraints in (3)
statistically.

Theorem 2.5 ([10]). If (4) is feasible and has a unique optimal
solution 𝜸∗

𝐾
, and

𝜖 ≥ 2
𝐾
(ln 1

[
+𝑚), (5)

where 𝜖 and [are the pre-defined error rate and the significance
level, respectively, then with confidence at least 1 − [, the optimal
𝜸∗
𝐾
satisfies all the constraints in Ω but only at most a fraction of

probability measure 𝜖 , i.e., P(𝑓𝝎 (𝜸∗
𝐾
) > 0) ≤ 𝜖 .

In this work, we set P to be the uniform distribution on the Ω
set in (3). It is worthy mentioning that Theorem 2.5 still holds even
if the uniqueness of the optimal 𝜸∗

𝐾
is not required, since a unique

optimal solution can always be obtained by using the Tie-break
rule [9] if multiple optimal solutions exist.

The scenario optimization technique has been exploited in the
context of black-box verification for continuous-time dynamical
systems in [81]. We will propose an approach based on scenario
optimization to verify PAC-model robustness in this paper.

3 PAC-MODEL ROBUSTNESS

The formalisation of the novel concept PAC-model robustness is
our first contribution in this work and it is the basis for developing
our method. We start from defining a PAC model. Let F be a given
set of high dimensional real functions (like affine functions).

Definition 3.1 (PAC model). Let 𝒈 : R𝑚 → R𝑛 , 𝐵 ⊆ R𝑚 and P a
probability measure on 𝐵. Let [, 𝜖 ∈ (0, 1] be the given error rate
and significance level, respectively. Let _ ≥ 0 be the margin. A
function 𝒈 : 𝐵 → R𝑛 ∈ F is a PAC model of 𝒈 on 𝐵 w.r.t. [, 𝜖 and
, denoted by 𝒈 ≈[,𝜖, 𝒈, if

P(| |𝒈(𝒙) − 𝒈(𝒙) | |∞ ≤ _) ≥ 1 − 𝜖, (6)

with confidence 1 − [.

In Def. 3.1, we define a PAC model 𝒈 as an approximation of the
original model 𝒈 with two parameters [and 𝜖 which bound the
maximal significance level and the maximal error rate for the PAC

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

model, respectively. Meanwhile, there is another parameter _ that
bounds the margin between the PAC model and the original model.
Intuitively, the difference between a PAC model and the original
one is bounded under the given error rate 𝜖 and significance level
[.

For a DNN𝒇 , if its PACmodel𝒇 with the correspondingmargin is
robust, then𝒇 is PAC-model robust. Formally, we have the following
definition.

Definition 3.2 (PAC-model robustness). Let 𝒇 : R𝑚 → R𝑛 be a
DNN and 𝚫 the corresponding score difference. Let [, 𝜖 ∈ (0, 1] be
the given error rate and significance level, respectively. The DNN
𝒇 is ([, 𝜖)-PAC-model robust in 𝐵(�̂�, 𝑟), if there exists a PAC model
�̃� ≈[,𝜖,_ 𝚫 such that for all 𝒙 ∈ 𝐵(�̂�, 𝑟),

�̃�(𝒙) + _ < 0. (7)

We remind that 𝚫 is the score difference function measuring the
difference between the score of the targeted label and other labels.
A locally robust DNN requires that 𝚫(𝒙) < 0, and a PAC-model
robust DNN requires the PAC upper bound of 𝚫, i.e. �̃�(𝒙) + _, is
always smaller than 0.

In Fig. 2, we illustrate the property space of PAC-model robust-
ness, by using the parameters [, 𝜖 and _. The properties on the
_-axis are exactly the strict robustness since Δ(𝒙) is now strictly
upper-bounded by Δ̃(𝒙) + _. Intuitively, for fixed [and 𝜖 , a smaller
margin _ implies a better PAC approximation Δ̃(𝒙) of the original
one Δ(𝒙) and indicates that the PAC-model robustness is closer
to the (strict) robustness property of the original model. To esti-
mate the maximum robustness radius more accurately, we intend
to compute a PAC model with the margin _ as small as possible.
Moreover, the proposed PAC-model robustness is stronger than
PAC robustness, which is proved by the following proposition.

Proposition 3.3. If a DNN𝒇 is ([, 𝜖)-PAC-model robust in𝐵(�̂�, 𝑟),
then it is ([, 𝜖)-PAC robust in 𝐵(�̂�, 𝑟).

Proof. With confidence 1 − [we have

P(𝚫(𝒙) ≤ 0) ≥ P(𝚫(𝒙) ≤ ˜

𝚫(𝒙) + _)

≥ P(| |˜𝚫(𝒙) − 𝚫(𝒙) | |∞ ≤ _) ≥ 1 − 𝜖,

which implies that 𝒇 is ([, 𝜖)-PAC robust in 𝐵(�̂�, 𝑟). □

In this work, wo focus on the following problem:
Given a DNN 𝒇 , an 𝐿∞-norm ball 𝐵(�̂�, 𝑟), a signifi-
cance level [, and an error rate 𝜖 , we need to deter-
mine whether 𝒇 is ([, 𝜖)-PAC-model robust.

Before introducing our method, we revisit PAC robustness (Def. 2.3)
in our PAC-model robustness theory. Statistical methods like [5]
infer PAC robustness from samples and their classification output
in the given DNN. In our PAC-model robustness framework, these
methods simplify the model to a function b : 𝐵(�̂�, 𝑟) → {0, 1},
where 0 refers to the correct classification result and 1 a wrong one,
and infer the PAC-model robustness with the constant function
b̃ (𝒙) ≡ 0 on 𝐵(�̂�, 𝑟) as the model. In [2], the model is modified to a
constant score difference function �̃� ≡ 𝑐 . Thesemodels are tooweak
to describe the behaviour of a DNN well. It can be predicted that,
if we learn a PAC model with an appropriate model, the obtained

ϵ

λ
η

(strict) robustness

PAC model robustness

O

given η and ϵ

Figure 2: Property space of PAC-model robustness.

PAC-model robustness property will be more accurate and practical,
and this will be demonstrated in our experiments.

4 METHODOLOGY

In this section, we present our method for analysing the PAC-model
robustness of DNNs. The overall framework is shown in Fig. 3. In
general, our method comprises of three stages: sampling, learning,
and analysing.

S1: We sample the input region 𝐵(�̂�, 𝑟) and obtain the corre-
sponding values of the score difference function 𝚫.

S2: We learn a PAC model �̃�(𝑥) ≈[,𝜖,_ 𝚫(𝑥) of the score differ-
ence function from the samples.

S3: We analyse whether �̃�(𝑥)+_ is always negative in the region
𝐵(�̂�, 𝑟) by computing its maximal values.

From the description above, we see it is a black-box method since
we only use the samples in the neighbour and their corresponding
outputs to construct the PAC model. The number of samples is
independent of the structure and the size of original models, which
will bring the good scalability and efficiency. Moreover, we are es-
sentially reconstructing a proper model to depict the local behavior
of the original model. Compared with the statistical methods, the
PAC model can potentially extract more information from the score
differences of these samples, which supports us to obtain more
accurate results.

Note that our framework is constructive, and the PAC model
and its maximal points in the region will be constructed explicitly
during the analysis. Then, we can obtain the maximal values of the
PACmodel, and infer that the original DNN satisfies the PAC-model
robustness when all maximal values are negative. Thus, DeepPAC
can be considered as a sound approach to verify the PAC-model
robustness.

4.1 Learning a PAC Model

To obtain a PAC model of the original score difference function
𝚫(𝒙), we first create a function template, and then determine its
parameters by model learning from the samples. Hereafter, we set
F to be the set of affine functions, and consider the PAC model
�̃�(𝒙) to be an affine function with bounded coefficients. A reason
for choosing an affine template is that the behaviours of a DNN in a
small 𝐿∞-norm ball 𝐵(�̂�, 𝑟) are very similar to some affine function
[53], due to the almost everywhere differentiability of DNNs. In

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

DNN Score Difference
outputinput

PAC Model
Maximal Values

model learning

sampling

analysing

PAC - model robustnessSUBSECT. 4.2

SUBSECT. 4.1 & 4.3

Figure 3: Framework of PAC-model robustness analysis base

on model learning

other words, an affine function can approximate the original model
well enough in most cases to maintain the accuracy of our robust-
ness analysis. Specifically, for the 𝑖th dimension of the DNN output
layer, we set Δ̃𝑖 (𝒙) = 𝒄⊤

𝑖
𝒙 = 𝑐𝑖,0 + 𝑐𝑖,1𝑥1 + · · · + 𝑐𝑖,𝑚𝑥𝑚 . With ex-

tracting a set of 𝐾 independent and identically distributed samples
𝑋 ⊆ 𝐵(�̂�, 𝑟), we construct the following optimisation problem for
learning the affine PAC model �̃�(𝒙).

min
_≥0

_

s.t. −_ ≤ 𝒄⊤
𝑖
𝒙 − Δ𝑖 (𝒙) ≤ _, ∀𝒙 ∈ 𝑋, 𝑖 ≠ ℓ ,

𝐿 ≤ 𝑐𝑖,𝑘 ≤ 𝑈 , 𝑖 ≠ ℓ, 𝑘 = 0, . . . ,𝑚 .

(8)

In the above formulation of PAC model learning, the problem boils
down to a linear programming (LP) optimisation. We reuse _ to
denote the optimal solution, and Δ̃𝑖 to be the function whose co-
efficients 𝒄𝑖 are instantiated according to the optimal solution _.
Specifically, we aim to compute a PAC model �̃� of 𝚫. By Theo-
rem 2.5, the confidence and the error rate can be ensured by a
sufficiently large number of samples. Namely, to make (6) hold with
confidence 1−[, we can choose any𝐾 ≥ 2

𝜖 (ln
1
[+ (𝑚+1) (𝑛−1) +1)

corresponding to the number of the variables in (8).
For fixed [and 𝜖 , the number of samples 𝐾 is in 𝑂 (𝑚𝑛), so the

LP problem (8) contains 𝑂 (𝑚𝑛) variables and 𝑂 (𝑚𝑛2) constraints.
Therefore, the computational cost of the above LP-based approach
can quickly become prohibitive with increasing the dimension of
input and output.

Example 4.1. For the MNIST dataset there is the input dimension
𝑚 = 28×28 = 784 and output dimension 𝑛 = 10. Even for [=

0.001, 𝜖 = 0.4, we need to solve an LP problem with 7, 065 variables
and more than 630, 000 constraints, which takes up too much space
(memory out with 10GB memory).

To further make the PAC model learning scale better with high-
dimensional input and output, we will consider several optimisa-
tions to reduce the complexity of the LP problem in Section 4.3.

From the LP formulation in Eq. (8), it can be seen that the PAC
model learning is based on the sampling set 𝑋 instead of the norm
ball 𝐵(�̂�, 𝑟). That is, though in this paper, for simplicity, 𝐵(�̂�, 𝑟)
is assumed to be an 𝐿∞-norm ball, our method also works with
𝐿𝑝 -norm robustness with 1 ≤ 𝑝 < ∞.

4.2 Analysing the PAC Model

We just detailed how to synthesise a PAC model �̃� of the score
difference function 𝚫. When the optimisation problem in (8) is
solved, we obtain the PAC model �̃�(𝑥) ≈[,𝜖,_ 𝚫(𝑥) of the score
difference function. Namely, �̃�(𝒙)±_ approximates the upper/lower
bound of the score difference function 𝚫 with the PAC guarantee
respectively. As aforementioned, all maximal values of �̃� + _ being
negative implies the PAC-model robustness of the original DNN.
According to the monotonicity of affine functions, it is not hard
to compute the maximum point �̆� (𝑖) of Δ̃𝑖 (𝒙) in the region 𝐵(�̂�, 𝑟).
Specifically, for Δ̃𝑖 (𝒙) in the form of 𝑐0 +

∑𝑚
𝑗=1 𝑐 𝑗𝑥 𝑗 , we can infer

its maximum point directly as

�̆� (𝑖)
𝑗

=

{�̂� 𝑗 + 𝑟, 𝑐 𝑗 > 0,
�̂� 𝑗 − 𝑟, 𝑐 𝑗 ≤ 0.

Note that the choice of �̆� (𝑖)
𝑗

is arbitrary for the case 𝑐 𝑗 = 0. Here, we
choose �̂� 𝑗 − 𝑟 as an instance. Then let �̆� be the �̆� (𝑖) corresponding
to the maximum Δ̃𝑖 (�̆� (𝑖)), and the PAC-model robustness of the
original DNN immediately follows if Δ̃(�̆�) + _ < 0. Besides, each
�̆� (𝑖) is a potential adversarial example attacking the original DNN
with the classification label 𝑖 , which can be further validated by
checking the sign of Δ𝑖 (�̆� (𝑖)).

Example 4.2. We consider the neural network in Fig. 1. Given
an input �̂� = (0, 0)⊤, the classification label is 𝐶𝒇 (�̂�) = 1. The
network is robust if 𝑓2 (𝒙) < 𝑓1 (𝒙) for 𝒙 ∈ 𝐵(�̂�, 1), or equivalently,
𝑓2 (𝒙)−𝑓1 (𝒙) < 0. Thus, our goal is to apply the scenario approach to
learn the score difference Δ(𝒙) = 𝑓2 (𝒙) − 𝑓1 (𝒙). In this example, we
take the approximating function of the form Δ̃(𝒙) = 𝑐0+𝑐1𝑥1+𝑐2𝑥2
with constant parameters 𝑐0, 𝑐1, 𝑐2 ∈ [−100, 100] to be synthesised.
For ease of exposition, we denote 𝒄 = (𝑐1, 𝑐2, 𝑐3)⊤.

We attempt to approximate Δ(𝒙) by minimising the absolute
difference between it and the approximating function Δ̃(𝒙). This
process can be characterised as an optimisation problem:

min
𝒄,_

_

s.t. |Δ̃(𝒙) − Δ(𝒙) | ≤ _, ∀𝒙 ∈ [−1, 1]2 ,
𝒄 ∈ [−100, 100]3,
_ ∈ [−100, 100] .

(9)

To apply the scenario approach, we first need to extract a set of 𝐾
independent and identically distributed samples 𝑋 ⊆ [−1, 1]2, and
then reduce the optimisation problem (9) to the linear programming
problem by replacing the quantifier ∀𝒙 ∈ [−1, 1]2 with ∀𝒙 ∈ 𝑋

in the constraints. Theorem 2.5 indicates that at least ⌈ 2
𝜖 (ln

1
[+

4)⌉ samples are required to guarantee the error rate within 𝜖 , i.e.
P(|Δ̃(𝒙) − Δ(𝒙) | ≤ _) ≥ 1 − 𝜖 , with confidence 1 − [.

Taking the error rate 𝜖 = 0.01 and the confidence 1 − [= 99.9%,
we need (at least) 𝐾 = 2182 samples in [−1, 1]2. By solving the
resulting linear program again, we obtain 𝑐0 = −22.4051, 𝑐1 = 2.800,
𝑐2 = −9.095, and _ = 9.821.

For illustration, we restrict 𝑥1 = 1, and depict the functions Δ
and Δ̃ in Fig. 4. Our goal is to verify that the first output is always
larger than the second, i.e., Δ(𝒙) = 𝑓2 (𝒙) − 𝑓1 (𝒙) < 0. As described
above, according to the signs of the coefficients of Δ̃, we obtain

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

Δ

Δ
~

+λ

-λ

0 0.5 1- 0.5-1

0

Figure 4: The functions Δ and Δ̃ in 𝑥2 are depicted by fixing

𝑥1 = 1. It ismarked redwhereΔ(𝒙) is not bounded by Δ̃(𝒙)±_.

that Δ̃(𝒙) attains the maximum value at 𝒙 = (1,−1)⊤ in [−1, 1]2.
Therefore, the network is PAC-model robustness.

4.3 Strategies for Practical Analysis

We regard efficiency and scalability as the key factor for achieving
practical analysis of DNN robustness. In the following, we propose
three practical PAC-model robustness analysis techniques.

4.3.1 Component-based learning. As stated in Section 4.1, the com-
plexity of solving (8) can still be high, so we propose component-
based learning to reduce the complexity. As before, we use Δ̃𝑖
to approximate Δ𝑖 (𝒙) = 𝑓𝑖 (𝒙) − 𝑓ℓ (𝒙) for each 𝑖 with the same
template. The idea is to learn the functions Δ1, . . . ,Δ𝑛 separately,
and then combine the solutions together. Instead of solving a sin-
gle large LP problem, we deal with (𝑛 − 1) individual smaller LP
problems, each with 𝑂 (𝑚) linear constraints. As a result, we have
Δ̃𝑖 (𝒙) ≈[,𝜖,_𝑖 Δ𝑖 (𝒙), from which we can only deduce that

P
(∧
𝑖≠ℓ

|Δ̃𝑖 (𝒙) − Δ𝑖 (𝒙) | ≤ _𝑖

)
≥ 1 − (𝑛 − 1)𝜖

with the confidence decreasing to at most 1 − (𝑛 − 1)[. To guar-
antee the error rate at least 𝜖 and the confidence at least 1 − [, we
need to recompute the error _ between �̃�(𝒙) and 𝚫(𝒙). Specifi-
cally, we solve the following optimisation problem constructed by
resampling:

min
_
_

s.t. |Δ̃𝑖 (𝒙) − Δ𝑖 (𝒙) | ≤ _,

∀𝒙 ∈ 𝑋 , 𝑖 ≠ ℓ .

(10)

where 𝑋 is a set of 𝐾 i.i.d samples with 𝐾 ≥ 2
𝜖 (ln

1
[+ 1). Applying

Theorem 2.5 again, we have �̃�(𝒙) ≈[,𝜖,_ 𝚫(𝒙) as desired.
We have already relaxed the optimisation problem (8) into a

family of (𝑛 − 1) small-scale LP problems. If 𝑛 is too large (e.g. for
Imagenet with 1000 classes), we can also consider the untargeted
score difference function Δu (𝒙) = 𝒇ℓ (𝒙) − max𝑖≠𝑙 𝒇𝑖 (𝒙). By adopt-
ing the untargeted score difference function, the number of the
LP problems is reduced to one. The untargeted score difference
function improves the efficiency at expense of the loss of linearity,
which harms the accuracy of the affine model.

4.3.2 Focused learning. In this part, our goal is to reduce the com-
plexity further by dividing the learning procedure into two phases
with different fineness: i) in the first phase, we use a small set of
samples to extract coefficients with big absolute values; and ii) these

coefficients are “focused” in the second phase, in which we use more
samples to refine them. In this way, we reduce the number of vari-
ables overall, and we call it focused learning, which namely refers
to focusing the model learning procedure on important features. It
is embedded in the component learning procedure.

The main idea of focused learning is depicted below:

(1) First learning phase: We extract 𝐾 (1) i.i.d. samples from the
input region 𝐵(�̂�, 𝑟). We first learn Δ𝑖 on the 𝐾 (1) samples.
Thus, our LP problems have𝑂 (𝐾 (1)) constraints with𝑂 (𝑚)
variables. For large datasets like ImageNet, the resulting LP
problem is still too large.We use efficient learning algorithms
such as linear regression (ordinary least squares) to boost
the first learning phase on these large datasets.

(2) Key feature extraction: After solving the LP problem (or the
linear regression for large datasets), we synthesise Δ̃(1)

𝑖
as

the approximating function. Let KeyF𝑖 (^) ⊆ {1, 𝑥1, . . . , 𝑥𝑚}
denote the set of extracted key features for the 𝑖th component
corresponding to the ^ coefficients with the largest absolute
values in Δ̃

(1)
𝑖

.
(3) Focused learning phase: We extract 𝐾 (2) i.i.d. samples from

𝐵(�̂�, 𝑟). For these samples, we generate constraints only for
our key features in KeyF𝑖 (^) by fixing the other coefficients
using those in Δ̃

(1)
𝑖

, and thus the number of the undeter-
mined coefficients is bounded by ^. By solving an LP prob-
lem comprised of these constraints, we finally determine the
coefficients of the features in KeyF𝑖 (^).

We can determine the sample size 𝐾 (2) and the number of key
features ^ satisfying

^ ≤ 𝐾 (2)𝜖
2

− ln
1
[
− 1 ,

which can be easily inferred from Theorem 2.5. It is worth men-
tioning that, focused learning not only significantly improves the
efficiency, but it also makes our approach insensitive to significance
level [and error rate 𝜖 , because the first phase in focused learning
can provide a highly precise model, and a small number of samples
are sufficient to learn the PAC model in the second phase. This will
be validated in our experiments.

4.3.3 Stepwise splitting. When the dimensionality of the input
space is very high (e.g., ImageNet), The first learning phase of fo-
cused learning requires constraints generated by tons of samples
to make precise predictions on the key features, which is very hard
and even impossible to be directly solved. For achieving better scal-
ability, we partition the dimensions of input {1, . . . ,𝑚} into groups
{𝐺𝑘 }. In an affine model Δ̃𝑖 , for the variables with undetermined
coefficients in each certain group 𝐺𝑘 , they share the same coeffi-
cient 𝑐𝑘 . Namely, the affine model has the form of

∑
𝑘

(
𝑐𝑘

∑
𝑖∈𝐺𝑘

𝑥𝑖
)
.

Then, a coarse model can be learned.
We compose the refinement into the procedure of focused learn-

ing aforementioned (See Fig. 5). Specifically, after a coarse model
is learned, we fix the coefficients for the insignificant groups and
extract the key groups. The key groups are then further refined,
and their coefficients are renewed by learning on a new batch of
samples. We repeat this procedure iteratively until most coefficients

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

split

lea
rn

split ...

split

lea
rn

linear programming

λ

cfixed coefficients

margin

linear programming

PAC Model

PHASE IIPHASE I

Figure 5: A workflow of the stepwise splitting procedure.

The red color indicates the significant grids whose coeffi-

cients will be further refined, while the yellow color indi-

cates the grids whose coefficients have been determined.

of the affine model are fixed, and then we invoke linear program-
ming to compute the rest coefficients and the margin. This iterative
refinement can be regarded as multi-stage focused learning with
different fineness.

In particular, for a colour image, we can use the grid to divide its
pixels into groups. The image has three channels corresponding to
the red, green and blue levels. As a result, each grid will generate
3 groups matching these channels, i.e.𝐺𝑘,R,𝐺𝑘,G, and 𝐺𝑘,B. Here,
we determine the significance of a grid with the 𝐿2-norm of the
coefficients of its groups, i.e. (𝑐2

𝑘,R + 𝑐2
𝑘,G + 𝑐2

𝑘,B)
1
2 . Then the key

groups (saying corresponding to the top 25% significant grids) will
be further refined in the subsequent procedure. On ImageNet, we
initially divide the image into 32 × 32 grids, with each grid of the
size 7 × 7. In each refinement iteration, we split each significant
grid into 4 sub-grids (see Fig. 5). We perform 6 iterations of such
refinement and use 20 000 samples in each iteration. An example
on stepwise splitting of an ImageNet image can be found in Fig. 8
in Sect. 5.3.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our PAC-model robustness verifica-
tion method. We implement our algorithm as a prototype called
DeepPAC. Its implementation is based on Python 3.7.8. We use
CVXPY [14] as the modeling language for linear programming and
GUROBI [25] as the LP solver. Experiments are conducted on a
Windows 10 PC with Intel i7 8700, GTX 1660Ti, and 16G RAM.
Three datasets MNIST [36], CIFAR-10 [35], and ImageNet [57] and
20 DNN models trained from them are used in the evaluation. The
details are in Tab. 1. We invoke our component-based learning and
focused learning for all evaluations, and apply stepwise splitting
for the experiment on ImageNet. All the implementation and data
used in this section are publicly available1.

In the following, we are going to answer the research questions
below.
RQ1: Can DeepPAC evaluate local robustness of a DNN more

effectively compared with the state-of-the-art?

1https://github.com/CAS-LRJ/DeepPAC

Dataset Network Defense #Param Source

MNIST

FNN1

—

44.86 K

—

FNN2 99.71 K
FNN3 239.41 K
FNN4 360.01 K
FNN5 480.61 K
FNN6 1.65M
CNN1 —

89.61 K

ERAN

CNN2 DiffAI
CNN3 PGD
CNN4 —

1.59MCNN5 PGD, Y = 0.1
CNN6 PGD, Y = 0.3

CIFAR-10

CNN1 PGD 125.32 K
CNN2 PGD, Y = 2/255 2.07MCNN3

PGD, Y = 8/255
ResNet18 11.17M

—ResNet50 23.52M
ResNet152 58.16M

ImageNet ResNet50a PGD, Y = 4/255 25.56M MadryResNet50b PGD, Y = 8/255
Table 1: Datasets and DNNs used in our evaluation. The con-

volutional neural networks (CNN) for MNIST and CIFAR-10

are from ERAN [61]. The ResNet50 networks for ImageNet

are from the python library “Robustness” [18] produced by

MadryLab. The rest networks are trained by ourselves.

RQ2: Can DeepPAC retain a reasonable accuracy with higher sig-
nificance, higher error rate, and/or fewer samples?

RQ3: Is DeepPAC scalable to DNNs with complex structure and
high dimensional input?

RQ4: Is there a underlying relation between DNN local robustness
verification and DNN testing (especially the test selection)?

5.1 Comparison on Precision

We first apply DeepPAC for evaluating DNN local robustness by
computing the maximum robustness radius and compare DeepPAC
with the state-of-the-art statistical verification tool PROVERO [5],
which verifies PAC robustness by statistical hypothesis testing. A
DNN verification tool returns true or false for robustness of a DNN
given a specified radius value. A binary search will be conducted
for finding the maximum robustness radius. For both DeepPAC and
PROVERO, we set the error rate 𝜖 = 0.01 and the significance level
[= 0.001. We set 𝐾 (1) = 2000 and 𝐾 (2) = 8000 for DeepPAC.

In addition, we apply ERAN [60] and PGD [43] to bound the
exact maximum radius from below and from above, respectively.
ERAN is a state-of-the-art DNN formal verification tool based on
abstract interpretation, and PGD is a popular adversarial attack
algorithm. In the experiments, we use the PGD implementation
from the commonly used Foolbox [52] with 40 iterations and a
relative step size of 0.033, which are suggested by Foolbox as a
default setting. Note that exact robustness verification SMT tools
like Marabou [33] cannot scale to the benchmarks used in our
experiment.

https://github.com/CAS-LRJ/DeepPAC

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

FNN 1 FNN 2 FNN 3 FNN 4 FNN 5 FNN 6

CNN 1 CNN 2 CNN 3 CNN 4 CNN 5 CNN 6
0

50

100

150

200

250

0

50

100

150

200

250

PROVEROOur (DeepPAC)
ERAN

PGD the ranges containing
exact maximum robustness radii

Figure 6: Each dash represents the maximum robustness radius for an input estimated by DeepPAC (blue) or PROVERO (red),

while each bar (white) gives an interval containing the exact maximum robustness radius, whose lower bound and upper

bound are computed by ERAN and PGD, respectively.

We run all the tools on the first 12 DNN models in Tab. 1 and the
detailed results are recorded in Fig. 6. In all cases, the maximum ro-
bustness radius estimated by the PROVERO is far larger than those
computed by other tools. In most cases, PROVERO ends up with a
maximum robustness radius over 100 (out of 255), which is even
larger than the upper bound identified by PGD. This indicates that,
while a DNN is proved to be PAC robust by PROVERO, adversarial
inputs can be still rather easily found within the verified bound. In
contrast, DeepPAC estimates the maximum robustness radius more
accurately, which falls in between the results from ERAN and PGD
mostly. Since the range between the estimation of ERAN and PGD
contains the exact maximum robustness radius, we conclude that
DeepPAC is a more accurate tool than PROVERO to analyse local
robustness of DNNs.

DeepPAC also successfully distinguishes robust DNN models
from non-robust ones. It tells that the CNNs, especially the ones
with defence mechanisms, are more robust against adversarial per-
turbations. For instance, 24 out of 25 images have a larger maximum
robustness radius on CNN1 than on FNN1, and 21 images have a
larger maximum robustness radius on CNN2 than on CNN1.

Other than the maximum robustness radius for a fixed input, the
overall robustness of a DNN, subject to some radius value, can be
denoted by the rate of the inputs being robust in a dataset, called
“robustness rate”. In Fig. 7, we show the robustness rate of 100 input
images estimated by different tools on the 3 CIFAR-10 CNNs. Here,
we set 𝐾 (1) = 20 000 and 𝐾 (2) = 10 000.

PROVERO, similarly to the earlier experiment outcome, results
in robustness rate which is even higher than the upper bound
estimation from the PGD attack, and its robustness rate result
hardly changes when the robustness radius increases. All such

CNN 1 (CIFAR)

20

40

60

80

100

0

20

40

60

80

100

20

40

60

80

100

CNN 2 (CIFAR) CNN 3 (CIFAR)

2 4 6 82 4 6 8 2 4 6 8
0 0

PROVERO ERANOur (DeepPAC) PGD

Figure 7: Robustness rate of different CNNs under the radius

of 2, 4, 6, and 8 on CIFAR-10.

comparisons reveal the limitations of using PAC robustness (by
PROVERO) that the verified results are not tight enough.

ERAN is a sound verification method, and the robustness rate
verified by it is a strict lower bound of the exact result. However,
this lower bound could be too conservative and ERAN quickly
becomes not usable. In the experiments, we find that it is hard for
ERAN to verify a robustness radius greater than or equal to 4 (out
of 255).

DeepPAC verifies greater robustness rate and larger robustness
radius, with high confidence and low error rate. Its results fall safely
into the range bounded by ERAN and PGD. We advocate DeepPAC
as a more practical DNN robustness analysis technique. It is shown
in our experiments that, though DeepPAC does not enforce 100%
guarantee, it can be applied into awider range of adversarial settings
(in contrast to ERAN) and the PAC-model verification results by
DeepPAC can be more trusted (in contrast to PROVERO) with
quantified confidence (in contrast to PGD).

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Answer RQ1: The maximum robustness radius estimated by
DeepPAC is more precise than that by PROVERO, and our
DeepPAC is a more practical DNN robustness analysis method.

5.2 DeepPAC with Different Parameters

In this part, we experiment on the three key parameters in Deep-
PAC: the error rate 𝜖 , the significance level [, and the number of
samples 𝐾 (1) in the first learning phase. The parameters [and
𝜖 control the precision between the PAC model and the original
model. The number of samples 𝐾 (1) determines the accuracy of the
first learning phase. We evaluate DeepPAC under different parame-
ters to check the variation of the maximal robustness radius. We
set either 𝐾 (1) = 20000 or 𝐾 (1) = 5000 in our evaluation and three
combinations of the parameters (𝜖, [): (0.01, 0.001), (0.1, 0.001), and
(0.01, 0.1). Here, we fix the number of key features to be fifty, i.e.
^ = 50, and calculate the corresponding number of samples 𝐾 (2) in
the focused learning phase.

The results are presented in Tab. 2. DeepPAC reveals some DNN
robustness insights that were not achievable by other verification
work. It is shown that, the DNNs (the ResNet family experimented)
can bemore robust thanmanymay think. Themaximum robustness
radius remains the same or slightly alters, along with the error rate
[and significance level 𝜖 varying. This observation also confirms
that the affine model used in DeepPAC abstraction converges well,
and the resulting error bound is even smaller than the specified
(large) error bound. Please refer to Sect. 4.1 for more details.

DeepPAC is also tolerant enough with a small sampling size.
When the number of samples in the first learning phase decreases
from 𝐾 (1) = 20, 000 to 𝐾 (1) = 5, 000, we can observe a minor de-
crease of the maximal robustness radius estimation. Recall that we
utilise the learned model in the first phase of focused learning to
extract the key features and provide coefficients to the less impor-
tant features. When the sampling number decreases, the learned
model would be less precise and thus make vague predictions on
key features and make the resulting affine model shift from the
original model. As a result, the maximum robustness radius can be
smaller when we reduce the number of sampling in the first phase.
In practice, as it is shown by the results in Tab. 2, we do not observe
a sudden drop of the DeepPAC results when using a much smaller
sampling size.
Answer RQ2: DeepPAC shows good tolerance to different con-
figurations of its parameters such as the error rate 𝜖 , the signif-
icance level [, and the number of samples 𝐾 (1) .

5.3 Scalability

Robustness verification is a well-known difficult problem on com-
plex networks with high-dimensional data. Most qualitative ver-
ification methods meet a bottleneck in the size and structure of
the DNN. The fastest abstract domain in ERAN is GPUPoly [46], a
GPU accelerated version of DeepPoly. The GPUPoly can verify a
ResNet18 model on the CIFAR-10 dataset with an average time of
1 021 seconds under the support of an Nvidia Tesla V100 GPU. To
the best of our knowledge, ERAN does not support models on Ima-
geNet, which makes it limited in real-life scenarios. The statistical
methods alleviate this dilemma and extend their use further. The

Input Image Network

[, 𝜖 and 𝐾 (1)

0.01, 0.001 0.1, 0.001 0.01, 0.1

20K 5K 20K 5K 20K 5K

ResNet18 5 4 5 4 5 4

ResNet50 8 8 8 8 9 8

ResNet152 5 5 5 5 5 5

ResNet18 16 14 15 14 15 14

ResNet50 12 11 12 12 12 11

ResNet152 10 9 10 9 10 9

ResNet18 11 10 11 10 11 10

ResNet50 6 5 6 5 6 5

ResNet152 9 8 9 8 9 8

ResNet18 1 1 1 1 1 1

ResNet50 3 3 3 3 3 3

ResNet152 6 5 6 5 6 5

ResNet18 16 13 16 14 16 14

ResNet50 17 15 17 15 17 15

ResNet152 12 10 12 10 12 10

Table 2: Themaximum robustness radius estimated by Deep-
PAC on CIFAR-10 dataset using different parameters, i.e. sig-

nificance level [, error rate 𝜖, and the number of samples in

the first learning phase 𝐾 (1)
.

state-of-the-art PAC robustness verifier PROVERO needs to draw
737 297 samples for VGG16 and 722 979 samples for VGG19 on av-
erage for each verification case on ImageNet. The average running
time is near 2208.9 seconds and 2168.9 seconds (0.003 seconds per
sample) under the support of an Nvidia Tesla V100 GPU. We will
show that DeepPAC can verify the tighter PAC-model robustness
on ImageNet with less samples and time on much larger ResNet50
models.

In this experiment, we apply DeepPAC to the start-of-the-art
DNN with high resolution ImageNet images. The two ResNet50
networks are from the python package named “robustness” [18].
We check PAC-model robustness of the two DNNs with the same
radius 4 (out of 255). The first evaluation is on a subset of ImageNet
images from 10 classes [27]. The second one includes ImageNet im-
ages of all 1,000 classes and the untargeted score difference function
is configured for DeepPAC. To deal with ImageNet, the stepwise
splitting mechanism in Sect. 4.3.3 is adopted. An illustrating exam-
ple of the stepwise splitting is given in Fig. 8. As we expect, the
splitting refinement procedure successfully identifies the significant
features of a golf ball, i.e. the boundary and the logo. It maintains
the accuracy of the learned model with much less running time.
The results are shown in Tab. 3.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

λ

PAC - model robust

Significant Grids Significance: from 0 to 0.3

= 0.0481 λ = 0.0467 λ = 0.0387

λ = 0.0331 λ = 0.0390 λ = 0.0388

Figure 8: Stepwise splitting procedures of DeepPAC, illus-
trated by heatmaps of grid significance. Top 25% significant

grids are colored yellow in the heatmap, which is split and

refined iteratively. The margin _ of different refinement

stage is under the heatmap.

For the 10-class setup, we evaluate the PAC-model robustness
on 50 images and it takes less than 1800 seconds on each case.
DeepPAC finds out 30 and 29 cases PAC-model robust for ResNet50a
and ResNet50b, respectively. Because the two models have been
defensed, when we perform the PGD attack, only one adversarial
examples were found for each model, which means that PGD gives
no conclusion for the robustness evaluation on most cases under
this setting. For the 1000-class dataset, the untargeted version of
DeepPAC has even better efficiency with the running time of less
than 800 seconds each, which mainly benefits from reducing the
score difference function to the untargeted one. DeepPAC proves
10 and 6 out of 50 cases to be PAC-model robust on the 1000-class
setup, respectively. For both setups, DeepPAC uses 121 600 samples
to learn a PAC model effectively.

Method Network Robust Min Max Avg
Targeted
(10 classes)

ResNet50a 30/50 1736.5 1768.8 1751.8
ResNet50b 29/50 1722.1 1781.5 1746.5

Untargeted
(1000 classes)

ResNet50a 10/50 779.2 785.3 781.7
ResNet50b 6/50 775.7 783.8 778.3

Table 3: The performance of DeepPAC analysing the two

ResNet50 models for ImageNet. “Robust” represents the ro-

bustness rate. “Min”, “Max”, and “Avg” are the minimum,

maximum, and average of the running time (second), respec-

tively.

Answer RQ3: The DeepPAC robustness analysis scales well
to complex DNNs with high-dimensional data like ImageNet,
which is not achieved by previous formal verification tools. It
shows superiority to PROVERO in both running time and the
number of samples.

5.4 Relation with Testing Prioritising Metric

We also believe that there is a positive impact from practical DNN
verification work like DeepPAC on DNN testing. For example, the

Network DeepPAC ERAN PROVERO
FNN1 -0.3628 -0.3437 -0.3968

FNN2 -0.4851 -0.4353 -0.5142

FNN3 -0.4174 -0.3677 -0.4223

FNN4 -0.5264 -0.4722 -0.5234
FNN5 -0.4465 -0.6016 -0.5916
FNN6 -0.4538 -0.2747 -0.3949
CNN1 -0.7340 -0.7345 -0.8223

CNN2 ★ -0.6482 -0.6478 -0.4527
CNN3 ★ -0.7216 -0.6728 -0.5218
CNN4 -0.6035 -0.6127 -0.7771

CNN5 ★ -0.7448 -0.6833 -0.3874
CNN6 ★ -0.6498 -0.6094 -0.4763

Table 4: The Pearson correlation coefficient between the

maximum robustness radius estimation and the DeepGini

index. The DNNs are marked by “★” if they are trained with

defense mechanisms.

tool DeepGini uses Gini index, which measures the confidence of
a DNN prediction on the corresponding input, to sort the testing
inputs. In Tab. 4, we report the Pearson correlation coefficient
between the DeepGini indices and the maximal robustness radii
obtained by DeepPAC, ERAN and PROVERO from the experiment
in Sect. 5.1.

As in Tab. 4, the maximum robustness radius is correlated to the
DeepGini index, a larger absolute value of the coefficient implies
a stronger correlation. It reveals the data that has low prediction
confidence is also prone to be lack robustness. From this phenome-
non, we believe DeepGini can be also helpful in data selection for
robustness analysis. Interestingly, the maximum robustness radius
computed by our DeepPAC has higher correlations with DeepGini
index on the CNNs, which are more complex, than on FNNs. Fur-
thermore, DeepPAC shows the strongest correlation on the CNNs
trained with defense mechanisms, while the correlation between
PROVERO or ERAN and DeepGini is relatively weak on these net-
works. Intuitively, complex models with defense are expected to
be more robust. Again, we regard this comparison result as the
evidence from DNN testing to support the superior of DeepPAC
over other DNN verification tools. From the perspective of test-
ing technique, it is promising to combine these two methods for
achieving test selection with guarantee.
Answer RQ4: The maximum robustness radius estimated by
DeepPAC, ERAN, and PROVERO are all correlated to the Deep-
Gini index, where DeepPAC and DeepGini show the strongest
correlation on robust models.

5.5 Case Study: Verifying Cloud Service API

To show the practicality of DeepPAC, we apply it to analyse the
robustness of black-box models for real-world cloud services. The
case we study here is the image recognition API provided by Baidu
AI Cloud2, which accepts an image and returns a pair list in the form
of (label𝑖 , score𝑖) to indicate the top classes the input recognised
2https://ai.baidu.com/tech/imagerecognition/general

https://ai.baidu.com/tech/imagerecognition/general

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

Figure 9: The original image (left) gain the score (dandelion :
0.758, sky : 0.600), and the adversarial example gain the score

(sky : 0.791, dandelion : 0.621).

to be. We use the image of a dandelion as the input, which is an
official example in its illustration.

By setting [= 0.001 and 𝜖 = 0.01, we verify the PAC-model
robustness for its top label “dandelion” within the radius of 5/255.
A total of 49,600 samples are utilised in the whole procedure. By
DeepPAC, we obtain the PAC-model of the difference function, but
unfortunately, its maximal value in the input 𝐿∞ ball is larger than
zero. As an intermediate output, we generate a potential adversarial
example via the PAC model. By feeding it back into the model, we
checked that it is a true adversarial example with “sky” as its top
label (see Fig. 9).

An interesting observation is that the labels output by the image
recognition API may be not independent. For instance, the class
labels “dandelion” and “plant” may appear in the output list at the
same time, and both of them can be considered correct labels. There-
fore, we believe that in the future new forms of DNN robustness
properties also need to be studied e.g., the sum of the output scores
for the correct labels (“dandelion” and “plant”) should be larger than
some threshold. DeepPAC is a promising tool to cope with these
emerging challenges when considering real-world applications of
DNN robustness analysis, by conveniently adjusting its difference
function.

6 RELATEDWORK

Here we discuss more results on the verification, adversarial attacks
and testing for DNNs. A number of formal verification techniques
have been proposed for DNNs, including constraint-solving [8, 16,
19, 22, 24, 32, 39, 47], abstract interpretation [21, 37, 59, 60, 84], layer-
by-layer exhaustive search [29], global optimisation [15, 55, 56], con-
vex relaxation [31, 49, 50], functional approximation [76], reduction
to two-player games [77, 79], and star-set-based abstraction [66, 67].
Sampling-based methods are adopted to probabilistic robustness
verification in [2, 3, 12, 45, 74, 75]. Most of them provide sound DNN
robustness estimation in the form of a norm ball, but typically for
very small networks or with pessimistic estimation of the norm ball
radius. By contrast, statistical methods [5, 6, 11, 28, 44, 74, 75, 78]
are more efficient and scalable when the structure of DNNs is com-
plex. The primary difference between these methods and DeepPAC
is that our method is model-based and thus more accurate. We use
samples to learn a relatively simple model of the DNNwith the PAC

guarantee via scenario optimisation and gain more insights to the
analysis of adversarial robustness. The generation of adversarial
inputs [64] itself has been widely studied by a rich literature of ad-
versarial attack methods. Some most well-known robustness attack
methods include Fast Gradient Sign [23], Jacobian-based saliency
map approach [48], C&W attack [13], etc. Though adversarial at-
tack methods generate adversarial inputs efficiently, they cannot
enforce guarantee of any form for the DNN robustness. Testing is
still the primary approach for certifying the use of software prod-
ucts and services. In recent years, significant work has been done
for the testing for DNNs such as test coverage criteria specialised for
DNNS [34, 40, 51, 62, 83] and different testing techniques adopted
for DNNs [30, 41, 42, 54, 63, 65, 70, 80, 82, 86]. In particular, our
experiments show that the results from DeepPAC are consistent
with the DNN testing work for prioritising test inputs [20, 73], but
with a stronger guarantee. This highlights again that DeepPAC is a
practical verification method for DNN robustness.

7 CONCLUSION AND FUTUREWORK

We propose DeepPAC, a method based on model learning to anal-
yse the PAC-model robustness of DNNs in a local region. With
the scenario optimisation technique, we learn a PAC model which
approximates the DNN within a uniformly bounded margin with a
PAC guarantee. With the learned PAC model, we can verify PAC-
model robustness properties under specified confidence and error
rate. Experimental results confirm that DeepPAC scales well on
large networks, and is suitable for practical DNN verification tasks.
As for future work, we plan to learn more complex PAC models
rather than the simple affine models, and we are particularly inter-
ested in exploring the combination of practical DNN verification
by DeepPAC and DNN testing methods following the preliminary
results.

ACKNOWLEDGEMENTS

This work has been partially supported by Key-Area Research
and Development Program of Guangdong Province (Grant No.
2018B010107004), Guangzhou Basic and Applied Basic Research
Project (Grant No. 202102021304), National Natural Science Founda-
tion of China (Grant No. 61836005), and Open Project of Shanghai
Key Laboratory of Trustworthy Computing (Grant No. OP202001).

REFERENCES

[1] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui
Hsieh, and Mani B. Srivastava. 2019. GenAttack: practical black-box attacks with
gradient-free optimization. In GECCO 2019, Anne Auger and Thomas Stützle
(Eds.). ACM, Prague, Czech Republic, 1111–1119.

[2] Brendon G. Anderson and Somayeh Sojoudi. 2020. Certifying Neural Network
Robustness to Random Input Noise from Samples. arXiv:2010.07532 [cs.LG]

[3] Brendon G. Anderson and Somayeh Sojoudi. 2020. Data-Driven Assessment of
Deep Neural Networks with Random Input Uncertainty. arXiv:2010.01171 [cs.LG]

[4] Pranav Ashok, Vahid Hashemi, Jan Kretínský, and Stefanie Mohr. 2020. Deep-
Abstract: Neural Network Abstraction for Accelerating Verification. In ATVA
2020 (Lecture Notes in Computer Science, Vol. 12302), Dang Van Hung and Oleg
Sokolsky (Eds.). Springer, 92–107.

[5] Teodora Baluta, Zheng Leong Chua, Kuldeep S Meel, and Prateek Saxena. 2021.
Scalable quantitative verification for deep neural networks. In ICSE 2021. IEEE,
Madrid, Spain, 312–323.

[6] Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, and Prateek Saxena.
2019. Quantitative Verification of Neural Networks and Its Security Applications.
In CCS 2019, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM, London, UK, 1249–1264.

https://arxiv.org/abs/2010.07532
https://arxiv.org/abs/2010.01171

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Renjue Li, et al.

[7] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2019.
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional
Neural Networks. In AAAI 2019, January 27 - February 1, 2019. AAAI Press,
Honolulu, Hawaii, USA, 3240–3247.

[8] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
M. Pawan Kumar. 2020. Branch and Bound for Piecewise Linear Neural Network
Verification. J. Mach. Learn. Res. 21 (2020), 42:1–42:39.

[9] Giuseppe Carlo Calafiore and Marco C. Campi. 2006. The scenario approach to
robust control design. IEEE Trans. Autom. Control. 51, 5 (2006), 742–753.

[10] Marco C. Campi, SimoneGaratti, andMaria Prandini. 2009. The scenario approach
for systems and control design. Annu. Rev. Control. 33, 2 (2009), 149–157.

[11] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane,
and MatthewWicker. 2019. Statistical Guarantees for the Robustness of Bayesian
Neural Networks. In IJCAI 2019, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org,
Macao, China, 5693–5700.

[12] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. 2019.
Robustness Guarantees for Bayesian Inference with Gaussian Processes. In AAAI
2019, January 27 - February 1, 2019. AAAI Press, Honolulu, Hawaii, USA, 7759–
7768.

[13] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In S&P 2017. IEEE, IEEE Computer Society, San Jose, CA, USA,
39–57.

[14] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling
language for convex optimization. Journal of Machine Learning Research 17, 83
(2016), 1–5.

[15] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NFM 2018
(Lecture Notes in Computer Science, Vol. 10811), Aaron Dutle, César A. Muñoz, and
Anthony Narkawicz (Eds.). Springer, Newport News, VA, USA, 121–138.

[16] Rüdiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In ATVA 2017. Springer, Pune, India, 269–286.

[17] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. 2020. An Abstraction-
Based Framework for Neural Network Verification. In CAV 2020 (Lecture Notes in
Computer Science, Vol. 12224), Shuvendu K. Lahiri and ChaoWang (Eds.). Springer,
Los Angeles, CA, USA, 43–65.

[18] Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris
Tsipras. 2019. Robustness (Python Library). https://github.com/MadryLab/
robustness

[19] Chengdong Feng, Zhenbang Chen, Weijiang Hong, Hengbiao Yu, Wei Dong, and
Ji Wang. 2018. Boosting the Robustness Verification of DNN by Identifying the
Achilles’s Heel. CoRR abs/1811.07108 (2018). arXiv:1811.07108

[20] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen.
2020. DeepGini: prioritizing massive tests to enhance the robustness of deep
neural networks. In 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, Virtual Event, USA, 177–188.

[21] T. Gehr, M.Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, andM. Vechev.
2018. AI2 : Safety and Robustness Certification of Neural Networks with Abstract
Interpretation. In 2018 IEEE Symposium on Security and Privacy (S&P 2018). IEEE
Computer Society, San Francisco, California, USA, 948–963.

[22] Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark W. Barrett, and
Guy Katz. 2020. Simplifying Neural Networks Using Formal Verification. In
NFM 2020, USA, May 11-15, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12229), Ritchie Lee, Susmit Jha, and Anastasia Mavridou (Eds.). Springer,
Moffett Field, CA, 85–93.

[23] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR 2015, Yoshua Bengio and Yann LeCun
(Eds.). San Diego, CA, USA.

[24] Divya Gopinath, Guy Katz, Corina S. Pasareanu, and Clark W. Barrett. 2018.
DeepSafe: AData-Driven Approach for Assessing Robustness of Neural Networks.
In ATVA 2018, October 7-10, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 11138), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, Los Angeles,
CA, USA, 3–19.

[25] LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual. http:
//www.gurobi.com

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR 2016. IEEE Computer Society, Las Vegas,
NV, USA, 770–778.

[27] Jeremy Howard. 2019. The Imagenette dataset. https://github.com/fastai/
imagenette

[28] Pei Huang, Yuting Yang, Minghao Liu, Fuqi Jia, Feifei Ma, and Jian Zhang. 2021.
𝜖-weakened Robustness of Deep Neural Networks. CoRR abs/2110.15764 (2021).
arXiv:2110.15764

[29] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2017. Safety Veri-
fication of Deep Neural Networks. In CAV 2017. Springer, Heidelberg, Germany,
3–29.

[30] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime:
mutation testing of deep learning systems based on real faults. In 30th ACM

SIGSOFT International Symposium on Software Testing and Analysis. ACM, Virtual
Event, Denmark, 67–78.

[31] Kyle D. Julian, Shivam Sharma, Jean-Baptiste Jeannin, and Mykel J. Kochenderfer.
2019. Verifying Aircraft Collision Avoidance Neural Networks Through Linear
Approximations of Safe Regions. CoRR abs/1903.00762 (2019). arXiv:1903.00762
http://arxiv.org/abs/1903.00762

[32] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
CAV 2017. Springer, Heidelberg, Germany, 97–117.

[33] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljic, David L.
Dill, Mykel J. Kochenderfer, and Clark W. Barrett. 2019. The Marabou Framework
for Verification and Analysis of Deep Neural Networks. In CAV 2019 (Lecture Notes
in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer,
New York City, NY, USA, 443–452.

[34] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In ICSE 2019. IEEE, IEEE / ACM, Montreal, QC,
Canada, 1039–1049.

[35] Alex Krizhevsky et al. 2009. Learning multiple layers of features from tiny images.
(2009).

[36] Yann Lécun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[37] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun
Zhang. 2019. Analyzing Deep Neural Networks with Symbolic Propagation:
Towards Higher Precision and Faster Verification. In SAS 2019 (Lecture Notes
in Computer Science, Vol. 11822), Bor-Yuh Evan Chang (Ed.). Springer, Porto,
Portugal, 296–319.

[38] Renjue Li, Jianlin Li, Cheng-Chao Huang, Pengfei Yang, Xiaowei Huang, Lijun
Zhang, Bai Xue, and Holger Hermanns. 2020. PRODeep: a platform for robustness
verification of deep neural networks. In ESEC/FSE ’20, November 8-13, 2020, Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, Virtual Event,
USA, 1630–1634.

[39] Wang Lin, Zhengfeng Yang, Xin Chen, Qingye Zhao, Xiangkun Li, Zhiming
Liu, and Jifeng He. 2019. Robustness Verification of Classification Deep Neural
Networks via Linear Programming. In CVPR 2019, June 16-20, 2019. Computer
Vision Foundation / IEEE, Long Beach, CA, USA, 11418–11427.

[40] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. 2018. DeepGauge: Multi-granularity testing
criteria for deep learning systems. In ASE 2018. ACM, Montpellier, France, 120–
131.

[41] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. DeepMutation: Mutation testing of
deep learning systems. In ISSRE 2018. IEEE, IEEE Computer Society, Memphis,
TN, USA, 100–111.

[42] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In ESEC/FSE 2018. ACM, Lake Buena Vista, FL, USA,
175–186.

[43] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In ICLR 2018. OpenReview.net, Vancouver, BC, Canada.

[44] Ravi Mangal, Aditya V. Nori, and Alessandro Orso. 2019. Robustness of neural
networks: a probabilistic and practical approach. In ICSE (NIER) 2019, May 29-31,
2019, Anita Sarma and LeonardoMurta (Eds.). IEEE / ACM,Montreal, QC, Canada,
93–96.

[45] Ravi Mangal, Aditya V. Nori, and Alessandro Orso. 2019. Robustness of neural
networks: a probabilistic and practical approach. In ICSE (NIER) 2019, Montreal,
QC, Canada, May 29-31, 2019, Anita Sarma and Leonardo Murta (Eds.). IEEE /
ACM, Montreal, QC, Canada, 93–96.

[46] Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020.
Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020).
arXiv:2007.10868 https://arxiv.org/abs/2007.10868

[47] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv,
and Toby Walsh. 2018. Verifying Properties of Binarized Deep Neural Networks.
In AAAI 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press,
New Orleans, Louisiana, USA, 6615–6624.

[48] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In EuroS&P 2016, March 21-24, 2016. IEEE, Saarbrücken, Germany,
372–387.

[49] Brandon Paulsen, Jingbo Wang, and Chao Wang. 2020. ReluDiff: differential
verification of deep neural networks. In ICSE ’20, 27 June - 19 July, 2020, Gregg
Rothermel and Doo-Hwan Bae (Eds.). ACM, Seoul, South Korea, 714–726.

[50] Brandon Paulsen, Jingbo Wang, Jiawei Wang, and Chao Wang. 2020. NEUROD-
IFF: Scalable Differential Verification of Neural Networks using Fine-Grained
Approximation. In ASE 2020, September 21-25, 2020. IEEE, Melbourne, Australia,
784–796.

https://github.com/MadryLab/robustness
https://github.com/MadryLab/robustness
https://arxiv.org/abs/1811.07108
http://www.gurobi.com
http://www.gurobi.com
https://github.com/fastai/imagenette
https://github.com/fastai/imagenette
https://arxiv.org/abs/2110.15764
https://arxiv.org/abs/1903.00762
http://arxiv.org/abs/1903.00762
https://arxiv.org/abs/2007.10868
https://arxiv.org/abs/2007.10868

Towards Practical Robustness Analysis for DNNs based on PAC-Model Learning ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

[51] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated whitebox testing of deep learning systems. In 26th Symposium on Operating
Systems Principles. ACM, Shanghai, China, 1–18.

[52] Jonas Rauber, Wieland Brendel, and Matthias Bethge. 2017. Foolbox: A Python
toolbox to benchmark the robustness of machine learning models. In Reliable
Machine Learning in the Wild Workshop, 34th International Conference on Machine
Learning.

[53] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In SIGKDD 2016, August
13-17, 2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C.
Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM, San Francisco, CA, USA,
1135–1144.

[54] Vincenzo Riccio and Paolo Tonella. 2020. Model-based exploration of the frontier
of behaviours for deep learning system testing. In ESEC/FSE 2020. ACM, Virtual
Event, USA, 876–888.

[55] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. 2018. Reachability
Analysis of Deep Neural Networks with Provable Guarantees. In IJCAI 2018.
ijcai.org, Stockholm, Sweden, 2651–2659.

[56] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and
Marta Kwiatkowska. 2019. Global Robustness Evaluation of Deep Neural Net-
works with Provable Guarantees for the Hamming Distance. In IJCAI 2019, Sarit
Kraus (Ed.). ijcai.org, Macao, China, 5944–5952.

[57] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
IJCV 115, 3 (2015), 211–252.

[58] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,
TimGreen, Chongli Qin, Augustin Zídek, AlexanderW. R. Nelson, Alex Bridgland,
Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli,
David T. Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. 2020.
Improved protein structure prediction using potentials from deep learning. Nat.
577, 7792 (2020), 706–710.

[59] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Mar-
tin T. Vechev. 2018. Fast and Effective Robustness Certification. In NeurIPS 2018.
Montréal, Canada, 10825–10836.

[60] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.
An abstract domain for certifying neural networks. PACMPL 3, POPL (2019),
41:1–41:30.

[61] ETH Zurich SRI Lab, Department of Computer Science. 2020. ETH Robustness
Analyzer for Neural Networks (ERAN). https://github.com/eth-sri/eran

[62] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. 2019. Structural test coverage criteria for deep neural networks.
In ICSE 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM,
Montreal, QC, Canada, 320–321.

[63] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.
Automatic testing and improvement of machine translation. In ICSE 2020. ACM,
Seoul, South Korea, 974–985.

[64] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In ICLR 2014. Banff, AB, Canada.

[65] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated testing of deep-neural-network-driven autonomous cars. In ICSE 2018.
ACM, Gothenburg, Sweden, 303–314.

[66] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020.
Verification of Deep Convolutional Neural Networks Using ImageStars. In CAV
2020 (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri and Chao
Wang (Eds.). Springer, Los Angeles, CA, USA, 18–42.

[67] Hoang-Dung Tran, Diego Manzanas Lopez, Patrick Musau, Xiaodong Yang,
Luan Viet Nguyen, Weiming Xiang, and Taylor T. Johnson. 2019. Star-Based
Reachability Analysis of Deep Neural Networks. In FM 2019 (Lecture Notes in
Computer Science, Vol. 11800), Maurice H. ter Beek, Annabelle McIver, and José N.
Oliveira (Eds.). Springer, Porto, Portugal, 670–686.

[68] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.
NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In CAV 2020, July 21-24, 2020, Proceed-
ings, Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri
and Chao Wang (Eds.). Springer, Los Angeles, CA, USA, 3–17.

[69] Chris Urmson and William Whittaker. 2008. Self-Driving Cars and the Urban
Challenge. IEEE Intell. Syst. 23, 2 (2008), 66–68.

[70] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-oriented testing for deep learning
systems. In ICSE 2021. IEEE, IEEE, Madrid, Spain, 300–311.

[71] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.
Adversarial sample detection for deep neural network through model mutation
testing. In ICSE 2019. IEEE, IEEE / ACM, Montreal, QC, Canada, 1245–1256.

[72] Jingyi Wang, Jun Sun, Peixin Zhang, and Xinyu Wang. 2018. Detecting Ad-
versarial Samples for Deep Neural Networks through Mutation Testing. CoRR

abs/1805.05010 (2018). arXiv:1805.05010 http://arxiv.org/abs/1805.05010
[73] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin

Zhang. 2021. Prioritizing Test Inputs for Deep Neural Networks via Mutation
Analysis. In ICSE 2021. IEEE, IEEE, Madrid, Spain, 397–409.

[74] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. 2019. A
Statistical Approach to Assessing Neural Network Robustness. In ICLR 2019.
OpenReview.net, New Orleans, LA, USA.

[75] Lily Weng, Pin-Yu Chen, Lam M. Nguyen, Mark S. Squillante, Akhilan Boopathy,
Ivan V. Oseledets, and Luca Daniel. 2019. PROVEN: Verifying Robustness of
Neural Networks with a Probabilistic Approach. In ICML 2019, 9-15 June 2019
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 6727–6736.

[76] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca
Daniel, Duane S. Boning, and Inderjit S. Dhillon. 2018. Towards Fast Computation
of Certified Robustness for ReLU Networks. In ICML 2018 (Proceedings of Machine
Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR,
Stockholm, Sweden, 5273–5282.

[77] MatthewWicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-Guided
Black-Box Safety Testing of Deep Neural Networks. In TACAS 2018 (Lecture Notes
in Computer Science, Vol. 10805), Dirk Beyer andMarieke Huisman (Eds.). Springer,
Thessaloniki, Greece, 408–426.

[78] Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska. 2020.
Probabilistic Safety for Bayesian Neural Networks. In UAI 2020, August 3-6, 2020
(Proceedings of Machine Learning Research, Vol. 124), Ryan P. Adams and Vibhav
Gogate (Eds.). AUAI Press, virtual online, 1198–1207.

[79] MinWu,MatthewWicker,Wenjie Ruan, Xiaowei Huang, andMarta Kwiatkowska.
2020. A game-based approximate verification of deep neural networks with
provable guarantees. Theor. Comput. Sci. 807 (2020), 298–329.

[80] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-
guided fuzz testing framework for deep neural networks. In 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, Beijing, China,
146–157.

[81] Bai Xue, Miaomiao Zhang, Arvind Easwaran, and Qin Li. 2020. PACModel Check-
ing of Black-Box Continuous-Time Dynamical Systems. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 39, 11 (2020), 3944–3955.

[82] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
2021. Exposing numerical bugs in deep learning via gradient back-propagation.
In ESEC/FSE 2021. ACM, Athens, Greece, 627–638.

[83] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and
Xiangyu Zhang. 2020. Correlations between deep neural network model coverage
criteria and model quality. In ESEC/FSE 2020. ACM, Virtual Event, USA, 775–787.

[84] Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun,
Bai Xue, and Lijun Zhang. 2021. Improving Neural Network Verification through
Spurious Region Guided Refinement. In TACAS 2021 (Lecture Notes in Computer
Science, Vol. 12651), Jan Friso Groote and Kim Guldstrand Larsen (Eds.). Springer,
Luxembourg City, Luxembourg, 389–408.

[85] Hanwei Zhang, Yannis Avrithis, Teddy Furon, and Laurent Amsaleg. 2020. Walk-
ing on the edge: Fast, low-distortion adversarial examples. IEEE Transactions on
Information Forensics and Security 16 (2020), 701–713.

[86] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based metamorphic testing and input validation frame-
work for autonomous driving systems. In ASE 2018. IEEE, ACM, Montpellier,
France, 132–142.

https://github.com/eth-sri/eran
https://arxiv.org/abs/1805.05010
http://arxiv.org/abs/1805.05010

	Abstract
	1 Introduction
	2 Preliminary
	2.1 DNNs and Local Robustness
	2.2 Scenario Optimization

	3 PAC-Model Robustness
	4 Methodology
	4.1 Learning a PAC Model
	4.2 Analysing the PAC Model
	4.3 Strategies for Practical Analysis

	5 Experimental EVALUATION
	5.1 Comparison on Precision
	5.2 DeepPAC with Different Parameters
	5.3 Scalability
	5.4 Relation with Testing Prioritising Metric
	5.5 Case Study: Verifying Cloud Service API

	6 Related Work
	7 Conclusion and Future Work
	References

