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ABSTRACT

Researchers have reported that static analysis tools rarely achieve

a false-positive rate that would make them attractive to developers.

We overcome this problem by a technique that leads to reporting

fewer bugs but also much fewer false positives. Our technique

prunes the static call graph that sits at the core of many static

analyses. Specifically, static call-graph construction proceeds as

usual, after which a call-graph pruner removes many false-positive

edges but few true edges. The challenge is to strike a balance be-

tween being aggressive in removing false-positive edges but not

so aggressive that no true edges remain. We achieve this goal by

automatically producing a call-graph pruner through an automatic,

ahead-of-time learning process. We added such a call-graph pruner

to a software tool for null-pointer analysis and found that the false-

positive rate decreased from 73% to 23%. This improvement makes

the tool more useful to developers.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis;

• Computing methodologies→ Supervised learning by classifi-

cation.
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1 INTRODUCTION

The Problem. Christakis and Bird [14] interviewed developers

about program analysis tools and they concluded:

Program analysis design should aim for a false-

positive rate no higher than 15–20%.
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Other empirical studies have found similar results [6, 25, 40]. Un-

til now, this goal has been particularly hard to achieve for static

analyses, which are tools that analyze programs without executing

them.

As a motivating experiment, we tried Wala [47], which is one of

the best tools for static analysis of Java bytecode, on a subset of the

NJR-1 benchmark suite [35]. For each benchmark, we compared

the edges in the static call graph with the edges found by executing

the benchmark. With a context-insensitive analysis, Wala has a

false-positive rate of 76%, while with a better but also much slower

context-sensitive analysis, the false-positive rate is 70%. Those re-

sults are disappointing though we must emphasize that call graphs

are usually fed to client tools rather than directly to developers. So,

we did a second experiment to see how the high false-positive rate

of call-graphs affects client tools. Specifically, we implemented a

version of a static analysis for warning about null-pointer problems

[21] that is a client of the context-insensitive call graphs produced

by Wala. We ran this tool on the same subset of NJR-1 and again

had disappointing results: 60 bugs among 223 warnings, on aver-

age, so a false-positive rate of 73%. We can easily imagine how a

developer will tire of investigating warnings that in nearly three

of every four cases are false alarms. The false alarms have several

causes, but an important cause is the high false-positive rate in the

underlying static call graph. Hence, we can also see a glimmer of

hope: if we can reduce the false-positive rate of static call-graph

constructors, we may be able to move client tools closer to the goal

of a false-positive rate of 15–20%.

Our Idea. Our approach stems from another conclusion by Chris-

takis and Bird [14] who reported a preference of developers:

When forced to choose between more bugs or

fewer false positives, they typically choose the

latter.

This quote inspired our idea for how to improve the false-positive

rate: we will report fewer bugs but also much fewer false positives.

Indirect support for this idea comes frompreviouswork that showed

that practical static analyses aren’t totally sound [31, 43] and there-

fore may miss bugs. Thus, developers expect bug reports to be

incomplete so reporting fewer bugs seems acceptable.

We want to reduce the false-positive rate in a modular way that

leaves existing call-graph constructors unchanged. This brings us

to our idea of a call-graph pruner that statically post-processes a
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static call graph by removing many false-positive edges but few

true edges. The challenge is to strike a balance between being

aggressive in removing false-positive edges but no so aggressive

that no true edges remain. Additionally, we have to do better than

removing edges at random because random removals will leave the

false-positive rate unchanged.

How can we design a call-graph pruner?

Our Approach. We execute an automatic, ahead-of-time learning

process on results from both a static and a dynamic call-graph

constructor. The outcome is a call-graph pruner that works as

follows. The call-graph pruner determines the probability that an

edge in the call graph is a false positive, and if this probability is

above a threshold, then the call-graph pruner removes the edge.

We can vary this threshold and thereby tune the call-graph pruner.

In contrast to previous work on using a dynamic analysis to

improve a static analysis [3, 13, 16], we use the dynamic call-graph

constructor only in an ahead-of-time training phase and only on a

training set of programs. Once the training phase has produced a

call-graph pruner, the combination of the call-graph constructor

and the call-graph pruner is itself a static analysis, as illustrated in

Figure 1.

Our Contributions and the Rest of the Paper. We begin with an

example of how a call-graph pruner works (Section 2) and then we

detail our contributions:

• We present the design (Section 3) and implementation (Sec-

tion 4) of a tool that produces call-graph pruners.

• We show experimentally (Section 5) that adding a call-graph

pruner to a client tool can significantly decrease the false-

positive rate, in one case from 73% to 23%. Specifically, we

added a call-graph pruner to the tool for warning about

null-pointer problems, after which we got 15 bugs among

20 warnings, on average. Thus we reported 45 fewer bugs

but also 158 fewer false positives.

• We show experimentally (Section 5) that the overhead of

adding a call-graph pruner is 18% of the original call-graph

analysis time.

We end with a discussion of related work (Section 6) and our con-

clusion (Section 7).

Significance. Call-graph pruners improve static call-graphs sig-

nificantly and thereby make client tools more useful to developers.

2 EXAMPLE

Now we give an example of a call-graph pruner, how it works

on a example call graph, and how it affects a client analysis for

warning about null-pointer problems. Our example program in

Figure 2, shown in full in the Appendix, has three classes A, B, C,
each of which has a method foo, and a main method that contains
a method call x.foo(x.f). The call to getObjC() returns an object
of type C, which is then assigned to the variable x. On the next

line, the access x.f happens, but the field A.f may be uninitialized
hence null. Thus the call x.foo(x.f)may pass null as an argument
to C.foo, which, in turn, at the call c.toString(), may throw a

NullPointerException. The program has two additional methods,

including getObjC, that we omitted from Figure 2.

Program

 Call-graph
construction

tool

call-graph
pruner

Call-graph
False-positive rate: 76%
True-edges missed: 5%

Call-graph
False-positive rate: 34%
True-edges missed: 34%

Balanced call-graph
construction tool

new

Figure 1: Overview of our technique

...
A x = getObjC();
x.foo(x.f);

class A {

    A f;
    foo(A a){
       a.toString();
 }}

class B extends A {

    foo(A b){
       b.toString();
    }
 }

class C extends B {

    foo(A c){
       c.toString();
    }
 }

DECISION TREE

dest-node-in-deg > 2.5

src-node-out-deg > 2.5 10%

55%

70%

STATIC-ANALYSIS CALL-GRAPH

70%

T

T

F

F

dest-node-in-deg > 1.5

40%

F T

40% 10%

Figure 2: Example call graph and call-graph pruner

Null-Pointer Warnings. As we mentioned in Section 1, we im-

plemented a version of a static analysis for warning about null-

pointer problems. This analysis finds null-pointer problems that

stem from uninitialized fields, like the problem with c.toString()
that is caused by the uninitialized field A.f. If we run this tool on
the example program, we get three warnings, one for each call of

toString in the foo methods. One of them is a true warning but

the other two are false alarms. Let us investigate how that could

happen and what a call-graph pruner can do about it.

Call Graph. The null-pointer tool uses a static call-graph con-

structor that built the call graph shown in Figure 2. In a call graph,

each node is a method, and each edge is a directed edge from one

method to another. Such an edge represents a call that may happen

during the execution of the program.

The call-graph constructor uses a data-flow analaysis to analyze

the entire program, including the methods that we omitted from

Figure 2. We skip the details of how this works and instead we focus

on the constructed call graph. Specifically, in Figure 2 we focus on

the four nodes for the main method, A.foo, B.foo, and C.foo. The
call graph has an edge from the main method to each of A.foo,
B.foo, and C.foo, as well as an edge some other method to B.foo
and a couple of edges from some other methods to A.foo. The edge
from main to C.foo is a true edge, while the edges from main to

A.foo and from main to B.foo are false positives.
The false call-graph edges frommain to each of A.foo and B.foo

can arise from difficult-to-analyze methods, one of which is part of

the full example program in the appendix.
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The Null-Pointer Analysis in more Detail. Based on the call graph

in Figure 2, the null-pointer analysis derives that x.foo(x.f) may
call any of A.foo, B.foo, and C.foo. Then the null-pointer analysis
uses the rule that

if a field is not initialized by the end of a con-

structor, it is marked as Uninitialized; and if an

Uninitialized field is dereferenced, the analysis

gives a null-pointer warning.

Thus, the analysis concludes that each of the foo methods may be
passed null as an argument, and thus it issues a warning for every

one of those methods.

Call-Graph Pruner. The goal of a call-graph pruner is to remove

edges from the call-graph, preferably many false-positive edges

and few true edges. The key component of a call-graph pruner is

a classifier that computes the probability that a call-graph edge is

a true-positive. Based on that probability, a call-graph pruner will

decide whether to keep or to remove the edge. Figure 2 shows a

classifier that is represented as a decision tree. Each internal node of

the decision tree asks a true-false question about a call-graph edge.

The recursive decision process begins in the root of the decision

tree; if the answer to the question at the root is false, we move to

the left subtree, while if the answer is true, we move to the right

subtree. When we reach a leaf, we find the probability that the

call-graph edge is a true-positive. The probabilities computed for

each call-graph edge in this fashion are marked on the call graph

in Figure 2. Based on these probabilities, we will decide whether to

keep or remove the call-graph edge.

The decision tree in Figure 2 has three internal nodes that are la-

beled with questions about dest-node-in-deg, which is the in-degree

of the destination node of the edge, and about src-node-out-deg,

which is the out-degree of the source node of the edge. For exam-

ple, the edge from main to C.foo has destination-node in-degree
1 and source-node out-degree 3. This gives us the path false-true-

false, which assigns the edge the probability 70%. Similarly, the

edges from main to A.foo and B.foo get probabilities 10% and

40%, respectively. The call graph in Figure 2 shows those three

probabilities.

Let us set a threshold of 50% for when we deem an edge to be

a false-positive: if the probability of being a true-positive is below

50%, we remove the edge. Then the call-graph pruner will remove

the edges from main to A.foo and B.foo. Hence, the null-pointer
analysis will issue just a single warning, and indeed a true warning,

namely for the call of toString in C.foo.

3 CALL-GRAPH PRUNERS

Now we describe how we use machine learning to produce a call-

graph pruner.

3.1 Overview

We will use Program to denote the set of Java bytecode programs.

A call graphG ∈ CallGraph is a multi-graph in which each node

represents a method and each edge represents a potential transfer

of control at a method call. Two nodes can have multiple edges

between them because of multiple method calls. Each edge has a

label that identifies the method call site.

We distinguish between two kinds of call-graph constructors

that have the same type:

StaticCallGraphConstructor = Program → CallGraph

DynamicCallGraphConstructor = Program → CallGraph

Here, an element of StaticCallGraphConstructor constructs a call

graph without running the program, while, in contrast, an element

of DynamicCallGraphConstructor runs an instrumented version

of the program on one or more inputs and examines the output

from the instrumentation.

The key component of each call-graph pruner is a classifier. A

classifier C ∈ Classifier is a function that maps a vector of feature

values for an edge to a probability that the edge is a true-positive.

In our case, such a vector has 11 elements that we will define in

Section 3.3.

Our tool for generating classifiers implements a function of this

type:

classifier generator : (StaticCallGraphConstructor ×

DynamicCallGraphConstructor ×

Set[Program])

→ Classifier

Our classifier generator executes an automatic, ahead-of-time learn-

ing process on results from running both a static and a dynamic

call-graph constructor on a training set of programs. The dynamic

call graphs serve as ground-truth for the learning process. We will

detail this learning process in Section 3.2.

Once we have a classifier, we can use it in a call-graph pruner of

this type:

call-graph pruner :

(CallGraph × Classifier × Threshold) → CallGraph

Algorithm 1 shows how a call-graph pruner works. Intuitively, a

call-graph pruner uses a classifier to determine the probability that

an edge in a static call graph is a true-positive. If that probability

is below a given threshold T ∈ Threshold, the call-graph pruner

removes the edge.

Algorithm 1: Call-graph Pruner

1 Inputs: CallGraph G, Classifier C , Threshold T

2 let G ′ be a copy of G

3 for every edge e in G do

4 v = the feature values for e

5 if C(v) < T then

6 remove e from G ′

7 Output G ′

The threshold parameter enables us to explore different levels of

aggressiveness in removing edges. For our example in Figure 2, we

discussed a threshold of 50% in Section 2, which led to the removal of

two edges. We could also use a lower threshold of 20%, which would

lead to the removal of a single edge, namely the one from main

to A.foo. The challenge is to strike a balance between removing
many false-positive edges and keeping many true-positive edges. In
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Edge f1 ...  fk Label

e1 10 ... 0.3 1

e2 8 ... 0.7 0

... ... ... ... ...

Training Programs

Program-1 Program-n

Compute Features

Concatenate into single Training Set

Trained
Classifier

Train using Classification Algorithm

Static 
call-graph

Dynamic 
call-graph

Edge f1 ...  fk Label

e3 7 ... 0.1 0

e4 1 ... 0.6 1

... ... ... ... ...

Compute Features

Static
call-graph

Dynamic 
call-graph

Figure 3: Classifier Generator workflow

Section 5 we will show results from an experimental investigation

of how to choose a good threshold.

Notice that we use a static call graph constructor, a dynamic call

graph constructor, and the training set of programs for the sole

purpose of generating a classifier, while those items are no longer

needed when we use the call-graph pruner.

3.2 Our Classifier Generator

We cast the edge-pruning problem as a classification problem for

which learning a classifier can be done with machine learning. We

proceed in three steps.

In the first step, we run existing static and dynamic call-graph

constructor tools on every program in the training set (the dataset

of programs is described in Section 4). The result is a set of pairs of

call graphs: each pair consists of a static call graph and a dynamic

call graph. We use the dynamic call graph as an approximation of

the ground truth: if a static call-graph edge is also present in the

dynamic call graph, we view it as a true-positive, and otherwise as

a false-positive.

In the second step, for each program, we construct a table in

which each row represents a static-call-graph edge. Figure 3 il-

lustrates this table. The last column in each row (titled Label in

Figure 3) contains a label of 1 or 0, based on whether the edge

exists in the dynamic call graph. The remaining columns (titled

f1 to fk ) represent the set of features of the static call-graph edge.
The example in Figure 2 uses two features: dest-node-in-deg and

src-node-out-deg; we will discuss other features below. We can view

each row in the table as a vector of feature-values. Concatenating

the tables of each individual program gives us a single large training

dataset of call-graph edges with ground truth labels. This training

dataset consists of a large number of pairs (xe ,ye ), where xe is a
vector of feature values corresponding to a static call-graph edge,

and ye is a prediction of whether it is a false-positive or not. Our
problem is now expressed in a format where it can be cast as a

machine-learning classification problem [28].

In the third step we run an off-the-shelf machine-learning tool

on the table constructed in second step. The result is a classifier

that for any edge assigns a probability that it is a true-positive.

We picked random forests [19] (ensembles of Decision Trees). One

might try other approaches, which we leave to future work. Our

goal with this step is to show that an off-the-shelf machine-learning

tool is sufficient to get good results.

Our classifier generator can take any static call-graph constructor

as input. For example, we have used the call-graph constructors

WALA [47], Doop [9], and Petablox [33] as inputs and generated a

call-graph pruner for each one.

The complexity of generating a classifier based on a training set

with n edges is O(n logn) [19].

3.3 Our Feature set

Now we describe how we designed the feature set that both our

classifier generator and our generated call-graph pruners use.

A feature is information about a static-call-graph edge that may

help predict whether the edge is a true-positive. We would like our

feature set to capture important context and semantic information

about a call-graph edge. Encoding important semantic information

as features is a commonmachine learning practice for incorporating

domain knowledge into the learning process. For example, since

dynamic dispatch is likely to affect the false-positive probability of

a call-graph edge, we should add features that capture information

about the targets of a method call. Using the context information of

a graph edge has been useful for the related task of selective context

and heap sensitivity in pointer-analysis [23], and we consider it a

good criteria for picking features. Context information can be local

by describing the neighborhood of the edge, or global by describing

the call graph that the edge is a part of. In addition to capturing

context and semantic features, we identify three criteria that we

want our feature set to satisfy:

(1) linear-time computation complexity,

(2) interpretable and generalizable, and

(3) black-box.

The time-complexity guideline is particularly important given that

some of our benchmarks can have several hundred thousand call-

graph edges. Interpretability gives us an understanding of which

call-graph edges are being dropped, and generalizability ensures

that what is learned for the training edges also applies to call-graph

edges of unseen programs. The black-box criterion implies that the

features should only be designed on the output call graph, and not

on some internal state or representation of a tool. This allows us

to post-process the results without being specific to a particular

algorithm or tool. Using these criteria, we arrived at the following

features for an edge.

Figure 4 presents our feature set for an edge in a static call graph

G , where the edge is from a caller method caller to a callee method

callee. The node for the main method in G is main. The first seven

features describe local information while the last four describe

global information. Note that the L-fanout of an edge is the number

of outgoing edges at the call-site of that particular edge, whereas
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Feature Description

src-node-in-deg number of edges ending in caller

src-node-out-deg number of edges out of caller

dest-node-in-deg number of edges ending in callee

dest-node-out-deg number of edges out of callee

depth length of shortest path from main to caller

repeated-edges number of edges from caller to callee

L-fanout number of edges from the same call-site

node-count number of nodes in G
edge-count number of edges in G
avg-degree average src-node-out-deg in G
avg-L-fanout average L-fanout value in G

Figure 4: Our feature set

src-node-out-deg is the number of outgoing edges from all the

call-sites of an entire source method.

Our selection process started with a much longer list of features

that all satisfy the three criteria listed above. We picked from that

list the ones that helped the most with removing false-positives.

Our process used the training set as case studies to find the main

reasons why tools give false positives. The result was the eleven

features in Figure 4.

4 IMPLEMENTATION AND DATASET

Static Call-Graph Constructors. We used the static call-graph

constructors WALA [47], Doop [9], and Petablox [33]. In each case

we used the default setting, which implements 0-CFA for meth-

ods that are estimated to be reachable from the main method and

without any special handling of reflection. Those tools produce

significantly different call graphs and so we generate a separate

call-graph pruner for each tool.

Reflection. In preliminary experiments, we found that enabling

special handling of reflection in the static call-graph constructors

introduces many false-positive edges in the call graphs. Our gener-

ated classifiers tend to assign each of those edges a low probability

of being a true-positive, and therefore our call-graph pruners will

correctly remove most of them. Therefore, special handling of re-

flection presents no additional challenge for call-graph pruning and

we decided to go with the default setting of each static call-graph

constructor.

Dynamic Call-Graph Constructor. We used the open-source tool

Wiretap [26] to instrument the Java bytecode and thereby enable

dynamic call-graph construction. Next, we ran the instrumented

bytecode and collected data about the run, particularly about the

method calls.

Standard Library. The Java standard library is large and has the

potential to dominate the measurements for every benchmark,

which is counterproductive. So, when we do our measurements and

training, we omit nodes from the standard library as well as edges

between standard library nodes. We preserve aspects of the edges

to and from the standard library in the following way. For every

path of the form

v → 〈. . . standard library nodes . . . 〉 → w

Figure 5: Histogram of Edge-counts in the 100 Training Pro-

grams.

wherev,w are nodes outside the standard library, we create a single

edge from v tow .

Random Forest Classifier. Our classifier generator uses the Ran-

dom Forest algorithm [19] implemented with the Scikit-Learn [36]

library (v0.21.3). The Random Forest algorithm works as follows: it

trains several decision-trees using Bagging [10], and makes predic-

tions by a “majority vote” across the decision trees. The training

took 4 minutes. We tuned the hyper-parameters using Random

Hyper-Parameter Search [5] with 4-fold cross-validation on the

training set. We list the chosen hyper-parameters in the appendix.

Dataset. Our dataset consists of 141 programs from the NJR-1

benchmark suite [35], of which we used 100 programs for gener-

ating three call-graph pruners and the remaining 41 programs for

our evaluation. We selected those 141 programs from the 293 NJR-1

programs according to the following criteria:

• consists at least 1,000 methods and at least 2,000 static call-

graph edges according to Wala,

• executes at least 100 distinct methods at runtime, and

• has high coverage: executes a large percentage of the meth-

ods that are reachable from the main method according to

Wala; for our benchmarks, the coverage is 68%, on average.

Each program consists of 560,000 lines of code, on average (not

counting the standard library). Inmore detail, each program consists

of the main application, which is 8,000 lines of code, on average,

in addition to third-party libraries which account for an estimated

552,000 lines of code, on average.

The total number of static-call-graph edges (not counting the

standard library) that are reachable from the main methods of the

141 programs is 1.3 million. For our classifier generator, each edge

from 100 of those programs is a data point, which is 860,000 edges.

Note that manual creation of ground truth about those 860,000

edges infeasible.

Large Benchmarks. The histogram in Figure 5 gives the distri-

bution of the edge counts in the training programs. The X-axis is

plotted on a logarithmic scale due to the skew in the distribution.

Among the 100 training programs, 7 of them have a very large num-

ber of call-graph edges (> 20,000). This gives them the potential to

dominate how the classifiers work. To overcome this, we randomly

sample 20,000 edges from the edge-sets of these 7 programs. Notice

that this sampling is done only during generation of call-graph
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pruners, while we use all the edges from the 41 programs that we

use for evaluation.

Analysis Time. Running the three static call-graph constructors

and the dynamic call-graph constructor on all the programs takes

four days of compute time.

Precision and Recall. We estimate the quality of a static call graph

using the standard notions of precision and recall. In our setting, if

S is the edge set produced by a static call-graph constructor, and
W is the edge set produced by Wiretap, then:

Precision =
|S ∩W |

|S |
Recall =

|S ∩W |

|W |

The rate of false-positives is (1−Precision). We compute the average

precision and recall values for the entire test-set by taking the

arithmetic mean over the precision and recall values of individual

programs.

Figure 6 shows a histogram of the original precision and recall

scores for WALA on the 41 individual programs of the test set. Note

that the precision values vary significantly, but almost all programs

get below 40% precision. Hence, there is a lot of scope for improving

the precision. The recall is close to 100% for most programs, but

low for some due to heavy use of reflection, dynamic class-loading

or native code.

5 EXPERIMENTAL RESULTS

In this section, we discuss our experimental results that validate

the following claims.

(1) Our generated call-graph pruners for WALA, Doop, and

Petablox produce call graphs with balanced 66% precision

and 66% recall.

(2) For precision-sensitive clients, our generated call-graph pruners

are significantly better at boosting precision than context-

sensitive analyses, and have a much smaller overhead.

(3) The precision improvement is consistent across the test set.

(4) The call-graph pruner enables a monomorphic call-site client

to balance its skewed 52% precision and 93% recall to a more

balanced 68% precision and 68% recall.

(5) The call-graph pruner enables a null-pointer analysis to re-

duce its average warning count from 223 to 20, while increas-

ing precision from 27% to 77%.

All experiments are run on a separate test set of 41 programs

which were not used during training. The experiments were carried

out on a machine with 24 Intel(R) Xeon(R) Silver 4116 CPU cores

at 2.10GHz and 188 Gb RAM. A minimum RAM size of 32Gb is

essential for ensuring that the static analyses run in reasonable

time. The artifact for the paper is available here [46] and the NJR-1

dataset can be downloaded from [45].

5.1 Main Result

Figure 8 gives the main result of the paper: a call-graph pruner can

be successfully used to boost precision and to balance the goals of

precision and recall for the 0-CFA call-graph analysis of WALA,

Doop and Petablox. The plot is used to represent the precision

and recall values of various tools, wherein all precision and recall

values are reported as averages over the test-set programs. The

black triangle marks the WALA 0-CFA analysis (23.8% Precision,

95.3% Recall), the green triangle marks the Doop 0-CFA analysis

(23.1% Precision, 92.6% Recall) and the blue triangle marks the

Petablox 0-CFA analysis (29.8% Precision, 88.8% Recall). They all

have close to perfect recall, but poor precision. The red plus sign

marks the WALA 1-CFA analysis (29.6%. 95.4%). The black curve

represents the precision-recall trade-off points obtained when a call-

graph pruner is applied to the WALA 0-CFA output. The original

WALA-0CFA output is a single point on the precision-recall graph,

but the call-graph pruner gives a curve instead. This is because the

call-graph pruner gives a probability score for each edge being in

the ground-truth call-graph, and by setting different thresholds (i.e.

cutoffs below which an edge is removed), we can obtain different

points on the precision-recall curve. Joining all these different points

gives us the black curve in the figure. Setting a low-probability

threshold for accepting an edge, gives us points near the left end

of the black curve, because we accept a large percentage of edges,

thereby giving us higher recall but lower precision. Setting a high-

probability threshold gives us points near the right end of the curve

because we accept only very few edges which are very likely to be

in the ground-truth call-graph, and this gives us high-precision and

low recall. The green and blue curves represent the precision-recall

trade-off obtained by applying the call-graph pruner to the Doop

and Petablox call-graphs respectively, and the case is very similar

to the black WALA curve.

These curves which trade-off recall for precision show that the

classifier has assigned probabilities meaningfully. In contrast, a

tool that randomly assigns probabilities to edges would result in

a curve that goes straight down to zero recall without improving

any precision. This is because it results in a random removal of

edges, which keeps the ratio of true-positives (i.e. precision) the

same. Boosting precision requires the ratio of false-positive edges

in the removed edge set to be higher than the rest of the edges.

There are 2 particularly interesting points on the black (WALA)

curve in Figure 8. The first is the one marked by the black (WALA)

square (66.0% Precision, 66.0% Recall), which represents the point

with balanced precision and recall. Such a point will be useful to

a precision-sensitive client analysis. As compared to the original

WALA 0-CFA (black-triangle), this point has over 72% of the edges

from the original call-graph removed, and out of the removed edges,

less than 10% are true positives. This point is at a 0.45 probability

threshold. Similar points for Doop and Petablox, marked by a green

square (hidden behind the black square) and blue square (also hid-

den behind the black square) respectively, are at (66.2% Precision,

66.2% Recall) and (66.4% Precision, 66.4% Recall) respectively. A

second interesting point is the right-most point on the curve after

which recall starts dropping faster, represented by a black circle

(50% Precision, 92% Recall). Such a point would be useful for a

client analysis that needs to increase a little precision, without los-

ing much recall. Similar points for Doop and Petablox are marked

by the green circle (50% Precision, 88% Recall) and blue circle (50%

Precision, 87% Recall) respectively.

Both these points give larger precision boosts than the 1-CFA

analysis. However, in general, the best precision-recall trade-off

point is decided by the needs of the client of the call graph. Precision-

sensitive clients would benefit more from our call-graph pruner
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Figure 6: Precision and recall for 41 test programs.
Figure 7: Precision and recall after call-graph pruning.

Figure 8: Main Result for the WALA, Doop and Petablox

static analysis tools. The baseline precision-recall values for

the 3 tools, alongwith the precision-recall curve obtained af-

ter applying a call-graph pruner (averaged over all test pro-

grams)

since it gives a larger precision boost, but clients that need high

recall may prefer the 1-CFA call graph.

Our call-graph pruner adds an overhead of 18% to the WALA

0-CFA analysis, whereas moving to a 1-CFA analysis adds 292%

overhead. Prior research also finds that context-sensitivity increases

analysis time by many folds [30].

For completeness, we also ran this experiment for WALA’s RTA

implementation and it gets similar results (that we show in the

supplementary material). Since the three tools show similar charac-

teristics, we only present numbers for the WALA 0-CFA call graph

in the rest of this section. The corresponding graphs for Doop and

Petablox are available in the supplementary material.

Picking a Cutoff value. We picked the balanced precision-recall

point because it gave good results for a null-pointer analysis client,

but different precision-recall trade-off points may be suitable for

different client analyses. Figure 9 helps a user pick the right trade-off

point for their client. It plots the probability cutoff values on the X-

axis, and the Precision, Recall and F-score on the Y-axis. The graph

shows what values each of these metrics takes at every probability

cutoff value, as well as what the expected cutoff would be for a

given target Precision, Recall or F-score. For example, by looking at

the figure, we can say that to obtain an expected Precision of 60%,

we can set a cutoff value of 0.4. At this point we would get a Recall

of approximately 75% and F-score of around 65%. This graph also

shows that the balanced precision-recall point is also very close to

the point with maximum F-score.

Feature Importance. Figure 10 gives the impurity-based impor-

tance [42] for each feature used in the random-forest in descending

order. The L-fanout and dest-node-in-deg are the most important fea-

tures and the four global features are the least important. Dropping
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Figure 9: Probability cutoff plotted vs Precision, Recall and

F-score curves for WALA

Feature Importance

L-fanout 0.182

dest-node-in-deg 0.114

src-node-out-deg 0.094

repeated-edges 0.092

src-node-out-deg 0.090

depth 0.084

dest-node-out-deg 0.079

node-count 0.071

edge-count 0.067

avg-L-fanout 0.036

avg-degree 0.028

Figure 10: Importance of each feature in the Random Forest

Classifier in descending order.

the four global features decreases the area under the precision-recall

curve from Figure 8 by 6%.

Human-Interpretable Explanation of the Classifiers. We can give

a human-interpretable explanation of the main aspects of the Ran-

dom Forest classifiers that were learned in the experiment. In each

case, the top-level decisions center around the following generic

classifier:

if ((L-fanout > m) ∧ (dest-node-in-deg > n)) then 0 else 1

The above expression says that if an edge has L-fanout greater than

m and destination-node in-degree greater thann, then the probability

Figure 11: Historgram of Percentage Improvement in Preci-

sion scores for individual programs.

that it is a true edge is 0, and otherwise 1. For each of the static

call-graph constructors, we can identify the constantsm and n:

WALA:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 9.5)) then 0 else 1

Doop:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 16.5)) then 0 else 1

Petablox:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 20.5)) then 0 else 1

The orange cross (49% precision, 92% recall) in Figure 8 gives

the precision-recall trade-off when using the generic classifier for

WALA. This generic classifier has a slightly worse trade-off and

is much less tunable than the black line (WALA with call-graph

pruner). However, its pruning rules are also much simpler and

easily understandable. The use of L-fanout and dest-node-in-deg in

the generic classifier aligns with the fact that these are the most

important features according to Figure 10.

5.2 Distribution of Precision and Recall for
individual programs

Figure 7 gives a histogram of the precision and recall scores of

individual programs when a call-graph pruner is used to prune the

WALA call graph at the balanced precision-recall point (marked by

the black square in Figure 8). Most of the programs get at least 50%

precision, and a several even reach the 70% precision goal. Contrast

this to the precision in Figure 6 where almost all programs fail to

cross the 40% precision point.

As expected, the recall scores from Figure 7 dropped as compared

to Figure 6. However, most programs still get at least 50% recall,

implying that they retain a good portion of their true edges. Note

that it is impossible to improve recall using a call-graph pruner

since it cannot find new edges that WALA did not find.

The histogram from Figure 11 illustrates the percentage improve-

ment in precision scores. The X-axis is plotted on a logarithmic scale.

By using a call-graph pruner, 30 out of the 41 programs have their

precision score boosted by at least 2 times their original precision

score. All but 2 programs have their precision score boosted by at

least 20%. No benchmark gets a worse precision. Thus, a significant

majority of the individual programs consistently get a large pre-

cision improvement without loosing too much recall, and achieve

a better precision-recall balance. The Doop and Petablox graphs

have similar characteristics and are shown in the supplementary

material.
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Call-graph tool Precision Recall

WALA 0-CFA 51.8% 92.6%

WALA 0-CFA + call-graph pruner 67.7% 68.4%

Figure 12: Impact of improved call-graph precision on a

monomorphic call-sites client

ID Warnings True-Positives in a sample of 10

Before After Before After

B1 137 12 2 10

B2 365 31 4 5

B3 190 15 2 8

B4 308 44 7 10

B5 204 16 0 10

B6 429 42 0 7

B7 404 136 7 10

B8 70 10 0 0

B9 231 10 0 9

B10 102 34 5 8

Average 2.7 7.7

Figure 13: Total warning counts and a manual classification

of a sample of 10 warnings for the null-pointer analysis be-

fore and after applying a call-graph pruner

5.3 Effect on Client Analyses

Next, we look at the effect of improved call-graph precision on the

monomorphic call-site detection and null-pointer analysis clients.

Monomorphic call-site client. This client is based on the WALA-

generated 0-CFA call graph, and it uses the dynamic analysis as the

ground-truth. Figure 12 give the precision and recall of a monomor-

phic call-site client with and without the call-graph pruner. The

call-graph pruner helps the client boost precision from 52% to 68%

and balance its goals of precision and recall.

Applications of the monomorphic call-sites client include devir-

tualization and inlining. Since the call-graph analysis is never sound

in practice [31], these applications require some safety checks, re-

sulting in overheads. For example, if devirtualization is used for

optimization, run-time checks need to be inserted to ensure correct-

ness [22]. Higher precision for the monomorphic call-sites client

implies that more of the call-sites declared monomorphic by the

static analysis actually turn out monomorphic in the ground-truth.

This in turn implies that whenever we incur the overhead of inlining

or devirtualization, we are also more likely to realize its benefits.

Null pointer analysis. This analysis is based on the paper by Hu-

bert et al. [21]. It is implemented in WALA, and is used to find null-

pointer errors originating from uninitialized instance fields. The

analysis is context-insensitive, field-insensitive and flow-sensitive.

It only reports potential null-pointer dereferences in application

code, and not for the standard library.

The original WALA call graph gives us, on average, 223 null

pointer warnings per program. The high volume of warnings makes

it cumbersome for developers to manually inspect and in practice

this results in developers ignoring the tool output entirely [6, 25].

Using the call graphs produced after pruning gives us much fewer

(on average 20 per program) warnings.

Two of the authors manually inspected a random sample of

10 null-pointer warnings from 10 of the 41 test programs when

used with and without the call-graph pruner. The 10 programs were

chosen with the criteria that they had at least 10 warnings both with

and without the call-graph pruner, and the ratio of warnings with

and without the call-graph pruner was close to (20/223). Figure 13

gives the total warning counts as well as the true-positive counts

(from a sample of 10 warnings) for each of these 10 programs. The

use of a call-graph pruner helped the null-pointer analysis improve

its precision from 27% to 77%

The criteria for marking a warning as a true-positive was that

the author could trace the backward slice of a dereference to an

instance field which was uninitialized by the end of a constructor.

Warnings that either could not be verified in 10 minutes, ran into

another exception before triggering the null exception, or other-

wise unverifiable by the authors, were considered as false-positives.

Reachability from the main method was not considered because it

is hard to verify manually.

We leave to future work to try other clients, including other

approaches to null-pointer analysis such as NullAway [4].

5.4 Threats to Validity

The first threat is the use of a dynamic analysis as a proxy for

the call-graph ground truth. It assumes good coverage of the true

ground-truth call-graph and affects the precision-recall calculations.

If the dynamic analysis had higher coverage, more of the static anal-

ysis edges would be in the dynamic call-graph. As a consequence,

both the baseline precision scores as well as the pruned-call-graph

precision scores would be higher. In contrast, we expect the recall

scores to remain similar. However, improving dynamic analysis cov-

erage is a non-trivial and orthogonal problem and any techniques

improving coverage will automatically improve our technique and

evaluation. Symbolic execution [27] is one option to improve cover-

age, but it doesn’t scale to the size of our programs. Instead, we use a

subset of the NJR-1 benchmark set which gets good coverage. Note

that this threat does not affect the evaluation of the null-pointer

analysis.

The second threat is the manual inspection of the null-pointer

warnings, which are vulnerable to human errors. The authors in-

specting the errors have a limited familiarity with the code-bases

of the examined program. This could lead to misclassification of

both true and false errors, and affect the precision score accord-

ingly. Further, the precision scores are reported for a sample of 10

programs.

The third threat to validity is the generalizability of the results

to programs outside the NJR dataset. Our assumption is that our

learning and evaluation results generalize to other programs outside

the dataset.

The fourth threat to validity is that programs in the training

set and evaluation set share some third-party libraries. On average

(geometric mean), 3.6 percent of the methods of a program in the

evaluation set also occur in some training program. We believe that

this overlap is low enough to not significantly affect the conclusions

of our evaluation.
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6 RELATEDWORK

Our technique is the first to apply machine learning to boost call-

graph precision. In our discussion of related work, we focus on three

areas: combining static and dynamic analyses, applying machine

learning to remove static-analysis false-positives, and improving

the precision of call-graph construction.

Combining static and dynamic analysis. Prior research has used

a dynamic analysis to improve the precision of a static analysis.

Grech et. al [16] generate dynamic heap information and use this

as a drop-in replacement for the heap modeling part in an existing

static analysis tool to improve its precision. Artzi et. al [3] use a

dynamic analysis to confirm the mutability information computed

by a static analysis. Chen et. al [13] use the information from test-

executions to prioritize the alarms given by a static analysis. The

main drawback that these tools face is that they need the dynamic

analysis to be run every single time the tool is run. In contrast, our

technique needs the dynamic analysis only for generating a call-

graph pruner. After that, a call-graph pruner is purely a static tool,

and hence does not suffer from the usual drawbacks of a dynamic

analysis like long execution times or finding good inputs.

Applying machine learning to improve static-analysis by remov-

ing false-positives. The technique of filtering static-analysis false-

positives by casting it to a classification problem with hand-picked

features has been used for static bug-analysis tools [15, 18, 39, 44,

49]. Each of these works follows the same workflow: collect static

analysis error-reports, get a programmer to label them as true or

false-positives, design a feature-set for the error reports, and then

train a classifier on these labeled error-reports to identify false-

positives. However, they have minor differences among themselves

in terms of the feature-set chosen, the bug-reporting tool used and

the benchmarks used for the training data. Ruthruff et. al [39] use

the FindBugs [20] bug-reporting tool and the set of Java programs

at Google as their dataset. Heckman and Williams [18] also use

FindBugs reported bugs on 2 open-source Java projects. Yuksel

and Sozer [49] classify bug-alerts for a digital TV software. Flynn

et al. [15] combine the bug-alerts from multiple tools, in addition

to using the hand-picked features. Tripp et. al [44] work with a

JavaScript security checker’s warnings from popular Web sites as

its dataset.

Our work differs in three ways: it uses an estimate of ground-

truth produced by dynamic analysis, it has a generalizable approach

to picking a feature set, and it has a tunable precision-recall trade-

off, as we discuss next.

The key bottleneck faced by each of these prior works was that

they relied on the collection of human-labeled ground-truth, which

does not scale. This restricted their dataset to a handful of projects

and a couple of thousand data-points (bug reports) at best. In fact,

for each type of error, there is typically less than a few hundred bugs

in each of the datasets. In contrast, our technique uses an estimate

of ground-truth produced by dynamic analysis, which allows it to

scale to a much larger number of programs with a million data

points (call-graph edges).

The second major difference is in the choice of the feature-set.

This is partly a consequence of the fact that the previous work

focuses on static-analysis error report data, which is different from

the graph output generated by call-graph construction tools. Hence

some of the common features used in these works are the bug-

priority level, file-modification-frequency, coding-style metrics,

and lexical features (like method or package names). These fea-

tures, though appropriate, violate generalizability and black-box

guiding principles listed in Section 3.3. Non-black-box features like

bug-priority level will not generalize across different tools or al-

gorithms, and non-generalizable features like lexical features are

unlikely to generalize to programs outside the dataset. In contrast,

we use a systematic approach to selecting features, as described in

Section 3.3, and as a consequence, our approach generalizes eas-

ily across multiple programs and multiple call-graph construction

tools.

The third difference is that these prior works, except for [44],

provide a single precision-recall point. [44] provide eight differ-

ent precision-recall points, by varying the classifier used. Instead,

our approach has a tunable precision-recall trade-off by predict-

ing edge-probabilities and pruning edges with probability lower

than a threshold. Further, we only use a single classifier (Random

Forests) since it achieves superior precision-recall trade-offs than

the classifiers used in [44].

Another area that uses machine learning for filtering false pos-

itive is the work by Raghothaman et al. [37]. They predict the

probabilities of static-analysis alarms using Bayesian inference and

update these as the user resolves alarms as true or false positives.

This paradigm of online learning, where the model is learned and

improved as the user gives feedback, is quite different from our

fully-automated offline learning paradigm, where we do a one-time

training on a large dataset of static and dynamic analysis outputs

and require no user input.

Recently data-driven techniques have also been used to selec-

tively apply context- and flow-sensitivity [12, 24] to methods that

will benefit it the most. These techniques can potentially provide

the precision improvement of a 1-CFA at a lower overhead, but as

seen in Figure 8, this improvement is still much lower than what is

achieved by our call-graph pruner.

Improving the precision of call-graph construction. Lhotak [29]

designed an interactive tool to qualitatively understand the root

cause of differences between different static and dynamic analysis

tools. This is then used in a case study to understand the main

cause of imprecision in a static analysis tool as compared to its

corresponding dynamic analysis output. In contrast, our classifier

generator is fully automated, using machine learning, and doesn’t

require a skilled programmer to use an interactive tool to figure

out the cause of the imprecision.

Sawin and Rountev [41] propose certain heuristics to deal with

dynamic features like reflection, dynamic class loading and native

method-calls in Java, which helps to improve call-graph precision

of the CHA algorithm without sacrificing much recall. Similarly,

a call-graph pruner trades of a little recall for a large boost in

precision, but it achieves this through automated machine learning

on a dataset of call graphs instead, and is able to boost precision

by a much larger amount. Additionally, we work with a 0-CFA

baseline (with no handling of dynamic features like reflection),

which already has a large precision gain over a CHA algorithm

with reflection handling.
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Zhang and Ryder [50] create precise application-only call graphs

by identifying which edges from the standard library to the applica-

tion are really false-positive. This is similar to the precision boost

we gain for the edges that go via the standard library. However,

we generate a classifier that learns this on its own from data, and

we use the classifier in a call-graph pruner that is able to boost

precision even further.

The patent by Reif et. al [32] uses probabilities to quantify anal-

ysis imprecision. Each analysis constraint is assigned a probability

heuristically or via user configuration, and the probabilities for

call-graph edges are derived from these using a type-propagation

graph. In contrast, our call-graph pruner learns all its edge prob-

abilities from data about static and dynamic call-graphs. Further,

while their technique calls for a new static analysis, our call-graph

pruner works as a black-box post-processor for existing call-graph

construction tools.

More distantly related is the work by Blackshear et. al [8], which

prunes control-flow edges representing interleavings between events

in an event-driven system. This pruning task is different from our

task which focuses on pruning call-graphs edges for sequential

code.

There has also been prior work that uses a dynamic analysis to

evaluate call-graph related static analysis tools [1, 11, 16, 38, 43].

Our tool additionally uses the dynamic analysis results as training

labels to prune the result from a static call-graph construction tool.

7 CONCLUSION AND FUTUREWORK

Our approach to generating a high-precision call graph first runs

an existing black-box call-graph constructor and then prunes the

resulting call graph. A call-graph pruner uses a classifier, which is

trained on a large number of static and dynamic call graphs, to pre-

dict the probability of an edge being a true-positive. Using different

thresholds for the edge probabilities we can tune the precision-

recall trade-off of the call graph. We empirically showed how a

call-graph pruner can be used to boost precision and balance the

recall and precision of call graphs produced by WALA, Doop and

Petablox, which are otherwise skewed towards high recall and low

precision. We also ran a null-pointer analysis and a monomorphic

call-sites analysis with these pruned call graphs, and we showed

that they got much closer to the high-precision expectations of

their users.

Future work includes automatically learning a feature-set for use

by our pruner generator and our generated call-graph pruners. A

particularly promising avenue for future work is to explore graph

neural networks for automatic feature-learning. Recent work has

used graph neural networks [17] for program analysis tasks like

program similarity [34], variable misuse prediction [2, 48] variable

name prediction [2], and method name prediction [48]. The features

that are discovered in those papers are not features of call graphs

and hence this remains an open problem.

A second future direction could be to replace dynamic-analysis

ground-truth labeling with developer-labeling for call-graph edges.

The challenge here is that the cumulative number of edges in the

training dataset is nearly a million, and developer-labeling doesn’t

scale to such a large dataset.

A third future direction could be to adapt our technique to heap-

reachability queries [7].
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APPENDIX

The example in Figure 2 is an excerpt of from the program that

Figure 14 shows in full.

Our classifier generator uses the Random Forest algorithm [19]

implemented with the Scikit-Learn [36] library (v0.21.3). We tuned

the hyper-parameters using Random Hyper-Parameter Search [5].

The score for which we optimized was the area under the precision-

recall curve and Figure 15 lists the chosen hyper-parameters.

class A{
A f;
void foo(A a){

a.toString();
}

}

class B extends A{
void foo(A b){

b.toString();
}

}

class C extends B{
void foo(A c){

c.toString();
}

}

public class Main{
static A id(A a){

new A().foo(a);
return a;

}
static A getObjC(){

new A().foo(new A());
new B().foo(new A());
A p = id(new A());
A q = id(new B());
A r = id(new C());
return r;

}
public static void main(

String[] args){
A x = getObjC();
x.foo(x.f);
x.f = new A();

}
}

Figure 14: Program for the example in Section 2

Hyperparameter Value

Number of Trees 1000

Maximum Depth 10

Bootstrapping False

Minimum samples for split 2

Maximum features for split sqrt(feature count)

Minimum samples for leaf 1

Split quality criterion Entropy

Other hyper-parameters Library default

Figure 15: Hyper-parameters for Random-Forests
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