
Big Data = Big Insights? Operationalising Brooks’ Law in a
Massive GitHub Data Set

Christoph Gote
cgote@ethz.ch

Chair of Systems Design, ETH Zurich

Zurich, Switzerland

Pavlin Mavrodiev
pmavrodiev@ethz.ch

Chair of Systems Design, ETH Zurich

Zurich, Switzerland

Frank Schweitzer
fschweitzer@ethz.ch

Chair of Systems Design, ETH Zurich

Zurich, Switzerland

Ingo Scholtes∗

ingo.scholtes@uni-wuerzburg.de

Chair of Computer Science XV - Machine Learning for

Complex Networks, Julius-Maximilians-Universität

Würzburg

Würzburg, Germany

ABSTRACT

Massive data from software repositories and collaboration tools

are widely used to study social aspects in software development.

One question that several recent works have addressed is how a

software project’s size and structure influence team productivity, a

question famously considered in Brooks’ law. Recent studies using

massive repository data suggest that developers in larger teams

tend to be less productive than smaller teams. Despite using similar

methods and data, other studies argue for a positive linear or even

super-linear relationship between team size and productivity, thus

contesting the view of software economics that software projects

are diseconomies of scale.

In our work, we study challenges that can explain the disagree-

ment between recent studies of developer productivity in massive

repository data. We further provide, to the best of our knowledge,

the largest, curated corpus of GitHub projects tailored to investigate

the influence of team size and collaboration patterns on individual

and collective productivity. Our work contributes to the ongoing

discussion on the choice of productivity metrics in the operational-

isation of hypotheses about determinants of successful software

projects. It further highlights general pitfalls in big data analysis

and shows that the use of bigger data sets does not automatically

lead to more reliable insights.

ACM Reference Format:

Christoph Gote, Pavlin Mavrodiev, Frank Schweitzer, and Ingo Scholtes.

2022. Big Data = Big Insights? Operationalising Brooks’ Law in a Massive

GitHub Data Set. In 44th International Conference on Software Engineering

(ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3510003.3510619

∗Also with Data Analytics Group, Department of Informatics, University of Zurich.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510619

1 INTRODUCTION

Empirical research across disciplines is nowadays driven by the

availability of big data and methods to process and analyse them

efficiently. In empirical software engineering, massive data from

software repositories and online collaboration tools are widely used

to investigate social and human aspects in software development.

This intersects with computational social science, which uses big

data to test hypotheses about individual and collective human be-

haviour originally developed in sociology, social psychology, or

organisational theory. Data-driven studies of developer productiv-

ity in large software projects are an exemplary case of how research

in empirical software engineering can advance computational social

science. The question of how factors like, e.g., team size, influence

the productivity of teammembers was already addressed byMaxim-

ilien Ringelmann [1] in 1913. In social psychology, his finding that

individual productivity tends to linearly decrease with team size is

known as the Ringelmann effect. In software project management,

a similar observation is famously paraphrased as Brooks’ law [2].

Here, the anecdote that “adding manpower to a late project makes

it later” captures that the overhead associated with growing team

sizes can reduce team efficiency. Studies of collaborative software

projects found evidence for a strong Ringelmann effect for different

team sizes, programming languages, and development phases [3–6].

Other studies, however, found a positive linear or even super-linear

relationship between the size of a team and the productivity of its

members [7–9].

The fact that different works studying the same research ques-

tion yield qualitatively different results, despite applying similar

methods to data from similar or even identical sources, should con-

cern us. Referring to the massive number of projects, commits, or

developers covered in their studies, authors often corroborate their

findings by the size of the data used to obtain them, thus implying

that the analysis of bigger data automatically yields more reliable

insights. This points to an important general issue relevant for

empirical research beyond software engineering: Apart from ad-

vantages in terms of coverage, resolution, or statistical confidence,

the use of big data also introduces new threats for the validity of

results. To address this issue, in this work, we explore four chal-

lenges in the analysis of big data. We study those challenges in a

massive GitHub data set and argue that they are likely to explain

262

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510003.3510619&domain=pdf&date_stamp=2022-07-05


ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

conflicting results on the Ringelmann effect that were reported in

recent works.

A first challenge is the quality of big data that, rather than

being carefully collected and curated to address a specific research

problem, are often incidentally generated as “digital exhaust” of

large online platforms. In empirical software engineering, this holds

for massive data on software repositories harvested from online

platforms like, e.g., GitHub or SourceForge. While massive reposi-

tory data promise insights into universals of collaborative software

development, they are known to suffer from various quality issues.

These originate, e.g., from the inclusion of repositories that do not

relate to software projects, projects whose development history is

only partially represented in the data, or ambiguities that hinder the

reliable identification of developers [10–13]. This poses particular

problems for studies addressing the effect of team size on developer

productivity, which require reliable data on collaborative projects

that provide a complete picture of development actions attributable

to individual team members.

A second challenge is population validity, which determines

whether findings obtained in a given data sample can be extrap-

olated to a larger population. On the one hand, for reasons of

computational efficiency, researchers often base their results on

a subset of the observations available in massive data, which can

introduce biases that question population validity. On the other

hand, we can not necessarily avoid such biases by using all available

data since population validity depends on the population for which

we want to answer a given research question. In massive repository

data, using full information on all GitHub projects may be justified

if we want to answer a question about the population of GitHub

projects. However, if we use data on GitHub to obtain generalisable

findings on how the size of software development teams affects the

productivity of team members, we must carefully select projects

to avoid biased samples in which either small or large teams are

overrepresented.

A third challenge is construct validity, which includes the is-

sue that rich and big data provide various options to operationalise

research questions or hypotheses. Whether or not the specific op-

erationalisation chosen by a study is valid to address a research

question is an important issue that influences the validity of results.

In the context of developer productivity, data on software reposi-

tories is an example of high-dimensional and time-resolved data.

In such data, productivity can be measured in various ways, and

analyses can be applied for different levels of temporal aggregation,

which is likely to affect the results.

Finally, omitted-variable bias is a fourth challenge that limits

the reliability of findings if relevant variables are excluded from an

analysis. Technically, this is a general challenge that is not due to

the characteristics of big data. We nevertheless consider it in our

work because high-dimensional data are likely to contain variables

that can be used to address this issue. In the context of Brooks’ law,

we can think of multiple explanations for an observed relationship

between, e.g., the size of a team and the productivity of its members.

One explanation could be a causal mechanism by which growing

team size influences developer productivity, e.g., by reducing or

increasing the motivation of teammembers. An alternative explana-

tion could be an additional variable related to the size of a team and

developers’ productivity, such as e.g., the collaboration structure of

a team. A lack of control for such variables not only introduces bi-

ases in the inference of the actual relationship between variables of

interest. It can also lead to the identification of spurious cause-effect

relationships that negatively influence decision-making.

The four challenges summarised above question both the in-

ternal and external validity [14] of empirical research in software

engineering, which can explain why works studying the same ques-

tion in the same data arrive at different conclusions. Focusing on

the operationalisation of Brooks’ law, in this work, we show how

to address them in massive GitHub data. Our contributions are as

follows:

� To address the challenges of data quality and population

validity, we create a large, curated data corpus on Open

Source Software (OSS) projects that facilitates the study of

the influence of team size on both individual and collective

productivity. The projects included in this corpus are sys-

tematically chosen based on (i) transparent filtering criteria

that avoid common perils in GitHub mining [11] and (ii) a

stratified sampling that supports unbiased analyses of the im-

pact of team size on developer productivity. We make both

our corpus and the pipeline to filter, sample, and process

data based on GHTorrent [15], a database freely available

for researchers.
� To address construct validity, we systematically compare

metrics for developer productivity in the data corpus cre-

ated above. Acknowledging that productivity is a multi-

dimensional phenomenon, we select a set of eight code- and

commit-based productivity measures. We study their cross-

correlation to answer which of the measures are likely to be

interchangeable and which capture independent dimensions

of productivity.
� Addressing omitted-variable bias, we finally study to what

extent changes in productivity can be causally explained by

the collaboration structure of projects rather than team size.

Building on a recently developed method to construct time-

evolving co-editing networks based on git repositories [16],

we investigate eight network metrics whose choice is rooted

in social capital theory. We study the cross-correlation of

those metrics to identify which of them capture independent

dimensions.
� We apply our methods to study the Ringelmann effect in

collaborative software development based on the corpus

and methods developed above. We find a strong and signifi-

cant negative relationship between team size and individual

productivity that can be explained based on changes in the

collaboration structure of software teams. We further show

that a failure to account for the challenges outlined above can

lead to spurious results that suggest a positive relationship.

In summary, we study challenges that can explain the disagree-

ment between recent studies of developer productivity in massive

repository data. We further provide, to the best of our knowledge,

the largest, curated corpus of GitHub projects tailored to investigate

the influence of team size and collaboration patterns on individual

and collective productivity. Our work contributes to the ongoing

263



Big Data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub Data Set ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

discussion on the choice of productivity metrics in the operational-

isation of hypotheses about determinants of successful software

projects. It further highlights general pitfalls in big data analysis

and shows that the use of bigger data sets does not automatically

lead to more reliable insights.

2 SYSTEMATIC CONSTRUCTION OF DATA
CORPUS

We first introduce a framework to select and mine projects from

GitHub that can be used to address the first two challenges of

data quality and population validity. We use it to systematically

sample 201 OSS projects covering the entire range of team sizes

on GitHub. We further extract time-stamped editing events that

we use to investigate whether collaboration structures can explain

team productivity.

2.1 Data quality

To select suitable projects from GitHub, we propose the project

selection and sampling pipeline shown in Figure 1. As a first step,

we need to gain access to the information required to apply our

selection criteria. Because GitHub’s REST API is rate-limited to

5,000 requests per hour1, retrieving the metadata of more than

100 million repositories hosted on GitHub [17] becomes untenable.

We, therefore, use the database made available by the GHTorrent

project [15], which has crawled most of GitHub’s REST API using

donated API keys. We use the latest1 available dump from June 2019

that contains data on a total of more than 125 million repositories.

As a second step, we determine which projects in the GHTorrent

database are suitable to study collaborative OSS development. It has

already been reported by the authors of [11] that the majority of

projects on GitHub are either personal, inactive, or very small and

should be excluded when analysing collaborative software devel-

opment. We adopt the filtering criteria proposed by the authors of

[11], namely excluding repositories with a single developer, fewer

than 50 commits, or a span of fewer than 100 days between the

first and last commit in the repository. The resulting data set re-

duces to around 4.5 million OSS projects, i.e., 3.6% of all GHTorrent

repositories. In other words, following [11], at least 96.4% of the

repositories in the latest GHTorrent database are not suitable for

studying collaborative software development.

We further improve on these filtering criteria in the following

two ways. First, GitHub is frequently used for applications not

related to software development, such as free file storage or web

hosting [11]. Our own analysis revealed a substantial number of

popular repositories2 not representative of collaborative software

development, e.g., tutorials on git, code snippet repositories, or

git-based “clocks”, which are updated with a new commit every

second. Excluding these repositories is crucial to avoid misleading

results.

Second, as a result of the functionality to fork any public reposi-

tory, GitHub contains a substantial amount of repositories that are

in large parts exact copies of other projects. We drop all repositories

that are designated as forks to avoid biases from analysing the same

commit history multiple times.

1 as of June 2020
2popular judged by a high count of forks, commits, developers, or stars

GHTorrent

(offline mirror of

GitHub REST API)

Original and

collaborative

projects

Relevant

projects

for RQ

Selected

projects

for RQ

I II

IIIIV

filter according to [11]

RQ-based

filtering

select projects, e.g., with

random sampling [18]

GitHub

git2net +

gambit +

measure

computation

Figure 1: Pipeline to select and sample collaborative soft-

ware development projects from GitHub to address a given

research question (RQ).

After applying these two additional filtering steps, we retain a list

of around 1.8 million original and collaborative repositories, which

is only 1.4% of all repositories in GHTorrent. This underlines the

importance of proper data selection when analysing collaborative

software development on GitHub.

2.2 Population validity

Besides projects that are original and collaborative, our study on

team productivity requires projects that fulfil additional conditions

regarding their (i) activity, (ii) size, and (iii) purpose, i.e., collabora-

tive projects for developing software (step 3 in Figure 1).

Project activity. To avoid issues that could arise from mixing

active projects with those where development has ceded long in the

past, we focus on projects that are actively developed at the time of

our study. We regard a project as active if the last commit was made

after May 2020. To ensure this, we take a two-fold approach: we

first select projects from GHTorrent that have a recorded commit

activity after May 2019. In a subsequent step, we then use the

GitHub REST API to filter those projects that additionally have a

recorded commit after May 2020.

Project size. To facilitate an unbiased sampling of projects based

on team size, we first need to determine the size of a development

team. For OSS projects without formal team memberships, this is

a challenging task. The authors of [3] found that the probability

of making future contributions to an OSS project drops below 10%

after an inactivity of approx. 42 weeks. Based on this finding, we

264



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

Table 1: Number of projects with different team size ranges.

All given team size ranges include the outer values. Team

sizes are computed based on the data available in GHTorrent.

Team

Size

Projects

Tot. Sel.

2 – 4 95,763 19

5 – 8 33,027 27

9 – 15 17,221 26

16 – 30 10,027 27

31 – 58 3,499 27

Team

Size

Projects

Tot. Sel.

59 – 115 1,476 25

116 – 226 665 16

227 – 443 231 13

444 – 871 102 15

872 – 1,711 28 6

compute the size of an OSS development team at time 𝑡 by counting

all developers who committed within a moving time window of

294 days, i.e., between 𝑡 − 294 days and 𝑡 . Thus, to compute a team

size, projects need to have existed for at least 294 days, increasing

the requirements beyond the 100 days considered by the authors of

[11].

Table 1 shows the number of projects for different team sizes,

where team size is computed for the latest available 294-day time

window. The project counts are reported for ten log2-spaced strata,

which yields a distribution where the team size roughly doubles

for each consecutive stratum. The resulting distribution is right-

skewed, where the vast majority of projects have small team sizes.

A uniform sample from the complete set of projects would thus

primarily select small projects, which would fail to cover a broad

spectrum of team sizes. To remedy this, we sample 28 projects from

each stratum, where 28 is the size of the stratum with the fewest

projects.

While sampling, we ensure that all sampled projects are soft-

ware development projects and continue to be actively developed

at the time of mining. We further remove duplicate projects that

originate from manual clones of other repositories. We achieve this

by applying the following selection criteria:

Project purpose. To identify a project’s purpose, we query the

GitHub REST API to obtain the most recent information on all

considered projects. We first ensure that all sampled projects are

software development projects and continue to be actively devel-

oped at the time of mining. We consider a project as a software

development project if at least 75% of the code in the repository is

written in the 17 programming languages supported by the code

analysis tool lizard [19]. In total, the languages supported by

lizard account for over 85% of the code submitted to GitHub [20].

Deduplication. Finally, our set of projects still contains duplicate

repositories that originate from manual clones pushed to a different

repository rather than using the fork mechanic recorded in the

GHTorrent data. Removing these clones is an important challenge

when selecting repositories for analysis, and independent data sets

listing duplicate repositories have been developed [21]. Unfortu-

nately, these data sets were not yet available at the time of our

analysis. Therefore, we manually removed the clones, retaining the

original project that was cloned.

The two selection criteria require us to query the GitHub REST

API or perform manual filtering, respectively. Due to the API’s

rate limit, this means that neither can be performed at large scale

before sampling projects. Instead, they need to be performed during

the sampling process. We treat all strata equally and apply the

additional selection criteria to the sampled 28 projects from each

stratum. As shown in the final column of Table 1, this yields between

6 and 27 projects for each of the ten strata, resulting in a total of

201 projects with a total of more than 100,000 developers and over

3 million commits (step 4 in Figure 1). Overall, we obtain relatively

similar project counts for all strata, except for the strata with largest

and smallest team sizes.

2.3 Mining co-editing networks from git
repositories

Wemine all edits and co-edits for the full history of the 201 projects

using the Open Source Python tool git2net [16]. Besides co-editing

relations, we also extract both commit- and code-based productivity

measures. To this end, we apply lizard [19] and an optimised ver-

sion of multimetric [22] to the source code before and after each

change. Obtaining highly granular information on the development

process of over 200 OSS projects requires substantial computational

resources, in our case, over 1 million CPU-hours. Therefore, we

perform all computations on 256 compute cores within a time frame

of over six months on the ETH Zurich scientific compute cluster

Euler.

An additional challenge in the analysis of git repositories is

the need to disambiguate commit authors. This step is necessary

as developers can make contributions using different credentials,

e.g., due to spelling errors in usernames or the use of nicknames.

Considering different aliases as different users would lead us to

overestimate the team size and underestimate the productivity of

developers with multiple aliases. We thus use the recently proposed

tool gambit [13] to disambiguate all developers in all repositories.

Upon manual inspection, we found that some projects contain

very large commits originating from code imports or automated

code refactoring tools. Such, mostly automated, commits are not

representative for the coordination requirements between devel-

opers. However, due to their size, they could lead to a bias our

subsequent analysis. Therefore, as a final data cleaning step, we

drop outliers by excluding all commits outside the 2.5th and 97.5th
percentile regarding their total Levenshtein distance.

A complete list of projects as well as anonymised raw data of all

projects considered in our analysis is archived on zenodo.org3.

3 OPERATIONALISING PRODUCTIVITY AND
COLLABORATION STRUCTURE

To study how team size affects the productivity of OSS projects,

we need to operationalise (i) the size of OSS teams, and (ii) the

productivity of OSS teams. In addition, we aim to understand how

coordination between different team members affects this relation.

Therefore, we need to also operationalise (iii) the collaboration

structure of OSS teams.

We base our operationalisations of all three concepts on the

edits and co-edits observed within non-overlapping 42-week time

windows. As discussed in Section 2.2, the choice of 42 weeks is

3https://doi.org/10.5281/zenodo.5294964

265



Big Data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub Data Set ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Productivity measures considered in this paper. All

measures are evaluated over a time window of length Δ𝑡 and
normalised by the team size (TS).

C
o
m
m
it
-

B
a
se
d Comms commits /Δ𝑡/TS

Events lines added, modified, or deleted /Δ𝑡/TS

LevD characters modified /Δ𝑡/TS

C
o
d
e-

B
a
se
d

NLOC lines of code changed /Δ𝑡/TS

Tokens change in number of tokens /Δ𝑡/TS

Funcs change in the number of functions /Δ𝑡/TS

CycC change in cyclomatic complexity /Δ𝑡/TS

HalEff Halstead effort to make changes /Δ𝑡/TS

motivated by [3] who found that after this time, the probability of

a developer making future contributions to a project is less than

10%. Ensuring that the time window is divisible by full weeks is

essential to ensure that the weekly productivity patterns present

on GitHub [23] do not bias our results.

In the next three sections, we will discuss each of the opera-

tionalisations in detail.

3.1 Team size

OSS projects utilise the principles of open collaboration to create

new software. This means that they rely on contributions of loosely

coordinated participants, who differ significantly regarding the

size of their contributions. Contributors can further join and leave

the team at any time. Due to this method of collaboration, no

organised ledgers listing the members of OSS teams exist. This

makes operationalising the size of such teams non-trivial.

The consensus of prior literature is that all individuals contribut-

ing to an OSS project should be considered as team members [24].

With this work, we study the production of code artefacts. There-

fore, we operationalise team size as the count of all individuals

who contribute code to a project within a given time window. This

includes all developers adding, modifying, or removing code from

the project’s codebase.

3.2 Productivity measures

Before discussing how we operationalise team productivity, we

need to precisely define this term. Productivity captures one aspect

of the broader concept of team effectiveness. Here, team effectiveness

is defined as (i) the productive output of the work group, (ii) the

effectiveness of processes to maintain the team’s capability in the

future, and (iii) the satisfaction of group member’s personal needs

[25, p. 323]. With our study on team productivity, we focus on the

first aspect. Specifically, we assess the input-output relation consid-

ering the size of the code changes made by an OSS development

team as a function of the team’s size.

To operationalise team productivity, we need to define measures

that allow us to capture the size of a change in a project’s codebase.

For this, many different measures have been proposed in the litera-

ture. Addressing construct validity, we consider eight productivity

measures and investigate the extent to which they provide inde-

pendent information on the construct of productivity. We further

carefully investigate and assess how these measures interrelate.

We categorise our eight productivity measures as commit- or

code-based measures [26]. Commit-based metrics rely solely on the

size of the changes within a repository, e.g., the number of commits,

the number of changed lines, or the number of modified characters.

Commit-based productivity measures require low computational

effort and are independent of the programming language used in a

repository. However, by not assessing the content of a repository’s

code, they do not allow us to distinguish, e.g., between lines of

code or comments that are added. Therefore, we also consider code-

based measures that take these aspects into account. These include

measures based on the number of modified lines of code (NLOC),

the number of code tokens or functions, changes in McCabe’s cy-

clomatic complexity [27], or the Halstead effort [28]. We provide a

complete overview of the productivity measures considered in our

study in Table 2. We compute productivity for each time window

and normalise the productivity by the respective team size (TS).

To illustrate how different productivity measures can introduce

the challenge of construct validity, consider the exemplary Python

code shown in Figure 2. We start with version one of a file that

contains three lines of text with a total of 53 characters (whitespaces

included). Creating this file from scratch would require three line

modification events, i.e. three line-additions where lines 1 and 3

contain actual code, and line 2 contains a comment. Therefore, the

number of line modification events is three, while the lines of code

(NLOC) is two. In the example, we have highlighted all code tokens.

To compute the Halstead effort, we need to distinguish between

tokens that are operands and operators. These are highlighted in

blue and red, respectively, whereas all other tokens are printed in

purple. In total, we have 12 tokens. With a and b, the code contains

𝜂2 = 2 distinct operands that appear a total of 𝑁2 = 4 times. We

further have 𝑁1 = 6 operators that are all different from each

other (i.e. 𝜂1 = 6). The Halstead effort to create this file is thus

defined as 𝐸 = (𝑁1 + 𝑁2) · log2 (𝜂1 + 𝜂2) ·
𝜂1

2 ·
𝑁2
𝜂2

= 180. Finally,

the file only has one function without any branches resulting in

Functions = CycC = 1.

With the first modification, we add a second function implement-

ing the multiplication of two values. The bottom-left green box in

Figure 2 shows the productivity of this change. The code-based

productivity measures are computed as the productivity difference

to create the two consecutive versions of the file. For the commit-

based measures, the contents of the two files are compared directly.

With the second modification, we merge the two functions into one.

Despite the increase in characters, the token and function counts

and the Halstead effort of version three are lower than those of

version two. If measures such as the number of functions or the

cyclomatic complexity were to only increase, this would make the

code difficult to maintain and prone to bugs [29, 30]. Therefore, we

also consider contributions reducing code complexity, e.g., by con-

solidating functions or refactoring code, as productive. We achieve

this by computing the productivity of a modification as the absolute

value of the productivity values to create the versions before and

after the observed change.

This simple example shows that our eight productivity measures

can yield considerably different results. This prompts the question

of which measure we should use as a target variable that we seek

to explain through the set of features identified above.

266



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

Figure 2: Productivitymeasures applied to three consecutive versions of an exemplary Python file. In the grey boxes, we report

the productivity associated with creating each version of the file from scratch. In the green boxes, we show the productivity

related to the changes observed between the versions. We assume that each new version was created in a single commit. All

tokens are highlighted. Tokens that are operands and operators are printed in blue and red, respectively. All other tokens

are printed in purple. Individual functions are indicated by yellow bars. For the computations in the example, we assume

Δ𝑡 = TS = 1.

We address this question in an exploratory study analysing the

201 OSS repositories in our corpus. For this, we split time-series data

into non-overlapping 42-week time windows. We then compute

our productivity measures and drop all time windows in which a

team was inactive, i.e., for which we observe a productivity of zero,

yielding a total of 1,188 observations. We find that the distributions

of all productivity measures are highly skewed. Therefore, we log-

transform all skewed measures such that the resulting distributions

resemble a normal distribution.

Figure 3a shows the Pearson correlation between all productivity

measures. We find values larger than 0.9 between all productivity

measures except for the number of commits and Halstead effort.

This suggests that the change in both characters and tokens is

similar to the change in lines. We further find that the number of

functions and cyclomatic complexity are positively correlated, both

changing with the number of lines. With values between 0.7 and 0.8,

correlations are considerably smaller for the number of commits

and Halstead effort. This indicates that commits differ considerably

in terms of their size, i.e., with regard to the number of characters,

lines, tokens or functions modified with the commit. Halstead effort

is unique among the considered productivity measures as, next to

the total amount of code, it also considers the size of the vocabulary

used. Therefore, slower vocabulary growth compared to the total

amount of code could explain the observed smaller correlation with

other measures.

In conclusion, all considered productivity measures have differ-

ent motivations. Some analyse the source code at various levels

of detail while others aggregate information at the level of lines

or commits. Despite those differences and the strong differences

shown in the example in Figure 2, in our corpus of projects, and

when computing average developer productivities across teams, all

productivity measures are highly correlated.

3.3 Collaboration networks of OSS teams

Addressing the challenges of omitted-variable bias, we explore how

the collaboration structure of teams might modulate team produc-

tivity. In this way, we capture team characteristics beyond mere

team size, highlighting additional variables that we need to control

for when studying Brooks’ law in rich data. The inclusion of addi-

tional measures capturing collaboration structure was motivated by

[3], which found that a team’s network structure affects the slope

of the relation in their data. Therefore, for this work, we consider

network-based measures that fit this prior work. In addition, we

also include software-engineering-specific measures.

Specifically, to capture characteristics of different aspects of the

collaboration structures of development teams, we use measures

that we compute on the co-editing network constructed for our non-

overlapping 42-week time windows. In these co-editing networks,

nodes represent different developers and edges 𝐴 → 𝐵 represent

events where developer 𝐵 modifies a line of code last edited by 𝐴.
The direction of the edge indicates the change of line ownership

from𝐴 to 𝐵. Multiple co-editing events between two developers are

represented as multi-edges between nodes. Developers editing their

own code are captured as self-loops. In the following, we present

eight measures that can be used as control variables to explain

the relation between team productivity and team size. For formal

definitions, we refer to [31].

Number of nodes (N). The number of nodes in the co-editing

network counts all developers that actively edited code or whose

code was edited. The number of nodes is always greater than or

equal to the team size.

Number of edges (Edges). The number of edges counts the co-

editing events within a time window.

Density (Dens). The density captures the proportion of potential

edges present in a network. We compute the density based on the

flattened network, in which multi-edges between two nodes are

substituted by a single edge.

Diameter (Diam). The network’s diameter is given by the length

of the longest shortest path between any pair of nodes.

Clustering Coefficient (ClustC). A node’s local clustering coeffi-

cient is computed as the fraction of pairs of neighbours that are

267



Big Data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub Data Set ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Events (lo
g)

NLOC (lo
g)

LevD (lo
g)

Tokens (lo
g)

CycC (lo
g)

Funcs (lo
g)

Comms (lo
g)

HalEff (l
og)

Events (log)

NLOC (log)

LevD (log)

Tokens (log)

CycC (log)

Funcs (log)

Comms (log)

HalEff (log)

1

0.98

0.98

0.97

0.95

0.91

0.81

0.77

0.98

1

0.98

0.98

0.96

0.92

0.79

0.74

0.98

0.98

1

0.98

0.94

0.89

0.78

0.75

0.97

0.98

0.98

1

0.95

0.9

0.77

0.76

0.95

0.96

0.94

0.95

1

0.95

0.78

0.76

0.91

0.92

0.89

0.9

0.95

1

0.74

0.67

0.81

0.79

0.78

0.77

0.78

0.74

1

0.67

0.77

0.74

0.75

0.76

0.76

0.67

0.67

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1TS (lo
g)
N (lo

g)
Diam Dens (lo

g)

ClustC
InD (lo

g)

EigG (sqrt)

FModR

TS (log)

N (log)

Diam

Dens (log)

ClustC

InD (log)

EigG (sqrt)

FModR
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Events (lo
g)

NLOC (lo
g)

LevD (lo
g)

Tokens (lo
g)

CycC (lo
g)

Funcs (lo
g)

Comms (lo
g)

HalEff (l
og)

TS (log)

N (log)

Diam

Dens (log)

ClustC

InD (log)

EigG (sqrt)

FModR

A B C

Figure 3: Results of exploratory study on team productivity and collaboration structure. a) Pearson correlation between the

transformed productivity measures. b) Pearson correlation between the transformed networkmeasures. Clusters between the

measures are marked. c) Cross-correlation (Pearson) between the transformed network and productivity measures.

connected by an edge. The global clustering coefficient is obtained

as the average local clustering coefficient across all nodes in the net-

work. Networks with small diameter and large clustering coefficient

exhibit the so-called small-world property. Links that connect differ-

ent clusters in a network lead to low diameters, even for networks

with many nodes. The small-world property is directly related to

navigability, knowledge transfer and social capital within social

networks [32, 33].

Mean Indegree (InD). In the flattened co-editing network, the

indegree of a node 𝑖 indicates the number of developers whose code

has been edited by 𝑖 .

Mean Foreign Modification Ratio (FModR). A recent work shows

that the productivity of developers is significantly reduced if they

edit code owned by other developers compared to editing their own

code [4]. We account for this using the foreign modification ratio,

which we compute as the fraction of all co-editing events where

the developer edits code owned by another developer. We obtain

the number of all co-edits of a developer 𝑖 as 𝑖’s indegree, and the

number of co-edits where 𝑖 edit foreign code as the count of all

edges to 𝑖 that are not self-loops. The mean foreign modification

ratio of the team is obtained as the mean foreign modification ratio

of all team members.

Eigengap (EigG). Finally, the eigengap, also referred to as spectral

gap, of a network captures the efficiency of dynamical processes on

the network. Networks with larger eigengaps support fast spread-

ing, diffusion and synchronisation, which can be interpreted as

a proxy for the efficiency of information exchange and consen-

sus schemes. We compute the eigengap for the largest connected

component of the network.

The definitions above enable us to capture the collaboration

structure of software development teams in a multi-dimensional

feature space. Similar to the productivity measures, we find that the

distributions of some network measures are highly skewed. There-

fore, we again apply logarithmic or square-root transformations.

We report the applied transformation for all measures throughout

the remainder of this manuscript.

We next aim to select a minimum set of features that capture

independent dimensions of collaboration networks. For this, we

study pair-wise correlations between all features, identify clus-

ters of highly correlated features, and select one representative

feature per cluster. While we could instead use dimensionality re-

duction techniques like principal component analysis, our approach

provides the advantage that it allows us to analyse interpretable

network features rather than principal components.

Figure 3b shows the Pearson correlation between all pairs of

network measures. A first visible cluster in the upper-left quadrant

contains team size, the number of nodes, and the network diameter,

which all show a strong positive correlation. In addition, network

density is strongly negatively correlated with all three. Thus, the rel-

ative number of co-editing interactions goes down for larger teams,

leading to the distance between the two furthest team members

in the co-editing network to increase. The second cluster contains

clustering coefficient, mean indegree, and eigengap, which are all

positively correlated. Thus, in teams where everyone interacts with

many different team members we obtain a network structure in

which information can spread more quickly throughout the team.

The third cluster contains only the mean foreign modification ratio,

which quantifies how much other developers’ code is edited within

the team. For all downstream analyses, we select team size (TS),

mean indegree (InD) and the foreign modification ratio (FModR)

from the set of network measures, i.e., we use one measure from

each cluster.

We finally consider cross-correlations between the network and

productivity measures shown in Figure 3c. The results of this anal-

ysis confirm that all productivity measures exhibit very similar

correlations to the network metrics.

Overall, with the results from our correlation studies, we confirm

and extend the prior findings on the relations between social net-

work measures for OSS projects [34, 35] and the relations between

classical source code metrics [36–39] for a broader set of measures

and in our novel and significantly more extensive corpus of projects

designed to study the productivity of OSS development teams.

268



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

4 TESTING BROOKS’ LAW IN MASSIVE
GITHUB DATA

We now address the ongoing scientific discourse on the relationship

between team size and productivity [7, 8, 40]. For this, we apply

linear and polynomial regression models to different productivity

target variables, where we additionally use the network metrics

identified in section Section 3.3 as control variables.

Figure 4a shows the productivity per team member as a function

of team size, exemplified for a productivity measure based on cy-

clomatic complexity. We fit a linear (CycC ∼ TS) and a polynomial

model with maximum degree two (CycC ∼ TS + TS2) to our data.

The linear model enables us to infer a possible relationship between

team size and productivity. The model CycC ∼ TS+TS2 is the basis

to test for the existence of an optimal team size, which is captured

by the existence of a global maximum of the quadratic function.

The linear model yields a significant negative relationship be-

tween TS and productivity, as reported in Table 3a. Similarly, as

shown in Table 3b, we find a significant negative coefficient for TS2

for the quadratic model. This means that, on average, individual

productivity decreases with team size.

That said, all coefficients for TS in the quadratic models are

positive, and the coefficients for CycC and HalEff are also signifi-

cant. This means that these models can be represented as inverted

parabolas, e.g., as shown by the red curve for CycC in Figure 4a.

The maxima of the parabolas for CycC and HalEff provide some

evidence for an optimal team size of 7 or 19 team members, re-

spectively, which is roughly in line with the optimal team size of

9 suggested by [41]. However, we argue that the key insight of

this result is not the exact team size for which the maximum is

reached, which is likely an artefact of the simplified model used for

our analysis. Instead, the key insight is the possible increase in indi-

vidual productivity for very small teams—compared to the analysed

range from 2 to 1,711 members—with decreases thereafter. Due to

the large amount of remaining variance and the small slope of the

parabola around the maximum, interpreting a specific number as

optimal team size is likely to be misleading. We further note that

for the regression analyses using the remaining productivity mea-

sures as target variables, the coefficient for team size is insignificant.

Hence, despite the coefficients being consistently positive, these

models do not provide sufficient statistical evidence to conclude an

increase in individual productivity even in small teams, resulting

in an overall negative relation between productivity and team size.

Importantly, the models considered so far only partially explain

the variance in the relationship between productivity and team

size. This can be seen from the low 𝑅2 values of less than 15%

in Table 3a and b. Moreover, Figure 4a shows that, especially for

small teams, the productivity of team members varies over four

decades. This suggests that additional aspects other than team size

have a substantial influence on the productivity of developers. We

thus consider regression models that additionally control for the

network features identified in Section 3.3. Specifically, we add the

mean number of interaction partners per team member (InD) and

the average amount of edited foreign code (FModR) as additional

variables in our regression models.

As shown by the 𝑅2 values in Table 3c, the regression models

that include InD and FModR explain close to half of the variance

Table 3: Regressionmodels relating team size (TS) to five pro-

ductivity measures. The results are based on 1,188 observa-

tions. All productivitymeasures are log-transformed. All co-

efficients are Bonferroni-corrected for multiple hypotheses

testing.

a) Linear relationship

Comms Events LevD CycC NLOC Tokens Funcs HalEff

(IC) 3.38∗∗∗ 7.75∗∗∗ 11.24∗∗∗ 5.22∗∗∗ 6.99∗∗∗ 9.02∗∗∗ 4.22∗∗∗ 15.82∗∗∗

(0.08) (0.10) (0.10) (0.11) (0.10) (0.11) (0.11) (0.16)
TS (log) −0.20∗∗∗ −0.31∗∗∗ −0.33∗∗∗−0.31∗∗∗ −0.31∗∗∗ −0.34∗∗∗ −0.29∗∗∗ −0.22∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04)

R2 0.07 0.10 0.11 0.09 0.10 0.11 0.08 0.02
Adj. R2 0.07 0.10 0.11 0.09 0.10 0.11 0.08 0.02

b) Quadratic relationship

Comms Events LevD CycC NLOC Tokens Funcs HalEff

(IC) 3.02∗∗∗ 7.06∗∗∗ 10.55∗∗∗ 4.18∗∗∗ 6.23∗∗∗ 8.11∗∗∗ 3.31∗∗∗ 14.10∗∗∗

(0.17) (0.22) (0.22) (0.23) (0.21) (0.22) (0.23) (0.34)
TS (log) 0.02 0.12 0.10 0.35∗ 0.17 0.24 0.28 0.86∗∗∗

(0.10) (0.12) (0.13) (0.13) (0.12) (0.13) (0.13) (0.19)
TS2 (log) −0.03∗ −0.06∗∗∗ −0.06∗∗∗−0.09∗∗∗ −0.06∗∗∗ −0.08∗∗∗ −0.08∗∗∗ −0.15∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

R2 0.08 0.11 0.12 0.11 0.11 0.13 0.10 0.05
Adj. R2 0.07 0.11 0.12 0.11 0.11 0.12 0.10 0.05

c) Linear relationship controlling for network properties

Comms Events LevD CycC NLOC Tokens Funcs HalEff

(IC) 3.18∗∗∗ 7.62∗∗∗ 11.10∗∗∗ 5.22∗∗∗ 6.95∗∗∗ 8.93∗∗∗ 4.25∗∗∗ 15.78∗∗∗

(0.08) (0.09) (0.10) (0.10) (0.09) (0.10) (0.10) (0.16)
TS (log) −0.36∗∗∗ −0.49∗∗∗ −0.51∗∗∗−0.48∗∗∗ −0.48∗∗∗ −0.52∗∗∗ −0.45∗∗∗ −0.45∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.04)
InD (log) 1.16∗∗∗ 1.45∗∗∗ 1.44∗∗∗ 1.46∗∗∗ 1.42∗∗∗ 1.49∗∗∗ 1.35∗∗∗ 1.90∗∗∗

(0.04) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06) (0.09)
FModR −1.00∗∗∗ −1.90∗∗∗ −1.83∗∗∗−2.65∗∗∗ −2.33∗∗∗ −2.19∗∗∗ −2.65∗∗∗ −3.26∗∗∗

(0.22) (0.27) (0.28) (0.30) (0.27) (0.28) (0.30) (0.46)

R2 0.45 0.49 0.47 0.46 0.49 0.49 0.42 0.33
Adj. R2 0.45 0.49 0.46 0.46 0.49 0.49 0.42 0.33

d) Quadratic relationship controlling for network properties

Comms Events LevD CycC NLOC Tokens Funcs HalEff

(IC) 3.53∗∗∗ 7.83∗∗∗ 11.30∗∗∗ 5.10∗∗∗ 7.08∗∗∗ 8.95∗∗∗ 4.22∗∗∗ 15.25∗∗∗

(0.14) (0.17) (0.18) (0.19) (0.17) (0.18) (0.19) (0.30)
TS (log) −0.58∗∗∗ −0.63∗∗∗ −0.64∗∗∗−0.41∗∗∗ −0.56∗∗∗ −0.53∗∗∗ −0.42∗∗∗ −0.10

(0.08) (0.10) (0.10) (0.11) (0.10) (0.10) (0.11) (0.17)
TS2 (log) 0.03∗ 0.02 0.02 −0.01 0.01 0.00 −0.00 −0.05

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)
InD (log) 1.18∗∗∗ 1.46∗∗∗ 1.45∗∗∗ 1.45∗∗∗ 1.43∗∗∗ 1.49∗∗∗ 1.35∗∗∗ 1.87∗∗∗

(0.04) (0.05) (0.06) (0.06) (0.05) (0.06) (0.06) (0.09)
FModR −1.04∗∗∗ −1.93∗∗∗ −1.85∗∗∗−2.64∗∗∗ −2.34∗∗∗ −2.19∗∗∗ −2.65∗∗∗ −3.20∗∗∗

(0.22) (0.27) (0.28) (0.30) (0.27) (0.28) (0.30) (0.46)

R2 0.45 0.49 0.47 0.46 0.49 0.49 0.42 0.34
Adj. R2 0.45 0.49 0.46 0.46 0.49 0.49 0.42 0.33

e) Linear relationship with controls and interaction effects

Comms Events LevD CycC NLOC Tokens Funcs HalEff

(IC) 2.72∗∗∗ 7.39∗∗∗ 10.85∗∗∗ 5.01∗∗∗ 6.68∗∗∗ 8.68∗∗∗ 4.06∗∗∗ 15.91∗∗∗

(0.11) (0.14) (0.14) (0.15) (0.13) (0.14) (0.15) (0.23)
TS (log) −0.22∗∗∗ −0.43∗∗∗ −0.44∗∗∗−0.42∗∗∗ −0.40∗∗∗ −0.45∗∗∗ −0.39∗∗∗ −0.48∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.06)
InD (log) 1.83∗∗∗ 1.78∗∗∗ 1.80∗∗∗ 1.76∗∗∗ 1.80∗∗∗ 1.86∗∗∗ 1.62∗∗∗ 1.72∗∗∗

(0.12) (0.15) (0.16) (0.17) (0.15) (0.16) (0.17) (0.26)
TS×InD −0.18∗∗∗ −0.09 −0.10 −0.08 −0.10∗ −0.10 −0.07 0.05

(0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.07)
FModR −0.92∗∗∗ −1.87∗∗∗ −1.79∗∗∗−2.62∗∗∗ −2.29∗∗∗ −2.15∗∗∗ −2.62∗∗∗ −3.28∗∗∗

(0.22) (0.27) (0.28) (0.30) (0.27) (0.28) (0.30) (0.46)

R2 0.47 0.49 0.47 0.46 0.50 0.49 0.43 0.34
Adj. R2 0.46 0.49 0.47 0.46 0.49 0.49 0.42 0.33

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

269



Big Data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub Data Set ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1

10

100

1000

10000

10 100 1000

Team Size

C
yc

C
 / 

Te
am

 M
em

be
r

A

10

100

1000

10000

10 100 1000

Team Size
N

LO
C

 / 
Te

am
 M

em
be

r

InD
0.3
1
2
5

B

0.0

2.5

5.0

7.5

10.0

12.5

2−4 5−8
9−15

16−30
31−58

59−115
116−226

227−443
444−871

872−1711

Team Size

In
D

C

Figure 4: a) Productivity (CycC) per team member as a function of team size. A linear � and quadratic model � have been

fitted to the data. b) Marginal effect of the mean indegree on the relationship between team size and productivity (NLOC). c)

Increase of mean indegree (InD) with team size.

in the productivity observations. We further again find a negative

relationship between team size and productivity for all five opera-

tionalisations. Assuming constant InD and FModR, the regression

results suggest that by doubling the size of a development team,

we reduce the average productivity of team members by between

22% and 30%. Notably, a higher mean indegree is accompanied by

higher productivity. Moreover, the foreign modification ratio has a

strong negative relationship with productivity.

Adding a quadratic term (TS2) to the model, i.e.,

PROD ∼ TS + TS2 + InD + FModR, (1)

we find that contrary to before, the coefficient of team size remains

negative and significant while team size squared is insignificant (see

Table 3d). Thus, the non-linear relationship between productivity

and team size found in Table 3b does not persist when accounting

for the mean indegree and foreign modification ratio.

In conclusion, in a large-scale study using 201 collaborative

GitHub projects sampled in a systematic and unbiased fashion

across different strata of team sizes, we confirm the negative rela-

tionship between team size and productivity found by prior studies.

This negative relationship is robust against the choice of produc-

tivity measure and persists when controlling for the team’s collab-

oration structure. Only considering team size as a predictor, our

data provide some evidence for an optimal team size of 7 or 19

members for two of the eight operationalisations of productivity.

However, for six out of eight productivity measures, the optimal

productivity per teammember is reached for a team size of one. This

finding is further supported by the fact that the squared team size

has no significant relationship when controlling for other network

measures.

As mentioned above, our results suggest that the mean indegree

of developers is positively related to productivity, while team size

is negatively related to productivity. Importantly, the regression

models considered so far assume that the effect of the team size

on productivity is independent of the mean indegree and vice-

versa, i.e., their effect is purely additive. However, it is reasonable

to assume that the productivity of developers in a team with dense

collaboration structures is more strongly affected by team size,

compared to a team where each developer collaborates, on average,

with few other team members. This motivates a last experiment,

where we include an interaction term that captures the combined

effect of team size and mean indegree as an additional variable:

PROD ∼ TS + InD + TS × InD + FModR (2)

The results in Table 3e suggest a negative coefficient for this inter-

action term. However, the effect is only significant for Comms and

NLOC. The analysis of the marginal effect of the mean indegree on

the relationship between team size and productivity is shown in

Figure 4b. In line with the positive coefficient of the mean indegree,

we find that developers in teams with larger mean indegree tend to

be more productive on average, i.e. lines corresponding to larger

mean indegrees tend to have larger intercepts (but negative slopes).

Moreover, as shown by the negative coefficient of the interaction

term, the negative effect of team size on productivity grows with

the mean indegree, i.e. lines corresponding to larger mean inde-

grees tend to have steeper negative slopes. The whisker plot in

Figure 4c further reveals a positive relationship between the size

of a team (x-axis) and the mean indegree of developers (y-axis),

i.e. developers in larger teams tend to edit code of a larger number

of other developers. This positive relationship specifically holds

for smaller team sizes, while the mean indegree in larger teams

with more than approximately 50 developers is similar. Importantly,

the fact that (i) developers in larger teams tend to have a higher

indegree and (ii) developers in teams with higher indegree tend to

be more productive does not imply that developers in larger teams

are, on average, more productive. This is confirmed by the negative

coefficients of team size in all our regression models as well as the

clear negative marginal effects shown in Figure 4b.

We note that the positive relationship between team size and

the mean indegree could explain the positive coefficient for TS in

Table 3b that suggests the existence of an optimal team size. We

further conjecture that this non-trivial finding could be a reason

why empirical studies that do not account for the distribution of

team sizes in GitHub repositories, and thus inadvertently focus

on projects with small team size, erroneously find a positive rela-

tionship between team size and productivity. Specifically, projects

270



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

with small team sizes tend to have a small mean indegree, which

corresponds to a line with smaller intercept (and negative slope)

in Table 3b. Conversely, teams with larger team sizes tend to have

a larger mean indegree, which corresponds to a line with larger

intercept (and negative slope) in Table 3b. The failure to control

for this effect can lead to a reversal of the relationship between

productivity and team size, i.e., a wrong positive slope for the effect

is erroneously found. This can be viewed as a specific instance of

Simpson’s paradox, where the aggregate effect in a sample that

combines data from different “groups” of projects—i.e., teams with

different mean indegrees—can be positive, even though a negative

relationship holds for each group separately.

5 LIMITATIONS AND THREATS TO VALIDITY

A first threat to the validity of our results could be the operationali-

sation of productivity. To guard against this, we have studied eight

different measures that capture different notions of productivity. A

common issue of productivity measures that are based on commit

log data is that they do not account for the structure of contributed

code. To guard against this issue and appropriately value commits

that decrease the complexity of code and thus make it more main-

tainable, we consider measures that account for tokens, functions,

and control structures.

A second aspect that could potentially influence our results is

the method to assess the size of a software team. We compute the

team size at a given time 𝑡 by counting all developers who have

made a commit up to 42 weeks before 𝑡 . This approach to infer the

team size is necessary since there is no formalised notion of team

size in GitHub. The specific choice of this time window is based on

the inter-commit time distribution for GitHub projects found in [3].

We have tested the robustness of the results by choosing a different

window size of two years. Due to the computational effort that is

due to the recalculation of all network metrics, a comprehensive

study of different window sizes was beyond the scope of our study

but could be an interesting question for future work.

In Section 2.1, we identified project selection and data prepara-

tion as a major threat to the validity. We thus spent considerable

effort to develop a general project selection pipeline as well as Open

Source software tools to infer collaboration networks from commit

data. Despite these efforts, there may be remaining issues, such as

the possibility to manually modify the history of a git repository,

which we can neither detect nor account for. Due to data issues

related to some merge commits, we were further not able to process

all commits of the Linux Kernel project4. We therefore excluded

this project from our analysis.

Addressing the issue of omitted variables, our regression models

explain roughly 50% of the variance in the relationship between

team size and productivity, which considerably improves the vari-

ance explained by prior studies. Nevertheless, there is additional

variance in the relationship that we cannot explain. This could

either be due to the stochastic nature of the underlying process

or the existence of additional variables that are not included in

our models. To address this issue, future studies could additionally

study data from issue trackers and mailing lists [42–44].

4https://github.com/torvalds/linux

In our study, we considered 201 OSS projects sampled to repre-

sent the entire spectrum of team sizes present on GitHub. While

our findings are representative for collaborative software develop-

ment on GitHub, it is unclear whether they can be generalised to

proprietary software projects or other Open Source collaboration

platforms. Platforms like SourceForge or Bitbucket have different

characteristics [45–47] that will require modifications to our selec-

tion pipeline, which is an interesting issue for future work.

6 RELATEDWORK

Our work touches on issues that have been studied in empirical soft-

ware engineering, computational social science, network science,

and organisational theory. Namely, how we can use repository log

data to quantify productivity in software development, how the

size of teams influences the productivity of its members, and how

network models can be used to study social aspects in collaborative

software projects. At a meta-level, our study further addresses com-

mon challenges and pitfalls in the analysis of big repository data,

some of which have been previously highlighted in [10–12, 45].

A large body of works has investigated methods to measure

the productivity of developers based on repository data [48, 49].

Commit-based productivity measures calculate productivity based

on the number of commits [7, 50] or pushes [8]. While this approach

does not require a detailed analysis of the committed source code, it

has the problem that the amount of code changed with each commit

can vary significantly both within and between projects [23]. [26]

found that productivity rankings based on commit-based measures

only show low correlations with rankings obtained from team

leaders. Therefore, more fine-granular measures such as the number

of modified lines or the number of modified characters [3] have been

proposed. Code-based productivity measures aim to overcome this

limitation by analysing the code contained in a commit. Commonly

used metric include the number of code lines [5, 51–53], function

points [54, 55], or tokens [56] changed per time interval.

A large body of works in organisational theory, computational

social science and empirical software engineering have studied the

question of how the size of a team is related to its performance. In

the context of software development, [2] argues that the increased

coordination requirements in larger teams lead to a reduction of

developer productivity. While this proposed mechanism has been

corroborated by quantitative studies [3, 57], other works suggest

synergistic effects that lead to an increase in developer productivity

as teams grow in size [7, 8]. The combination of these findings

indicates that an optimal size for a software development team may

exist, which is also discussed in the literature [41, 58]. A report cited

by [41] suggests that for proprietary software development projects,

an optimal team size with respect to productivity is achieved for

nine team members.

Utilising a method to construct a network representation of co-

editing relations from the commit-log history of a project, our work

finally addresses questions that received attention from the network

science and computational social science community. A number of

works have investigated how the topology of communication, col-

laboration, or coordination networks is related to the performance

[59–61], resilience [62, 63], or productivity [3] of teams in various

271



Big Data = Big Insights? Operationalising Brooks’ Law in a Massive GitHub Data Set ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

contexts. In the context of research on developer productivity, re-

cent studies found that a densification of co-editing networks due

to shared code ownership can explain the decrease in productivity

observed for larger teams [3, 4].

7 CONCLUSION

Massive data from software repositories and collaboration tools

provide compelling new opportunities to study social aspects in

software development. Within this context, the question of how the

size and collaboration patterns of software development teams in-

fluence the productivity of developers has emerged as an important

research question at the intersection of computational social science

and empirical software engineering. Recent empirical studies using

big data from software repositories have come to contradictory

answers to this important research question, even though those

studies used similar data sets and empirical methods.

Addressing common challenges and pitfalls in the analysis of big

repository data, our work offers a possible explanation for this dis-

agreement between recent works in empirical software engineering.

To this end, we provide the, to the best of our knowledge, largest,

curated corpus of GitHub projects that is specifically tailored to

investigate the influence of team size and collaboration patterns on

individual and collective productivity. The projects included in this

corpus are systematically chosen such that we avoid common perils

in GitHub mining. We use a stratified sampling that supports unbi-

ased analyses of the impact of team size on developer productivity.

We systematically compare a set of eight code- and commit-based

productivity measures and study which of the measures are likely

to be interchangeable and which capture independent dimensions

of productivity. Building on a method to construct time-evolving co-

editing networks from git repositories, we consider eight network

metrics that capture different dimensions of the social organisa-

tion of software teams. We finally use those methods to study the

Ringelmann effect in collaborative software development. Our re-

sults highlight a robust negative relationship between team size and

developer productivity that can be explained based on the team’s

collaboration structure. We argue that neglecting the highly skewed

distribution of team sizes on GitHub can lead to a reversal of the

relationship between team size and productivity, thus offering a

possible explanation for recent contradictory results.

Apart from this, our work provides several insights that are rel-

evant for the management of software projects: In particular, we

find (i) an overall negative relation between individual productivity

and team size, and (ii) a non-linear relationship that gives rise to

an optimal team size for small teams. These findings can be useful

to define advanced cost estimation models that incorporate the

found non-linear relationship between team size and productivity,

thus providing better estimates for the work force required to de-

velop projects with a known (estimated) size of the code base. Our

analysis further highlights additional factors that influence team

productivity, such as the amount of foreign code that is edited and

the number of interaction partners of developers. This insight not

only allows us to further improve cost estimation models, it also

points to factors that can possibly be optimised by project main-

tainers, e.g., by carefully decomposing the code base into modules

addressed by different (sub-)teams or by optimising organisational

structures of the development team.

In summary, our work contributes to the ongoing discussion on

how the size and structure of teams influence productivity. Investi-

gating the cross-correlations of productivity and network metrics in

a systematically constructed corpus of software projects, we further

contribute a valuable new resource for researchers in empirical soft-

ware engineering and computational social science. By focusing on

generic network measures, we further provide the perspective that

our results can generalise beyond empirical software engineering.

Highlighting pitfalls in the analysis of big data, our work finally

demonstrates that the use of bigger data sets does not automatically

lead to more reliable insights.

DATA AVAILABILITY AND REPRODUCIBILITY

To facilitate the reproduction of our results and enable future re-

search based on the extensive data set mined for our study, we have

archived both a reproducibility package and our full data sets on

zenodo.org5.

ACKNOWLEDGMENTS

We thank Christian Zingg for contributing to the development of

the infrastructure to mine edits and co-edits from software projects

on the ETH Zurich scientific compute cluster Euler. Ingo Scholtes

acknowledges financial support from the Swiss National Science

Foundation through grant no. 176938. Christoph Gote and Ingo

Scholtes wrote parts of this manuscript on a joint research retreat

at Niederzerfermühle that was financially supported by the De-

partment of Informatics at University of Zurich and the Chair of

Systems Design at ETH Zurich.

REFERENCES
[1] M. Ringelmann, “Recherches sur lesmoteurs animes: Travail de l’homme,”Annales

de l’Institut National Agronomique, vol. 12, no. 1, pp. 1–40, 1913.
[2] F. P. Brooks, “The mythical man-month,” 1975.
[3] I. Scholtes, P. Mavrodiev, and F. Schweitzer, “From Aristotle to Ringelmann:

A large-scale analysis of team productivity and coordination in Open Source
software projects,” Empirical Software Engineering, vol. 21, no. 2, pp. 642–683,
2016.

[4] C. Gote, I. Scholtes, and F. Schweitzer, “Analysing time-stamped co-editing net-
works in software development teams using git2net,” Empirical Software Engi-
neering, vol. 26, no. 4, pp. 1–41, 2021.

[5] J. D. Blackburn, G. D. Scudder, and L. N. Van Wassenhove, “Improving speed and
productivity of software development: A global survey of software developers,”
IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 875–885, 1996.

[6] K. D. Maxwell, L. Van Wassenhove, and S. Dutta, “Software development produc-
tivity of european space, military, and industrial applications,” IEEE Transactions
on Software Engineering, vol. 22, no. 10, pp. 706–718, 1996.

[7] D. Sornette, T. Maillart, and G. Ghezzi, “How much is the whole really more than
the sum of its parts? 1 + 1 = 2.5: Superlinear productivity in collective group
actions,” Plos one, vol. 9, no. 8, p. e103023, 2014.

[8] G. Muric, A. Abeliuk, K. Lerman, and E. Ferrara, “Collaboration drives individual
productivity,” PACMHCI, vol. 3, no. CSCW, pp. 74:1–74:24, 2019.

[9] T. Maillart and D. Sornette, “Aristotle vs. Ringelmann: On superlinear production
in open source software,” Physica A: Statistical Mechanics and its Applications,
vol. 523, pp. 964–972, 2019.

[10] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu,
“The promises and perils of mining git,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories. IEEE, 2009, pp. 1–10.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,
“The promises and perils of mining GitHub,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 92–101.

5Reproducibility package: https://doi.org/10.5281/zenodo.5294015

Data sets: https://doi.org/10.5281/zenodo.5294964

272



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Gote, et al.

[12] ——, “An in-depth study of the promises and perils of mining GitHub,” Empirical
Software Engineering, vol. 21, no. 5, pp. 2035–2071, 2016.

[13] C. Gote and C. Zingg, “gambit – An Open Source name disambiguation tool
for version control systems,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), 2021, pp. 80–84.

[14] D. T. Campbell and J. C. Stanley, Experimental and quasi-experimental designs for
research. Ravenio Books, 2015.

[15] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 233–236.

[16] C. Gote, I. Scholtes, and F. Schweitzer, “git2net – Mining time-stamped co-editing
networks from large git repositories,” in 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR). IEEE, 2019, pp. 433–444.

[17] J. Warner, “Thank you for 100 million repositories,” https://github.blog/2018-11-
08-100m-repos/, 2021. [Online]. Available: https://github.blog/2018-11-08-100m-
repos/

[18] J. Seawright and J. Gerring, “Case selection techniques in case study research: A
menu of qualitative and quantitative options,” Political Research Quarterly, vol. 61,
no. 2, pp. 294–308, 2008.

[19] T. Yin, “Lizard,” https://github.com/terryyin/lizard, 2020. [Online]. Available:
https://github.com/terryyin/lizard

[20] F. Beuke, “GitHut 2.0,” https://madnight.github.io/githut/#/pull_requests/2020/2,
2020. [Online]. Available: https://madnight.github.io/githut/#/pull_requests/
2020/2

[21] D. Spinellis, Z. Kotti, and A. Mockus, “A dataset for github repository dedupli-
cation,” in Proceedings of the 17th international conference on mining software
repositories, 2020, pp. 523–527.

[22] K. Weihmann, “Multimetric,” https://github.com/priv-kweihmann/multimetric,
2020. [Online]. Available: https://github.com/priv-kweihmann/multimetric

[23] GitHub Inc., “The 2020 state of the Octoverse – Finding balance betweenwork and
play,” https://octoverse.github.com/static/github-octoverse-2020-productivity-
report.pdf, 2020. [Online]. Available: https://octoverse.github.com/static/github-
octoverse-2020-productivity-report.pdf

[24] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov, “Gender and tenure diversity in github teams,” in Proceedings of
the 33rd annual ACM conference on human factors in computing systems, 2015, pp.
3789–3798.

[25] J. R. Hackman, “The design of work teams,” in Handbook of organizational be-
haviour, J. W. Lorsch, Ed. Englewood Cliffs, N.J.: Prentice-Hall, 1987, ch. 20, pp.
315–342.

[26] E. Oliveira, E. Fernandes, I. Steinmacher, M. Cristo, T. Conte, and A. Garcia,
“Code and commit metrics of developer productivity: A study on team leaders
perceptions,” Empirical Software Engineering, vol. 25, no. 4, pp. 2519–2549, 2020.

[27] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering,
vol. 4, pp. 308–320, 1976.

[28] M. H. Halstead et al., Elements of software science. Elsevier New York, 1977,
vol. 7.

[29] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality analysis in
Open Source software development,” Information Systems Journal, vol. 12, no. 1,
pp. 43–60, 2002.

[30] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality bench-
marking for improving softwaremaintainability,” Software Quality Journal, vol. 20,
no. 2, pp. 287–307, 2012.

[31] M. Newman, Networks. Oxford University Press, 2018.
[32] S. Milgram, “The small world problem,” Psychology today, vol. 2, no. 1, pp. 60–67,

1967.
[33] M. S. Granovetter, “The strength of weak ties,” American Journal of Sociology,

vol. 78, no. 6, pp. 1360–1380, 1973.
[34] M. Y. Allaho and W.-C. Lee, “Analyzing the social networks of contributors in

open source software community,” in Applications of Social Media and Social
Network Analysis. Springer, 2015, pp. 57–75.

[35] J. Teixeira, G. Robles, and J. M. González-Barahona, “Lessons learned from ap-
plying social network analysis on an industrial free/libre/open source software
ecosystem,” Journal of Internet Services and Applications, vol. 6, no. 1, pp. 1–27,
2015.

[36] S. Henry, D. Kafura, and K. Harris, “On the relationships among three software
metrics,” ACM SIGMETRICS Performance Evaluation Review, vol. 10, no. 1, pp.
81–88, 1981.

[37] S. N. Woodfield, V. Y. Shen, and H. E. Dunsmore, “A study of several metrics for
programming effort,” Journal of Systems and Software, vol. 2, no. 2, pp. 97–103,
1981.

[38] M. A. A. Mamun, C. Berger, and J. Hansson, “Correlations of software code
metrics: an empirical study,” in Proceedings of the 27th international workshop on
software measurement and 12th international conference on software process and
product measurement, 2017, pp. 255–266.

[39] D. Landman, A. Serebrenik, and J. Vinju, “Empirical analysis of the relationship
between cc and sloc in a large corpus of java methods,” in 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2014, pp. 221–230.

[40] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and F. Schweitzer,
“Causality-driven slow-down and speed-up of diffusion in non-Markovian tem-
poral networks,” Nature Communications, vol. 5, p. 5024, 2014.

[41] D. Rodríguez, M. Sicilia, E. García, and R. Harrison, “Empirical findings on team
size and productivity in software development,” Journal of Systems and Software,
vol. 85, no. 3, pp. 562–570, 2012.

[42] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: A toolset for exploring email
data,” in Proceedings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 1025–1027.

[43] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email
social networks,” in Proceedings of the 2006 International Workshop on Mining
Software Repositories. ACM, 2006, pp. 137–143.

[44] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen, “Communication
in Open Source software development mailing lists,” in Proceedings of the 10th
Working Conference on Mining Software Repositories. IEEE Press, 2013, pp.
277–286.

[45] J. Howison and K. Crowston, “The perils and pitfalls of mining SourceForge,” in
MSR. IET, 2004, pp. 7–11.

[46] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of code: An
infrastructure formining the universe of open source VCS data,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE, 2019,
pp. 143–154.

[47] T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for software engineer-
ing,” Computer, vol. 42, no. 8, 2009.

[48] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software developers’
perceptions of productivity,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp. 19–29.

[49] G. Sudhakar, A. Farooq, and S. Patnaik, “Measuring productivity of software
development teams,” Serbian Journal of Management, vol. 7, no. 1, pp. 65–75, 2012.

[50] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of Open Source
software development: Apache and Mozilla,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 11, no. 3, pp. 309–346, 2002.

[51] P. Devanbu, S. Karstu, W. Melo, andW. Thomas, “Analytical and empirical evalua-
tion of software reuse metrics,” in Proceedings of the 18th International Conference
on Software Engineering. IEEE Computer Society, 1996, pp. 189–199.

[52] H. Hulkko and P. Abrahamsson, “A multiple case study on the impact of pair pro-
gramming on product quality,” in Proceedings of the 27th International Conference
on Software Engineering. ACM, 2005, pp. 495–504.

[53] V. Nguyen, L. Huang, and B. Boehm, “An analysis of trends in productivity and
cost drivers over years,” in Proceedings of the 7th International Conference on
Predictive Models in Software Engineering. ACM, 2011, p. 3.

[54] C. Jones, “Software metrics: Good, bad and missing,” Computer, vol. 27, no. 9, pp.
98–100, 1994.

[55] S. Wagner and M. Ruhe, “A systematic review of productivity factors in software
development,” arXiv preprint arXiv:1801.06475, 2018.

[56] J. A. Lane and D. Zubrow, “Intergrating measurement with improvement: An
action-oriented approach: Experience report,” in Proceedings of the 19th Interna-
tional Conference on Software Engineering. ACM, 1997, pp. 380–389.

[57] Z. Jiang, P. Naudé, and C. Comstock, “An investigation on the variation of soft-
ware development productivity,” International Journal of Computer, Information,
and Systems Sciences, and Engineering, vol. 1, no. 2, pp. 72–81, 2007.

[58] M. Heričko, A. Živkovič, and I. Rozman, “An approach to optimizing software
development team size,” Information Processing Letters, vol. 108, no. 3, pp. 101–106,
2008.

[59] L. Wu, “Social network effects on productivity and job security: Evidence from
the adoption of a social networking tool,” Information systems research, vol. 24,
no. 1, pp. 30–51, 2013.

[60] H.-L. Yang and J.-H. Tang, “Team structure and team performance in is develop-
ment: A social network perspective,” Information & management, vol. 41, no. 3,
pp. 335–349, 2004.

[61] R. Reagans and E. W. Zuckerman, “Networks, diversity, and productivity: The
social capital of corporate R&D teams,” Organization science, vol. 12, no. 4, pp.
502–517, 2001.

[62] G. F. Massari, I. Giannoccaro, and G. Carbone, “Team social network structure
and resilience: A complex system approach,” IEEE Transactions on Engineering
Management, 2021.

[63] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The rise and fall
of a central contributor: Dynamics of social organization and performance in
the Gentoo community,” in CHASE/ICSE ’13 Proceedings of the 6th International
Workshop on Cooperative and Human Aspects of Software Engineering, 2013, pp.
49–56.

273


