
Using Reinforcement Learning for
Load Testing of Video Games

Rosalia Tufano

SEART @ Software Institute

Università della Svizzera italiana

Switzerland

Simone Scalabrino

STAKE Lab

University of Molise

Italy

Luca Pascarella

SEART @ Software Institute

Università della Svizzera italiana

Switzerland

Emad Aghajani

SEART @ Software Institute

Università della Svizzera italiana

Switzerland

Rocco Oliveto

STAKE Lab

University of Molise

Italy

Gabriele Bavota

SEART @ Software Institute

Università della Svizzera italiana

Switzerland

ABSTRACT
Different from what happens for most types of software systems,

testing video games has largely remained a manual activity per-

formed by human testers. This is mostly due to the continuous

and intelligent user interaction video games require. Recently, rein-

forcement learning (RL) has been exploited to partially automate

functional testing. RL enables training smart agents that can even

achieve super-human performance in playing games, thus being

suitable to explore them looking for bugs. We investigate the pos-

sibility of using RL for load testing video games. Indeed, the goal

of game testing is not only to identify functional bugs, but also to

examine the game’s performance, such as its ability to avoid lags

and keep a minimum number of frames per second (FPS) when high-

demanding 3D scenes are shown on screen. We define a method-

ology employing RL to train an agent able to play the game as a

human while also trying to identify areas of the game resulting in

a drop of FPS. We demonstrate the feasibility of our approach on

three games. Two of them are used as proof-of-concept, by injecting

artificial performance bugs. The third one is an open-source 3D

game that we load test using the trained agent showing its potential

to identify areas of the game resulting in lower FPS.

1 INTRODUCTION
The video game market is expected to exceed $200 billion in value

in 2023 [12]. In such a competitive market, releasing high-quality

games and, consequently, ensuring a great user experience, is funda-

mental. However, the unique characteristics of video games (from

hereon, games) make their quality assurance process extremely

challenging. Indeed, besides inheriting the complexity of software

systems, games development and maintenance require a diverse set

of skills covered by many stakeholders, including graphic designers,

story writers, developers, AI (Artificial Intelligence) experts, etc.

Also, games can hardly benefit from testing automation tech-

niques [37], since even just exploring the total space available in a

given game level requires an intelligent interaction with the game it-

self. For example, in a racing game, identifying a bug that manifests

when the finish line is crossed requires a player able to successfully

drive the car for the whole track (i.e., requires the ability to drive

the car). Thus, random exploration is not a viable option here.

Therefore, it comes without surprise that game testing is largely

a manual process. Zheng et al. [51] report that 30 human testers

were employed for testing one of the games used in their study.

Also, the challenges in testing games have been stressed by Lin et al.
[34], who showed that 80% of the 50 popular games they studied

have been subject to urgent updates.

To support developers with game testing, researchers have pro-

posed several techniques. These include approaches to test the

stability of game servers (e.g., by generating high packet loads)

[19, 20, 30], model-based testing [29] using domain modeling for

representing the game and UML state machines for behavioral

modeling, as well as techniques specifically designed for testing

board games [22, 42]. When looking at recent techniques aimed

at proposing more general testing frameworks, those exploiting

Reinforcement Learning (RL) are on the rise. This is due to the

remarkable results achieved by RL-based techniques in playing

games with super-human performance reported in the literature

[14, 16, 27, 35, 36, 48].

RL is a machine learning technique aimed to train smart agents
able to interact with a given environment (e.g., a game) and to take

decisions to achieve a goal (e.g., win the game). RL is based on the

simple idea of trial and error: The agent performs actions in the

environment (of which it only has a partial representation) and

receives a reward that allows it to assess its past actions/behavior

with respect to the desired goal.

Recently, researchers started using RL not only to play games

but also to test them and, in general, to improve their quality. The

common idea behind these approaches is to reduce the human effort

in playtesting (i.e., the process of testing a new game to look for

bugs before releasing it to the market) using intelligent agents. RL-

based agents have been used to help game designers, for example,

in balancing crucial parameters of the game (e.g., power-up item

effects, characters abilities) [38, 50, 52] and in testing the game

difficulty [26, 44]. Also, RL-based agents have been used to look for

bugs in games [15, 17, 39, 51].

1

ar
X

iv
:2

20
1.

06
86

5v
1

 [
cs

.S
E

]
 1

8
Ja

n
20

22

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

While agents are usually trained to play a game with the goal of

winning, the aforementioned works trained the agent to not only

advance in the game but also to explore it to search for bugs. For

example, Ariyurek et al. [15] combine RL and Monte Carlo Tree

Search (MCTS) to find issues in the behavior of a game, given its

design constraints and game scenario graph (provided by the game

developer). The ICARUS framework [39] is able to identify crashes

and blockers bugs (e.g., the game get stuck for a certain amount of

time) while the agent is playing. Similarly, the approach by Zheng

et al. [51], also exploiting RL, can identify bugs spotted by the agent

during training (e.g., crashes).
While these approaches pioneered the use of RL for game testing,

they are mostly aimed at testing functional (e.g., finding crashes) or
design-related (e.g., level design) aspects. However, these are not
the only types of bug developers look for in playtesting.

In a recent survey, Politowski et al. [40] reported that for two out
of the five games they considered (i.e., League of Legends by Riot

and Sea of Thieves by Rare) developers partially automated game

performance checks (e.g., frame-rate). Similarly, Naughty Dog used

specialized profiling tools
1
for finding which parts of a given scene

caused a drop in the number of frames per second (FPS) in The
Last of Us. Truelove et al. [46] report that game developers agree

that Implementation response problems (among which, performance-

related ones) may severely impact the game experience. Also, Li et al.
[33] observed that players frequently complain about performance

issues in game reviews.

Significance of research contribution. Despite such a strong

evidence about the importance of detecting performance issues

in video games, to the best of our knowledge no previous work

introduced automated approaches for load testing video games. We

present RELINE (Reinforcement lEarning for Load testINg gamEs),
an approach exploiting RL to train agents able to play a given game

while trying to load test it with the goal of minimizing its FPS. The

agent is trained using a reward function enclosing two objectives:

The first aims at teaching the agent how to advance in (and possibly

win) the game. The second rewards the agent when it manages to

identify areas of the game exhibiting low FPS. The output of RELINE
is a report showing to developers the identified areas in the game

being negative outliers in terms of FPS, accompanied by videos

of the gameplays exhibiting the issue. Such “reports” can simplify

the identification and reproduction of performance issues, that are

often reported in open-source 3D games (see e.g., [1, 4, 6, 8]) and
that, in some cases, are challenging to reproduce (see e.g., [3, 7]),
even requiring special instructions for their reporting [5].

We experiment RELINE with three games. The first two are

simple 2D games that we use as a proof-of-concept. In particular,

we injected in the games artificial “performance bugs” [23] to check

whether the agent is able to spot them. We show that the agent

trained using RELINE can identify the injected bugs more often

than (i) a random agent, and (ii) a RL-based agent only trained to

play the game. Then, we use RELINE to load test an open-source 3D

game [45], showing its ability to identify areas of the game being

negative outliers in terms of FPS.

Code and data from our study are publicly available [47].

1
https://youtu.be/yH5MgEbBOps?t=3494

Game
Info

sτ

aτ

rτ Experience

FPS
Info

Reward Function
RL-modelGame

state

reward

action

1 2

34

Figure 1: RELINE overview

2 RL TO LOAD TEST VIDEO GAMES
In this section we explain, from an abstract perspective, the idea

behind RELINE. We describe in the study designs how we instanti-

ated RELINE to the different games we experiment with (e.g., details
about the adopted RL models).

RELINE requires three main components: the game to load test,

a RL model, representing the agent that must learn how to play the

game while load testing it, and a reward function, used to reward the
agent so that it can evaluate the worth of its actions for reaching

the desired goal (i.e., playing while load testing). The RL model is
trained through the 4-step loop depicted in Fig. 1 (see the circled

numbers). The continuous lines represent steps performed at each

iteration of the loop, while the dashed ones are only performed

after a first iteration has been run (i.e., after the agent performed

at least one action in the game). When the first episode (i.e., a run
of the game) of the training starts (step 1), at each time step 𝜏 the

game provides its state 𝑠𝜏 . Such a state can be, for example, a set

of frames or a numerical vector representing what is happening in

the game (e.g., the agent’s position). The RL model takes as input 𝑠𝜏
(step 2) and provides as output the action 𝑎𝜏 to perform in the game

(step 3). When the agent has no experience in playing the game at

the start of the training, the weights of the neural network in the

RL model are randomly initialized, producing random actions. The

action 𝑎𝜏 is executed in the game (step 4), which, in turn, generates

the subsequent state 𝑠𝜏+1.
After the first iteration (i.e., after having received at least one 𝑎𝜏),

the game also produces, at each iteration, the data needed to com-

pute the reward function. In RELINE we collect (i) the information

needed to assess how well the agent is playing the game (e.g., time

since the episode started and the episode score), and (ii) the FPS at

time 𝜏 . It is required that the game developer instruments the game

and provide APIs through which RELINE can acquire such pieces

of information. We assume that this requires a minor effort.

The reward function aims at training an agent that is able to

(i) play the game, thanks to the information indicating how well

the agent is playing, and (ii) identify low-FPS areas, thanks to the

information about the FPS. The output of the reward function is a

number representing the reward obtained by the agent at time 𝜏 . In

RELINE, the reward function for a given action is composed of two

sub-functions: A game reward function, depending on how good

the action is in the game (rg𝜏), and a performance reward function,
depending on how the action impacts the performance (rp𝜏).

2

https://youtu.be/yH5MgEbBOps?t=3494

Using Reinforcement Learning for Load Testing of Video Games

(a) (b) (c)

preliminary study case study

Figure 2: Screenshots of games used in the preliminary
study—Section 3 (a) CartPole and (b) MsPacman, and in the
case study—Section 4 (c) SuperTuxKart.

We combine such functions in 𝑟𝜏 = rg𝜏 + rp𝜏 . The game reward

function clearly depends on the game under test: A function de-

signed for a racing game likely makes no sense for a role-playing

game. In general, defining the reward function for learning to play

should be performed by considering (i) what the goal of the game

is (e.g., drive on a track), and (ii) which information the game pro-

vides about the “successful behavior of the player” (e.g., is there
a score?). Even if less intuitive, the performance reward function

is game-dependent as well: Assuming a tiny FPS drop (e.g.,-1%),
the reward can be small for a role-playing game, in which it likely

does not affect the whole experience, while it should be high for

an action game, in which it could even cause the (unfair) player’s

defeat. Unlike the game reward function, we expect however minor

changes to be required to adapt the performance reward function

to a different video game (i.e., tuning of the thresholds to use).

The state 𝑠𝜏 , the action 𝑎𝜏 , and the reward 𝑟𝜏 are then stored in an

experience buffer. When enough experience has been accumulated,

it is used to update the network weights. How experience is stored

and used to update the network depends on the used RL model.

The episode ends when a final state is reached. Again, the defi-

nition of the final state depends on the game, and it could be based

on a timeout (e.g., each episode lasts at most 90 seconds) or on

a specific condition that must be met (e.g., the agent crosses the
finish line). Once the episode ends, the game is reinitialized and the

loop restarts. The training is performed for a number of episodes

sufficient to observe a convergence in the total reward achieved

by an agent during an episode (e.g., if the trained agent obtains a

reward of 100 for ten consecutive episodes the training is stopped).

3 PRELIMINARY STUDY: INJECTING
ARTIFICIAL PERFORMANCE ISSUES

This preliminary study aims at assessing the ability of RELINE in

identifying artificial “performance bugs” [23] we simulate in two

2D games. It is important to highlight that the goal of this study
is only to demonstrate the applicability of RELINE for load testing

games as a proof-of-concept. A case study on a 3D open-source

game is presented in Section 4.

3.1 Study Design
We select two 2D games, CartPole [2] and MsPacman [10]. The

former — Fig. 2-(a) — is a dynamic system in which an unbalanced

pole is attached to a moving cart, and the player must move the

cart to balance the pole and keep it in a vertical position.

The player loses if the pole is more than 12 degrees from vertical

or the cart moves too far from the center. The latter — Fig. 2-(b) — is

the classic Pac-Man game in which the goal is to eat all dots without

touching the ghosts. Both games employ simple 2D graphics which

bound the player’s possible moves in only one (e.g., left and right,

for CartPole) or two (e.g., left, right, up, and down, for MsPacman)

dimensions. This is one of the reasons we selected these games

for assessing whether a RL-based agent that learned how to play

them can also be trained to look for artificial “performance bugs”

we injected. Also, both games are integrated in the popular Gym

Python toolkit [9] developed by OpenAI [18].

Gym can be used for developing and comparing RL-based agents

in playing games. It acts as a middle layer between the environ-
ment (the game) and the agent (a virtual player). In particular, Gym

collects and executes actions (e.g., go left, go right) generated by

the agent and returns to it the new state of the environment (i.e.,
screenshots) with additional information such as the score in the

episode. Gym comes with a set of integrated arcade games including

the two we used in this preliminary study.

3.1.1 Bug Injection. We injected two artificial “performance bugs”

in CartPole and four in MsPacman. The idea behind them is simple:

When the agent visits specific areas for the first time during a game,

the bugs reveal themselves (simulation of heavy resource loading).

A natural way of achieving this goal would have been to introduce

the bugs in the source code of the game and to implement the logic

to spot FPS drops in the agent accordingly. This, however, would

have slowed down the training of the agent. Therefore, we chose

to use a more practically sound approach, inspired by the simula-

tion of Heavy-Weight Operation (HWO) operator for performance

mutation testing [23]: We directly assume that the agents observe

the bugs when they visit the designated areas and act accordingly.

In CartPole, the agent can only move on the 𝑥 axis (i.e., left or
right). When the game starts, the agent is in position 𝑥 = 0 (i.e.,
center of the axis) and it can change its position towards positive

(by moving right) or negative (left) 𝑥 values. The two bugs we

injected manifest when 𝑥 ∈ [−0.50,−0.45] and 𝑥 ∈ [0.45, 0.50]
— dashed lines in Fig. 2-(a). We use intervals rather than specific

values (e.g.,-0.45) because the position of the agent is a float: if

it moves to position -0.450001, we want to reward it during the

training for having found the injected bug. Concerning MsPacman,

we assume that a performance bug manifests when the agent enters

the four gates indicated by the white arrows in Fig. 2-(b).

As detailed in Section 3.1.4, we assess the extent to which RELINE
is able to identify the bugs we injected while playing the games. To

have a baseline, we compare its results with those of a RL-based

agent only trained to play each of the two games (from hereon,

rl-baseline), and with a random agent. Since RELINE will be trained

with the goal of identifying the bugs (details follow), we expect it

to adapt its behavior to not only successfully play the game, but to

also exercise more often the “buggy” areas of the games.

3.1.2 Learning to Play: RL Models and Game Reward Functions.
We trained the rl-baseline agent (i.e., the one only trained to learn

how to play) for CartPole using the cross-entropy method [41] as

RL model. We choose this method because, despite its simplicity,

it has been shown to be effective in applications of RL to small

environments such as CartPole [31].

3

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

The core of the cross-entropy method is a feedforward neural

network (FNN) that takes as input the state of the game and provides

as output the action to perform. The state of the game for CartPole

is a vector of dimension 4 containing information about the 𝑥

coordinate of the pole’s center of mass, the pole’s speed, its angle

with respect to the platform, and its angular speed. There are two

possible actions: go right, go left. Once initialized with random

weights, the agent (i.e., the FNN) starts playing while retaining the

experience acquired in each episode: The experience is represented

by the state, the action, and the reward obtained during each step

of the episode.

The goal is to keep the pole in balance as long as possible or

until the maximum length of an episode (that we set to 1,000 steps)

is reached. The game reward function is defined so that the agent

receives a +1 reward for each step it manages to keep the pole

balanced. The total score achieved is also saved at the end of each

episode. After 𝑛 = 16 consecutive episodes the agent stops playing,

selects the 𝑚 = 11 (70%) episodes having the highest score, and

uses the experience in those episodes to update the weights of the

FNN (𝑛 and𝑚 have been set according to [31]).

Instead, we trained the rl-baseline agent for MsPacman using a

Deep Q Network (DQN) [35]. In our context, a DQN is a Convolu-

tional Neural Network (CNN) that takes as input a set of contiguous

screenshots of the game (in our case 4, as done in previous works

[35, 36]) representing the state of the game and returns, for each

possible action defined in the game (five in this case: go up, go

right, go down, go left, do nothing), a value indicating the expected

reward for the action given the current state (Q value). The multiple

screenshots are needed to provide more information to the model

about what is happening in the game (e.g., in which direction the

agent is moving). The goal of the DQN is the same as the FNN:

selecting the best action to perform to maximize the reward given

the current state. Differently from the previous model, the DQN is

updated not on entire episodes but by randomly batching “expe-

rience instances” among 10k steps saved during the most recent

episodes. An “experience instance” is saved after each step 𝜏 , and

is represented by the quadruple (𝑠𝜏−1, 𝑎𝜏 , 𝑠𝜏 , 𝑟𝜏), where 𝑠𝜏−1 is the
input state, 𝑎𝜏 is the action selected by the agent, 𝑠𝜏 is the resulting

state obtained by running 𝑎𝜏 in 𝑠𝜏−1 and 𝑟𝜏 is the received reward.

The CNN is initialized with random weights, and the agent starts

playing while retaining the experience of each step. When enough

experience instances have been collected (10k in our implementa-

tion [31]), the CNN starts updating at each step selecting a random

batch of experience instances. The reward function for MsPacman

provides a +1 reward every time the agent eats one of the dots and

a 0 reward otherwise.

3.1.3 Instantiating RELINE: Performance Reward Functions. To train
RELINE to play while looking for the injected bugs, we use a simple

performance reward function: In both the games, we give a reward

of +50 every time the agent, during an episode, spots one of the

injected artificial bugs. As previously mentioned, the bugs reveal

themselves only the first time the agent visits each buggy position;

this means that the performance-based reward is given at most

twice for CartPole and four times for MsPacman.

3.1.4 Data Collection and Analysis. We compare RELINE against

the two previously mentioned baselines: rl-baseline and the ran-
dom agent. Both RELINE and rl-baseline have been trained for 3,200

episodes on CartPole and 1,000 on MsPacman. The different num-

bers are due to differences in the games and in the RL model we

exploited. In both cases, we used a number of episodes sufficient

for rl-baseline to learn how to play (i.e., we observed a convergence
in the score achieved by the agent in the episodes).

Once trained, the agents have been run on both games for addi-

tional 1,000 episodes, storing the performance bugs they managed

to identify in each episode. Since different trainings could result in

models playing the game following different strategies, we repeated

this process ten times. This means that we trained 10 different mod-

els for both RELINE and rl-baseline and, then, we used each of the

10 models to play additional 1,000 episodes collecting the spotted

performance bugs. Similarly, we executed random agent 10 times

for 1,000 episodes each. In this case, no training was needed.

We report descriptive statistics (mean, median, and standard

deviation) of the number of performance bugs identified in the

1,000 played episodes by the three approaches. A high number of

episodes in which an approach can spot the injected bugs indicate

its ability to look for performance bugs while playing the game.

3.2 Preliminary Study Results
Table 1 shows for each of the two games (CartPole and MsPacman)

the number 𝑘 of artificial bugs we injected and, for each of the

three techniques (i.e., RELINE, rl-baseline, and the random agent),
descriptive statistics of the number of episodes (out of 1,000) they

managed to identify at least 𝑛 of the injected bugs, with 𝑛 going

from 1 to 𝑘 at steps of 1.

For both games, it is easy to see that the random agent is rarely
able to identify the bugs. Indeed, this agent plays without any

strategy as it is able to identify bugs only by chance in a few episodes

out of the 1,000 it plays. This is also due to the fact that the random
agent quickly looses the played episodes due to its inability to play

the game. This confirms that these approaches are not suitable for

testing video games.

Concerning CartPole, both RELINE and rl-baseline are able to
spot at least one of the two bugs in several of the 1,000 episodes.

The median is 984 for RELINE and 706 for rl-baseline. The success
of rl-baseline is soon explained by the characteristics of CartPole:

Considering where we injected the bugs — see Fig. 2-(a) — by

playing the game it is likely to discover at least one bug (e.g., if the
player tends to move towards left, the bug on the left will be found).

What it is instead unlikely to happen by chance is to find both bugs

within the same episode. We found that it is quite challenging, even

for a human player, to move the cart first towards one side (e.g.,
left) and, then, towards the other side (right) without losing due

to the pole moving more than 12 degrees from vertical. As it can

be seen in Table 1, RELINE succeeds in this, on average, for 102

episodes out of 1,000 (median 47), as compared to the 5 (median 1)

of rl-baseline. This indicates that RELINE is pushed by the reward

function to explore the game looking for the injected bugs, even

if this makes playing the game more challenging. Similar results

have been achieved on MsPacman.

4

Using Reinforcement Learning for Load Testing of Video Games

Table 1: Number of episodes (out of 1,000) in which RELINE, rl-baseline, and the random agent identify the injected bugs.

Game #Injected #Bugs RELINE rl-baseline random agent
Bugs found mean median stdev mean median stdev mean median stdev

CartPole 2

1 965 984 47 715 706 107 12 11 4

2 102 47 177 5 1 7 0 0 0

MsPacman 4

1 971 989 59 700 680 228 24 23 5

2 966 985 63 356 343 169 17 16 3

3 914 941 87 114 80 90 1 1 1

4 879 907 106 25 23 17 1 1 1

In this case, the DQN is effective in allowing RELINE to play

while exercising the points in the game in which we injected the

bugs. Indeed, on average, RELINE was able to spot all four injected

bugs in 879 out of the 1,000 played episodes (median=907), while

rl-baseline could achieve such a result only in 25 episodes.

Summary of the Prelimiary Study. RELINE allows obtain

agents able not only to effectively play a game but also to

spot performance issues. Compared to rl-baseline, the main

advantage of RELINE is that it identifies bugs more frequently

while playing.

4 CASE STUDY: LOAD TESTING AN OPEN
SOURCE GAME

We run a case study to experiment the capability of RELINE in load

testing an open-source 3D game. Differently from our preliminary

study (Section 3), we do not inject artificial bugs. Instead, we aim

at finding parts of the game resulting in FPS drops.

4.1 Study Design
For this study, we use a 3D kart racing game named SuperTuxKart
[45] — see Fig. 2-(c). This game has been selected due to the fol-

lowing reasons. First, we wanted a 3D game in which, as com-

pared to a 2D game, FPS drops are more likely because of the more

complex rendering procedures. Second, SuperTuxKart is popular

open-source project that counts, at the time of writing, over 3k

stars on GitHub. Third, it is available an open-source wrapper that

simplifies the implementation of agents for SuperTuxKart [11].

The existence of a wrapper like the one we used is crucial since

it allows, for example, to advance in the game frame by frame (thus

simplifying the generation of the inputs to the RLmodel), to execute

actions (e.g., throttle or brake), and to acquire game internals (e.g.,
kart centering, distance to the finish line). Also, using this wrapper,

it is possible to compute the time needed by the game to render each

frame and, consequently, calculate the FPS. Finally, the wrapper

allows to have simplified graphics (e.g., removing particle effects,

like rain, that could make the training more challenging).

4.1.1 Learning to Play: RL Models and Game Reward Functions.
The training of the rl-baseline agent has been performed using the

DQN model previously applied in MsPacman.

We use the previously mentioned PySuperTuxKart [11] to make

the agent interact with the game. For the sake of speeding up

the training, the screenshots extracted from the game have been

resized to 200x150 pixels and converted in grayscale before they are

provided as input to the model. Moreover, as previously done for

MsPacman, multiple (four) screenshots are fed to the model at each

step. Thus, the representation of the state of the game provided to

the model is a 4×200×150 tensor. The details of the model and its

implementation are available in our replication package [47].

A critical part of the learning process is the definition of the

game reward function. Being SuperTuxKart a racing game, an option

could have been to penalize the agent for each additional step

required to finish the game. Consequently, to maximize the final

score, the agent would have been pushed to reduce the number of

steps and, therefore, to drive as fast as possible towards the finish

line. However, considering the non-trivial size of the game space,

such a reward function would have required a long training time.

Thus, we took advantage of the information that can be extracted

from the game to help the agent in the learning process.

SuperTuxKart provides two coordinates indicating where the

agent is in the game: path_done and centering.
The former indicates the path traversed by the agent from the

starting line of the track, while the latter represents the distance

of the agent from the center of the track. In particular, centering
equals 0 if the agent is at the center of the track, and it moves

away from zero as the agent moves to either side: going towards

right results in positive values of the centering value, going left in
negative values. We indicate these coordinates with 𝑥 (centering)
and 𝑦 (path_done), and we define 𝛿𝑦 as the path traversed by the

agent in a specific step: Given 𝑦𝑖 the value for path_done at step
𝑖 , we compute 𝛿𝑦 as 𝑦𝑖 − 𝑦𝑖−1. Basically, 𝛿𝑦 measures how fast the

agent is advancing towards the finish line.

Given𝑥 and𝛿𝑦 for a given step 𝑖 , we compute the reward function

as follows:

rg𝑖 =

{
−1 if |𝑥 | > 𝜃

max(min(𝛿𝑦, 𝑀), 0) otherwise

First, if the agent goes too far from the center of the track (|𝑥 | >
𝜃), we penalize it with a negative reward. Otherwise, if the agent

is close to the center (|𝑥 | ≤ 𝜃), we can have two scenarios: (i) if it

is not moving towards the finish line (𝛿𝑦 ≤ 0), we do not give any

reward (the minimum reward is 0); (ii) if it is moving in the right

direction (𝛿𝑦 > 0), we give a reward proportional to the speed at

which it is advancing (𝛿𝑦), up to a maximum of M.

5

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

In our experimental setup, we set 𝜃 = 20 because it roughly

represents the double of |𝑥 | when the agent approaches the sides of

the road in the level, and𝑀 = 10 as it is the same maximum reward

also given by the performance reward function, as we explain below.

Finally, we reward the agent when it crosses the finish line with an

additional +1, 000 bonus.

4.1.2 Instantiating RELINE: Performance Reward Function. To de-

fine the performance reward function of RELINE for SuperTuxKart,

the first step to perform is to define a way to reliably capture the

FPS of the game during the training. In this way, we can reward the

agent when it manages to identify low-FPS points. As previously

said, we use PySuperTuxKart to interact with the game and such

a framework keeps the game frozen while the other instructions

of RELINE (e.g., the identification of the action to execute) are run.

Since the framework runs the game in the same process in which

we run RELINE and since we do not use threads, we can safely use

a simple method for computing the time needed to render the four

frames: We get the system time before (𝑇before) and after (𝑇after)

we trigger the rendering of the frames and we compute the time

needed at step 𝑖 as rT 𝑖 = 𝑇after −𝑇before . Such a value is negatively

correlated with the FPS (higher rendering time means lower FPS).

The performance reward function we use is the following:

rp𝑖 =

{
10 if |𝑥 | ≤ 𝜃 ∧ rT 𝑖 > 𝑡

0 otherwise

We give a performance-based reward of 10 when the agent takes

more than 𝑡 milliseconds to render the frames at a given point

(causing an FPS drop). We explain the tuning of 𝑡 later. We do not

give such a reward when |𝑥 | > 𝜃 (the kart is far from the center)

since we want the agent to spot issues in positions that are likely

to be explored by real players (i.e., reasonably close to the track).

Finally, in RELINE we do not give a fixed +1, 000 bonus reward
when the agent crosses the finish line but we assign a bonus com-

puted as 10 ×∑steps
𝑖=1

𝑟𝑝𝑖 , i.e., proportional to the total performance-

based reward accumulated by the agent in the episode. This is done

to push the agent to visit more low-FPS points during an episode.

4.1.3 Data Collection and Analysis. As done in our preliminary

study, we compare RELINE with rl-baseline (i.e., the agent only

trained to play the game) and with a random agent.
Training rl-baseline and RELINE.While we used different re-

ward functions for the two RL agents, we applied the same training

process for both of them. We trained each model for 2,300 episodes,

with one episode having a maximum duration of 90 seconds or

ending when the agent crosses the finish line of the racing track

(the agent is required to perform a single lap). We set the 90 seconds

limit since we observed that, by manually playing the game, ∼70
seconds are sufficient to complete a lap. The 2,300 episodes thresh-

old has been defined by computing the average reward obtained by

the two agents every 100 episodes and by observing when a plateau

was reached by both agents. We found 2,300 episodes to be a good

compromise for both agents (graphs plotting the reward function

are available in the replication package [47]).

The trained rl-baseline agent has been used to define the thresh-

old 𝑡 needed for the RELINE’s reward function (i.e., for identifying
when the agent found a low-FPS point and should be rewarded).

In particular, once trained, we run rl-baseline for 300 episodes,
storing the time needed by the game to render the subsequent four

frames after every action recommended by themodel.
2
This resulted

in a total of 48,825 data points 𝑠𝐹𝑃𝑆 , representing the standard FPS

of the game in a scenario in which the player is only focused on

completing the race as fast as possible.

Starting from the 48,825 𝑠𝐹𝑃𝑆 data points collected in the 300

episodes played by the trained rl-baseline agent, we apply the five-

𝜎 rule [24] to compute a threshold able to identify outliers. The

five-𝜎 rule states that in a normal distribution (such as 𝑠𝐹𝑃𝑆) 99.99%

of observed data points lie within five standard deviations from

the mean. Thus, anything above this value can be considered as

an outlier in terms of milliseconds needed to render the frames.

For this reason, we compute 𝑡𝑏 = 𝑚𝑒𝑎𝑛(𝑠𝐹𝑃𝑆) + 5 × 𝑠𝑑 (𝑠𝐹𝑃𝑆) as
a candidate base threshold to identify low-FPS points. However,

𝑡𝑏 cannot be directly used as the 𝑡 value of our reward function.

Indeed, we observed that the time needed for rendering frames

during the RELINE’s training is slightly higher as compared to the

time needed when the trained rl-baseline agent is used to play the

game. This is due to the fact that the load on the server (and in

particular on the GPU) is higher during training. To overcome this

issue, we perform the following steps.

At the beginning of the training, we run 100 warmup episodes in
which we collect the time needed to render the four frames after

each action performed by the agent. Then, we compute the first

(𝑄 tr
1
) and the third (𝑄 tr

3
) quartile of the obtained distribution and

compare them to the 𝑄1 and 𝑄3 of the distribution obtained in

the 300 episodes used to define 𝑡𝑏 (i.e., those played by the trained

rl-baseline agent). During the warmup episodes, the agent selects the
action to perform almost randomly (it still has to learn): Therefore,

it would not be able to explore a substantial area of the game (i.e.,
of the racing track), thus not providing a distribution of timings

comparable with the ones obtained when the trained rl-baseline
agent that played the 300 episodes. For this reason, during the 100

warmup episodes of the training, the action to perform is not chosen

by the agent currently under training, but by the trained rl-baseline
agent (i.e., the same used in the 300 episodes). This does not impact

in any way the load on the server that remains the one we have

during the training of RELINE since the only change we have is to

ask for the action to perform to the rl-baseline agent rather than to

the one under training. However, the whole training procedure (e.g.,
capturing the frames and updating the network) stays the same.

We compute the additional “cost” brought by the training in

rendering the frames during the game using the formula 𝛿 =

𝑚𝑎𝑥 (𝑄 tr
1
−𝑄1, 𝑄

tr
3
−𝑄3). We use the first and third quartiles since

they represent the boundaries of the central part of the distribution,

i.e., they should be quite representative of the values in it. We took

as 𝛿 the maximum of the two differences to be more conservative

in assigning rewards when the agent identifies low-FPS points. The

final value 𝑡 we use in our reward function when training RELINE
to load test SuperTuxKart is defined as: 𝑡 = 𝑡𝑏 + 𝛿 = 18.36.3

2
Since we wanted to measure the frames rendering time in a standard scenario in

which the agent was driving the kart, we stopped an episode if the agent got stuck

against some obstacle.

3
We identify as low-FPS points the ones in which the FPS is lower than 218. Such a

number is still very high, more than enough for any human player, in practice. Note

that we run the game using high-performance hardware and, most importantly, with

the lowest graphic settings. The equivalent in normal conditions would be much lower.

6

Using Reinforcement Learning for Load Testing of Video Games

0 20 40 60 80 100 120 140

m
ill

ise
co

nd
s t

o
re

nd
er

 fr
am

es

actions

13

14

12

Figure 3: Rendering times for 300 episodes (same actions).

Thus, if RELINE is able, during the training, to identify a point in

the game requiring more than 𝑡 milliseconds to render four frames,

then it receives a reward as explained in Section 4.1.2.

The training of rl-baseline took ∼3 hours, while RELINE requires

substantially more time due to the fact that, after each step per-

formed by the agent, we collect and store information about the

time needed to render the frames (this is done million of times).

This pushed the training for RELINE up to ∼30 hours.
Reliability of Time Measurements. It is important to clarify

that the FPS of the game can be impacted by the hardware speci-

fications and the current load of the machine running it. In other

words, running the same game on two different machines or on the

same machine in two different moments can result in variations of

the FPS. For this reason, all the experiments have been performed

on the same server, equipped with 2 x 64 Core AMD 2.25GHz CPUs,

512GB DDR4 3200MHz RAM, and an nVidia Tesla V100S 32GB GPU.

Also, the process running the training of the agents or the collec-

tion of the 48,825 𝑠𝐹𝑃𝑆 with the trained rl-baseline agent was the
only process running on the machine besides those handled by the

operating system (Ubuntu 20.04). On top of that, the process was

always run using the chrt –rr 1 option, that in Linux maximizes

the priority of the process, reducing the likelihood of interruptions.

Despite these precautions, it is still possible that variations are

observed in the FPS not due to issues in the game, but to external

factors (e.g., changes in the load of the machine). To verify the

reliability of the collected FPS data, we run a constant agent per-

forming always the same actions in the game for 300 episodes. The

set of actions has been extracted from one of the episodes played

by the rl-baseline agent, that was able to successfully conclude the

race. Then, we plotted the time needed by the game to render the

four frames following each action made by the agent. Since we are

playing 300 times exactly the same episode, we expect to observe

the same trend in terms of FPS for each game. If this is the case, it

means that the way we are measuring the FPS is reliable enough to

reward the agent when low-FPS points are identified.

Fig. 3 shows the achieved results: The 𝑦-axis represents the

milliseconds needed to render four frames in response to an agent’s

action (𝑥-axis) performed in a specific part of the game. While, as

expected, small variations are possible, the overall trend is quite

stable: Points of the game requiring longer time to render frames

are consistently showing across the 300 episodes, resulting in a clear

trend. We also computed the Spearman’s correlation [43] pairwise

across the 300 distributions, adjusting the obtained 𝑝-values using

the Holm’s correction [28].

We found all correlations to be statistically significant (adjusted

𝑝-values < 0.05) with a minimum 𝜌=0.77 (strong correlation) and a

median 𝜌=0.91 (very strong correlation). This confirms the common

FPS trends across the 300 episodes.

Running the Three Techniques to Spot Low-FPS Areas.Af-
ter the 2,300 training episodes, we assume that both the RL-based

agents learned how to play the game, and that RELINE also learned

how to spot low-FPS points. Then, as also done in our preliminary

study, we train both agents for additional 1,000 episodes, storing

the time needed to render the frames in every single point they

explored during each episode (where a point is represented by its

coordinates, i.e., centering=𝑥 and path_done=𝑦). We do the same

also with the random agent.
Data Analysis. The output of each of the three agents is a list

of points with the milliseconds each of them required to render

the subsequent frames. Since each agent played 1,000 episodes,

it is possible that the same point is covered several times by an

agent, with slightly different FPS observed (as previously explained,

small variations in FPS are possible and expected across different

episodes). We classify as low-FPS points those that required more

than 𝑡 milliseconds to render the four subsequent frames more than

50% of times they have been covered by an agent.

This means that, if across the 1,000 episodes a point 𝑝 is exercised

100 times by an agent, at least 51 times the threshold 𝑡 must be

exceeded to consider 𝑝 as a low-FPS point. In practice, a developer

using RELINE for identifying low-FPS points could use a higher

threshold to increase the reliability of the findings. However, for

the sake of this empirical study, we decided to be conservative.

Then, we compare the characteristics of the low-FPS points

identified by the three approaches. Specifically, we analyze: (i) how

many different low-FPS points each approach identified; (ii) the

number of times each low-FPS point has been exercised by each

agent in the 1,000 episodes; (iii) the confidence of the identified

points (i.e., the percentage of times an exercised point resulted in

low FPS). Given the low-FPS points identified by each agent, we

draw violin plots showing the distribution of timings needed to

render the frames when the agent exercised them (the higher the

timings, the lower the FPS). We compare these distributions using

Mann-Whitney test [21] with 𝑝-values adjustment using the Holm’s

correction [28].We also estimate themagnitude of the differences by

using the Cliff’s Delta (𝑑), a non-parametric effect size measure [25]

for ordinal data. We follow well-established guidelines to interpret

the effect size: negligible for |𝑑 | < 0.10, small for 0.10 ≤ |𝑑 | < 0.33,

medium for 0.33 ≤ |𝑑 | < 0.474, and large for |𝑑 | ≥ 0.474 [25].

4.2 Study Results
Fig. 4 summarizes the main findings of our case study. Fig. 4-(a)

shows the distribution of time needed to render the game frames

(i.e., our proxy for FPS) for four groups of points. The first violin

plot on the left (i.e., Regular FPS) shows the timing for points that

have never resulted in a drop of FPS in any of the 3,000 episodes

played by the three agents (1,000 each). These serve as baseline to

better interpret the low-FPS points exercised by the agents. The

other three violin plots show the distributions of timing for the

low-FPS points identified by RELINE (blue), rl-baseline (green), and
the random agent (red).

7

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

(c)

centering
0 10 20 30 40 50 60 70 80 90 100-100 -90 -80 -70 -60 -50 -40 -30 -20 -10

RELINE RL-BASELINE

min
median
max

Regular FPS RANDOM

51%
99%

100%

(a) (b)

173 low-FPS points 33 low-FPS points 90 low-FPS points

Avg. conf.: 89%
min
median
max

60%
94%

100%

Avg. conf.: 90%
min
median
max

51%
76%

100%

Avg. conf.: 77%

pa
th

 d
on

e

m
ill

ise
co

nd
s t

o
re

nd
er

 fr
am

es

0

10

20

30

40

60

50

55

45

35

25

15

5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Figure 4: Results of the study: (a) reports the distributions
of timings for the low-FPS points with summary statistics,
while (b) and (c) depict the path done and centering coordi-
nates at which the such points were observed, respectively.

Below each violin plot we report the number of low-FPS points

identified by each agent and descriptive statistics (average, me-

dian, min, max) of the confidence for the low-FPS points. A 100%

confidence means that all times that a low-FPS point has been ex-

ercised in the 1,000 episodes played by the agent it required more

than 𝑡 = 18.36 milliseconds to render the subsequent frames. The

𝑡 threshold is represented by the red horizontal line. On average,

RELINE exercised each low-FPS point 89 times in the 1,000 episodes,

against the 210 of rl-baseline and the 829 of the random agent (the
same point can be exercised multiple times in an episode).

RELINE identified 173 low-FPS points, as compared to the 33

of rl-baseline and the 90 of the random agent. The confidence is
similar for RELINE (median=99%) and rl-baseline (median=94%),

while it is lower for the random agent (median=76%). Thus, the

low-FPS points identified by the two RL-based agents are, overall,

quite reliable. Concerning the number of low-FPS points identified,

RELINE identifies more points as compared to rl-baseline (173 vs
33). This is expected since it has the explicit goal of load testing

the game, However, what could be surprising at first sight is the

high number of low-FPS points identified by the random agent (90).
Fig. 4-(b) and Fig. 4-(c) help in interpreting this finding.

Fig. 4-(b) plots the path_done (𝑦 coordinate) for each low-FPS

point identified by each agent, using the same color schema of the

violin plots (e.g., blue corresponds to RELINE).

If multiple points fall in the same coordinate (i.e., same path_done
but different centering), they are shown with a red border. The

scale of the path_done has been normalized between 0 and 100,

where 0 corresponds to the starting line of the track and 100 to its

finish line. Similarly, Fig. 4-(c) plots the centering (𝑥 coordinate)

for the low-FPS points. The line at 0 represents the center of the

track, while the continuous lines in position ∼-18 and ∼18 depict
the limits of the track. Finally, the dashed lines represent the area

of the game we asked RELINE to explore: based on our reward

function, we penalize the agent for going outside the [-20, +20]

range that, normalized, corresponds to ∼[-36, +36]. Also rl-baseline
is penalized outside of this area.

As expected, the random agent is not able to advance in the game:

The low-FPS points it identifies are all placed near the starting line

— red dots in Fig. 4-(b). This indicates that a random agent can be

used to exercise a specific part of a game, but it is not able to explore

the game as a player would do. This is also confirmed by the red

dots in Fig. 4-(c), with the random agent exploring areas of the game

far from the track and that a human player is unlikely to explore.

Also, it is worth noting that in SuperTuxKart each episode lasts

(based on our setting) 90 seconds if the agent does not cross the

finish line. However, as shown in our preliminary study, in other

games such as MsPacman a random agent could quickly lose an

episode without having the chance to explore the game at all.

The low-FPS points identified by RELINE (blue dots) and by

rl-baseline (green) are instead closer to the track and, for what

concerns RELINE, they are within or very close the area of the

game we ask it to explore — see dashed lines in Fig. 4-(c). Thus, by

customizing the reward function, it is possible to define the area of

the game relevant for the load testing.

Looking at Fig. 4-(b), we can see that RELINE is also able to

identify low-FPS in different areas of the game with, however, a

concentration close to the beginning and the end of the game. It is

difficult to explain the reason for such a result, but we hypothesize

two possible explanations.

First, it is possible that the “central” part of the game simply

features less low-FPS areas. This would also be confirmed by the

fact that rl-baseline only found one low-FPS point in that part of

the game. Also, the training and the reward function could have

driven RELINE to explore more the starting and the ending of the

game. The starting part is certainly the most explored since, at the

beginning of the training, the agent is basically a random agent.

Thus, it mostly collects experience about low-FPS points found in

the beginning of the game since, similarly to the random agent, it is
not able to advance in the game. It is important to remember that

the data in Fig. 4 only refers to the 1,000 games played by RELINE
after the 2,300 training games, so we are not including the random

exploration done at the beginning of the training in Fig. 4. However,

once the agent learns several low-FPS points in the starting of the

game, it can exercise them again and again to get a higher reward.

Concerning the end of the game, we set a maximum duration of

90 seconds for each game, but we know that a well-trained agent

can complete the lap in ∼70 seconds. It is possible that the agent
used the remaining time to better explore the last part of the game

before crossing the finish line, thus finding a higher number of

low-FPS points in that area. Additional trainings, possibly with a

different reward function, are needed to better explain our finding.

8

Using Reinforcement Learning for Load Testing of Video Games

Concerning the violin plots in Fig. 4-(a), we can see that RELINE
and rl-baseline exhibit a similar distribution, with RELINE being able
to identify some stronger low-FPS points (i.e., longer time to render

frames). All distributions have, as expected, the median above the

𝑡 threshold, with RELINE’s one being higher (24.54 vs 21.69 for

rl-baseline and 19.39 for random agent). The highest value of the
distributions is 65.92 (60.7 FPS) for RELINE, against 44.81 (89.3 FPS)
for rl-baseline and 50.73 (78.8 FPS) for random agent. Remember

that all these values represent milliseconds to load frames after an

action performed by the agents.

Table 2: Results of Mann-Whitney test (adjusted 𝑝-value)
and Cliff’s Delta (𝑑) when comparing the distributions of
rendering times — boldface indicates higher times.

Test p-value OR

RELINE 𝑣𝑠 rl-baseline <0.001 0.34 (Medium)

RELINE 𝑣𝑠 random agent <0.001 0.36 (Medium)

rl-baseline 𝑣𝑠 random agent <0.001 0.16 (Small)

Table 2 shows the results of the statistical comparisons among the

three distributions. In each test, the approach reported in boldface

is the one identifying stronger low-FPS points (i.e., more extreme

points requiring longer rendering time for their frames). The ad-

justed 𝑝-values report a significant difference (𝑝-value < 0.001) in

favor of RELINE against both rl-baseline and the random agent (in
both cases, with a medium effect size). Thus, the low-FPS points

identified by RELINE tend to require longer times to render frames.

Fig. 2-(c) shows an example of low-FPS point identified by RELINE:
Crashing against the sheep results in a drop of FPS.

Finally, it is worth commenting about the overlap of low-FPS

points identified by the three agents. Indeed, RELINE and rl-baseline
found 14 low-FPS points in common (i.e., same 𝑥 and𝑦 coordinates),

while the overlap is of 11 points for RELINE and random agent, and
10 for rl-baseline and random agent. The most interesting finding of

this analysis is that rl-baseline was able to identify only 19 points

missed by RELINE, while the latter found 159 points missed by

rl-baseline. This supports the role played by the reward function in

pushing RELINE to look for low-FPS points.

Summary of the Case Study. RELINE is the best approach

for finding low-FPS points in SuperTuxKart. A random agent
is not able to spot issues that require playing skills, and rl-
baseline only finds a small portion of the low-FPS points.

5 THREATS TO VALIDITY
Threats to Construct Validity. The main threats to the construct

validity of our study are related to the process we adopted in our

case study (Section 4) to identify low-FPS points. Based on our

experiments, and in particular on the findings reported in Fig. 3,

our methodology should be reliable enough to identify variations in

FPS. Still, some level of noise can be expected, and for this reason all

our analyses have been run at least 300 times, while 1,000 episodes

were played by each of the experimented approaches.

Concerning our preliminary study (Section 3), it is clear that the

bugs we injected are not representative of real performance bugs

in the subject games. However, they are inspired from a perfor-

mance mutation operator defined in the literature [23]. Our prelim-

inary study only serves as a proof-of-concept to verify whether, by

modifying the reward function, a RL-based agent would adapt its

behavior to look for bugs while playing the game.

Threats to Internal Validity. In our case study, to ease the

training we did not use the “real” game, but its wrapped version, i.e.,
PySuperTuxKart [11]. While the core game is the same, the version

we adopted does not contain the latest updates and it includes

additional Python code that may affect the rendering time. We

assume that such a time is constant for all the frames since it

simply triggers the frame rendering operation in the core game.

Besides, we forced the game to run with lowest graphics settings

to speed up rendering: For example, we excluded dynamic lighting,

anti-aliasing, and shadows. Therefore, the low-FPS points found

in PySuperTuxKart may be irrelevant in the original game or with

other graphic settings. Also, we applied the five-𝜎 rule to define a

threshold for defining what a low-FPS point is. The threshold we

set might be not indicative of relevant performance issues.

Still, the goal of our study was to show that once set specific

requirements (e.g., the threshold 𝑡 , the area to explore, etc.), the

agent is able to adapt trying to maximize its reward. Thus, we do

not expect changes in the threshold to invalidate our findings.

Threats to conclusion validity. In our data analysis we used

appropriate statistical procedures, also adopting p-value adjustment

when multiple tests were used within the same analysis.

Threats to External Validity Besides the proof-of-concept

study we presented in Section 3, our empirical evaluation of RELINE
includes a single game. This does not allow us to generalize our

findings. The reasons for such a choice lie in the high effort we

experienced as researchers in (i) building the pipeline to interact

with the game, (ii) finding and experimenting with a reliable way

to capture the FPS, (iii) defining a meaningful reward function that

allowed the agent to successfully play the game in the first place

and, then, to also spot low-FPS points. These steps were a long trial-

and-error process with the most time consuming part being the

trainings needed to test the different reward functions we experi-

mented before converging towards the ones presented in this paper.

Indeed, testing a new version of a reward function required at least

one week of work with the hardware at our disposal (including

implementation, training, and data analysis).

This was also due to the impossibility of using multiple machines

or to run multiple processes in parallel on the same server. Indeed,

as explained, using the exact same environment to run all our exper-

iments was a study requirement. It is worth noting that, because of

similar issues, other state-of-the-art approaches targeting different

game properties were experimented with only one game as well

(see e.g., [17, 38, 49, 52]). We believe that instantiating RELINE on a

new game would be much easier by collaborating with the game

developers. While this would only slightly simplify the definition

of a meaningful reward function, the original developers of the

game could easily provide through APIs all information needed by

RELINE (including, e.g., the FPS), cutting away weeks of work.

9

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

6 RELATEDWORK
Three recent studies [33, 40, 46] suggest that finding performance

issues in video games is a relevant problem, according to both game

developers [40, 46] and players [33]. Nevertheless, to the best of our

knowledge, no previous work introduced automated approaches

for load testing video games. Therefore, in this section, we discuss

some important works on the quality assurance of video games in

general. We first introduce the approaches defined in the literature

for training agents able to automatically play and win a game.

Then, we show how such approaches are used for play-testing for

(i) finding functional issues and (ii) assessing game/level design

(e.g., finding unbalanced levels or mechanics).

6.1 Training Agents to Play
Reinforcement Learning (RL) is widely used to train agents able to

automatically play video games. Mnih et al. [35, 36] presented the

first approach based on high-dimensional sensory input (i.e., raw
pixels from the game screen) able to automatically learn how to

play a game. The authors used a Convolutional Neural Network

(CNN) trained with a variant of Q-learning to train their agent.

The proposed approach is able to surpass human expert testers in

playing some games from the Atari 2600 benchmark.

Vinyals et al. [48] introduced SC2LE, a RL environment based on

the game StarCraft II that simplifies the development of specialized

agents for a multi-agent environment.

Hessel et al. [27] analyzed six extensions of the DQN algorithm

for RL and they reported the combinations that allow to achieve the

best results in terms of training time on the Atari 2600 benchmark.

Baker et al. [16] explored the use of RL in a multi-agent environ-

ment (i.e., the hide and seek game). They report that agents create

self-supervised autocurricula [32], i.e., curricula naturally emerging

from competition and cooperation. As a result, the authors found

evidence of strategy learning not guided by direct incentives.

Berner et al. [14] reported that state-of-the-art RL techniques

were successfully used in OpenAI Five to train an agent able to play

Dota 2 and to defeat the world champion in 2019 (Team OG). Finally,

Mesentier et al. [22] reported that AI agents could be easily trained

to explore the states of a board game (Ticket to Ride) performing

automated play-testing.

6.2 Testing of Video Games
Functional testing of video games aims at finding unexpected be-

haviors in a game. Defining the test oracle, i.e., determining if a

specific game behavior is defective, is not trivial. Several categories

of test oracles were identified to determine if a bug was found:

crash (the game stops working) [39, 51], stuck (the agent can not

win the game) [39, 51], game balance (game too easy or too hard)

[51], logical (an invalid state is reached) [51], and user experience
bugs (related to graphic and sound, e.g., glitches) [39, 51]. While

heuristics can be used to find possible crash-, stuck-, and game-

balance-related bugs [51], logical and user-experience bugs may

require the developers to manually define an oracle.

Iftikhar et al. [29] proposed a model-based testing approach for

automatically perform black-box testing of platform games. More

recent approaches mostly rely on RL.

Pfau et al. [39] introduced ICARUS, a framework for autonomous

play-testing aimed at finding bugs. ICARUS supports the fully au-

tomated detection of crash and stuck bugs, while it also provides

semi-supervised support for user-experience bugs.
Zheng et al. [51] used Deep Reinforcement Learning (DLR) in

their approach, Wuji. Wuji balances the aim of winning the game

and exploring the space to find crash, stuck, game balance, and
logical bugs in three video games (one simple, Block Maze and two

commercial, L10 and NSH).

Bergdahl et al. [17] defined a DLR-based method which provides

support for continuous actions (e.g., mouse or game-pads) and they

experimented it with a first-person shooter game.

Wu et al. [49] used RL to automatically perform regression test-

ing, i.e., to compare the game behaviors in different versions of

a game. They experimented with such an approach on a Massive

Multiplayer Online Role-Playing Game (MMORPG).

Ariyurek et al. [15] experimented RL and Monte Carlo Tree

Search (MCTS) to define both synthetic agents, trained in a com-

pletely automated manner, and human-like agents, trained on tra-

jectories used by human testers.

Finally, Ahumada and Bergel [13] proposed an approach based

on genetic algorithms to reproduce bugs in video games by recon-

structing the correct sequence of actions that lead to the desired

faulty state of the game.

6.3 Game- and Level-Design Assessment
One of the main goals of a video game is to provide a pleasant

gameplay to the player. Assessing the game balance and other

aspects related to game- and level-design is, therefore, of primary

importance.

For this reason, previous work defined several approaches for

automatically finding game- and level-design issues in video games.

Zook et al. [52] proposed an approach based on Active Learning

(AL) to help designers performing low-level parameter tuning. They

experimented such an approach on a shoot ’em up game.

Gudmundsson et al. [26] introduced an approach based on Deep

Learning to learn human-like play-testing from player data. They

used a CNN to automatically predict the most natural next action a

player would take aiming to estimate difficulty of levels in Candy
Crush Saga and Candy Crush Soda Saga.

Zhao et al. [50] report four case studies in which they experi-

ment the use of human-like agent trained with RL to predict player

interactions with the game and to highlight possible game-design

issues. On a similar note, Pfau et al. [38] used deep player behav-

ioral models to represent a specific player population for Aion, a
MMORPG. They used such models to estimate the game balance

and they showed that they can be used to tune it.

Finally, Stahlke et al. [44] defined PathOS, a tool aimed at helping

developers to simulate players’ interaction with a specific game

level, to understand the impact of small design changes.

7 CONCLUSIONS AND FUTUREWORK
We presented RELINE, an approach that uses RL to load test video

games. RELINE can be instantiated on different games using differ-

ent RL models and reward functions.

10

Using Reinforcement Learning for Load Testing of Video Games

Our proof-of-concept study performed on two subject systems

shows the feasibility of our approach: Given a reward function able

to reward the agent when artificial performance bugs are identified,

the agent adapts its behavior to play the game while looking for

those bugs.

We performed a case study on a real 3D racing game, Super-

TuxKart, showing the ability of RELINE to identify areas resulting

in FPS drops. As compared to a classic RL agent only trained to play

the game, RELINE is able to identify a substantially higher number

of low-FPS points (173 vs 33).
Despite the encouraging results, there are many aspects that

deserve a deeper investigation and from which our future research

agenda stems. First, we plan additional tests on SuperTuxKart to

better understand how the agent reacts to changes in the reward

function (e.g., is it possible to findmore low-FPS points in the central

part of the game?). Also, with longer training times it should be

possible to train an agent able to play more challenging versions

of this game featuring additional 3D effects (e.g., rainy conditions),

possibly allowing to find new low-FPS points. We also plan to

instantiate RELINE on other game genres (e.g., role-playing games),

possibly by cooperating with their developers.

In our replication package [47], we release the code implement-

ing the models used in our study and the raw data of our experi-

ments.

ACKNOWLEDGMENT
This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement No. 851720). Any

opinions, findings, and conclusions expressed herein are the au-

thors’ and do not necessarily reflect those of the sponsors.

REFERENCES
[1] [n.d.]. 3D.City - Performance Issue 42. https://github.com/lo-th/3d.city/issues/42.

[2] [n.d.]. CartPole. https://gym.openai.com/envs/CartPole-v0/.

[3] [n.d.]. Dwarfcorp - Performance Issue 583. https://github.com/Blecki/dwarfcorp/

issues/583.

[4] [n.d.]. Dwarfcorp - Performance Issue 64. https://github.com/Blecki/dwarfcorp/

issues/64.

[5] [n.d.]. Dwarfcorp - Performance Issue 711. https://github.com/Blecki/dwarfcorp/

issues/711.

[6] [n.d.]. Dwarfcorp - Performance Issue 904. https://github.com/Blecki/dwarfcorp/

issues/904.

[7] [n.d.]. Dwarfcorp - Performance Issue 966. https://github.com/Blecki/dwarfcorp/

issues/966.

[8] [n.d.]. Geostrike - Performance Issue 214. https://github.com/Webiks/GeoStrike/

issues/214.

[9] [n.d.]. Gym. https://gym.openai.com/.

[10] [n.d.]. MsPacman. https://gym.openai.com/envs/MsPacman-v0/.

[11] [n.d.]. PySuperTuxKart. https://github.com/supertuxkart/stk-code.

[12] [n.d.]. VIDEO GAMES : INDUSTRY TRENDS, MONETISATION STRATEGIES

& MARKET SIZE 2020-2025 https://www.juniperresearch.com/researchstore/

content-digital-media/video-games-market-report.

[13] Tomás Ahumada and Alexandre Bergel. 2020. Reproducing Bugs in Video Games

using Genetic Algorithms. In 2020 IEEE Games, Multimedia, Animation and Mul-
tiple Realities Conference (GMAX). IEEE, 1–6.

[14] Open AI. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[15] S. Ariyurek, A. Betin-Can, and E. Surer. 2021. Automated Video Game Testing

Using Synthetic and Humanlike Agents. IEEE Transactions on Games 13, 1 (2021),
50–67. https://doi.org/10.1109/TG.2019.2947597

[16] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. 2019. Emergent tool use from multi-agent autocur-

ricula. arXiv preprint arXiv:1909.07528 (2019).

[17] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén. 2020. Augmenting Automated

Game Testing with Deep Reinforcement Learning. In 2020 IEEE Conference on
Games (CoG). 600–603. https://doi.org/10.1109/CoG47356.2020.9231552

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

arXiv:arXiv:1606.01540

[19] Bum Hyun Lim, Jin Ryong Kim, and Kwang Hyun Shim. 2006. A load test-

ing architecture for networked virtual environment. In 2006 8th International
Conference Advanced Communication Technology, Vol. 1. 5 pp.–848. https:

//doi.org/10.1109/ICACT.2006.206095

[20] C. Cho, D. Lee, K. Sohn, C. Park, and J. Kang. 2010. Scenario-Based Approach

for Blackbox Load Testing of Online Game Servers. In 2010 International Confer-
ence on Cyber-Enabled Distributed Computing and Knowledge Discovery. 259–265.
https://doi.org/10.1109/CyberC.2010.54

[21] W. J. Conover. 1998. Practical Nonparametric Statistics (3rd edition ed.). Wiley.

[22] Fernando De Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017.

AI as evaluator: Search driven playtesting of modern board games. InWS-17-01
(AAAI Workshop - Technical Report). AI Access Foundation, 959–966. 31st AAAI
Conference on Artificial Intelligence, AAAI 2017.

[23] Pedro Delgado-Pérez, Ana Belén Sánchez, Sergio Segura, and Inmaculada Medina-

Bulo. 2021. Performance mutation testing. Software Testing, Verification and
Reliability 31, 5 (2021). https://doi.org/10.1002/stvr.1728

[24] E.W. Grafarend. 2006. Linear and Nonlinear Models: Fixed Effects, Random Ef-
fects, and Mixed Models. Walter de Gruyter. https://books.google.ch/books?id=

uHW2wAEACAAJ

[25] Robert J. Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical
approach (2nd edition ed.). Lawrence Earlbaum Associates.

[26] Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Pur-

monen, Bartlomiej Kozakowski, Richard Meurling, and Lele Cao. 2018. Human-

like playtesting with deep learning. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 1–8.

[27] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-

vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

2018. Rainbow: Combining improvements in deep reinforcement learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[28] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan-

dinavian journal of statistics (1979), 65–70.
[29] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood. 2015. An automated model

based testing approach for platform games. In 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS). 426–
435. https://doi.org/10.1109/MODELS.2015.7338274

[30] YungWoo Jung, Bum-Hyun Lim, Kwang-Hyun Sim, HunJoo Lee, IlKyu Park,

JaeYong Chung, and Jihong Lee. 2005. VENUS: The Online Game Simulator

Using Massively Virtual Clients. In Systems Modeling and Simulation: Theory and
Applications. 589–596.

[31] Maxim Lapan. 2018. Deep Reinforcement Learning Hands-On: Apply Modern RL
Methods, with Deep Q-Networks, Value Iteration, Policy Gradients, TRPO, AlphaGo
Zero and More. Packt Publishing.

[32] Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. 2019. Autocur-

ricula and the emergence of innovation from social interaction: A manifesto for

multi-agent intelligence research. arXiv preprint arXiv:1903.00742 (2019).
[33] Xiaozhou Li, Zheying Zhang, and Kostas Stefanidis. 2021. A data-driven approach

for video game playability analysis based on players’ reviews. Information 12, 3

(2021), 129.

[34] Dayi Lin, C. Bezemer, and A. Hassan. 2016. Studying the urgent updates of

popular games on the Steam platform. Empirical Software Engineering 22 (2016),

2095–2126.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature 518, 7540 (2015), 529–533.
[37] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.

2018. How is video game development different from software development

in open source?. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, Andy
Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 392–402.

[38] Johannes Pfau, Antonios Liapis, Georg Volkmar, Georgios N Yannakakis, and

Rainer Malaka. 2020. Dungeons & replicants: automated game balancing via

deep player behavior modeling. In 2020 IEEE Conference on Games (CoG). IEEE,
431–438.

[39] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated Game

Testing with ICARUS: Intelligent Completion of Adventure Riddles via Unsu-

pervised Solving. In Extended Abstracts Publication of the Annual Symposium on
Computer-Human Interaction in Play (CHI PLAY ’17 Extended Abstracts). 153?164.

11

https://github.com/lo-th/3d.city/issues/42
https://gym.openai.com/envs/CartPole-v0/
https://github.com/Blecki/dwarfcorp/issues/583
https://github.com/Blecki/dwarfcorp/issues/583
https://github.com/Blecki/dwarfcorp/issues/64
https://github.com/Blecki/dwarfcorp/issues/64
https://github.com/Blecki/dwarfcorp/issues/711
https://github.com/Blecki/dwarfcorp/issues/711
https://github.com/Blecki/dwarfcorp/issues/904
https://github.com/Blecki/dwarfcorp/issues/904
https://github.com/Blecki/dwarfcorp/issues/966
https://github.com/Blecki/dwarfcorp/issues/966
https://github.com/Webiks/GeoStrike/issues/214
https://github.com/Webiks/GeoStrike/issues/214
https://gym.openai.com/
https://gym.openai.com/envs/MsPacman-v0/
https://github.com/supertuxkart/stk-code
https://www.juniperresearch.com/researchstore/content-digital-media/video-games-market-report
https://www.juniperresearch.com/researchstore/content-digital-media/video-games-market-report
https://doi.org/10.1109/TG.2019.2947597
https://doi.org/10.1109/CoG47356.2020.9231552
https://arxiv.org/abs/arXiv:1606.01540
https://doi.org/10.1109/ICACT.2006.206095
https://doi.org/10.1109/ICACT.2006.206095
https://doi.org/10.1109/CyberC.2010.54
https://doi.org/10.1002/stvr.1728
https://books.google.ch/books?id=uHW2wAEACAAJ
https://books.google.ch/books?id=uHW2wAEACAAJ
https://doi.org/10.1109/MODELS.2015.7338274

Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota

[40] Cristiano Politowski, Fabio Petrillo, and Yann-Gäel Guéhéneuc. 2021. A Survey

of Video Game Testing. arXiv preprint arXiv:2103.06431 (2021).
[41] Reuven Y. Rubinstein and Dirk P. Kroese. 2004. The Cross Entropy Method: A

Unified Approach To Combinatorial Optimization, Monte-Carlo Simulation (Infor-
mation Science and Statistics). Springer-Verlag.

[42] Adam M. Smith, Mark J. Nelson, and Michael Mateas. 2009. Computational Sup-

port for Play Testing Game Sketches. In Proceedings of the Fifth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE’09). AAAI
Press, 167?172.

[43] C. Spearman. 1904. The Proof and Measurement of Association Between Two

Things. American Journal of Psychology 15 (1904), 88–103.

[44] Samantha N. Stahlke, Atiya Nova, and Pejman Mirza-Babaei. 2020. Artificial

Players in the Design Process: Developing an Automated Testing Tool for Game

Level and World Design. Proceedings of the Annual Symposium on Computer-
Human Interaction in Play (2020).

[45] supertuxkart. [n.d.]. https://github.com/supertuxkart.

[46] Andrew Truelove, Eduardo Santana de Almeida, and Iftekhar Ahmed. 2021. We’ll

Fix It in Post: What Do Bug Fixes in Video Game Update Notes Tell Us?. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
736–747.

[47] Rosalia Tufano. 2021. https://github.com/RosaliaTufano/rlgameauthors.

[48] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, P. Georgiev, A. S. Vezhnevets,

Michelle Yeo, Alireza Makhzani, Heinrich Küttler, J. Agapiou, Julian Schrittwieser,

John Quan, Stephen Gaffney, S. Petersen, K. Simonyan, T. Schaul, H. V. Hasselt, D.

Silver, T. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, D. Lawrence,

Anders Ekermo, J. Repp, and Rodney Tsing. 2017. StarCraft II: A New Challenge

for Reinforcement Learning. ArXiv abs/1708.04782 (2017).

[49] Yuechen Wu, Yingfeng Chen, Xiaofei Xie, Bing Yu, Changjie Fan, and Lei Ma.

2020. Regression Testing of Massively Multiplayer Online Role-Playing Games.

In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 692–696.

[50] Yunqi Zhao, Igor Borovikov, Ahmad Beirami, Jason Rupert, Caedmon Somers,

Jesse Harder, Fernando de Mesentier Silva, John Kolen, Jervis Pinto, Reza

Pourabolghasem, Harold Chaput, James Pestrak, Mohsen Sardari, Long Lin,

Navid Aghdaie, and Kazi A. Zaman. 2019. Winning Isn’t Everything: Train-

ing Human-Like Agents for Playtesting and Game AI. CoRR abs/1903.10545

(2019). http://arxiv.org/abs/1903.10545

[51] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and C.

Fan. 2019. Wuji: Automatic Online Combat Game Testing Using Evolutionary

Deep Reinforcement Learning. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 772–784.

[52] Alexander Zook, Eric Fruchter, and Mark O. Riedl. 2014. Automatic playtesting

for game parameter tuning via active learning. ArXiv abs/1908.01417 (2014).

12

https://github.com/supertuxkart
https://github.com/RosaliaTufano/rlgameauthors
http://arxiv.org/abs/1903.10545

	Abstract
	1 Introduction
	2 RL to Load Test Video Games
	3 Preliminary Study: Injecting Artificial Performance Issues
	3.1 Study Design
	3.2 Preliminary Study Results

	4 Case Study: Load Testing an Open Source Game
	4.1 Study Design
	4.2 Study Results

	5 Threats to Validity
	6 Related Work
	6.1 Training Agents to Play
	6.2 Testing of Video Games
	6.3 Game- and Level-Design Assessment

	7 Conclusions and Future Work
	References

