2202.02326v1 [cs.LG] 4 Feb 2022

arXiv

Towards Training Reproducible Deep Learning Models

Boyuan Chen
Centre for Software Excellence,
Huawei Canada
Kingston, Canada
boyuan.chenl@huawei.com

Dayi Lin
Centre for Software Excellence,
Huawei Canada
Kingston, Canada
dayi.lin@huawei.com

ABSTRACT

Reproducibility is an increasing concern in Artificial Intelligence
(AI), particularly in the area of Deep Learning (DL). Being able to
reproduce DL models is crucial for Al-based systems, as it is closely
tied to various tasks like training, testing, debugging, and audit-
ing. However, DL models are challenging to be reproduced due to
issues like randomness in the software (e.g., DL algorithms) and
non-determinism in the hardware (e.g., GPU). There are various
practices to mitigate some of the aforementioned issues. However,
many of them are either too intrusive or can only work for a spe-
cific usage context. In this paper, we propose a systematic approach
to training reproducible DL models. Our approach includes three
main parts: (1) a set of general criteria to thoroughly evaluate the
reproducibility of DL models for two different domains, (2) a uni-
fied framework which leverages a record-and-replay technique
to mitigate software-related randomness and a profile-and-patch
technique to control hardware-related non-determinism, and (3) a
reproducibility guideline which explains the rationales and the mit-
igation strategies on conducting a reproducible training process for
DL models. Case study results show our approach can successfully
reproduce six open source and one commercial DL models.

CCS CONCEPTS

« Software and its engineering — Empirical software valida-
tion.

KEYWORDS

Artificial Intelligence, Deep Learning, Software Engineering, Re-
producibility

ACM Reference Format:

Boyuan Chen, Mingzhi Wen, Yong Shi, Dayi Lin, Gopi Krishnan Rajbahadur,
and Zhen Ming (Jack) Jiang. 2022. Towards Training Reproducible Deep

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05...$15.00
https://doi.org/10.1145/3510003.3510163

Mingzhi Wen
Huawei Technologies
Shenzhen, China
wenmingzhi@huawei.com

Gopi Krishnan Rajbahadur
Centre for Software Excellence,
Huawei Canada
Kingston, Canada
gopi.krishnan.rajbahadurl @huawei.com

Yong Shi
Huawei Technologies
Shenzhen, China
young.shi@huawei.com

Zhen Ming (Jack) Jiang
York University
Toronto, Canada
zmjiang@eecs.yorku.ca

Learning Models. In 44th International Conference on Software Engineering
(ICSE ’22), May 21-29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3510003.3510163

1 INTRODUCTION

In recent years, Artificial Intelligence (AI) has been advancing
rapidly both in research and practice. A recent report by McKinsey
estimates that Al-based applications have the potential market val-
ues ranging from $3.5 and $5.8 trillion annually [11]. Many of these
applications, which can perform complex tasks such as autonomous
driving [34], speech recognition [24], and healthcare [29], are en-
abled by various Deep Learning (DL) models [46]. Unlike traditional
software systems, which are programmed based on deterministic
rules (e.g., if/else), the DL models within Al-based systems are con-
structed in a stochastic way due to the underlying DL algorithms,
whose behavior may not be reproducible and trustworthy [26, 54].
Ensuring the reproducibility of DL models is vital for not only many
product development related tasks such as training [50], testing [18],
debugging [56] and legal compliance [2], but also facilitating scien-
tific movements like open science [66, 67].

One of the important steps towards reproducible Al-based sys-
tems is to ensure the reproducibility of the DL models during the
training process. A DL model is reproducible, if under the same
training setup (e.g., the same training code, the same environment,
and the same training dataset), the resulting trained DL model
yields the same results under the same evaluation criteria (e.g.,
the same evaluation metrics on the same testing dataset) [56, 57].
Unfortunately, recent studies show that Al faces reproducibility
crisis [37, 41], especially for DL models [32, 44, 48, 50, 56, 58, 63, 65].
In general, there are three main challenges associated with this:

e Randomness in the software [61]: Randomness is essential in
DL model training like batch ordering, data shuffling, and weight
initialization for constructing robust and high-performing DL
models [14, 56]. However, randomness prevents the DL models
from being reproduced. To achieve reproducibility in the training
process, the current approach is to set predefined random seeds
before the training process. Although this approach is effective in
controlling the randomness, it has three drawbacks: (1) it might
cause the training process to converge to local optimums and
not able to explore other optimization opportunities; (2) it is non-
trivial to select the appropriate seeds as there are no existing

https://doi.org/10.1145/3510003.3510163
https://doi.org/10.1145/3510003.3510163

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

techniques for tuning random seeds during the hyperparameter
tuning process; (3) non-trivial manual efforts are needed to locate
randomness introducing functions and instrument them with
seeds for the imported libraries and their dependencies.
o Non-determinism in the hardware [6]: Training DL models
requires intensive computing resources. For example, many ma-
trix operations occur in the backward propagation, which con-
sists of a huge amount of floating point operations. As GPUs have
way more numbers of cores than CPUs, GPUs are often used for
running DL training processes due to their ability to process mul-
tiple operations in parallel. However, executing floating point
calculation in parallel becomes a source of non-determinism since
the results of floating-point operations are sensitive to compu-
tation orders due to rounding errors [33, 56]. In addition, GPU
specific libraries (e.g., CUDA [4] and cuDNN [27]) by default
auto-select the optimal primitive operations based on compar-
ing different algorithms of operations during runtime (i.e., the
auto-tuning feature). However, the comparison results might be
non-deterministic due to issues like floating point computation
mentioned above [14, 56]. These sources of non-determinism
from hardware need to be controlled in order to construct repro-
ducible DL models. Case-by-case solutions have been proposed
to tackle specific issues. For example, both Pytorch [55] and Ten-
sorFlow [22] provide configurations on disabling the auto-tuning
feature. Unfortunately, none of these techniques have been em-
pirically validated in literature. Furthermore, there is still a lack
of a general technique which can work across different software
frameworks.
Lack of systematic guidelines [56]: Various checklists and
documentation frameworks [19, 30, 53] have been proposed on
asset management to support DL reproducibility. There are gen-
erally four types of assets to manage in machine learning (ML)
in order to achieve model reproducibility: resources (e.g., dataset
and environment), software (e.g., source code), metadata (e.g.,
dependencies), and execution data (e.g., execution results) [43].
However, prior work [23, 25, 43] shows these assets should not
be managed with the same toolsets (e.g., Git) used for source
code [23]. Hence, new version management tools (e.g., DVC [12]
and MLflow [1]) are specifically designed for managing ML as-
sets. However, even by adopting the techniques and suggestions
mentioned above, DL models cannot be fully reproduced [56] due
to problems mentioned in the above two challenges. A system-
atic guideline is needed for both researchers and practitioners in
order to construct reproducible DL models.

To address the above challenges, in this paper, we have proposed
a systematic approach towards training reproducible DL models.
Our approach includes a set of rigorously defined evaluation crite-
ria, a record-and-replay-based technique for mitigating randomness
in software, and a profile-and-patch-based technique for mitigating
non-determinism from hardware. We have also provided a system-
atic guideline for DL model reproducibility based on our experience
on applying our approach across different DL models. Case studies
on six popular open source and one commercial DL models show
that our approach can successfully reproduce the studied DL mod-
els (i.e., the trained models achieve the exact same results under the
evaluation criteria). To facilitate reproducibility of our study, we

Chen and Wen, et al.

provide a replication package [21], which consists of the implemen-
tation of open source DL models, our tool, and the experimental
results. In summary, our paper makes the following contributions:

o Although there are previous research work which aimed at re-
producible DL models (e.g., [50, 56]), to the authors’ knowledge,
our approach is the first systematic approach which can achieve
reproducible DL models during the training process. Case study
results show that all the studied DL models can be successfully
reproduced by leveraging our approach.

e Compared to existing practices for controlling randomness in
the software (a.k.a., presetting random seeds [5, 56]), our record-
and-replay-based technique is non-intrusive and incurs minimal
disruption on the existing DL development process.

e Compared to the previous approach on verifying model repro-
ducibility [56], our proposed evaluation criteria has two advan-
tages: (1) it is more general, as it covers multiple domains (Clas-
sification and Regression tasks), and (2) it is more rigorous, as it
evaluates multiple criteria, which includes not only the evalua-
tion results on the testing dataset, but also the consistency of the
training process.

Paper Organization. Section 2 provides background information
associated with DL model reproducibility. Section 3 describes the
details of our systematic approach to training reproducible DL
models. Section 4 presents the evaluation of our approach. Section 5
discusses the experiences and lessons learned from applying our
approach. Section 6 presents our guideline. Section 7 describes the
threats to validity of our study and Section 8 concludes our paper.

2 BACKGROUND AND RELATED WORK

In this section, we describe the background and the related work
associated with constructing reproducible DL models.

2.1 The Need for Reproducible DL models

Several terms have been used in existing literature to discuss the
concepts of reproducibility in research and practice [5, 14, 17, 19,
40, 50, 56, 57]. We follow the similar definitions used in [56, 57],
where a particular piece of work is considered as reproducible, if the
same data, same code, and same analysis lead to the same results
or conclusions. On the other hand, replicable research refers to
that different data (from the same distribution of the original data)
combined with same code and analysis result in similar results. In
this paper, we focus on the reproducibility of DL models during the
training process. The same training process requires the exact same
setup, which includes the same source code (including training
scripts and configurations), the same training and testing data, and
the same environment.

Training reproducible DL models is essential in both research
and practice. On one hand, it facilitates the open science movement
by enabling researchers to easily reproduce the same results. Open
science movement [66, 67] promotes sharing research assets in a
transparent way, so that the quality of research manuscripts can
be checked and improved. On the other hand, many companies
are also integrating the cutting-edge DL research into their prod-
ucts. Having reproducible DL models would greatly benefit the
product development process. For example, if a DL model is repro-
ducible, the testing and debugging processes would be much easier

Towards Training Reproducible Deep Learning Models

as the problematic behavior can be consistently reproduced [18]. In
addition, many DL-based applications now require regulatory com-
pliance and are subject to rigorous auditing processes [13]. It is vital
that the behavior of the DL models constructed during the auditing
process closely matches with that of the released version [2].

2.2 Current State of Reproducible DL Models

2.2.1 Reproducibility crisis. In 2018, Huston [41] mentioned it is
very difficult to verify many claims published in research papers
due to the lack of code and the sensitivity of training conditions
(a.k.a., the reproducibility crisis in Al). Similarly, Gundersen and
Kjensmo [37] surveyed 400 research papers from IJCAI and AAAI
and found that only 6% of papers provided experiment code. Simi-
larly, in software engineering research, Liu et al. [50] surveyed 93
SE research papers which leveraged DL techniques and only 10.8%
of research discussed reproducibility related issues. Isdahl and Gun-
dersen [44] surveyed 13 state of the art ML platforms and found
the popular ML platforms provided by well-known companies have
poor support for reproducibility, especially in terms of data. Instead
of verifying and reporting the reproducibility of different research
work, we focus on proposing a new approach which can construct
reproducible DL models.

2.2.2 Efforts towards improving reproducibility. Various efforts have
been devoted to improve the reproducibility of DL models:

(E1) Controlling Randomness from software. Liu et al. [50]
found that the randomness in software could impact the repro-
ducibility of DL models and only a few studies (e.g., [28, 36, 40])
reported using preset seeds to control the randomness. Similarly,
Pham et al. [56] found that by controlling randomness in software,
the performance variances in trained DL models decrease signif-
icantly. Sugimura and Hartl [64] mentioned that a random seed
needs to be set as a hyperparameter prior to training for repro-
ducibility. Determined.Al [5], a company that focuses on providing
services for DL model training, also supports setting seeds for re-
producing DL experiments. However, none of the prior studies
discussed how to properly set seeds or the performance impact of
different set of seeds. Compared to presetting random seeds, our
record-and-replay-based technique to control the randomness in
the software is non-intrusive and incurs minimal disruption on the
existing DL development.

(E2) Mitigating non-determinism in the hardware. Pham et
al. [56] discussed using environment variables to mitigate non-
determinism caused by floating point rounding error and parallel
computation. Jooybar et al [45] designed a new GPU architecture
for deterministic operations. However, there has been a lack of
thorough assessment of the proposed solutions. In addition, our ap-
proach mainly focuses on mitigating non-determinism on common
hardware instead of proposing new hardware design.

(E3) Existing guidelines and best practices. To address the re-
producibility crisis mentioned above, major Al conferences such as
NeurIPS, ICML, and AAAT hold reproducibility workshops and ad-
vocate researchers to independently verify the results of published
research papers as reproducibility challenges. Various documen-
tation frameworks for DL models [30, 53] or checklists [19] have
been proposed recently. These documentations specify the required
information and artifacts (e.g., datasets, code, and experimental

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

results) that are needed to reproduce DL models. Similarly, Ghanta
et al [32] investigated Al reproducibility in production, where they
mentioned many factors need to be considered to achieve repro-
ducibility such as pipeline configuration and input data. Tatman
et al. [65] indicated that high reproducibility is achieved by man-
aging code, data, and environment. They suggest in order to reach
the highest reproducibility, the runtime environment should be
provided as hosting services, containers, or VMs. Sugimura and
Hartl [64] built an end-to-end reproducible ML pipeline which
focuses on data, feature, model, and software environment prove-
nance. In our study, we mainly focus on model training with the
assumption that the code, data, and environment should be con-
sistent across repeated training processes. However, even with
consistent assets mentioned above, it is still challenging to achieve
reproducibility due to the lack of tool support and neglection of
certain sources of non-determinism [32, 44, 48, 56, 58, 63, 65].

2.3 Industrial Assessment

Huawei is a large IT company, which provides many products and
services relying on Al-based components. To ensure the quality,
trustworthiness, transparency, and traceability of the products, prac-
titioners in Huawei have been investigating approaches to training
reproducible DL models. We worked closely with 20 practitioners,
who are either software developers or ML scientists with Ph.D
degrees. Their tasks are to prototype DL models and/or produc-
tionalize DL models. We first presented the current research and
practices on verifying and achieving reproducibility in DL models.
Then we conducted a two hour long semi-formal interview with
these practitioners to gather their opinions on whether the existing
work can help them address their DL model reproducibility issues
in practice. We summarized their opinions below:

Randomness in the Software: Practitioners are aware that cur-
rently the most effective approach to control the randomness in
the software is to set seeds prior to training. However, they are
reluctant to adopt such practice due to the following two reasons:
(1) a variety of usage context: for example, in software testing, they
would like to reserve the randomness so that more issues can be
exposed. However, after the issue is identified, they find it difficult
to reproduce the same issue in the next run. Setting seeds cannot
meet their needs in this context. (2) Sub-optimal performance: DL
models often require fine-tuning to reach the best performance.
Currently, the DL training relies on certain levels of randomness to
avoid local optimums. Setting seeds may have negative impacts on
the model performance. Although tools like AutoML [42] have been
recently widely adopted for selecting the optimal hyperparameters,
there are no existing techniques which incorporate random seeds
as part of their tuning or searching processes.

Non-determinism in the Hardware: There are research and grey
literature (e.g., technical documentations [14], blog posts [15]) de-
scribing techniques to mitigate the non-determinism in hardware
or proposing new hardware architecture [45]. However, in an in-
dustrial context, adopting new hardware architecture is impractical
due to the additional costs and the lack of evaluation and support.
In addition, the mentioned approaches (e.g., setting environment
variables) are not extensively evaluated on the effectiveness and

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

overhead. Hence, a systematic empirical study is needed before
applying such techniques in practices.
Reproducibility Guidelines: They have already applied best prac-
tices to manage the assets (e.g., code and data) used during training
processes by employing data and experiment management tools.
However, they found the DL models are still not reproducible. In
addition, they mentioned that existing techniques in this area does
not cover all of their use cases. For example, existing evaluation
criteria for DL model reproducibility works for classification tasks
(e.g., [56]), but not for regression tasks, which are the usage con-
texts for many DL models within Huawei. Hence, they prefer a
systematic guideline which standardizes many of these best prac-
tices across various sources and usage context so that they can
promote and enforce them within their organizations.

Inspired by the above feedback, we believe it is worthwhile to
propose a systematic approach towards training reproducible DL
models. We will describe our approach in details in the next section.

3 OUR APPROACH

Here we describe our systematic approach towards reproducing
DL models. Section 3.1 provides an overview of our approach. Sec-
tion 3.2 to 3.6 explain each phase in detail with a running example.

3.1 Overview

There are different stages in the DL workflow [23]. The focus of
our paper is training reproducible DL models. Hence, we assume
the datasets and extracted features are already available and can be
retrieved in a consistent manner.

Figure 1 presents the overview of our approach, which consists
of five phases. (1) During the Conducting initial training phase, we
prepare the training environment and conduct the training process
twice to generate two DL models: Model, ., and Model, . (2)
During the Verifying model reproducibility phase, the two DL models
from the previous phase are evaluated on a set of criteria to check if
they yield the same results. If yes, Model, ,,,,, is reproducible and
the process is completed. We also will update the reproducibility
guideline if there are any new mitigation strategies that have been
introduced during this process. If not, we will proceed to the next
phase. (3) During the Profiling and diagnosing phase, the system
calls and function calls are profiled. Such data is used to diagnose
and identify the root causes behind non-reproducibility. (4) During
the Updating phase, to mitigate newly identified sources of non-
determinism, the system calls that need to be intercepted by the
record-and-replay technique are updated and the non-deterministic
operations due to hardware are patched. (5) During the Record-and-
replay phase, the system calls, which introduce randomness during
training, are first recorded and then replayed. Two DL models,
Model,,,,,, and Model, ., are updated with the DL models during
the recording and replaying steps, respectively. These two updated
DL models are verified again in Phase 2. This process is repeated
until we have a reproducible DL model.

To ease explanation, in the rest of the section, we will describe
our approach using LeNet-5 as our running example. LeNet-5 [47]
is a popular open source DL model used for image classification.
The dataset used for training and evaluation is MNIST [9], which
consists of a set of 60,000 images for training, 10,000 images for

Chen and Wen, et al.

testing. Each image is assigned a label representing the handwritten
digits from 0 to 9.

3.2 Phase 1- Conducting initial training

The objective of this phase is to train two DL models under the
same experimental setup. This phase can be further broken down
into the following three steps:

Step 1 - Setting up the experimental environment. In this step, we set
up the experimental environment, which includes downloading and
configuring the following experimental assets: the dataset(s), the
source code for the DL model, and the runtime environment based
on the required software dependencies and the hardware speci-
fications [43]. Generally the experimental assets are recorded in
documentations like research papers, reproducibility checklist [19],
or model cards [53] and data sheets [30]. For our running example,
documentations are from research papers [47, 56]. The code for
LeNet-5 is adapted from a popular open source repository [49], and
the MNIST dataset is downloaded from [9]. We further split the
dataset into three parts: training, validation, and testing similar
to the prior work [56]. In particular, we split the 10,000 images in
testing into 7,500 images and 2,500 images. The 7,500 images are
used for validation in the training process, and the 2,500 images
are used to evaluate the final model, which are not exposed to the
training process. We deploy the following runtime environment:
for the software dependencies, we use Python 3.6 with TensorFlow
1.14 GPU version. For the hardware specification, we use a SUSE
Linux Enterprise Server 12 machine with a Tesla-P100-16GB GPU.
The GPU related libraries are CUDA 10.0.130 and CuDNN 7.5.1.

Step 2 - Training the target DL model. In this step, we invoke the
training scripts to generate the target DL model, called Model, ,, ..
During the training process, we collect the following set of metrics:
loss values, the training epochs, and the training time. This set of
metrics is called ProcessMetrics,,,,.,- In our running example, we
invoke the training scripts for LeNet-5 to construct the DL model

and record its metrics.

Step 3 - Verifying assets and retraining. In this step, we first verify
whether the experimental assets are consistent with the informa-
tion provided in step 1. There are many approaches to verifying the
experimental assets. For example, to verify the dataset(s), we check
if the SHA-1 checksum is consistent. To verify the software envi-
ronment, we check the software dependency versions by reusing
the same environment (e.g., docker, VM) or simply checking all
the installed software packages by commands like pip list. Once
the assets are verified, we perform the same training process as
step 2 to generate another DL model, named as Model, .. We
also record the same set of metrics, called as ProcessMetrics,,,,.,,
during the training process. The two DL models along with the
recorded set of metrics will be used in the next phase for verifying
model reproducibility. In our running example, we reuse the same
experimental environment without modifying the source code and
the datasets to ensure the asset consistency. Then we repeat the
training process to collect the second LeNet-5 model and its metrics.

Towards Training Reproducible Deep Learning Models

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Approach

Reproducible?

—’@i_

2. Verifying model

1. Conducting initial

3. Profiling and

Process
finished

Unsupported
non-deterministic
operations

4. Updating 5. Record-and-

training reproducibility diagnosing replay
Artifacts
= 7! (fo'f £ ff D
ﬁ@ I_ail l:ll]l]l] @ La—;l nl]l]l] %
Guideline Model;yget Evaluation Process Modelg, Evaluation Process Random profile
MEriCSyget MEriCSiyger MEtricS e MEtricS epr

Figure 1: An overview of our approach.

3.3 Phase 2 - Verifying model reproducibility

The objective of this phase is to verify if the current training process
is reproducible by comparing the two DL models against a set of
evaluation criteria. This phase consists of the following three steps:

Step 1 - Verifying the reproducibility of the training results. In this
step, we evaluate the two DL models, Model, ., and Model, , , on
the same testing dataset. Depending on the tasks, we use different

evaluation metrics:

o Classification tasks: For classification tasks, we evaluate three
metrics: the overall accuracy, per-class accuracy, and the predic-
tion results on the testing dataset. Consider the total number of
instances in testing datasets is N,,,,. The number of correctly
labeled instances is N, ., For label i, the number of instances
are N,,,.. The correctly labeled instances of label i is N, .., -

Hence, the overall accuracy is calculated as: Overall accuracy =

N,) .
—gorrect For each label i, the per-class accuracy is calculated as:

test

Ncorrecti

Per-class accuracy (label i) = . In addition, we collect the

prediction results for every instance in the testing dataset.

® Regression tasks: For regression tasks, we evaluate the Mean
Absolute Error (MAE). The total number of instances in the
testing dataset is Nyes; Consider for each instance, the true ob-
served value is X; and the predicted value is Y;. MAE is cal-

St %=Xl ,
culated as: MAE = ==-g———. These metrics are called as
es.
EvaluationMetrics,,, ., and EvaluationMetrics, ., for these two

models, respectively. In our running example, we use evaluation
metrics for classification tasks as LeNet-5 is used for image clas-
sification.

Step 2 - Verifying the reproducibility of the training process. In
this step, we compare the collected metrics for Model and

target
Model i.e., EvaluationMetrics vs. EvaluationMetrics
and ProcessMetrics

target repro
repro

vs. ProcessMetrics by a Python script.
For evaluation metrics, we check if EvaluationMetrics

repro (

target)

target and
EvaluationMetrics,,,,, are exactly identical. For process metrics,
we check if the loss values during each epoch, and the number of

epochs are the same.

Step 3 - Reporting the results. A DL model is reproducible if both
the evaluation metrics and the process metrics are identical (except
for the training time). If the DL models are not reproducible, we
move on to the next phase.

In our running example, the two DL models emit different evalua-
tion metrics. The overall accuracy for the two models are 99.16% and
98.64%, respectively. For per-class accuracy, the maximum absolute
differences could be as large as 2.3%. Among the 2,500 prediction
results, 48 of them are inconsistent. None of the loss values during
the epochs are the same. The total number of training epochs are
50 as it is pre-configured. This result shows that the two DL models
are not reproducible. Hence, we proceed to the next phase.

3.4 Phase 3 - Profiling and diagnosing

The objective of this phase is to identify the rationales on why the
DL models are not reproducible through analysis of the profiled
results. The output of this phase is a list of system calls that intro-
duce software-related randomness and a list of library calls that
introduce hardware related non-determinism. This phase consists
of the following four steps:

Step 1 - Profiling. This step is further divided into two sub-steps
based on the type of data, which is profiled:

Step 1.1 - Profiling system calls: After inspecting the documentation
and the source code of the DL frameworks, we have found that the
randomness from software can be traced to the underlying system
calls. For example, in TensorFlow, the random number generator
is controlled by a special file (e.g., /dev/urandom) in the Linux
environment. When a random number is needed in the training,
the kernel will invoke a system call to query /dev/urandom for
a sequence of random bytes. The sequence of random bytes is
then used by the random generation algorithm (e.g., the Philox
algorithm [60]) to generate the actual random number used in the
training process.

Step 1.2 - Profiling library calls: To mitigate the sources of non-
determinism in the hardware, popular DL frameworks start to pro-
vide environment variables to enhance reproducibility. For exam-
ple, in TensorFlow 2.1 and above, setting the environment variable

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

TF_CUDNN_DETERMINISTIC to be "true" could indicate the cuDNN
libraries to disable the auto-tuning feature and use the deterministic
operations instead of non-deterministic ones. However, there are
still many functions that could introduce non-determinism even
after the environment variable is set. In addition, lower versions
of TensorFlow (e.g., 1.14), which does not support such configura-
tion, are still widely used in practice. To address this issue, Nvidia
has released an open source repository [15] to document the root
causes of the non-deterministic functions and is currently working
on providing patches for various versions of TensorFlow. Not all the
operations could be made deterministic and ongoing efforts are be-
ing made [17]. Hence, to diagnose the sources of non-determinism
in hardware, we perform function level profiling to check if any of
the functions are deemed as non-deterministic. Different from pro-
filing the system calls, which extracts call information at the kernel
level, the goal of profiling the library calls is to extract all the in-
voked function calls at framework level (e.g., tensorflow.shape).

In our running example, we repeat the training process of LeNet-
5 with the profiling tools. We use strace to profile the list of system
calls invoked during the training process. strace exposes the inter-
actions between processes and the system libraries and lists all the
invoked system calls. We use cProfile, a C-based profiling tool,
to gather the list of invoked functions at the framework level.

Step 2 - Diagnosing sources of randomness. In this step, we analyze
the recorded data from strace to identify the set of system calls
which can contribute to software-related randomness. We consult
with the documentation of system calls and identify the list of
system calls, which causes randomness. This list varies depending
on the versions of the operating systems. For example, the system
call getrandomis only used in later version of Linux kernel (version
3.17 and after). Prior to 3.17, only /dev/urandom is used. Hence,
we have to not only search for the list of randomness introducing
system calls in the strace data, but also checking if the function
parameters contain "/dev/urandom". Figure 2(a) shows a snippet
of the sample outputs from strace in our running example. Each
line corresponds to one system call. For example, line 10 shows
that the program from /usr/bin/python3 is executed with the
script mnist_lenet_5.py and the return value is 0. The system
call recorded at line 20 reads from "/dev/urandom"”, and system
call (getrandom) recorded at line 51 is also invoked. Both of the
two system calls introduce software-related randomness.

Step 3 - Diagnosing sources of non-determinism in hardware. In this
step, we cross-check with the Nvidia documentation [15] to see if
any of the library functions invoked during the training process
triggers the non-determinism functions at the harware layer. If such
functions exist, we check if there is a corresponding patch provided.
If no such patch exists, we will document the unsupported non-
deterministic operations and finish the current process. If the patch
exists, we will move on to the next phase. Figure 2(b) shows a snip-
pet of the sample outputs of cProfile for our running example.
The functions softmax, weights, bias_add are invoked 3, 101, and
2 times, respectively. We find that bias_add leverages the CUDA
implementation of atomicAdd(), which is commonly used in ma-
trix operations. The behavior of atomicAdd() is non-deterministic
because of the order of parallel computations is undetermined,

Chen and Wen, et al.

Line System calls

10 execve("/usr/bin/python3", ["python3", "mnist_lenet_5.py"],
Ox7fffd6d52180 /* 25 vars */) = 0@

20 openat (AT_FDCWD, "/dev/urandom", O_RDONLY) = 4

51 getrandom(" \xfb\xc3\x44\xe2\x06\x65\x95\x70\xca\x48\x4b\xd3\x65
\x9d\xcb\x8f", 16, @) = 16

100 exit_group(@) = ?
101 +++ exited with @ +++

(a). The sample outputs of strace.

ncalls Filename:lineno(function)

3 nn_ops.py:2876 (tf.nn.softmax)
101 base_layer.py:742 (weights)

2 nn_ops.py:2627 (tf.nn.bias_add)

(b). The sample outputs of cProfile.

Figure 2: Sample output snippets from strace and cProfile.

which causes rounding error in floating point calculation [15, 56].
The other function calls do not trigger non-deterministic behavior.

3.5 Phase 4 - Updating

In this phase, we update our mitigation strategies based on the
diagnosis results from the previous phase. This phase can be further
broken down into two steps:

Step 1 - Updating the list of system calls for recording. For the ran-
domness introducing functions, we will add them into the list of
intercepted system calls for our record-and-replay technique, so
that the return values of the relevant system calls can be successfully
recorded (described in the next phase). In our running example, we
will add the invocation of reading /dev/urandom and getrandom
into the list of intercepted system calls to mitigate randomness in
the software.

Step 2 - Applying the right patches for non-deterministic library calls.
For the non-deterministic functions related to hardware, we check if
there are existing patches that address such problems and integrate
them into the training scripts. In our running example, after check-
ing the documentation from the Nvidia repository [15], we found
one patch, which replaces bias_add calls with _patch_bias_add.
We then integrated the patch to the source code of the training
scripts by adding these two lines of code: from tfdeterminism
import patch and patch(). In this way, during the subsequent
training process of LeNet-5, the non-deterministic functions will
be replaced with the deterministic alternatives.

3.6 Phase 5 - Record-and-Replay

As explained in Section 2, presetting random seeds is not preferred
by practitioners due to various drawbacks. There are libraries (e.g.,
numpy) which support the recording and replaying of random
states through explicit API calls. However, this method is also in-
trusive and would incur additional costs we described before. More
importantly, mainstream DL frameworks such as TensorFlow and
PyTorch do not provide such functionality. Hence, we propose a
record-and-replay technique (overview shown in Figure 3) to ad-
dress these challenges. This phase has two steps:

Towards Training Reproducible Deep Learning Models

Recording Replaying

Training process Training process

] APIhook § § API hookf

Output Read
Random Profile

Dynamic library Dynamic library

l T Return'

System library System library

Figure 3: Our record-and-replay technique.

Step 1 - Recording. In this step, we record the random values re-
turned by system calls during the training process. We will run
the identical training process as in Phase 1 with the our record-
ing technique enabled. We leverage the API hook mechanism to
intercept the system calls by pointing the environment variable
LD_PRELOAD to our self-implemented dynamic library. It tells the
dynamic loaders to look up symbols in the dynamic library de-
fined in LD_PRELOAD first. The functions of the dynamic library
will be first loaded into the address space of the process. Our dy-
namic library implements a list of functions which have the same
symbols of the randomness introducing system calls in the system
libraries. These self-implemented functions will be loaded first and
invoke the actual randomness introducing system calls to get the
returned random bytes. The sequences of random bytes emitted
by the system calls are then recorded into an user-defined object.
These objects are then serialized and written into files called the
random profile. We replace Model, ., and ProcessMetrics,,,,.,
with the DL model and the process metrics generated in this step.

In our running example, two types of system calls are inter-
cepted (i.e., getrandom and the read of /dev/urandom) and the
return values are successfully recorded. The outputted random pro-
file is stored at a pre-defined path in the local file system called
urandom. conf and getrandom. conf. For the process-related met-
rics, we collect the loss values for each epoch (e.g., the loss value of
the first epoch is 1.062), the training time (106.9 seconds), and the
number of training epochs (50).

Step 2 - Replaying. In this step, we repeat the same training process
as the previous step while replaying the random values stored in the
random profile by leveraging the API hook mechanism. As shown
in Figure 3, our dynamic library will search for existing random
profile. If such random profile exists, the recorded random bytes are
used to to replace the random bytes returned by the system calls.
We also replace Model, ., and ProcessMetrics,,,,, with the DL
model and the process metrics generated in this step. In our running
example, we compare the execution logs between our recording
and replaying steps and verify that the same set of random numbers
are generated in these two steps.

Once this phase is completed, the two updated DL models are
sent to Phase 2 for verifying their reproducibility again. This process
is repeated until the DL model is shown to be reproducible or we find
certain sources of non-determinism that currently do not have exist-
ing solutions. For example, the function tf. sparse. sparse_den_m
atmul is noted in [15] that no solution has been released yet. The
reasons for non-reproducibility should be included in the documen-
tations along with released DL models.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 1: The DL models used in our case study.

Models ‘ Datasets ‘ # of Labels ‘ Setup ‘ Task
LeNet-1 [47]

LeNet-4 [47] MNIST [9] 10

LeNet-5 [47] All Classification
ResNet-38 [39] | (1paR-10 [3] 10

ResNet-56 [39]

WRN-28-10 [69] | CIFAR-100 [3] 100 G1-G10

ModelX Dataset X - G1-G5 Regression

In our running example, in terms of Modelyepro and Modeliarget,
EvaluationMetrics, ., and EvaluationMetrics,,, ., are identical
(i.e., overall accuracy, the per-class accuracy, and prediction results
on the testing datasets of two DL models are identical). Except for
the training time, the ProcessMetrics, ,,,, and ProcessMetrics, .,

are also identical. In conclusion, we consider the trained LeNet-5
models to be reproducible.

4 RESULTS

In this section, we evaluate our approach against open source and
commercial DL models. Section 4.1 describes our case study setup.
Section 4.2 presents the analysis of our evaluation results.

4.1 Case Study Setup

We have selected six commonly studied Computer Vision (CV)
related DL models similar to prior studies [35, 38, 51, 52, 56]. The
implementations of these models are adapted from a popular open
source repository used by prior studies [35, 38, 49, 52].

Table 1 shows the details about the studied datasets and the mod-
els. The studied models are LeNet-1, LeNet-4, LeNet-5, ResNet-38,
ResNet-56, and WRN-28-10. These models mainly leverage the Con-
volutional Neural Network (CNN) as their neural network architec-
tures. We use popular open source datasets like MNIST, CIFAR-10,
and CIFAR-100. The models and datasets have been widely studied
and evaluated in prior SE research [31, 38, 51, 52]. For models in
LeNet family, we train for 50 epochs. For models in ResNet family
and WRN-28-10, we train for 200 epochs [56].

We also study ModelX used in a commercial system from Huawei.
ModelX is a LSTM-based DL model used to forecast energy usages.
ModelX is trained with the early-stopping mechanism and the
epochs are not deterministic. The training process will automat-
ically stop when the loss values have not improved for 5 epochs.
The maximum number of epochs in the training is set to be 50.
ModelX uses proprietary time-series data as their training and test-
ing datasets and is deployed in systems, which are used by tens
of millions of customers. Due to the company policy and review
standards, we cannot disclose the detail design of the DL model.
The implementation of other open source models is disclosed in
our replication package [21].

For both open source and commercial models, we perform the
training processes with different setups. In total, we have 16 differ-
ent setups listed in Table 2:

e First, there are two general groups of setups, CPU-based and

GPU-based, to assess whether our approach can address different
sources of hardware-related non-determinism. For CPU-based

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Table 2: The information of all the experiment setups. R&R
represents Record-and-Replay.

ID Hardware Software Seed R &R Patch

C1 - - -
C2 TF1.14 Yes - -
C3 - Yes -
Ca CPU - - -
C5 TF2.1
C6 - Yes -

G1 - - -

G2 Yes - -

G3 TF1.14 - - Yes
G4 Yes - Yes
G5 - Yes Yes
Gé GPU - - -
G7 Yes - -

G8 TF2.1 - - Yes
G9 Yes - Yes

G10 - Yes Yes

experiments (i.e., C1 - C6), we only train the models of the LeNet
family and ResNet family, as the training for WRN-28-10 and
the commercial project takes extremely long time (longer than
a week) and not practical to use in field. For GPU-based exper-
iments (i.e., G1 - G10), we conduct experiments on training all
the aforementioned models. The CPU used for the experiments
is Intel(R) Xeon(R) Gold 6278C CPU with 16 cores and the GPU
we use is Tesla-P100-16GB. The GPU related libraries are (CUDA
10.0.130 and cuDNN 7.5.1), and (CUDA 10.1 and cuDNN 7.6) for
TensorFlow 1.14 and TensorFlow 2.1, respectively. We use two
sets of hardware related libraries due to compatibility issues
mentioned in the official TensorFlow documentation [16].

o Then, within the same hardware setup, we also conduct experi-
ments by varying the software versions. For open source models,
we use both TensorFlow 1.14 and TensorFlow 2.1. We choose
to carry out our experiments on these two TensorFlow versions
as major changes [8] have been made from TensorFlow 1.X to
TensorFlow 2.X and there are still many models which use either
or both versions. Hence, we want to verify if our approach can
work with both versions. For ModelX, we only use TensorFlow
1.14 as it currently only supports the TensorFlow 1.X APIs.

e For CPU-based experiments in a particular software version
(e.g., TensorFlow 1.14), we have three setups: C1 is to run the
training process without setting seeds and without enabling the
record-and-replay technique. C2 is to run the training with seeds,
whereas C3 is to run the training with record-and replay enabled.
For GPU-based experiments in a particular software version (e.g.,
TensorFlow 1.14), we have five setups: G1 and G2 are similar to
C1 and C2. G3 is to run the experiments with patching only to
evaluate the variance related to software randomness. G4 and
G5 are both running with patches, but configured with either
setting seeds or enabling record-and-replay, respectively.

For each setup, we run the experiments 16 times similar to a prior
study [56]. The training dataset is split into batches and fed into the

Chen and Wen, et al.

training process; the validation dataset is used for evaluating the
losses during training; and the testing dataset is used for evaluating
the final models. In other words, the training and validation dataset
are known to the trained DL models, while the testing data is
completely new to the model to mimic the realistic field assessment.

We further divide the 16 runs of DL experiments into 8 pairs,
each of which consists of two runs. We then compare the evaluation
metrics from each pair of runs to verify reproducibility. For the
setups with random seeds configured, we choose 8 most commonly
used random seeds for each pair (e.g., 0 and 42) [10]. We collect the
process and evaluation metrics as described in Section 3.3.

In addition, for each experiment, we also collect the running
time for each of the above experiment to assess the runtime over-
head incurred by our approach. We only focus on the experiments
conducted on GPU, as GPU-based experiments are executed on a
physical machine. CPU-based experiments are conducted on a vir-
tual machine in the cloud environment, which can introduce large
variances caused by the underlying cloud platform [62]. For exam-
ple, comparing the time of G1 and G3 could reveal the performance
impact on enabling deterministic patch for GPU. Comparing the
time of G3 and G5 could reveal the overhead introduced through
record-and-replay technique. To statistically compare the time dif-
ferences, we perform the non-parametric Wilcoxon rank-sum test
(WSR). To assess the magnitude of the time differences among differ-
ent setups, we also calculate the effect size using Cliff’s Delta [59].

Finally, as our approach also stores additional data (e.g., the
recorded random profile during the store-and-replay phase), we
evaluate the storage overhead brought by our approach by compar-
ing the size of DL models with the size of random profiles.

4.2 Evaluation Analysis and Results

Here we evaluate if the studied models are reproducible after ap-
plying our approach. Then we study the time and storage overhead
associated with our approach.
Reproducibility by applying our approach. The results show
that, the six open source models can be successfully reproduced by
applying our approach with default settings. In other words, all the
predictions are consistent between the target model and the repro-
duced model. The default record-and-replay technique intercepts
two types of randomness introducing system calls (i.e., the read of
/dev/urandom and getrandom). The default patch is the version
0.3.0 of tensorflow-determinism released in PyPI for TensorFlow
1.14. For TensorFlow 2.1, we need to set the environment variable
TF_CUDNN_DETERMINISTIC to "true". The results demonstrate the
effectiveness of our approach on training reproducible DL models.
Unfortunately, ModelX under such default setup cannot be repro-
duced. While applying our approach, during the profiling and diag-
nosing phase, we found one library function (unsorted_segment_s
um) invoked from ModelX, which cannot be mitigated by the default
patch. We carefully examined the solutions described in [15] and
discovered an experimental patch that could resolve this issue. We
applied the experimental patch along with the record-and-replay
technique and are able to achieve reproducibility for ModelX, i.e.,
all the predictions are consistent.
Overhead. We evaluate the overall time overhead incurred by our
approach by comparing training time between the setup without

Towards Training Reproducible Deep Learning Models

seed, record-and-replay, and patch against the setup with record-
and-replay and patch (a.k.a., our approach). We only compare the
training time among open source models, as ModelX adopts the
early-stopping mechanism as described above (Section 4.1). As
shown in Table 3, training takes longer when applying our ap-
proach than the setups without. This is mainly because patched
functions adopt deterministic operations, which do not leverage
operations (e.g., atomicAdd) that support parallel computation. The
time overhead ranges from 24% to 114% in our experiments. Al-
though our approach makes training on GPU slower, compared
with training on CPUs, training on GPU with our approach is still
much faster (e.g., training WRN-28-10 on CPU takes more than 7
days). We further evaluate the time overhead brought by patching
and record-and-replay alone. We compare the setup with patch-
ing enabled against the setups without it (e.g., G1 vs. G3). We also
compare the setup with record-and-replay, patching enabled with
the setup with patching only (e.g., G3 vs. G5). The results show
that the record-and-replay technique does not introduce statistical
significant overhead (p — value > 0.05). In other words, patching is
the main reason that our approach introduces the time overhead.

Table 3: Comparing the time and storage overhead. Time(O)
represents the average training time (in hours) for original
setup, and Time(R) represents the average training time (in
hours) for the setup using our approach (Time(R)). The time
is italicized if p-value is <0.001 and the effect size is large
with (*). RP represents for Random Profile.

Model Time(O)/Time(R) Model Size RP Size
LeNet-1 0.017/0.023 (*) 35 KB 13 KB
LeNet-4 0.019/0.027 (*) 224 KB 13 KB
LeNet-5 0.021/0.028 (*) 267 KB 13 KB
ResNet-38 1.243/1.561 (*) 4.8 MB 13 KB
ResNet-56 1.752/2.179 (*) 7.6 MB 13 KB
WRN-28-10 7.08/14.979 (*) 279 MB 13 KB
ModelX - 675 KB 38 KB

Table 3 also shows the average size of trained DL models and the
random profiles. The absolute storage sizes of the random profile
are very small, ranging between 13 KB to 38 KB depending on the
DL models. Compared to the size of the model, the biggest model
is WRN-28-10 (279 MB). The random profile is only 0.005% of the
model in terms of the size. When the model is less complex (e.g.,
LeNet-1), the additional cost becomes more prominent. In LeNet-1,
the random profile incurs 37% additional storage. However, the total
storage size when combining the model and the random profile for
LetNet-1 is less than 50 KB, which is acceptable under most of the
use cases.

Summary: Case study results show that our approach can
successfully reproduce all the studied DL models. Patching (i.e.,
replace non-deterministic operations from hardware with de-
terministic ones) incurs large time overhead as the trade-off for
ensuring deterministic behavior. The record-and-replay tech-
nique does not incur additional time overhead in the training
process with very small additional storage sizes.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

5 DISCUSSIONS

In this section, we conduct the variance analysis and discuss the
lessons learnt when applying our approach.

5.1 Variance Analysis

To measure the variances introduced by different sources of non-
determinism, we compare the evaluation metrics among different
setups. Such analysis demonstrates the variances between our ap-
proach with the state-of-the-art techniques towards reproducing DL
models. For example, variances caused by software are analyzed by
comparing the evaluation metrics between each pair in G3, where
patching is enabled to eliminate hardware non-determinism (i.e.,
the approach proposed by [15]). To measure the variances caused
by hardware, we compare the evaluation metrics between each
pair in G2 or G7, where the random seeds are preset to eliminate
software randomness (i.e., the approach proposed by [56]). In ad-
dition to measuring the software variance and hardware variance,
which result from applying two state-of-the-art techniques, we also
show the variances incurred from the original setup with no preset
seed, record-and-replay not enabled, and patching not enabled. The
results of our approach, which incurs zero variances, are also listed
in the table.

The detailed results are shown in Table 4. We only include the re-
sults for the six open source projects due to confidentiality reasons.
Three evaluation metrics are used: overall accuracy, per-class accu-
racy, and the consistency of predictions. For each type of metric,
we calculate the maximum differences and the standard deviations
of the differences.

For example, for ResNet-38, the largest variance of overall ac-
curacy in the original setup is 2.0%, while the largest variances in-
troduced by software randomness and hardware non-determinism
are 1.4% and 1.2%, respectively. For per-class accuracy, the largest
variance in the original setup is 10.1%, while the largest variances in-
troduced by software randomness and hardware non-determinism
are 6.8% and 4.9%. For predictions, the largest number of incon-
sistent predictions in the original setup is 219, while the largest
number of inconsistent predictions caused by software randomness
and hardware non-determinism are 216 and 209, respectively.

In summary, the variances caused by software are generally
larger than those caused by hardware, yet the variances caused
by hardware are not negligible and need to be controlled in order
to train reproducible DL models. The results demonstrate the im-
portance and effectiveness of applying our approach for training
reproducible DL models, as our approach is the only one that does
not introduce any variances.

5.2 Generalizability in other DL frameworks

Other than the DL framework studied in Section 4.2, we have also
applied our approach on another popular DL framework, PyTorch.
Experiment results show that for common models such as LeNet-5
and ResNet-56 with PyTorch version 1.7, our approach can work out
of the box. In the future, we also plan to experiment our approach
on more DL frameworks and more DL models across different tasks.

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

Chen and Wen, et al.

Table 4: Comparing variances between our approach and the state-of-the-art techniques. Software variance refers to the tech-
nique for only controlling hardware non-determinism [15]. Hardware variance refers to the technique for only controlling
software randomness [56]. Original variance refers to the variance caused by the original setup.

Our Variance

Software Variance

Hardware Variance Original Variance

Diff SDev Diff SDev Diff SDev Diff SDev
LeNet1 0 0 0.8% 0.2% 0 0 1.7% 0.3%
LeNet4 0 0 0.7% 0.1% 0 0 0.8% 0.1%
Overall acc. LeNet5 0 0 0.5% 0.1% 0 0 0.5% 0.1%
ResNet38 0 0 1.4% 0.3% 1.2% 0.3% 2.0% 0.4%
ResNet56 0 0 1.2% 0.3% 0.8% 0.2% 1.7% 0.3%
WRN-28-10 0 0 1.4% 0.4% 1.7% 0.5% 2.4% 0.5%
LeNet1 0 0 3.7% 0.8% 0 0 4.8% 1.2%
LeNet4 0 0 1.7% 0.3% 0 0 3.0% 0.6%
Per-class acc. LeNet5 0 0 2.3% 0.4% 0 0 2.5% 0.5%
ResNet38 0 0 6.8% 1.2% 4.9% 0.9% 10.1% 1.9%
ResNet56 0 0 6.8% 1.1% 5.3% 0.8% 10.5% 1.9%
WRN-28-10 0 0 35.0% 5.0% 25.0% 3.0% 409% 7.8%
LeNet1 0 0 48 14.1 0 0 50 17.04
LeNet4 0 0 31 3.8 0 0 29 3.8
Predictions LeNet5 0 0 28 3.5 0 0 26 3.5
ResNet38 0 0 216 10.1 209 11.3 219 10.7
ResNet56 0 0 198 8.6 188 8.8 198 8.0
WRN-28-10 0 0 485 18.0 453 12.3 542 18.7

5.3 Documentations on DL Models

Mitchell et al. [53] proposed Model Cards to document ML models.
A typical model card includes nine sections (e.g., Model Details
and Intended Use), each of which contains a list of relevant infor-
mation. For example, in the Model Details section, it suggests that
the “Information about training algorithms, parameters, fairness
constraints or other applied approaches, and features” should be
accompanied with released models. Such a practice would help
other researchers or practitioners to evaluate if the models can be
reproduced. However, the current practice would still miss certain
details. We share our experience below to demonstrate this point.

TensorFlow and Keras are two of the most widely used DL frame-
works. Keras is a set of high level APIs designed for simplicity and
usability for both software engineers and DL researchers, while
TensorFlow offers more low level operations and is more flexible to
design and implement complex network structures. There are two
ways of using Keras and TensorFlow in DL training. The first way is
to import Keras and TensorFlow separately by first calling import
keras and then verify if the backend of Keras is TensorFlow. If
yes, TensorFlow can be imported by import tensorflow. This
way is referred to as Keras_first. The second way is to directly use
the Keras API within TensorFlow by first importing TensorFlow.
Then we use another import statement from tensorflow import
keras. This way is referred to as TF_first. We conduct experiments
to evaluate if the two different usage of APIs have an impact on
training reproducible DL models. As a result, the following findings
are presented:

e When training on CPUs, using Keras_first will lead to unre-
producible results even after mitigating all the sources of non-
determinism. This issue can be reproduced by using various Keras

version from 2.2.2 to 2.2.5. On the contrary, using TF_first with
the same setting will yield reproducible results. This issue does
not exist in training on GPUs.

o While training with Keras version 2.3.0 and above, we are able
to reproduce the results both for Keras_first and TF_first using
our approach. However, the DL models trained using Keras_first
and TF _first are not consistent with each other.

Both findings have been submitted as issue reports to the official
Keras development team who suggested us to use newer versions
of Keras instead [7, 20]. The findings highlight that not only the
versions of dependencies, but also how the dependent software
packages are used can impact the reproducibility of DL models.
Unfortunately, existing DL model documentation frameworks like
Model cards [53] do not specify how the software dependencies
should be described. Hence, we suggest ML practitioners look into
the approach adopted for traditional software projects like software
bills of materials (SBOM) [68] for rigorously specifying software
dependencies.

6 GUIDELINE

In this section, we propose a guideline for researchers and practi-
tioners who are interested in constructing reproducible DL models.
Our guideline consists of five steps:

(1) Use documentation frameworks such as Model Cards to docu-
ment the details such as model training. Consider leveraging
SBOM to document software dependencies. Ensure the docu-
mentation co-evolves with the model development process.

(2) Use asset management tools such as DVC [12] and MLflow [1]
to manage the experimental assets used during training process.
To mitigate the risks of introducing non-determinism from

Towards Training Reproducible Deep Learning Models

assets, we suggest using virtualization techniques to provide a
complete runtime environment.

(3) Use and document the appropriate evaluation criteria depend-
ing on the domain of the DL models. Some of these metrics (e.g.,
evaluation metrics) may be domain specific, whereas other
metrics (e.g., process metrics) are general.

(4) Randomness in the software and non-determinism from hard-
ware are two of the main challenges preventing the reproducibil-
ity of DL models. Use record-and-replay technique to mitigate
sources of randomness in the software when presetting seed is
not preferred. Use patching to mitigate the non-determinism
from hardware if the overhead is acceptable.

(5) If DL models are still not reproducible by applying our ap-
proach, double check if the list of system calls which introduce
randomness changes or if the deterministic operations are not
currently supported by the hardware libraries. Document the
unsupported non-deterministic operations and search for alter-
native operations on the same operation.

7 THREATS TO VALIDITY

External Validity. Currently, we focus on DL training using Python
along with TensorFlow and Keras framework under Linux. We are
currently working on extending our approach to support DL mod-
els developed in other DL frameworks and additional operating
systems. In addition, we have applied our approaches on two pop-
ular domains of DL: classification and regression tasks. We plan
to investigate other tasks such as Natural Language Processing
and Reinforcement Learning. GPUs and CPUs are common and
widely adopted hardware for DL training. Hence, in this paper, we
choose to focus on evaluating the DL training on GPUs and CPUs.
However, DL training on other hardware such as TPU and edge
devices also might encounter reproducibility issues. We believe the
idea of our approach can be applied in these contexts as well. Future
work is welcomed to extend our approach to different platforms.
Internal Validity. When measuring the variances incurred by
different sources of non-determinism, we control the other con-
founding factors to ensure internal validity. For example, when
measuring the overall accuracy variance caused by randomness in
software, we only compare the runs with patching enabled and with
the same dependencies. In addition, in our evaluation, we repeat
the model training process for at least 16 times for each setup to
observe the impact of different non-deterministic factors.
Construct Validity. The implementation code for the DL models
used in our case studies has been careful reviewed by previous
researchers 35, 38, 52, 56]. Our record-and-replay technique for
controlling the software factors work when low level random func-
tions are dynamically linked and invoked.

8 CONCLUSIONS

Reproducibility is a rising concern in Al, especially in DL. Prior
practices and research mainly focus on mitigating the sources of
non-determinism separately without a systematic approach and
thorough evaluation. In this paper, we propose a systematic ap-
proach to reproducing DL models through controlling the software
and hardware non-determinism. Case studies on six open source
and one commercial DL models show that all the models can be

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

successfully reproduced by leveraging our approach. In addition,
we present a guideline for training reproducible DL models and
describe some of the lessons learned based on our experience of
applying our approach in practice. Last, we provide a replication
package [21] to facilitate reproducibility of our study.

REFERENCES

[1] 2021 (accessed August, 2021). An open source platform for the machine learning
lifecycle. https://mlflow.org/

[2] 2021 (accessed August, 2021). Assessment List for Trustworthy Artificial Intelli-
gence (ALTAI) for self-assessment. https://digital-strategy.ec.europa.eu/en/library/
assessment-list-trustworthy-artificial- intelligence- altai- self-assessment

[3] 2021 (accessed August, 2021). The CIFAR-10 and CIFAR-100 datasets. https:
//www.cs.toronto.edu/~kriz/cifar.html

[4] 2021 (accessed August, 2021). CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit

[5] 2021 (accessed August, 2021). Determined AI Reproducibility. https://docs.
determined.ai/latest/topic- guides/training/reproducibility.html

[6] 2021 (accessed August, 2021). Determinism in Deep Learning (S9911).
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/
presentation/s9911-determinism-in-deep-learning.pdf

[7] 2021 (accessed August, 2021). Inconsistent results when using two styles of import
statements - Issue 14672. https://github.com/keras-team/keras/issues/14672

[8] 2021 (accessed August, 2021). Migrate your TensorFlow 1 code to TensorFlow 2.
https://www.tensorflow.org/guide/migrate

[9] 2021 (accessed August, 2021). The Mnist Database of handwritten digits. http:
//yann.lecun.com/exdb/mnist/

[10] 2021 (accessed August, 2021). Most common random seeds. https://www.kaggle.
com/residentmario/kernel16e284dcb7

[11] 2021 (accessed August, 2021). Notes from the Al Frontier Insights from Hundreds of
Use Cases. https://www.mckinsey.com/featured-insights/artificial-intelligence/
notes-from-the-ai-frontier-applications-and-value- of-deep-learning

[12] 2021 (accessed August, 2021). Open-source Version Control System for Machine
Learning Projects. https://dvc.org/

[13] 2021 (accessed August, 2021). Proposal for a REGULATION OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED RULES ON
ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING
CERTAIN UNION LEGISLATIVE ACTS. https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A52021PC0206

[14] 2021 (accessed August, 2021). Reproducibility in Pytorch. https://pytorch.org/
docs/stable/notes/randomness.html

[15] 2021 (accessed August, 2021). Tensorflow Determinism. https://github.com/
NVIDIA/framework-determinism

[16] 2021 (accessed August, 2021). TensorFlow GPU Support. https://www.tensorflow.

org/install/source#gpu

2021 (accessed August, 2021). Tensorflow RFC for determinism. https://github.

com/tensorflow/community/blob/master/rfcs/20210119-determinism.md

[18] 2021 (accessed August, 2021). Testing for Deploying Machine Learning
Models. https://developers.google.com/machine-learning/testing-debugging/
pipeline/deploying

[19] 2021 (accessed August, 2021). The Machine Learning Reproducibility Checklist.
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

[20] 2021 (accessed August, 2021). Unreproducible results when directly import keras in
CPU environment - Issue 14671. https://github.com/keras-team/keras/issues/14671

[21] 2022 (accessed Feb, 2022). The replication package. https://github.com/nemo9cby/

ICSE2022Rep

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-

nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale

Machine Learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. USENIX

Association, 265-283.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald C. Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.

2019. Software engineering for machine learning: a case study. In Proceedings of

the 41st International Conference on Software Engineering: Software Engineering in

Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, Helen Sharp

and Mike Whalen (Eds.). IEEE / ACM, 291-300.

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,

Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike

Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi Fan,

Christopher Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick LeGresley, Xi-

angang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,

o
=

~
£,

&
&

[24

https://mlflow.org/
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.determined.ai/latest/topic-guides/training/reproducibility.html
https://docs.determined.ai/latest/topic-guides/training/reproducibility.html
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://github.com/keras-team/keras/issues/14672
https://www.tensorflow.org/guide/migrate
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/residentmario/kernel16e284dcb7
https://www.kaggle.com/residentmario/kernel16e284dcb7
https://www.mckinsey.com/featured-insights/artificial-intelligence/ notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.mckinsey.com/featured-insights/artificial-intelligence/ notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://dvc.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://github.com/NVIDIA/framework-determinism
https://github.com/NVIDIA/framework-determinism
https://www.tensorflow.org/install/source#gpu
https://www.tensorflow.org/install/source#gpu
https://github.com/tensorflow/community/blob/master/rfcs/20210119-determinism.md
https://github.com/tensorflow/community/blob/master/rfcs/20210119-determinism.md
https://developers.google.com/machine-learning/testing-debugging/pipeline/deploying
https://developers.google.com/machine-learning/testing-debugging/pipeline/deploying
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://github.com/keras-team/keras/issues/14671
https://github.com/nemo9cby/ICSE2022Rep
https://github.com/nemo9cby/ICSE2022Rep

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

[25

[26

[27

[28

[29

[31

[32

[33

[35

[36

[37

[38

[39

[40

]

]

]

]

]

]

]

]

]

]

Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Chong Wang, Yi Wang, Zhigian Wang, Bo Xiao, Yan Xie, Dani Yogatama,
Jun Zhan, and Zhenyao Zhu. 2016. Deep Speech 2 : End-to-End Speech Recogni-
tion in English and Mandarin. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR
Workshop and Conference Proceedings).

Amine Barrak, Ellis E. Eghan, and Bram Adams. 2021. On the Co-evolution
of ML Pipelines and Source Code - Empirical Study of DVC Projects. In 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 422—433.

Miles Brundage, Shahar Avin, Jasmine Wang, Haydn Belfield, Gretchen Krueger,
Gillian K. Hadfield, Heidy Khlaaf, Jingying Yang, Helen Toner, Ruth Fong, Tegan
Maharaj, Pang Wei Koh, Sara Hooker, Jade Leung, Andrew Trask, Emma Bluemke,
Jonathan Lebensbold, Cullen O’Keefe, Mark Koren, Theo Ryffel, J. B. Rubinovitz,
Tamay Besiroglu, Federica Carugati, Jack Clark, Peter Eckersley, Sarah de Haas,
Maritza Johnson, Ben Laurie, Alex Ingerman, Igor Krawczuk, Amanda Askell,
Rosario Cammarota, Andrew Lohn, David Krueger, Charlotte Stix, Peter Hender-
son, Logan Graham, Carina Prunkl, Bianca Martin, Elizabeth Seger, Noa Zilber-
man, Sean O hEigeartaigh, Frens Kroeger, Girish Sastry, Rebecca Kagan, Adrian
Weller, Brian Tse, Elizabeth Barnes, Allan Dafoe, Paul Scharre, Ariel Herbert-
Voss, Martijn Rasser, Shagun Sodhani, Carrick Flynn, Thomas Krendl Gilbert,
Lisa Dyer, Saif Khan, Yoshua Bengio, and Markus Anderljung. 2020. Toward
Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims.
CORR abs/2004.07213 (2020). arXiv:2004.07213 https://arxiv.org/abs/2004.07213
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/
abs/1410.0759

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. 2018. How Many Random
Seeds? Statistical Power Analysis in Deep Reinforcement Learning Experiments.
CoRR abs/1806.08295 (2018). arXiv:1806.08295 http://arxiv.org/abs/1806.08295
Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov,
Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and
Jeff Dean. 2019. A guide to deep learning in healthcare. Nature medicine 25, 1
(2019), 24-29.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna M. Wallach, Hal Daumé III, and Kate Crawford. 2018. Datasheets for
Datasets. CoRR abs/1803.09010 (2018). arXiv:1803.09010 http://arxiv.org/abs/
1803.09010

Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020.
Importance-driven deep learning system testing. In ICSE °20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 702-713.

Sindhu Ghanta, Lior Khermosh, Sriram Subramanian, Vinay Sridhar, Swami-
nathan Sundararaman, Dulcardo Arteaga, Qianmei Luo, Drew Roselli, Dhanan-
joy Das, and Nisha Talagala. 2018. A systems perspective to reproducibility in
production machine learning domain. (2018).

David Goldberg. 1991. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Comput. Surv. 23, 1 (1991), 5-48.

Sorin Mihai Grigorescu, Bogdan Trasnea, Tiberiu T. Cocias, and Gigel Macesanu.
2020. A survey of deep learning techniques for autonomous driving. J. Field
Robotics 37, 3 (2020), 362-386.

Jiazhen Gu, Huanlin Xu, Haochuan Lu, Yangfan Zhou, and Xin Wang. 2021.
Detecting Deep Neural Network Defects with Data Flow Analysis. In 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Workshops,
DSN Workshops 2021, Taipei, Taiwan, June 21-24, 2021.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic,
Marsha Chechik, and Mark Harman (Eds.). ACM, 933-944. https://doi.org/10.
1145/3180155.3180167

0Odd Erik Gundersen and Sigbjern Kjensmo. [n.d.]. State of the Art: Reproducibil-
ity in Artificial Intelligence. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18).

Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2019. An Empirical Study Towards Characterizing
Deep Learning Development and Deployment Across Different Frameworks and
Platforms. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 770-778.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18). AAAL
Press.

[41

[42

[43

[44

[45

[46

[47

[48

N
)

[50

[51

[52

[53

[54

[55]

[56

[57

o
&,

[59

Chen and Wen, et al.

Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. Science
(New York, N.Y.) 359 (02 2018), 725-726. https://doi.org/10.1126/science.359.6377.
725

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated
Machine Learning - Methods, Systems, Challenges. Springer. https://doi.org/10.
1007/978-3-030-05318-5

Samuel Idowu, Daniel Striiber, and Thorsten Berger. 2021. Asset Management
in Machine Learning: A Survey. In 43rd IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2021, Madrid,
Spain, May 25-28, 2021. IEEE, 51-60.

Richard Isdahl and Odd Erik Gundersen. 2019. Out-of-the-box reproducibility: A
survey of machine learning platforms. In 2019 15th international conference on
eScience (eScience). IEEE, 86—-95.

Hadi Jooybar, Wilson W. L. Fung, Mike O’Connor, Joseph Devietti, and Tor M.
Aamodt. 2013. GPUDet: a deterministic GPU architecture. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2013, Houston, TX,
USA, March 16-20, 2013. ACM, 1-12. https://doi.org/10.1145/2451116.2451118
Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep learning. Nat.
(2015).

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE (1998).

Brian Lee, Andrew Jackson, Tom Madams, Seth Troisi, and Derek Jones. 2019.
Minigo: A Case Study in Reproducing Reinforcement Learning Research. In
Reproducibility in Machine Learning, ICLR 2019 Workshop, New Orleans, Louisiana,
United States, May 6, 2019. OpenReview.net.

Wei Li. 2017. cifar-10-cnn: Play deep learning with CIFAR datasets. https:
//github.com/BIGBALLON/cifar-10-cnn.

Chao Liu, Cuiyun Gao, Xin Xia, David Lo, John C. Grundy, and Xiaohu Yang.
2020. On the Replicability and Reproducibility of Deep Learning in Software
Engineering. CoRR abs/2006.14244 (2020). arXiv:2006.14244 https://arxiv.org/
abs/2006.14244

Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepGauge:
multi-granularity testing criteria for deep learning systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard, Christian
Késtner, and Gordon Fraser (Eds.). ACM, 120-131.

Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-
vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.).

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model Cards for Model Reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31,
2019, danah boyd and Jamie H. Morgenstern (Eds.). ACM, 220-229.

David Lorge Parnas. 2017. The real risks of artificial intelligence. Commun. ACM
60, 10 (2017), 27-31. https://doi.org/10.1145/3132724

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.).
8024-8035.

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. [n.d.]. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis
of Variance. In 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviére, Alina
Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2020. Improv-
ing Reproducibility in Machine Learning Research (A Report from the NeurIPS
2019 Reproducibility Program). arXiv:2003.12206 [cs.LG]

Edward Raff. 2019. A Step Toward Quantifying Independently Reproducible
Machine Learning Research. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.).

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006.
Appropriate statistics for ordinal level data: Should we really be using t-test and

https://arxiv.org/abs/2004.07213
https://arxiv.org/abs/2004.07213
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1806.08295
http://arxiv.org/abs/1806.08295
https://arxiv.org/abs/1803.09010
http://arxiv.org/abs/1803.09010
http://arxiv.org/abs/1803.09010
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1145/3180155.3180167
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1145/2451116.2451118
https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/BIGBALLON/cifar-10-cnn
https://arxiv.org/abs/2006.14244
https://arxiv.org/abs/2006.14244
https://arxiv.org/abs/2006.14244
https://doi.org/10.1145/3132724
https://arxiv.org/abs/2003.12206

Towards Training Reproducible Deep Learning Models

[60]

[61]

[62]

[63

[64]

Cohen’sd for evaluating group differences on the NSSE and other surveys. In
annual meeting of the Florida Association of Institutional Research, Vol. 13.

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel
random numbers: as easy as 1, 2, 3. In Conference on High Performance Computing
Networking, Storage and Analysis, SC 2011, Seattle, WA, USA, November 12-18,
2011. ACM, 16:1-16:12. https://doi.org/10.1145/2063384.2063405

Simone Scardapane and Dianhui Wang. 2017. Randomness in neural networks:
an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7, 2 (2017).

Joel Scheuner, Jiirgen Cito, Philipp Leitner, and Harald C. Gall. 2015. Cloud
WorkBench: Benchmarking IaaS Providers based on Infrastructure-as-Code. In
Proceedings of the 24th International Conference on World Wide Web Companion,
WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume. ACM, 239-242.
https://doi.org/10.1145/2740908.2742833

Peter Sugimura and Florian Hartl. 2018. Building a reproducible machine learning
pipeline. arXiv preprint arXiv:1810.04570 (2018).

Peter Sugimura and Florian Hartl. 2018. Building a Reproducible Machine Learn-
ing Pipeline. CoRR abs/1810.04570 (2018). arXiv:1810.04570 http://arxiv.org/abs/

[65

[66

[67

(68

]

ICSE °22, May 21-29, 2022, Pittsburgh, PA, USA

1810.04570

Rachael Tatman, Jake VanderPlas, and Sohier Dane. 2018. A practical taxonomy
of reproducibility for machine learning research. (2018).

Ruben Vicente-Saez and Clara Martinez-Fuentes. 2018. Open Science now: A
systematic literature review for an integrated definition. Journal of business
research 88 (2018), 428-436.

Michael Woelfle, Piero Olliaro, and Matthew H Todd. 2011. Open science is a
research accelerator. Nature chemistry 3, 10 (2011), 745-748.

Curtis Yanko. 2021 (accessed August, 2021). Using a Software Bill of Materi-
als (SBOM) is Going Mainstream. https://blog.sonatype.com/software-bill-of-
materials-going-mainstream

Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In
Proceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK,
September 19-22, 2016. BMVA Press. http://www.bmva.org/bmvc/2016/papers/
paper087/index.html

https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2740908.2742833
https://arxiv.org/abs/1810.04570
http://arxiv.org/abs/1810.04570
http://arxiv.org/abs/1810.04570
https://blog.sonatype.com/software-bill-of-materials-going-mainstream
https://blog.sonatype.com/software-bill-of-materials-going-mainstream
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 The Need for Reproducible DL models
	2.2 Current State of Reproducible DL Models
	2.3 Industrial Assessment

	3 Our approach
	3.1 Overview
	3.2 Phase 1 - Conducting initial training
	3.3 Phase 2 - Verifying model reproducibility
	3.4 Phase 3 - Profiling and diagnosing
	3.5 Phase 4 - Updating
	3.6 Phase 5 - Record-and-Replay

	4 Results
	4.1 Case Study Setup
	4.2 Evaluation Analysis and Results

	5 Discussions
	5.1 Variance Analysis
	5.2 Generalizability in other DL frameworks
	5.3 Documentations on DL Models

	6 Guideline
	7 Threats to Validity
	8 Conclusions
	References

