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There is an increasing demand for Internet of Things (IoT) networks consisting of resource-constrained de-
vices executing increasingly complex applications. Due to these resource constraints, IoT devices will not be
able to execute expensive tasks. One solution is to offload expensive tasks to resource-rich edge nodes, which
requires a framework that facilitates the selection of suitable edge nodes to perform task offloading. Therefore,
in this article, we present a novel trust-model-driven system architecture, based on behavioral evidence, that is
suitable for resource-constrained IoT devices and supports computation offloading. We demonstrate the via-
bility of the proposed architecture with an example deployment of the Beta Reputation System trust model
on real hardware to capture node behaviors. The open environment of edge-based IoT networks means that
threats against edge nodes can lead to deviation from expected behavior. Hence, we perform a threat mod-

eling to identify such threats. The proposed system architecture includes threat handling mechanisms that
provide security properties such as confidentiality, authentication, and non-repudiation of messages in re-
quired scenarios and operate within the resource constraints. We evaluate the efficacy of the threat handling
mechanisms and identify future work for the standards used.
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1 INTRODUCTION

Internet of Things (IoT) networks—comprising a large number of IoT devices—are being de-
ployed in a variety of contexts including smart farming [29], healthcare [28], and smart cities [43].
IoT devices have typically been deployed as a distributed system that performs sensing of their
environment. Recently, there has been interest in these devices performing more complex tasks
(including actuation), such as in Industrial IoT (IIoT). An issue is that many of these devices
are resource constrained, with limited processing power, data storage, energy storage, and other
constraints.

Due to these resource constraints, it is infeasible for IoT devices1 to perform computationally
expensive tasks such as machine learning. To enable the IoT devices to execute such compute-
intensive applications, a support network, called an edge network, is used that consists of resource-
rich (powerful) nodes called edge nodes.2 Thus, these tasks will need to be sent from IoT devices to
the edge network in order to be executed, in a process called computation offloading. In vehicular
and cellular networks, the task offloading problem is referred to as Multi-access Edge Comput-
ing [47]. Targets for offloading may be accessed via the internet (e.g., a Cloud service) or via edge
nodes that exist within the same local network as the IoT devices. For a large class of applications,
offloading to edge nodes is preferred, such as when the network has no access to Cloud services
or when latency is important.

To meet request demand and support application diversity, multiple edge nodes should be provi-
sioned in the network. However, the scale and openness of these networks is such that edge nodes
can become attack targets, which can cause edge nodes to deviate from their normal operation. A
crucial selection problem then arises: which edge node should an IoT node submit a task to? This
can be addressed by evidence-based behavioral trust [66, 81], where the incidence of how well an
edge node has correctly executed tasks in the past is recorded and is used as a predictor of how
likely that edge node is to correctly execute future tasks. That behavioral evidence is captured
through a trust model, which is solely used to select which edge node(s) will be most suitable
to offload a task to. Trust is typically evaluated at the application level, and sufficient storage is
needed to record information about each edge node of interest. However, trust models that require
a large amount of memory or processing power to compute are not viable for IoT devices. Hence,
simpler models, e.g., the Beta Reputation System [42] or hidden Markov models (HMMs) [27],
can be used instead.

While a suitable trust model is vital, its correct deployment is equally important. Common inter-
net infrastructure and resource-rich MEC clients are typically unsuitable due to the same resource
constraints that necessitate task offloading. Therefore, in this article, we propose and describe a
novel system architecture for trust-based task offloading of IoT tasks onto edge nodes. The archi-
tecture focuses on facilitating offloading even under the resource constraints of the IoT devices
acting as clients. It is also designed to be generic by supporting arbitrary behavioral trust mod-
els to select which edge a task should be offloaded to and multiple applications running on both
edge nodes and IoT devices. Our focus is to support decentralized behavioral trust assessment and
decentralized edge node selection for task offloading. In order to showcase the usefulness of this
system architecture and evaluate its efficiency, we make use of a known trust model to ease un-
derstanding and do not propose a novel trust model. However, the development of a trust model
that can be efficiently implemented on resource-constrained devices is an area for future work.

Due to the open nature of such systems, the threats against such systems are multiple and varied.
We thus perform a threat modelling exercise of the system to identify potential adversary goals,

1By IoT devices, we mean devices that are resource constrained that perform sensing and actuating.
2By edge nodes, we mean resource-rich nodes at the edge of the network.
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threats, attack paths, and possible mitigations. These threats take into account the highly resource-
constrained nature of the IoT devices that may take part in this network and the challenges this
poses in developing mitigations. A risk analysis of these threats has not been performed, as the
threat modeling is conducted without a specific scenario defined (other than for the purpose of task
offloading), and due to the lack of information on attacks against the recent standards employed to
create this system that would allow for quantitative analysis. This threat modeling also excludes
threats to the trust model due to the large amount of work already performed analyzing them [17,
31, 36] and instead focuses on the proposed middleware that facilitates the offloading.

Once threats have been identified, we demonstrate the viability of our proposed architecture by
performing a deployment on real hardware and implementing a simple example trust model using
the Beta Reputation System [42]. We demonstrate the evolution of trust values of edge nodes over
time.

In this article we make the following contributions:

(1) We propose a system architecture for performing trust-based task offloading for IoT devices.
(2) We perform threat modeling on this architecture to identify potential attacks it may face

upon deployment and then identify appropriate mitigations to address these threats.
(3) We profile cryptographic operations on Zolertia RE-Motes and use this to inform the mes-

sage protection strategy.
(4) We conduct a small deployment of an existing trust model (the Beta Reputation System

(BRS)) using Zolertia RE-Motes to demonstrate the efficacy of the system. BRS is chosen due
to its amenability for efficient implementation for resource-constrained devices.

(5) We use the output of the threat modeling to perform attacks against signature verification
and identify future mitigations needed in implementations of the Group OSCORE standard.

The rest of this article is structured as follows: In Section 2 we present related work. Section 3
describes the problem statement and problem setting. In Section 4 the individual components of the
system architecture are described, and Section 5 performs the threat modeling against this system.
Section 6 describes the experimental setup used to obtain the results presented in Section 7. A
discussion of the system is presented in Section 8 before concluding in Section 9.

2 RELATED WORK

There has been much work on standardizing the fundamentals of IoT device infrastructure. Typ-
ically, many protocols designed for general internet use-cases are too resource intensive and are
designed for high performance and not minimizing costs in terms of RAM, flash, computation,
and energy. So, alternative protocols for these resource-constrained systems have been developed,
such as uIPv6 [24] for addressing, TSCH [78] for energy-efficient wireless medium access, and
RPL [2] for packet routing. Higher-level protocols have been implemented on top of these, such as
CoAP [64], which provides similar functionality to HTTP. These protocols have been implemented
for IoT operating systems such as RIOT [6] and Contiki-NG [25].

While security protocols such as DTLS can be used to protect UDP traffic, there has been re-
cent effort to standardize security protocols specific to CoAP. OSCORE [61] provides encryption
and authentication of messages. Only a subset of headers are protected to facilitate proxying,
which changes some CoAP fields. A benefit to OSCORE is that it has low overhead compared to
DTLS [34, 35] and there remain unaddressed issues with multiple DTLS implementations [30]; how-
ever, OSCORE does not provide forward secrecy, and additional standards (such as EDHOC [62])
would be required to set up security contexts to do so. Other approaches can involve trusted exe-
cution environments such as ARM TrustZone [60].
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2.1 Trust Assessment

Trust has also been used to solve a variety of problems in IoT applications. Primarily, the security
protocols deployed typically need to provide identity trust, where one node can verify the authen-
ticity of a message sent from another node. Trust has been used in a variety of areas, such as
routing of messages in wireless sensor networks [19], attack detection (such as intrusion into the
network) [8], and localization [32]. In these areas, trust is evaluated based on observations made
about the device’s behaviors.

Trust and Reputation Systems (TRSs) are important for systems where nodes do not always
behave correctly. Nodes may exhibit selective behavior, where services are correctly performed
only some of the time [75]. For example, to save energy, a node may choose not to forward all mes-
sages that are routed through it. In networks where trust is derived from reputation information,
the impact of manipulations of this information needs to be mitigated. An example is when nodes
bad-mouth other nodes by lying and indicating they have a low trust value for another node [75].

There has been much work on developing trust models to solve these problems beyond resource-
constrained systems [66, 81]. In vehicle and cellular networks the task offloading problem (which
we focus on in this article) is referred to as Multi-access Edge Computing (MEC) (previously
Mobile Edge Computing) [47]. A variety of solutions have been proposed for trust-based offloading
in MEC systems, typically involving machine learning approaches [53, 80], linear programming

(LP) [20], or game theoretic approaches [63]. However, these solutions are typically unsuitable
for use in resource-constrained systems. Many machine learning models, though not all, require a
large amount of memory or are expensive to compute, and techniques such as LP or game theoretic
approaches would require large amounts of data to be sent to a central location to be processed into
a schedule, which is costly in terms of energy. This typically means that lightweight approaches
are needed that are evaluated on resource-constrained IoT devices.

The seminal example of a lightweight trust model is the BRS [42]. The BRS maintains two coun-
ters, which are parameters to the Beta distribution, the number of good events observed (α ), and
the number of bad events observed (β). A trustor can calculate a trust value about a trustee via the
expected value of this distribution (the ratio of good events to the total number of events). These
values can be updated with more observations, allowing the belief in the trustee to be refined over
time.

The BRS and other models such as those that use HMMs [27] can allow the representation of
trust in a small amount of space in RAM. However, for these trust models to be effective in selecting
a target for task offloading, they need a suitable system to feed them with observations and then
deliver tasks to the chosen node.

2.2 Task Offloading for Resource-constrained IoT Devices

There are very few task offloading middlewares that have been developed with a focus on resource-
constrained devices that this work investigates. MEC approaches more commonly target cellular
and WiFi networks with low-resource devices typically being smartphones or connected vehicles;
it is also uncommon for work to present an actual implementation and experiments performed on
real-world devices.

Aura [37] facilitates offloading tasks from resource-rich mobile clients to resource-constrained
IoT devices, which is the opposite direction to which this article considers offloading. Tasks also
need to be able to be divided into small pieces as they will be executed via MapReduce on the
IoT devices. Such an approach may raise the lifetime of a battery-powered resource-rich device
(such as a smartphone), but it will also lead to a large decrease in the lifetime of battery-powered
resource-constrained IoT devices tasks are offloaded to.
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An MEC approach focusing on IIoT was presented in [38]. However, this system focuses on
the resources provided by the edge node and does not consider how IoT devices will be suitably
implemented to offload tasks within their resource constraints.

A task offloading solution for TinyOS was briefly presented in [67]. However, it lacked details
on how another device would be selected for offloading and capabilities to evaluate the success of
the offload. In [58] a system was developed for sharing task compute among a group of resource-
constrained devices with no access to a resource-rich device to process the task(s). These ap-
proaches have not focused on the implementation of a task offloading system and the security
threats it may face. Instead, there has been a focus on how to select which device a task should
be offloaded to. In this article we present a middleware that is agnostic to the mechanism being
used to select an offload target; however, it focuses on providing supporting information to task
offloading approaches that utilize behavioral trust.

2.3 Threat Modeling

Much work has been performed investigating attacks against TRSs [36, 75, 77], including attacks
such as (1) Bad-mouthing, (2) Good-mouthing, (3) Collusion, (4) Selective Behavior, and (5) Self-
promotion. However, the system that uses a TRS to perform task offloading is also important to
secure. Threat modeling approaches allow the exploration of attacks against a system, its com-
ponents and their interactions, plus adversaries and their goals. Attack Trees [79] are commonly
used to represent an attack scenario as a tree with the root labeled with the goal of the attacker
and other nodes labeled as sub-goals or attacks.

Threats are typically classified into one of two frameworks, either the CIA security properties
((1) Confidentiality, (2) Integrity, and (3) Availability) or the STRIDE [65] security threats
((1) Spoofing, (2) Tampering, (3) Repudiation, (4) Information disclosure, (5) Denial of service, and
(6) Escalation of privilege). There are many threat modeling methodologies [5, 10] where the
usual process is to (1) identify the system and its information assets, (2) identify the adversaries,
(3) identify how the adversaries will attack the system and which vulnerabilities they may exploit,
(4) calculate a measure of risk (e.g., risk = impact × likelihood), and, finally, (5) identify mitigations
to reduce risk.

Commonly used methodologies include (1) the Cyber Kill Chain [50], which focuses on threats
and where controls block an attack in seven steps from reconnaissance to actioning objectives;
(2) the Process for Attack Simulation and Threat Analysis (PASTA) [73, Chapter 7], which is a
risk-centric analysis where risk is used to prioritize which threats mitigations should be developed
for; (3) Trike [59], which takes a risk management perspective of a limited classification of threats
(denial of service, escalation of privilege, and social responsibility); and (4) OCTAVE [1], which is
a risk-based analysis of (a) operational risk, (b) security practices, and (c) the technology involved.
The analysis focuses on assets (e.g., information and systems) key to an organization.

2.4 Previous Threat Analyses

There have been a variety of threat analyses of task offloading systems and the specific components
that the system this article proposes builds upon. For example, a survey of MEC was performed
in [57] that included offloading security considerations. However, as previously mentioned, MEC
solutions are not directly applicable to resource-constrained IoT devices due to those resource
constraints limiting the approaches to offloading and platforms that can be used.

There has been much work on investigating attacks and countermeasures for Wireless Sensor

Network (WSN) and IoT systems [3, 9, 18, 71]. This involves attacks at different layers including
the physical, communication, and application layers. Attacks at these layers will have require-
ments, different impacts, and varying ease in which the attacks can be performed. For example,
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physical attacks may be difficult to perform (e.g., requiring physical access to the relevant devices)
but can lead to large impacts such as via key stealing attacks or adversaries loading a custom
firmware.

The majority of these analyses focus on network-level attacks, for example, attacks to routing
protocols for packets in the network such as RPL [72]. Many attacks applicable to other wireless
systems (e.g., eavesdropping, jamming, replay, and others) also apply to these resource-constrained
systems; however, their unique aspects mean that additional attacks can have a large impact. For
example, denial of sleep attacks [56] can prevent communication hardware sleeping, leading to ex-
haustion of energy stores and denial of service. Communication security layers such a DTLS [30]
and OSCORE [61, Section D.1] have also been investigated due to systems depending on the pro-
tections these layers provide.

3 PROBLEM STATEMENT

In this section, the offloading problem that the system architecture needs to facilitate is defined.
The system is modeled as a graph G = (V ,E), where

• V = VR ∪VC ∪ {ρ} is the set of nodes in the network, made up of resource-rich edge nodes
(VR ), resource-constrained IoT nodes (VC ), and a resource-rich root node ρ, and
• E ⊆ V ×V is the set of communication links between nodes in the network.

We assume that an IoT device i ∈ VC exists within the network to perform sensing and actuation.
They are typically battery powered with limited CPU power, RAM, energy storage, and potentially
no stable storage. A representative device is the Zolertia RE-Mote [83], which has a 32 MHz CPU,
32 KiB of RAM, 512 KiB of programmable flash, a 800 mAh battery, and support for an optional SD
card. Another is the nRF52840 [51] SoC, which has a 64 MHz CPU, 256 KiB of RAM, and 1 MiB of
programmable flash. Communication in these devices is typically performed using IEEE 802.15.4,
Bluetooth Low Energy, or LoRaWAN. An edge node e ∈ VR is a device with extensive computing
capabilities. Edge nodes support the IoT nodes by executing tasks that either are too expensive for
the IoT device or require access to data unavailable to the IoT devices. The special root node is
equipped with similar resources to edge nodes and performs dedicated tasks for the system.

There is a set of applicationsA deployed in the network. Each application a ∈ A has two parts:
(1) one part that is deployed on at least one IoT device c ∈ VC and (2) a second part that is deployed
on at least one edge nodev ∈ VR . The set of IoT device applications is denoted byAC , while the set
of applications running on edge nodes is denoted byAR . We assume a bijection fapp : AR → AC

from the edge node applications to IoT device applications. We assume two functions: (1) AC :
VC → 2AC that returns the set of applications on an IoT device and (2) AR : VR → 2AR that
returns the set of applications on an edge node.

Tasks that are generated on an IoT device c ∈ VC for application a ∈ AC (c ) will need to be
delivered to an edge node v ∈ VR that hosts the corresponding application and then a result
returned to the IoT device that submitted the task. The set of edge nodes that can process these
tasks of application a is given by

V a
R =

{
r | r ∈ VR ∧

(
∃a′ ∈ AR (r ) , fapp (a′) = a

) }
. (1)

Definition 3.1 (Task Offloading Problem). Given an IoT device c ∈ VC and a task t for application
a ∈ AC (c ) that c needs to offload, select an edge node r ∈ V a

R
to which the task t should be offloaded

to such that (1) the task t will be accepted by r , (2) r returns a result within some finite deadline d ,
and (3) the result of executing t on r is the correct output.
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We assume that application tasks may not always be executed correctly by edge nodes and that
there may be failures in any of the three dimensions referred to in Definition 3.1 due to edge nodes
choosing to intentionally behave badly (e.g., wanting to prefer some capabilities over others) or due
to other failures (e.g., transient network failures) that may cause packets to be lost. The deadline of
a task is application specific; some applications may be critical and have an early deadline, whereas
non-critical applications will have later (possibly flexible) deadlines.

We propose to use a measure of behavioral trust as one approach to solve the Task Offloading
problem. The metric captures the likelihood of a node to correctly execute an offloaded task. How-
ever, in order to capture this behavioral trust, a system must first provide (1) identity trust and
confidentiality, where messages between nodes can be authenticated and protected; (2) mecha-
nisms to facilitate the discovery of edge nodes and their capabilities; and (3) mechanisms to sub-
mit tasks, receive responses, and make observations about these actions. Depending on the trust
model in use, it may also be necessary to (4) provide stereotype information about nodes to boot-
strap trust and (5) facilitate the dissemination of reputation (i.e., indirect trust) information. This
article does not provide a solution to the Task Offloading problem but instead presents a system
architecture that facilitates the deployment of trust models that can help solve the Task Offloading
problem.

4 SYSTEM ARCHITECTURE

In this section we present a high-level description of our architecture to perform trust-based task
offloading before describing in detail the individual components. The system relies upon uIPv6 [24]
and RPL [2] for message routing, and CoAP [64] for reliable messaging. As CoAP uses UDP, this
avoids the RAM cost of including a TCP stack. CBOR [12] is used to encode the contents of CoAP
messages. For the security layer, OSCORE [61] provides encryption and authentication of CoAP
messages. We plan for the use of Group OSCORE [70] to secure messages that require no encryp-
tion but require being digitally signed. As no working implementation is currently available for
the draft standard, we have performed an implementation using Contiki-NG [25].

Our implementation uses Contiki-NG; however, the system architecture can be implemented on
other IoT OSes that support the required features, such as RIOT [6], Zephyr [68], OpenThread [33],
and others. The Contiki-NG operating system uses a coroutine-based cooperative scheduling
model [26] instead of a multi-threaded model. The impact of this design is that the multiple ap-
plications need to ensure that they behave well to avoid impacting other applications and tasks.
For example, they will need to yield often enough to allow other coroutines to execute. Due to
Contiki-NG’s implementation of RPL, only one border router acting as a root node is supported.
On this single root node, a CoAP server (implemented using aiocoap [4]) will be used to provide
services to the network. An overview of the system is shown in Figure 1.

We make the following assumptions as part of the development of this system architecture:

(1) As IoT devices have finite lifetimes, they may be retrieved and have batteries swapped, at
which point firmware updates may be performed.

(2) The multiple applications running on a single device are assumed to be mutually trusted [76],
where one application does not intentionally aim to negatively impact another.

(3) IoT devices will generate tasks that they lack the computational ability or knowledge to
calculate. These tasks will be submitted to resource-rich devices that will calculate the result.
These tasks are independent, so a resource-rich device does not need to receive multiple task
submissions before it can begin processing a task.

(4) A measure of behavioral trust in an edge node is evaluated locally on the IoT devices.
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Fig. 1. System functionality across the three device classes with example addresses.

(5) Due to Contiki-NG’s RPL limitations, it is not possible to provision redundant root nodes.
Therefore, we assume the single root is trustworthy and reliable. The implications of a single
root node are discussed in Section 8.1.

These assumptions have been made based on the following reasoning. Assumption (1) is made
as there will be limited resources for over-the-air firmware updates [82] after the implementation
of our task offloading middleware. A solution to this would be to use more capable devices (such
as the nRF52840) instead of Zolertia RE-Motes. Assumptions (2) and (5) are required due to feature
limitations of Contiki-NG. Other IoT operating systems such as Tock OS [45] and Zephyr [68] are
working toward support for mutually distrusted applications, but support for our desired security
layer (OSCORE) is lacking. Assumption (3) is made as we do not expect a task submitted by one IoT
device to depend on a different task submitted by another IoT device. If data from other devices is
required, then it can be obtained via an additional MQTT service if a centralized approach is accept-
able or via a suitable ad hoc data aggregation approach [55] without requiring task dependencies.
Finally, Assumption (4) is made because there are additional energy and time costs involved with
the transmission of multiple observations, the device evaluating trust would need to be assumed
to behave well, and there are additional security threats that would need to be considered with a
centralized evaluation of trust [36].

4.1 Public Key Infrastructure

This system is primarily focused on providing evidence of actions taken in a behavioral trust model.
The trust model is then used to select an appropriate edge node to offload a task to via an evidence-
based evaluation of the edge’s past behavior. However, in order to provide a foundation for assess-
ment of behavioral-based trust, it is necessary that nodes in the network have trust in the identities
of other devices in the network.

Each IoT device is pre-deployed with a root certificate, their own certificate, and their secret key.
This implementation uses the NIST P-256 elliptic curve (EC) (also known as secp256r1) for ECC
keys because it provides a good level of security and the keys and signatures both take up a small
amount of space (64 B) compared to keys required for RSA at comparable bits of security [44].
However, a downside is that ECC operations are time consuming to compute; therefore, we aim to
minimize the use of ECC operations where appropriate. Due to the large size of X.509 certificates,
we use a CBOR-encoded certificate similar to XIOT [39], whose contents are shown in Figure 2.
While the certificates support including the time at which they are valid, not all systems may be
capable of checking the validity. This is because there may be no time synchronization protocol in
use that allows IoT devices to align their local clock with a global clock. So in this system, certifi-
cates can be purged from the root node once IoT devices are expected to have run out of battery.
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Fig. 2. Specification of lightweight certificate and Certificate Request Protocol.

To minimize the number of ECC operations that IoT devices perform, a shared secret is provided
to an OSCORE context, so for the majority of operations AES-CCM is used to encrypt and provide
authentication of messages. In order for a node n1 to create an OSCORE context with another node
n2, elliptic curve Diffie-Hellman (ECDH) is first used to generate a shared secret using n2’s
public key and n1’s secret key. Therefore, ECC operations are only required when (1) deriving the
OSCORE context, (2) digitally signing/verifying specific messages, and (3) verifying certificates.

At network deployment not all edge nodes may be known; this means there is a need for IoT
devices to be able to request keys for unknown nodes from a key server on the trusted root node.
The protocol for this is shown in Figure 2(b).

4.2 Resource-rich Capability Discovery

IoT devices need to discover edge nodes and their capabilities (i.e., what applications they are
running). Discovery of these capabilities aligns with a publish-subscribe model where IoT devices
subscribe to announcements of edge nodes publishing their capabilities. MQTT [7] is a pub-sub
protocol designed for IoT devices; however, it has a number of downsides when integrating with
this system. Primarily, MQTT uses TCP to provide reliability, which means that there would be an
additional RAM cost by including a TCP library. The use of MQTT would also mean that the secu-
rity mechanisms protecting CoAP messages could not be applied to MQTT messages. To mitigate
this overhead on the IoT devices, we instead implement MQTT-over-CoAP, where an application
on the root node translates CoAP messages into MQTT messages and vice versa. The MQTT-over-
CoAP translator application communicates with a Mosquitto [46] server that provides the MQTT
functionality.

There are four phases to resource-rich capability discovery, which are shown in Figure 3.
The first requires IoT devices to subscribe to four topics: (1) edge/+/announce, (2) edge/+
/unannounce, (3) edge/+/capability/+/add, and (4) edge/+/capability/+/remove. The first
wildcard entry (represented by +) is the edge node’s EUI-64 in hexadecimal, and the second wild-
card entry is the name of the capability.

The announce topic is used for edge nodes to announce themselves to others in the network.
Their lightweight certificate is included in the message, so receivers do not need to request it. The
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Fig. 3. Resource-rich Capability Discovery Protocol.

receivers will validate the certificate upon reception. The capability add topic is used for edge
nodes to inform subscribers that a specific capability is being provided by that node.

The unannounce and capability remove topics are used by well-behaved edge nodes to in-
form subscribers that the node or a capability is unavailable, respectively. Malicious nodes may
not publish these messages, so IoT devices will need to be able to handle this scenario when
encountered.

4.3 Resource-rich Stereotype Request

An issue in trust-based selection is that when the system is starting or a new entrant joins, there
is little opportunity for historical data to have been gathered and used to build a trust model.
Therefore, in order to facilitate better initial decisions, stereotypes can be provided as a starting
point to bootstrap trust models [66]. When an edge node announces itself, the certificate it sends
contains a set of tags that provide an abstract description of the node. Once these tags are received,
the stereotype for this set of tags is requested from the root node as shown in Figure 4. When
choosing which IoT device to submit a task to, the stereotype with the closest set of matching tags
may be used in the process of calculating the trust value for that edge node.

4.4 Reputation Dissemination

Trust models may incorporate a measure of reputation into their evaluation of the trustworthiness
of an edge node. The reputation of a trustee is the beliefs held by other trustors in the system
and it is stored in the same format as the trust model held by other trustors. When a trust model
incorporates reputation, each of the IoT devices need a mechanism to disseminate their beliefs. It
is important to provide non-repudiation for messages containing reputation of trustees so nodes
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Fig. 4. Resource-rich stereotype request.

Fig. 5. Trust Dissemination Protocol. Fig. 6. Application Protocol.

cannot claim they had a different trust value in the past. There is also no need for confidentiality,
meaning the messages can be signed and sent unencrypted.

There are multiple options for implementing dissemination of reputation information, such as
(1) performing a network-wide multicast, (2) targeting specific nodes, (3) performing a one-hop
broadcast, or (4) allowing nodes to request reputation information. In this implementation we
focus on (3) and (4), where IoT devices perform a periodic dissemination of trust values and also
allow other nodes to request reputation information from arbitrary nodes. Both of these actions
are shown in Figure 5.

4.5 Application

The messages that applications on IoT devices send to edge nodes (the task request and, vice versa,
the task response) will be protected by OSCORE via encryption and authentication of the message.
While some applications may not require confidentiality, a generic layer needs to encrypt the mes-
sages in order to facilitate applications that do require it. An example of the application protocol
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is shown in Figure 6 for an application that periodically sends a task every T seconds. When a
capability add for this application is received, the application is started if it is not running.

For the first periodic action, an edge node may be selected that lacks the IoT device’s certificate.
The edge node will not acknowledge the message and instead request the certificate, either when
the IoT device retries whether the certificate has been retrieved or when the IoT device will even-
tually time out. Subsequent actions will not need to repeat this as the edge nodes will cache the
certificate. In the case of failure, applications may choose to resubmit a task to an alternate edge
node. This is left up to the application as it will require buffering the task to facilitate retrying it.

5 THREAT MODELING

In this section, a threat modeling is performed on the proposed system architecture for trust-
based task offloading from resource-constrained to resource-rich devices. This involves identifying
(1) the threat actors who may attack the system, (2) the components of the system and how they
interact, and (3) how individual attacks may be combined so an adversary can reach one of their
goals.

To aid in performing threat modeling of this system, a data flow diagram (DFD) of the system
is shown in Figure 7 using De Marco notation [22]. The DFD has been customized to highlight
additional features of interest. Data flows within an entity are shown with solid lines, and data
flows from one entity to another are shown as dashed lines. These dashed lines are at greater risk
of impact from an adversary. The importance of the OSCORE security contexts for communication
is highlighted by including a data flow from the context database to the boundary of the entity. Two
entities cannot interact without both having appropriate security contexts (except for reputation
dissemination, which only requires the receiver to have an appropriate context for the sender).

5.1 Threat Actors

In this section we describe three threat actors that the system may be subject to: (1) a malicious
resource-rich edge, (2) a malicious resource-constrained IoT device, and (3) an external threat ac-
tor. The edge and IoT devices may be malicious (e.g., when owned by competing organizations)
or become malicious (e.g., via compromise). We describe the adversaries along the following six
dimensions. Only the Tactics of TTPs are included in the description of adversary goals, as Tech-
niques and Procedures will depend on the attacks being performed.

Goals: What is the threat actor trying to achieve?
Motivations: Why is the threat actor trying to achieve their goals?
Resources and Capabilities: What equipment/tools/finance/personnel/etc. does the threat ac-

tor have? What actions are they able to perform with these resources?
Knowledge: What information does the adversary have? How does this impact the way in which

they perform attacks?
Presence: Where is the adversary (or their equipment) located? What is their mobility?
Tactics, Techniques, and Procedures (TTPs): These “describe the behaviour of an attacker.

Tactics are high-level descriptions of behaviour, techniques are detailed descriptions of
behaviour in the context of a tactic, and procedures are even lower-level, highly detailed
descriptions in the context of a technique” [41]. For example, is the attack likely to be slow
and silent, requiring persistence on the system, or quick and noisy? How will attacks likely
be conducted?

5.1.1 Malicious Resource-rich Edge Node. The goals and motivations for a malicious resource-
rich edge node are shown in Table 1. These devices could be malicious for a variety of reasons.
This may include compromise by an external adversary, or the edge node may act in a manner
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Fig. 7. Data flow diagram of system, where dashed lines represent data flows that cross entity boundaries

and solid lines are internal to the entity.

that could be considered malicious to manipulate the actions of the network to its organization’s
advantage. Edge nodes will have a relatively large amount of resources available to them and their
operators will have internal knowledge of the many operations of the network that are required to
allow the edge node to communicate with the network. They will exist at the boundary between
the ad hoc IoT network and other networks (such as the internet or private clouds). These devices
will have access to the network for its entire lifetime.

5.1.2 Malicious Resource-constrained IoT Node. There are many similarities between this ad-
versary and the malicious resource-rich edge, as both adversaries will have knowledge of network
operation. A malicious resource-constrained node may also have been deployed with malicious
behavior, or may become compromised. A difference is that node compromise is more challenging
than for resource-rich devices due to the intentional low flexibility of the OSs that run on these de-
vices. While firmware updates can be performed over the air (OTA), there is a resource cost and
the update mechanisms also pose security risks [82]. IoT devices will typically have poor physical
security, so attacks where the firmware is dumped, modified, and flashed are possible [74]. Goals
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Table 1. Malicious Resource-rich Edge Node

Goal Motivations Requirements Tactics

G1: Alter trust
values of other
edge nodes

• Reduce/increase task
requests

• Able to emulate an IoT node
(reputation dissemination)

• Able to impact edge node’s
ability to execute tasks

• Slow manipulation
over a long time

• Rapid manipulation
over a short time

G2: Delegate tasks
to other edges

• Be rewarded for other
edges’ work

• Able to emulate an IoT node
• Manipulation over a

long period of time

G3: Prevent IoT
nodes submitting
tasks or obtaining
result

• Prevent certain nodes
in the system from
submitting tasks or
obtaining result

• Spoof other edge nodes
• Manipulate message rout-

ing

• Quick action for
periodic tasks

• Long-term
manipulation for
aperiodic tasks

G5: Avoid
correctly
executing tasks

• Save resources in
order to prioritize
preferred
nodes/applications

• Be sufficiently trusted for
tasks to be sent to this edge

• Utilize knowledge of
beliefs to perform
incorrectly at key
moments

Table 2. Malicious Resource-constrained IoT Node

Goal Motivations Requirements Tactics

G6: Alter trust
values of edge
nodes

• Reduce/increase task
requests

• Increase capacity for
our tasks at preferred
edge nodes

• Peer-provided reputation is
used in trust model

• Slow manipulation
over a long time

G7: DoS edge
nodes

• Prevent certain edge
nodes from
performing valid
tasks

• Generate more tasks than
an edge can process

• Rapid task generation
• Potentially obvious

attack

and motivations for this adversary are shown in Table 2. These devices exist within the ad hoc
network and have a potentially shorter lifespan than the network if battery powered.

5.1.3 External Adversary. An external adversary will have limited knowledge toward the func-
tioning of the network but may be able to gain an understanding through passive eavesdropping
of network operations. They can exist both within and outside the ad hoc network, and can be
mobile when within the ad hoc network. This adversary will typically not be limited by resource
constraints (unless deploying their own similar network to perform attacks) and will be able to
outlive devices in the network. Goals and motivations for this adversary are shown in Table 3.

5.2 Threat Summary

This section will discuss threats to interactions, data stores, and processes in general, and the full
details of the threat modeling are shown in Appendix A. It is important to understand the details
of a threat as to simply identify that an interaction is vulnerable to a denial-of-service attack is not
sufficient to analyze mitigations to that threat.

As much of this system involves wireless communication, it means that typical threats to this
kind of communication exist to interactions between different entities in the system. A spoof-
ing threat, where an adversary impersonates another entity in a crafted packet, may have an in-
tended impact to interact maliciously with the system as if the adversary was a genuine entity. In a
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Table 3. External Adversary

Goal Motivations Requirements Tactics

G8: Prevent
function of
network

• Reduce/increase task
requests

• Increase capacity for
our tasks at preferred
edge nodes

• Local presence to jam IoT
communications

• Remote presence to DoS
edges or Root

• Obvious attack

G9: Eavesdrop to
obtain
confidential
information

• Obtain
sensitive/valuable
information

• Local presence to overhear
IoT communications

• Stealthy and long term

tampering threat, an adversary performs a man-in-the-middle (MITM) attack or replays a pre-
vious packet. This could involve modifying information such as capability dissemination or ma-
nipulating reputation via old recorded messages. For some communications, there is a threat of
repudiation, where an entity may claim they sent different information than they actually did in the
past. This threat is typically associated with reputation dissemination, as a resource-constrained
device should not be able to lie about reputation information it had previously sent. Due to the
wireless communication, an adversary with the necessary equipment and presence can eavesdrop
on communications to learn sensitive information. Also due to the wireless communication, it is
relatively easy for an adversary to cause a DoS by jamming the medium to prevent communication.

There are additional threats that arise due to the resource constraints of the IoT devices. One
key example that is common to data stores on resource-constrained devices is the threat posed
by buffer exhaustion. As these buffers are relatively small (due to the low amount of memory
available) for a large network, it will not be possible to store information on all resource-rich and
resource-constrained devices. So, there arises multiple threats: an adversary will attempt to fill a
buffer with low-quality information, meaning a resource-constrained device is unable to perform
an offload or is unable to make a good choice about whom to offload to. Alternatively, if an eviction
strategy is in use, then an adversary can take advantage of it to attempt to replace high-quality
information with low-quality information.

Finally, DoS threats to resource-rich systems via a large number of requests have additional
impacts on resource-constrained devices due to the cost to process these requests (which will be
investigated in Section 7.2). A high computation cost to perform cryptographic operations means
that fewer messages are needed to obtain a DoS and that an impact on one aspect of the system
can potentially impact others (which will be investigated in Section 7.5).

5.3 Additional General Threats

There exist a variety of additional general threats to this system that are not specific to one interac-
tion, data store, or process. One of the key general threats is that weaknesses are discovered in the
implementation of the system or in the cryptographic algorithms used after deployment. These
potential vulnerabilities could lead to a wide variety of attacks being performed. In resource-rich
systems it is expected that software updates will be deployed to resolve these issues; however, in
resource-constrained systems an OTA update mechanism is not always included. This is due to the
Flash and RAM cost of supporting OTA updates and also the communication cost of performing
the update. Draft standards such as SUIT [48] present a serialization format for software updates
in resource-constrained devices, with a prototype implementation available for RIOT.3 Providing

3https://riot-os.org/api/group__sys__suit.html.
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OTA updates presents a trade-off in terms of both the increased attack surface and the overhead
to support updating, which may reduce resources available to applications or trust models.

As OSCORE is used to protect CoAP messages, it means that limitations of OSCORE apply to this
system. The main threats are that CoAP headers are not confidential, as OSCORE only protects
the integrity of a subset of headers and does not encrypt them. This has the potential to reveal
context information to an adversary about operations being performed in the system.

We have proposed pre-deploying a public/private key pair to IoT devices lasting their lifetime.
This simplifies key management and reduces the cost of managing and exchanging keys. A down-
side is that using ECDH to derive a shared secret once (i.e., for the lifetime of the devices) does
not provide forward secrecy and no key revocation has been implemented. If required, then fu-
ture standards (such as EDHOC [62]) that facilitate ECDHE will be necessary to set up OSCORE
contexts.

5.4 Mitigations and Notes

This section describes the mitigations and notes about specific threats. Depending on the required
characteristics of alternative applications, assumptions that have been made may not provide suit-
able protection. For example, it has been assumed that reputation should be public; however, some
deployments may wish to keep reputation private. Alternatively, these notes may describe mit-
igations that are outside of the scope of the middleware that performs task offloading, such as
jamming mitigations in low-powered wireless networks.

5.4.1 OSCORE (O). For many of the identified threats OSCORE is an appropriate mitigation, as
“OSCORE is intended to protect against eavesdropping, spoofing, insertion, modification, deletion,
replay, and man-in-the middle attacks” [61, Section D.1]. However, OSCORE is not intended to
protect against all traffic analysis attacks. For example, the packet length, timing of packet genera-
tion, and various other CoAP attributes (e.g., token, block options, and CoAP headers) may reveal
important context information to an attacker [61, Section D].

5.4.2 Group OSCORE (GO). For threats that require non-repudiation, Group OSCORE can pro-
vide this security property due its use of digital signatures. However, due to implementation lim-
itations (that are elaborated on in Section 8.4), messages that require Group OSCORE only have
their payload signed in this implementation. This means CoAP headers are not protected.

5.4.3 Certificates Protected with a Digital Signature (CS). As certificates are signed by the root
node, they can be authenticated. The root’s private key would need to be disclosed for an adversary
to create new identities, i.e., new certificates with valid signatures.

5.4.4 Edge Redundancy (ER). It is expected that multiple edge nodes are provisioned for each ca-
pability in the system in order to provide redundancy for the services required by the applications
on the resource-constrained devices.

5.4.5 Root Is a Trusted Third Party (RTTP). The Root node is expected to behave as a Trusted
Third Party, in terms of its behavior in responding to requests for certificates and stereotypes, plus
correctly recording capability subscriptions and forwarding publications.

5.4.6 OSCORE and Repudiation (O-R). OSCORE uses a HMAC to provide guarantees about the
authenticity and integrity of a message. This does not provide repudiation as either party could
have generated the HMAC. This is relevant to a third party who may observe a dispute (i.e., an
intentional act to manipulate the reputation of an agent). However, this system does not use wit-
nesses to provide information about observed events in order to build reputation. If it became
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important to provide repudiation, then Group OSCORE could be used instead; however, the addi-
tional cost of signing and verifying additional messages would need to be taken into account.

5.4.7 Trust Model Repudiation (TMR). The trust model may make decisions based on repudiated
information. Currently, protection is only included for reputation and stereotypes but not edge
capabilities, as the trust model will be able to ascertain the accuracy of this information.

5.4.8 OSCORE Implementation (IMPL-O). The implementation of any security layer is expected
to be well tested. However, due to the early state of the implementation, there is the potential for
vulnerabilities to exist in the OSCORE layer. Alternatively, OSCORE may expose latent vulnerabil-
ities in other layers of the OS (such as CoAP) that previously could not be exploited. One approach
to mitigate this risk is supporting OTA firmware updates. However, this will likely (1) include an
additional RAM and Flash cost, which may reduce space available to trust models, and (2) provide
an additional attack vector.

5.4.9 Eviction Strategies (ES). Buffers with limited sizes storing information on trust, reputa-
tion, stereotypes, and credentials may need to evict items to make room for new items. There is
preliminary work on eviction strategies [13] and attacks against eviction strategies [40] under the
context of a trust model; however, further work is needed in this area.

5.4.10 RPL Implementation (IMPL-RPL). Contiki-NG’s implementation of RPL used for message
routing in the ad hoc network only allows there to be a single root node in the RPL tree.

5.4.11 Jamming (J). A large amount of work has been performed on mitigating jamming in
these kinds of networks [49]. This includes at the MAC level, where, for example, time-slotted

channel hopping (TSCH) manages the impact of noise on packet delivery unreliability by hop-
ping between different frequencies. Some variants of TSCH [69] have been proposed that mitigate
selective jamming; however, there are methods for an adversary to reverse-engineer the TSCH
schedule in order to selectively jam [21].

5.4.12 Reputation Is Public (RP). Reputation information is intentionally broadcast in the clear
with a digital signature. This provides non-repudiation and reduces the need to re-transmit repu-
tation encrypted for multiple different targets.

5.4.13 OSCORE Network Analysis (O-NA). The OSCORE threat model does not attempt to pro-
tect against all types of network analysis. Headers are sent in the clear and other context informa-
tion (e.g., timing) may reveal information about the operations being performed. The techniques
required to provide protection will depend on the context threats that need to be protected against.

5.4.14 Verify Digital Signature (VDS). Verifying digital signatures is expensive, and due to the
resource constraints, very few can be verified per second. Appropriate techniques need to be im-
plemented to mitigate an adversary causing a DoS by sending many messages to verify.

5.4.15 DoS Mitigation (D). Due to the limited amount of memory to process received packets
over the network, it will be possible for an adversary to cause packets to be dropped under a
relatively high network rate. Techniques can be applied to filter packets believed to only be from a
DoS attack [18]. For specific actions, such as requesting a response (e.g., submitting a task), these
too can be filtered if believed to be a DoS attack; however, it will be important to consider the
impact of false positives on genuine requests.

5.4.16 Stereotypes (S). Stereotypes are used to bootstrap trust and provide a starting point for
how edge resources are expected to behave. If stereotypes are unavailable, trust evaluation will
need to start from an initial state that makes no assumptions about behavior. Trust-based task
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Fig. 8. Attack tree of a malicious resource-constrained IoT node’s goal G6 and G7.

offloading can occur; however, sub-optimal offloading decisions may be made. If an adversary
learns of stereotypes, then there is the potential for them to be able to better manipulate a trust
model. However, this impact will be limited as the trust model gains a record of interactions.

5.4.17 Open Source Software (OSS). The implementation of the offloading infrastructure will
be open source, so there are no confidentiality threats to the implementation. Application imple-
mentation may be confidential.

5.4.18 Out-of-scope (OOS). Any threat marked with “–” for both the mitigation and note is
deemed to be out of the scope of the threat model analysis. Reasons for being out of scope may
include that if the adversary has the capability to perform this attack, then other more impactful
threats will also be possible. For example, if an adversary can modify, add, or remove contents
directly in data stores on IoT devices, then they will also be likely in a position to flash custom
firmware.

5.5 Attack Trees

We now examine attack trees for a malicious resource-constrained IoT device’s goals G6 and G7 in
Figure 8 and a malicious resource-rich edge’s goal G3 in Figure 9. To save space we do not include
mitigations, as these are included in Appendix A. Each node in the attack tree is either a goal, a
threat that a component or interaction is subject to, or a sub-goal (marked with “SubG”) to group
threats. These attack trees are not intended to be exhaustive, but to include representative threats.

Figure 8 shows an attack tree with the root goal of a resource-constrained IoT node being to
alter the trust values of resource-rich edge nodes. In this attack tree there are three main groups
of attacks. The first involves modifying or preventing reputation dissemination for trust models
that incorporate reputation. The second involves modifying the capabilities that edge nodes report.
The rationale is that well-behaved resource-constrained devices will attempt to use edge nodes for
unsupported capabilities and then record bad interactions that decrease trust. The third is to ma-
nipulate the stereotypes for that edge node. Finally, tasks can be prevented from being submitted,
executed, or having results delivered back to the relevant resource-constrained IoT devices.
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Fig. 9. Attack tree of a malicious resource-rich edge node’s goal G3.

Many of these threat are mitigated by the use of either OSCORE or Group OSCORE due to
the provision of integrity, authenticity, replay protection, and either confidentially (OSCORE) or
non-reputation (Group OSCORE). Various mitigations exist for threats involving communication
jamming (e.g., channel hopping) and DoS via the quantity of tasks submitted (e.g., filtering of tasks
believed to be an attack); however, both mitigations have their limitations and will not protect
against a persistent attack from a high-resource adversary.

Figure 9 shows an attack tree with the root goal of a resource-rich edge node preventing
resource-constrained nodes from submitting or obtaining task results. This falls under four main
categories: (1) denying service to any external resources an edge may depend upon, (2) jamming
or intercepting task submission and/or responses, (3) preventing resource-constrained IoT devices
from storing records of well-behaved edge nodes, and (4) manipulating the capabilities that well-
behaved edges report. Again, many of these threats are protected against via OSCORE and Group
OSCORE. However, threats that involve buffer exhaustion need additional mitigations, such as
eviction strategies that take into account ways in which they can be attacked [13, 40].

6 EXPERIMENTAL SETUP

Experiments were performed using a deployment of six Zolertia RE-Motes, which have hardware
acceleration for SHA2, AES-CCM-16-64-128 (used by OSCORE), and 256 bit ECC. The key benefit
is hardware support for ECC operations that take a long time to compute. Contiki-NG’s implemen-
tation allows the CPU to execute other (potentially time-sensitive) tasks while a message is being
signed or verified. Each RE-Mote was attached to a Raspberry Pi, which logged output. Two of the
Raspberry Pis acted as edge nodes, performing expensive computation for applications.

The system frequently publishes capabilities (every 2 min), disseminates trust (every 2 min), gen-
erates a monitoring task (every 1 min), and generates a routing task (every 2 to 3 min). These rates
are higher than typical in order to obtain results in a reasonable time and would need to be adjusted
based on the deployment performed.

To avoid memory fragmentation, fixed-sized pools are allocated at compile time. Table 4(a)
shows the default maximum number of different types of objects that can be allocated and their
RAM cost. These values would need to be adjusted for deployments with different network sizes.
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6.1 Example Trust Model

To illustrate the operation of this system we implement an example trust model using the BRS.
The trust model is solely intended to obtain a set of edge nodes that are believed to be suitable for
offloading a task to, where the task will be successfully executed, and a result will be successfully
returned to the IoT device within a deadline. The trust value for each metric m, edge node r , and
application a is beta-distributed Tm (r ,a) ∼ Beta(α , β ) (application specific) or Tm (r ) ∼ Beta(α , β )
(application agnostic), where α is the number of successful interactions and β is the number of
unsuccessful interactions. The expected value of the distribution summarizes the number of suc-
cessful events that have occurred as shown in Equation (2). For any application-agnostic metric,
m: Tm (r ,a) = Tm (r ).

E [X] =
α

α + β
where X ∼ Beta(α , β ) (2)

Each IoT device c maintains three sets of Beta distributions that summarize interactions with
edge node r and application a:

• Tsub (r ) — Did r inform c that a task was received and will be executed?
• Tres (r ) — Did r provide a result for a task?
• Tcorr (r ,a) — Was the result that r provided for application a correct?

Correctness is an application-specific and best-effort attempt to validate if a result for a task
conforms to expected aspects of the result. As c will not execute the task and compare results,
it must be expected that the correctness evaluation will contain false positives when evaluating
malicious responses.

These three Beta distributions are updated when relevant events occur. These events need to be
hooked into by the trust model. The three main events are (1) task submission, (2) task response,
and (3) response quality. Other events can be defined and hooked into as needed by alternate trust
models, such as in challenge-response-based trust models [15].

The overall trust value of an edge node is summarized by a weighted mean over the expected
values of these distributions as shown in Equation (3), where (1) M (a) is the set of metrics that
relate to application a, and (2) 0 ≤ φa,m ≤ 1 is the weight that application a gives metric m.
Applications use the weight to specify the relative importance of metrics, with 1 =

∑
m∈M (a) φa,m .

T (r ,a) =
∑

m∈M (a)

φa,mE [Tm (r ,a)] (3)

If a stereotype Sm (r ) is available for edge node r and metric m, then the trust model for that
metric is adjusted before calculating the summarized trust. As these trust models are initialized as
Beta(1, 1), 1 is subtracted from α and β .

T ′m (r ) =

[
Tm (r ).α − 1 + Sm (r ).α
Tm (r ).β − 1 + Sm (r ).β

]
(4)

The individual distributions are updated as per Algorithm 1, where f
opp

a,m is an application a and
metric-specific m function that evaluates the opinion IoT device c has about a situation and inter-
action. The situation details which task was submitted, and the interaction contains information
about the last interaction with the edge node. For example, a situation may be “Request route from
a to b” and the interaction may be “r timed out returning a response.”

This trust model utilizes reputation information disseminated to demonstrate the cost that it
incurs. As we are not investigating threats against trust models (such as peers providing false
reputation information), we perform a simple combination of the peer-provided reputation infor-
mation. Due to the potential for reputation to contain partial information, care must be taken in
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ALGORITHM 1: Update state based on a situation and interaction

� a is an application, s is a situation, i is an interaction
1: function Update(a, s , i)
2: form ∈ M (a) do � Iterate over each metric
3: if RelevantInteraction(a, s, i,m) then

4: o � f
opp

a,m (s, i ) �What opinion is held about i happening under s by a form?
5: if o = Successful then

6: Tm (e,a).α � Tm (e,a).α + 1 � Increment good event counter
7: else

8: Tm (e,a).β � Tm (e,a).β + 1 � Increment bad event counter

ALGORITHM 2: Select which edge node to offload to

� a is an application, V a
R
′ are the known edge nodes that support a

1: trust_band � 0.25
2: function ChooseEdge(a)
3: max_trust � maxr ∈V a

R

′ T R (r ,a)

4: choices � { r | r ∈ V a
R
′ ∧ T R (r ,a) ≥ max_trust − trust_band }

5: return RandomChoose(choices) � Randomly choose one of the options

summarizing it. Equation (5) produces the reputation provided by n for resource-rich node n and
application a. This is summarized in Equations (6) and (7), where peers that provide reputation on
no relevant metrics are excluded. Finally, the impact peer-provided reputation has on the overall
result is weighted by a factorψ that is in the range [0, 1] in Equation (8).

R (r ,a,n) =

∑
m∈M (a)

φa,m

⎧⎪⎨⎪⎩
E
[Rn

m (r ,a)
]

if Rn
m (r ,a) � ⊥

0 otherwise

∑
m∈M (a)

φa,m

⎧⎪⎨⎪⎩
1 if Rn

m (r ,a) � ⊥
0 otherwise

(5)

Rs (r ,a) = { R (r ,a,n) | n ∈ V ∧ (∃m ∈ M (a),Rn
m (r ,a) � ⊥) } (6)

R (r ,a) =
1

|Rs (r ,a) |
∑
Rs (r ,a) (7)

T R (r ,a) = (1 −ψ )T (r ,a) +ψR (r ,a) (8)

6.2 Example Edge Node Selection

To choose which edge node to submit a task to, that edge node must support the application that
originated the task and also have a sufficiently high trust value. A subset of candidate edge nodes
that support the application V a

R
′ ⊆ V a

R
may be known. This could be due to a lack of space in

memory or IoT nodes not processing or being unable to process the relevant announcement from
an edge node. For this example model we implemented a banded approach, where a sufficiently
high trust value is any trust value within some distance from the maximum trust value (set to 0.25
in this work). The chosen edge node is selected randomly from the edge nodes that meet these
criteria as shown in Algorithm 2.
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Table 4. Buffer Size Configuration and Overall Flash and RAM Cost

(a) Constants and RAM Cost

Name #
Entry Total

(B) (B)

Certificates 12 288 3 456
Stereotypes 5 24 120
Edges 4 52 208
Edge Caps. 12 32 384
Peers 8 32 256
Peer Edges 32 32 1 024
Peer Edge Caps. 96 16 1 536

Reputation Tx 2 500 1 000
Reputation Rx 2 260 520

Sign Buffer 3 24 72
Verify Buffer 3 24 72

(b) IoT Device Flash and RAM Usage

Category
Flash RAM

(B) (%) (B) (%)

applications/monitoring 1 388 1.2 384 1.3
applications/routing 3 968 3.3 505 1.7
contiki-ng 7 232 6.0 826 2.8
contiki-ng/cc2538 14 572 12.1 2 356 7.9
contiki-ng/coap 8 774 7.3 2 388 8.0
contiki-ng/net 27 080 22.5 8 236 27.8
contiki-ng/oscore 5 652 4.7 1 010 3.4
newlib 26 415 22.0 2 534 8.5
system/common 3 420 2.8 37 0.1
system/crypto 7 022 5.8 5 173 17.4
system/mqtt-over-coap 1 494 1.2 503 1.7
system/trust 13 106 10.9 5 724 19.3

Total Used 120 123 100 29 676 100
Total Available 524 288 32 768

6.3 Example Applications

To illustrate the operation of this system we implement two example applications: (1) environment
monitoring and (2) vehicle routing. The environment monitoring application generated a task ev-
ery 1 min, which involves sending sensor data to an edge node. The vehicle routing application
generated a task every 2 to 3 min containing source and destination coordinates and expected to
receive a response containing the route between those points within 2 min. The routing applica-
tion performs a correctness check of the result by checking that the source and destination are
the first and last items respectively in the provided path. The trust model weights for these two
applications are [ 1 0 0 ] for Environment Monitoring and [ 1

3
1
3

1
3 ] for Routing, where the vector

contains [ φa,sub φa,r es φa,cor ].ψ for both applications was set to 0.25.

7 RESULTS

This section presents results analyzing (1) the RAM and Flash costs of the implementation; (2) the
cost of cryptographic operations, highlighting the trade-offs made; (3) the runtime performance
of the system with example applications; and (4) an example attack on the system.

7.1 RAM and Flash Usage

The RAM and flash usage of the implementation (shown in 4) was generated using nm on the
compiled binary. This only shows the cost of defined symbols such as static variables and func-
tions; it does not include strings. Symbols have been classified into categories to identify where
the RAM and flash costs are incurred. The implementation is limited by the RAM of the IoT
hardware because dynamic memory allocation is typically avoided with embedded systems, as
long-term use can lead to memory fragmentation, which prevents future allocation requests
from succeeding. Therefore, fixed-size buffers are chosen at compile time. In our implementa-
tion 65% of the RAM utilization comes from the buffers required to implement network access
(contiki-ng/net), certificate storage and digital signatures (system/crypto), and the trust model
(system/trust).
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Table 5. Performance of Cryptographic Operations

Operation Mean Cost Units
SHA256 637 ± 11.6 ns B−1

ECC Sign (sepc256r1) 360 ± 0.04 ms
ECC Verify (sepc256r1) 711 ± 0.03 ms
ECDH 344 ± 0.02 ms
AES-CCM-16-64-128 Encrypt 0.94 ± 0.01 µs B−1

AES-CCM-16-64-128 Decrypt 1.01 ± 0.01 µs B−1

7.2 Cryptographic Operations Cost

In this section, the relevant cryptographic operation costs are profiled on the Zolertia RE-Mote
to understand the trade-offs of using different message protection approaches. The hardware on
which these tests were performed has a clock with 32,768 ticks per second, meaning timers have a
resolution of 30.5 µs (3 s.f.). The average costs are shown in Table 5 with 95% confidence intervals.

Results for SHA256 and ECC operations were gathered by generating a random plaintext with
a random length from 1 to 1 024 B and then signing and verifying that plaintext. As SHA256 is
performed as part of the sign operation, each sign and verify operates on a constant number of
bytes, so the results are not shown per byte. Results for AES-CCM encryption and decryption were
gathered by generating a random plaintext with a random length from 1 to 1 024 B, a random 35 B
of additional authenticated data (the maximum supported by OSCORE), a random 16 B key, and
a random 13 B nonce. The plaintext was encrypted and an 8 B authentication tag was generated,
which was then decrypted and authenticated.

These results highlight the cost difference between AES-CCM operations and the ECC opera-
tions on this IoT hardware. Performing an AES-CCM operation on a 100 B message is three orders
of magnitude faster than an ECC operation. This performance difference is why ECC operations
are only used to derive a shared secret for OSCORE and to disseminate signed reputation informa-
tion, whereas AES-CCM is used to protect all other messages.

7.3 Task Submission

We performed a deployment with three IoT devices (wsn3, wsn4, wsn5) and two edge nodes (rr2
and rr6), where both edge nodes perform the monitoring application correctly. Two different ex-
periments were performed, one where both edge nodes performed correctly for the vehicle routing
application and another where rr2 performs correctly and rr6 always performs incorrectly for the
vehicle routing application. Incorrect behavior is randomly chosen from (1) not sending a response,
(2) sending an invalid response claiming the response is correct, or (3) sending a response indicat-
ing a failure. The system was run for long enough for trust values to begin to converge. Results
are shown in Figure 10 when both edges are good and Figure 11 when rr2 is good and rr6 is bad.
The graphs show (1) the IoT devices evaluate their trust that the edge node will execute the task
(lines) and (2) the number of tasks an IoT device submits to an edge node over a time period (bars).

Figure 10(a) and 11(a) show results for the monitoring application, where trust values start high
(due to stereotypes) and remain high. There are instances where trust values decrease, which may
be due to transient failures such as edge nodes failing to acknowledge a task submission. The tasks
submitted by the three IoT devices are distributed across the two edge nodes as no edge node has
a sufficiently low trust value for them to be excluded from task submission.

Figure 10(b) and 11(b) show results for the vehicle routing application. The trust values begin
at a high value due to stereotype information; however, in Figure 11(b) the trust in the two edge
nodes quickly diverges due to the differing behavior. While rr6 has a trust value that is still within
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Fig. 10. Trust values over time and nodes selected

to execute tasks for two different applications when

both edges are good.

Fig. 11. Trust values over time and nodes selected to

execute tasks for two different applications when rr2

is good and rr6 is bad.

the maximum distance from the highest trust value, it can be chosen to execute tasks (as described
in Section 6.1). However, after the trust value becomes sufficiently low, rr6 is excluded from being
selected and the IoT devices only send tasks to the well-behaving rr2.

7.4 Message Cost

Results showing the number of bytes transmitted and received are shown in Figures 12 and 14
Figures 13 and 15, respectively. Messages have been grouped into 6 min windows. The results for
IoT devices wsn4 and wsn5 are omitted as they show a similar pattern to wsn3.

The messages have been categorized where possible. Due to issues with analysis tools, not all
OSCORE contexts can be decrypted, so valid messages will appear as “oscore-nd.” Not all
6LoWPAN fragments could be reassembled, so are shown as “6lowpan-fragment.” Packets marked
as “oscore-nd” were for a variety of purposes, including the two applications and potentially other
categories where messages could not be decrypted. “trust-dissem” packets are intentionally not
protected with OSCORE, as they need to be signed and not encrypted. The implementation cur-
rently manually includes a digital signature, which will be the case until Group OSCORE is sup-
ported (as will be described in Section 8.4).

Comparing the two edge nodes rr2 (always good) and rr6 (always bad) shows why an edge
node may choose to perform maliciously, as there is a greatly decreased cost in delivering cor-
rect application functionality. Edge node 2 has a higher number of messages sent and received
than rr6 because by performing correctly, it needs to deliver the result of the application. For the
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Fig. 12. Length of messages sent over 6 min windows

when both edges are good.

Fig. 13. Length of messages received over 6 min

windows when both edges are good.

vehicle routing application task, this means that a result of 9 to 10 KiB needs to be delivered back
to the IoT device, which involves sending 53 CoAP messages and receiving the same number of
acknowledgments in the best case.

The vehicle routing application has the largest proportion of bytes sent (>74%) and received
(>87%) for the three IoT devices. Trust dissemination and subscribing to capabilities are also ex-
pensive, costing 6–8% of bytes sent and 4–5% of bytes received. Packets that our analysis tools
could not process (marked as “oscore-nd”) took up 7–8% of bytes transmitted and 2–3% of bytes
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Fig. 14. Length of messages sent over 6 min windows

when rr2 is good and rr6 is bad.

Fig. 15. Length of messages received over 6 min win-

dows when rr2 is good and rr6 is bad.

received. This indicates a worst-case 26% overhead in transmitted bytes and 13% overhead in re-
ceived bytes to facilitate trust-based task offloading. In reality for the sample applications these
overheads will be lower, as some application packets were categorized as “oscore-nd.” The over-
head will differ depending on the frequency of reputation and capability dissemination, frequency
of tasks, and the payload sizes of tasks and their responses. Applications that require less data to be
sent and received will lead to their being a greater overhead to disseminate information required
for trust-based task offloading. Deployments would need to adjust the rate at which reputation
and capability information is disseminated based on application needs.
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Table 6. Counts of Different Status of Three Operations When Not Under Attack (2G, GB) and When a

DoS Attack Is Performed on Signature Verification (A2/3, A2/2)

(a) Result of Sending Reputation

Node Result 2G GB A2/3 A2/2

wsn3 SUCCESS 62 63 26 25
wsn4 SUCCESS 62 63 26 25
wsn5 SUCCESS 62 63 – –

(b) Result of Receiving Reputation

N Source Result 2G GB A2/3 A2/2

w
sn

3

wsn5
/adv.

SUCCESS 56 61 3 521 3 346
NO_KEY 1 1 4 17
OOM 0 0 7 042 6 667

VER_OOM 0 0 0 9

wsn4

SUCCESS 60 58 1 2
NO_KEY 1 1 1 8
OOM 0 0 14 11

VER_OOM 0 0 0 0

w
sn

4

wsn5
/adv.

SUCCESS 47 60 3 525 3 342
NO_KEY 1 2 5 47
OOM 0 0 7 030 6 662

VER_OOM 0 0 0 11

wsn3

SUCCESS 60 61 0 0
NO_KEY 1 1 1 15
OOM 0 0 22 8

VER_OOM 0 0 0 0

w
sn

5 wsn4
SUCCESS 61 60 – –
NO_KEY 1 1 – –

wsn3
SUCCESS 59 62 – –
NO_KEY 1 1 – –

(c) Result of Adding Certificate

N Source Result 2G GB A2/3 A2/2

w
sn

3

root SUCCESS 1 1 1 1
wsn5
/adv.

SUCCESS 1 1 2 1
VER_OOM 0 0 0 1

rr2
SUCCESS 1 1 1 0
VER_OOM 0 0 0 8

wsn4
SUCCESS 1 1 1 1
VER_OOM 0 0 0 7

rr6
SUCCESS 1 1 1 1
VER_OOM 0 0 0 5

w
sn

4

root SUCCESS 1 1 1 1
wsn5
/adv.

SUCCESS 1 1 1 1
VER_OOM 0 0 0 1

rr2
SUCCESS 1 1 1 1
VER_OOM 0 0 0 1

wsn3
SUCCESS 1 1 1 1
VER_OOM 0 0 0 14

rr6
SUCCESS 1 1 1 0
VER_OOM 0 0 0 8

w
sn

5

root SUCCESS 1 1 – –
rr2 SUCCESS 1 1 – –

wsn4 SUCCESS 1 1 – –
wsn3 SUCCESS 1 1 – –
rr6 SUCCESS 1 1 – –

7.5 Example Attack: Signature Verification DoS

In this section we investigate the impact of an attacker attempting to cause a denial of service of
signature verification in order to prevent resource-constrained devices from being able to process
reputation information disseminated from other resource-constrained devices. The adversary on
startup signs a packet containing reputation information in a valid format and broadcasts it to its
neighbors every 300 ms. The packet is correctly generated each time with correct CoAP headers.

In this experiment we investigate the presence of an adversary instead of wsn5. rr2 and rr6 act
as well-behaved resource-rich nodes, and wsn3 and wsn4 are well-behaved resource-constrained
nodes. We include results from where there are two good resource-rich nodes (2G) with an exper-
iment duration of 2 hours and 5 minutes and one good and one bad resource-rich node (GB) with
an experiment duration of 2 hours and 7 minutes for comparison.

The results in Table 6(a) show that the attack has no impact on devices being able to send reputa-
tion information. This is because the attack focuses on the buffers used to verify received packets,
even though both share hardware used to accelerate cryptographic operations.4 The impact on

4As part of the testing of this attack a bug was discovered that did prevent verification. Due to Contiki-NG’s use

of coroutines there is no preemptive scheduling, so when the signer and verifier coroutines did not yield after com-
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receiving reputation information is shown in Table 6(b), where two configurations are investi-
gated under attack. A2/3 is an attack on the system where both resource-rich nodes are good with
a duration of 53 minutes, the size of the reputation receive buffer is 2, and the verify buffer is
3 (as shown in Table 4(a)). Here, it can be seen that the two resource-constrained nodes receive
a large number of reputation messages to verify from the attacker. However, not all of the mes-
sages are successfully verified (SUCCESS), some fail as the relevant certificate is missing (NO_KEY),
and others fail because there is no space in the reputation receive buffer (OOM). A high propor-
tion of messages from the attacker are verified (33%) compared to reputation messages from other
resource-constrained devices (0–6%), indicating that a DoS attack against this buffer is feasible by
an obvious attack.

However, there is an additional impact that can be achieved if the system is poorly configured.
For each reputation message that is queued to be verified it consumes space in two buffers, one
for receiving reputation and a second for verifying messages. By default (Table 4(a)), the size of
the verify buffer is larger than the reputation receive buffer, but if they have the same length (the
A2/2 configuration with a duration of 50 minutes), there is an additional impact achievable. Here,
an attacker can cause a DoS on both buffers and verifying a message can fail when the verify
buffer is full (VER_OOM). However, as adding certificates also depends on signature verification,
it means that reputation dissemination can potentially prevent or delay this. Delays in verifying
and adding certificates ranged from 2 min to 34 min; however, these delays may be higher in sys-
tems with lower rates of reputation and capability dissemination. These delays prevent OSCORE
contexts from being created between parties and mean that no secure communication can occur
between them. This is shown in Table 6(c) where only A2/2 fails to verify certificates as the verify
queue is full (VER_OOM). For the majority of pairs this leads to an increase in time for a certifi-
cate to be verified, but some nodes are prevented from establishing an OSCORE context in these
experiments.

This attack highlights vulnerabilities the combination of limited memory and processing power
can lead to. It also raises the need for implementations of security protocols such as Group
OSCORE (that will make significant use of digital signatures) to build in appropriate mitigations.
For example, Group OSCORE APIs should allow CoAP endpoints to disallow Group OSCORE mes-
sages when not expected or required. Applications that only need the guarantees provided by
OSCORE should be able to indicate that Group OSCORE protected messages will be rejected. Sec-
ondly, endpoints that do accept Group OSCORE projected messages will need to include protec-
tion. Heavyweight techniques (such as those used to mitigate (D)DoS in cloud environments [11])
will likely be unsuitable, so lightweight techniques [52] will need to be used instead. However,
the implementation of these techniques will need to take care that the memory trade-off is
appropriate.

7.6 Example Attack: Remove Bad Interactions

For our second example attack, we investigate a resource-rich node who always performs badly
and periodically publishes a capability remove or an unannounce with the intent for resource-
constrained devices to remove the low-trust observations from their database. This is because
when these messages are received (as shown in Figure 3), a resource-constrained device may
remove the information—as the resource-rich device has claimed it is no longer relevant—in or-
der to make space for new edges with capabilities matching the resource-constrained device’s.

pleting their action, they could immediately proceed to sign/verify another message instead of yielding to the other

coroutine to allow them to do work. This was resolved in https://github.com/MBradbury/iot-trust-task-alloc/commit/

c6c1b1cd36101a7155b908325fb48fc136b61995.
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In these experiments rr6 always performs the vehicle routing application incorrectly and we
use different resetting behaviors to examine how much trust rr6 can regain. We investigate three
different scenarios: (1) rr6 publishes capability remove and the IoT devices eagerly remove the
capability trust information for the vehicle routing application, (2) rr6 publishes unannounce and
the IoT devices eagerly remove the trust information on rr6 and all its capabilities, and (3) rr6
publishes unannounce and the IoT devices mark all the trust information for removal if needed
(e.g., to make room for a new edge). Due to the low trust value of the rr6, it would typically be
excluded quickly as the default parameterization of selecting which edge to offload a task to is
to select from an edge with a capability where the trust value is within 0.25 of the highest trust
value, so this band has been set to be within 0.5 of the highest trust value in these experiments.
Reputation dissemination is also disabled to highlight the changes to the direct trust values.

The graphs in Figures 16 and 17 respectively show the results for the monitoring and vehicle
routing applications in these experiments. It can be seen that in Figure 17(a), when capability
remove is used to reset trust, the trust in rr6’s routing capability decreases over time with periodic
spikes of higher trust. The spike is due to the data stored byTcorr (rr6, routinд) being reset; however,
as Tsub (rr6) and Tres (rr6) are not reset, any incorrect results that are stored here persist and lead
to the overall continuing decrease in trust.

When unannounce is used to reset trust in Figure 17(b), this gradual decrease is not observed.
Instead, there is a periodic restart to the initial trust value, which decreases before the next re-
set. This is caused by all of Tcorr (rr6, routinд), Tsub (rr6) , and Tres (rr6) being deleted and reset to
their initial values. One additional impact that an unannounce has is that it resets trust values for
applications that are behaving well, i.e., the monitoring application. This leads to the trust in the
monitoring application decreasing while the trust in the vehicle routing application rises. Poten-
tially to discourage this attack, the stereotypes for the monitoring application should start lower so
the attack causes a greater decrease in the trust in monitoring when an unannounce is published.

In Figure 16(c) and 17(c) a lazy approach is taken to the removal of edges and capabilities after
an unannounce. Instead of immediately removing the information, it is marked as inactive. When
the space is needed for new edges or capabilities and there is no available memory, it will be
freed. These results show that publishing an unannounce has no impact, as the trust history is not
removed in this scenario as no new resource-rich edges are discovered. A downside is that lazy
removal complicates logic throughout the middleware, as extra checks need to be performed to
ensure an edge or capability is active and objects representing edges and capabilities need to be
used carefully such that memory is not used after they are freed.

These results show that the architecture in which trust offloading is performed can have an
impact on the values calculated by trust models. This will be important to consider for resource-
constrained devices, as network deployers will need to make a decision about information man-
agement and the ways that adversaries will be able to take advantage of it.

8 DISCUSSION

We now discuss considerations with using this architecture, including the impact of design
decisions that were made due to limitations in available software libraries or to simplify the
implementation.

8.1 Single Root Node

In this system there only exists a single root node, which is problematic from a security viewpoint
as this presents a single target that can prevent functioning of the system. The reason for this single
root node is due to implementation limitations in Contiki-NG, where their implementation of RPL

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 29. Publication date: February 2022.



29:30 M. Bradbury et al.

Fig. 16. Impact of a malicious resource-rich edge pub-

lishing capability remove or unannounce to reset

trust values for the monitoring application.

Fig. 17. Impact of a malicious resource-rich edge pub-

lishing capability remove or unannounce to reset

trust values for the vehicle routing application.

(RPL-lite) only supports a single border router. While there is an alternative RPL implementation
(RPL-classic), Contiki-NG’s documentation recommends using RPL-lite.5

There are two approaches to resolving this issue. The first would be to switch to using an RPL
implementation that supported multiple border routers. In this case there would need to be con-
sensus among the multiple root nodes when edge nodes publish their capabilities. The second

5https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-RPL.
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approach would be to distribute the provision of the information that the root nodes provide,
including stereotypes, certificates, and pub/sub of edge capabilities. There exist a number of dis-
tributed database techniques for these kinds of resource-constrained systems [23]; however, such
an approach would need to consider the impact of losing central control over this information. For
example, stereotypes would not be able to be updated and there would be no central authority on
identities, so additional threats would need to be considered (e.g., Sybil attacks).

8.2 Alternate Operating Systems

With multi-tenant IoT devices there are risks posed by per-application interaction. Operating sys-
tems such as Tock [45] (which is written in Rust) provide useful guarantees—such as memory
isolation—at the language level. However, Tock currently lacks support for higher-level function-
ality needed to build complicated systems, such as support for RPL [2] or CoAP [64].

8.3 Use of MQTT Retain Flag

An optimization to reduce the cost of announce and capability messages would be to use the MQTT
retain flag. This means when a message is published, that message is saved and delivered to nodes
that subscribe in the future. However, a retained message may contain outdated information (e.g.,
an edge crashed or a capability becomes unavailable). Therefore, in this work we have chosen to
be conservative and have edges periodically publish information.

8.4 Implementation Limitations

Due to the use of recently published standards, there are some features of the libraries being de-
pended upon that are not yet implemented. First, the implementation of OSCORE for Contiki-NG
does not yet implement RFC 8613 Appendix B.1 [61], which means that when nodes reset, they will
be unable to restart communication via OSCORE. Second, the Group OSCORE draft standard [70]
does not yet have a fully working implementation for Contiki-NG, so signed and unencrypted
trust packets cannot be protected by Group OSCORE. To work around this, the payload is signed;
however, this will not protect the CoAP headers that Group OSCORE protects.

8.5 Explanation of Trust Values

In this system, IoT devices evaluate a measure of behavioral trust that an edge node will execute a
task and return a correct result within a deadline. Edge nodes will discover the opinions others have
for them due to reputation dissemination. However, edge nodes lack context for why these beliefs
are held. An edge node will not know which tasks and observations that IoT devices made that led
to a poor trust value. Edge nodes should be able to request (or be informed) of the reasoning behind
their trust values, facilitating explainable AI. However, this must be balanced with the difficulty of
maintaining a large history of observations on the IoT nodes due to limited RAM.

8.6 Limitations of Threat Modeling

In this work we have decomposed the system into individual components and interactions be-
tween those components to perform threat modeling. This has allowed the identification of ways
in which such a system would be attacked and what mitigations have been provided. However,
threat modeling will not identify every threat, and because we have taken a situation-agnostic
viewpoint, it will not include those situation-dependant threats. Our threat modeling is also sub-
ject to the biases, relative experience, and relative knowledge of the people who have undertaken
the threat modeling. To mitigate this we have involved people from both academic and industrial
backgrounds to perform the threat modeling.
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8.7 Alternate Trust Models

This middleware has been designed to be agnostic to the trust model in use that selects an ap-
propriate edge node to offload a task to. Users of the system must choose an appropriate edge
selection approach, which may not even be a trust model. The example trust model used in this
work evaluates trust by building beta distributions about three aspects of task offloading. This was
chosen in order to provide granularity to evaluate general edge behavior and specific behavior for
applications. Alternate trust models that provide either a lower or higher granularity could both
be effectively used as part of this middleware. Support is provided for stereotypes and reputation,
but they do not need to be used. If reputation is used and there are concerns about threats such
as collusion, then suitable collusion-resistant trust models [54] will need to be used. Further work
may be needed to develop low-memory variants of these trust models.

8.8 Alternate Edge Selection Models

In this work we focused on IoT devices being able to select which edge node a task should be
offloaded to. This was intentional in order to eliminate threats that a centralized task scheduler
would pose. However, the system could be configured such that a single edge is advertised to the
IoT devices and that edge performs a subsequent offload based on the tasks that are submitted to
it. This is not a recommend configuration of this system.

In addition, we proposed a single method via which an edge node would be selected based on
a trust model in Section 6.2. Our implementation6 can be configured with a variety of alternate
methods for choosing an edge node a task should be offloaded to based on the information provided
by the trust model.

8.9 Scalability

The middleware that we have developed is scalable insofar as the memory constraints of IoT de-
vices allow. In Table 4(a) we specify the constants used, such as allocating space for 12 certificates
and space for trust and reputation information for four edge nodes. These constants can be config-
ured for different-size networks. If more IoT devices or edge nodes exist than there is capacity for
in memory, then there are two options: (1) more capable IoT devices are required with more RAM
or (2) data can be evicted. When evicting information, it is important to ensure that IoT devices
can continue to offload tasks. Our future work is investigating appropriate eviction strategies for
this information [13] and threats to eviction strategies [40].

9 CONCLUSIONS AND FUTURE WORK

We have presented a system for facilitating trust-based task offloading for multiple applications on
IoT devices. Through two case studies and an example instantiation of an existing trust model, we
show how a suitable edge node is selected as the destination for offloading. In our example, it took
six rounds of task submissions over nearly 30 min for a permanently bad node to be excluded and at
worst a 50% overhead in transmitted bytes and 28% overhead in received bytes. The implementation
applies recent IoT security standards such as OSCORE and will make use of future standards such
as Group OSCORE to provide security guarantees. We have also developed the building blocks
to enable the use of more complex trust models that involve the use of disseminated reputation
information and stereotypes. For future work, this system architecture that provides the ability to
offload tasks using trust models could be modified to support additional information used to build
those models. For example, witness statements could be provided for actions that have occurred.

6https://github.com/MBradbury/iot-trust-task-alloc/tree/master/wsn/common/trust/choose.
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The middleware could also support generating attestation reports of the interactions that led to a
specific trust value. However, the resource constraints are likely to limit what is possible to cache
and report.

APPENDIX

A THREAT MODELING DETAILS

This appendix contains the full details of the identified threats, showing threats against interac-
tions in Table 7, threats against processing components in Table 8, and threats to data stores in
Table 9. Any threat where both the mitigation and note is marked with “–” is deemed out of scope.

A.1 Interaction Threats
Table 7. Threats against Component Interactions

Attack Impact Mitig. Note

I1: Capability Dissemination: Edge to Root

S1: Crafted packet Adversary can manipulate capability state to be different
than intended

O –

T1: MITM Modify reported edge capabilities O –

T2: Replay Replay outdated edge capability reporting O –

R1: Repudiate edge
capability

Edge can claim different capability information was
provided than it did previously

– O-R

I1: Eavesdropping Adversary can learn of capabilities O –

D1: Jam
communications

Edge cannot be selected by IoT to submit tasks – J

E1: Inject malformed
capability dissemination

Aim to encounter parsing vulnerabilities – IMPL-O

I2: Capability Dissemination: Root to Edge/IoT

S1: Crafted packet Adversary can manipulate capability state to be different
than intended

O –

T1: Modify data Root can forward different contents than supplied by
edge

– RTTP

T2: MITM Modify reported edge capabilities O –

T3: Replay Reply outdated edge capability reporting O –

R1: Repudiate edge
capability

Root can claim different capability information was
provided than it did previously

– RTTP

I1: Eavesdropping Adversary can learn of capabilities O –

D1: Jam
communications

Edge cannot be selected by IoT to submit tasks – J

E1: Inject malformed
capability dissemination

Aim to encounter parsing vulnerabilities – IMPL-O

I3: Certificate Dissemination: Root to Edge/IoT

S1: Crafted packet Adversary can alter certificate for edge/IoT nodes,
allowing malicious nodes to impersonate them

O –

T1: MITM Modify certificates disseminated O –

T2: Replay Reply certificate dissemination O –

R1: Repudiate certificate Root can claim different certificate information was
provided than it did previously

– RTTP

(Continued)
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Table 7. Continued

Attack Impact Mitig. Note

I1: Eavesdropping Adversary can learn of identities and certificates O O-NA

I2: Eavesdropping Adversary can learn of certificate requests and responses O O-NA

D1: Jam
communications

Prevent certificate dissemination, edge/IoT potentially
cannot communicate with some edge/IoT nodes

– J

D2: Inject new
certificate requests

Overload edge/IoT by sending certificate responses – VDS, D

E1: Inject malformed
certificate requests

Aim to encounter parsing vulnerabilities – IMPL-O

I4: Stereotype Dissemination: Root to Edge/IoT

S1: Crafted packet Adversary can manipulate task allocation O –

T1: MITM Modify stereotypes disseminated O –

T2: Replay Reply stereotype dissemination O –

R1: Repudiate
stereotype

Root can claim different stereotype information was
provided than it did previously

– O-R

I1: Eavesdropping Adversary can learn of stereotypes and device classes O –

D1: Jam
communications

Quality of task allocation may be low as the system starts – J

D2: Inject new
stereotype requests

Overload edge/IoT by sending stereotypes responses – D

E1: Inject malformed
stereotype requests

Aim to encounter parsing vulnerabilities – IMPL-O

I5: Reputation Dissemination: IoT to Edge/IoT

S1: Crafted packet Adversary can generate fake reputation packet to alter
reputation of edge nodes

GO –

T1: MITM Modify reputation disseminated O –

T2: Replay Adversary can replay reputation dissemination to alter
reputation of edge nodes

GO –

R1: Repudiate
reputation sent

IoT can claim different reputation information was
provided than it did previously

GO –

I1: Eavesdropping Adversary can learn of reputation beliefs – RP

I2: Privacy loss Trust models contained in reputation may reveal
sensitive information about interaction history

– RP

D1: Jam
communications

Quality of task allocation may be low as reputation
information will be unavailable

– J

D2: Fake signed
messages

Verifying digital signatures is expensive, so an adversary
may send a large number to reduce the number of valid
signed messages that can be processed on an IoT device

– VDS

E1: Inject malformed
reputation
dissemination

Aim to encounter parsing vulnerabilities – IMPL-O

I6: Task Submission: IoT to Edge

S1: Crafted packet Edge nodes at risk of DoS with large number of fake
tasks

O D

T1: MITM Modify or add to a task submission O –

T2: Replay Replay task submission O –

R1: Repudiate task
submitted

IoT can claim different task was submitted than it did
previously

– O-R

(Continued)
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Table 7. Continued

Attack Impact Mitig. Note

I1: Eavesdropping Adversary can learn of private information within tasks O –

D1: Jam
communications

Task will not reach Edge and will not be executed – J

E1: Inject malformed
task submissions

Aim to encounter parsing vulnerabilities – IMPL-O

I7: Task Response: Edge to IoT

S1: Crafted packet Adversary can generate malicious response different to
valid response

O –

T1: MITM Modify or add to a task response O –

T2: Replay Replay task responses O –

R1: Repudiate task
response

Edge can claim different response was provided than it
did previously

– O-R

I1: Eavesdropping Adversary can learn of private information within tasks O –

D1: Jam
communications

Task result will not reach IoT node – J

E1: Inject malformed
task responses

Aim to encounter parsing vulnerabilities – IMPL-O

A.2 Processing Component Threats

Table 8. Threats against Components (Processing)

Attack Impact Mitig. Note

P1: MQTT-to-CoAP Bridge

S1: Spoof capability
dissemination

IoT nodes receive different capability information than
expected

O –

I1: Learn configuration Read system files, configuration, and logs to learn of
implementation, settings, and action history

– –

D1: DoS Add or modify requests to overload resources – D

P2: MQTT Server / P3: Stereotype Server / P4: Certificate Server / P6: Capability Dissemination

T1: Configuration Modify/add/remove system or configuration files – –

D1: DoS Add or modify requests to overload resources – D

P7: Reputation Dissemination

D1: DoS Add or modify requests to overload resources – D

P8: Trust Model

R1: Repudiated
information

Data sources (D2, D3, D4) may contain repudiated
information.

– TMR

E1: Task submission Manipulated data sources may lead to changes in whom
tasks are submitted to

– –

P9: Resource-rich Edge Application

T1: Configuration Modify/add/remove system or configuration files – –

D1: DoS External resources required for application may become
unavailable.

– ER

D2: DoS Add or modify requests to overload resources – D

P10: Resource-constrained IoT Application

T1: Flash custom
firmware (HW)

An adversary can capture the device and flash a custom
firmware

– –

D1: DoS Add or modify requests to overload resources – F
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A.3 Data Store Threats

Table 9. Threats against Components (Data Stores)

Attack Impact Mitig. Note

D1: Certificate Database

T1: Database poisoning Adversary can modify/add/remove certificates for
edge/IoT nodes, potentially allowing malicious nodes to
impersonate real devices or for unexpected devices to
join the network.

CS –

I1: Obtain
certificate/keys

Adversary can obtain certificates and/or secret keys – –

D1: Remove certificate Adversary can remove certificates, preventing
communication

– –

D1: Certificate Database (Resource-constrained Specific)

D2: Buffer exhaustion IoT has limited buffers and may be quickly exhausted by
invalid malicious messages. Verifying digital signatures
is slow, so processing message in these buffers will take a
long time

– ES

E1: Key stealing (HW) Adversary can obtain private keys if they can obtain
hardware and dump firmware

– –

D2: Stereotype Database

T1: Database poisoning Adversary can modify/add/remove stereotypes,
potentially allowing edges to be provided with an
unexpected advantage/disadvantage

– –

R1: Repudiate sent
stereotypes

Roots can claim to have previously sent different
stereotypes than they truly had

CS RTTP

I1: Learn stereotypes Learn stereotypes – S

D1: Remove stereotypes Adversary can remove stereotypes, preventing trust
bootstrapping, potentially leading to worse offloading
decisions

– S

D3: Reputation Dissemination Receive on IoT

T1: Modify reputation Adversary can modify/add/remove reputation
information to manipulate who is selected for offloading

– –

I1: Learn reputation Adversary can read confidential reputation information – RP

D1: Buffer exhaustion IoT has limited buffers and may be quickly exhausted by
invalid malicious messages. Verifying digital signatures
is slow, so processing message in these buffers will take a
long time

– ES

D4: Resource-rich edge Database

T1: Adversary can modify/add/remove information about
resource-rich edge nodes

– –

R1: Repudiate edge
capability

Edges can claim to have previously published different
capability information than they truly had

– O-R

I1: Learn edges Adversary can read known resource-rich edges – –

D4: Resource-rich Edge Database (Resource-constrained Specific)

D1: Buffer exhaustion IoT has limited buffers and may be quickly exhausted by
invalid malicious messages. Fake or non-useful edges
will consume space that may be better allocated to
relevant edge nodes

– ES

(Continued)

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 29. Publication date: February 2022.



Threat-modeling-guided Trust-based Task Offloading 29:37

Table 9. Continued

Attack Impact Mitig. Note

D2: Evict good Edge
nodes from buffer

Limited space to buffer information means that spoofed
Edges can be used to fill the buffer, preventing good
Edges from being available

– ES

D5: Trust Model Interaction History

T1: Modify interaction
history

Adversary can modify/add/remove historical
interactions recorded

– –

I1: Learn interaction
history

Adversary can read interaction history with different
resource-rich nodes

– –

D1: Buffer exhaustion Adversary can cause many interactions to be stored,
leading to some needing to be freed

– ES

D6: Edge Capability MQTT Database

T1: Modifiy capabilities Adversary can modify/add/remove capabilities – –

I1: Learn capabilities Adversary can learn of resource-rich capabilities – –

DATA STATEMENT

The software used to generate these results can be found at https://github.com/MBradbury/iot-
trust-task-alloc. The data gathered and presented in this article can be found at [16].
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