
3

IOHanalyzer: Detailed Performance Analyses for Iterative
Optimization Heuristics

HAO WANG, DIEDERICK VERMETTEN, and FURONG YE, LIACS, Leiden University,

The Netherlands

CAROLA DOERR, Sorbonne Université, CNRS, LIP6, France

THOMAS BÄCK, LIACS, Leiden University, The Netherlands

Benchmarking and performance analysis play an important role in understanding the behaviour of itera-

tive optimization heuristics (IOHs) such as local search algorithms, genetic and evolutionary algorithms,

Bayesian optimization algorithms, etc. This task, however, involves manual setup, execution, and analysis of

the experiment on an individual basis, which is laborious and can be mitigated by a generic and well-designed

platform. For this purpose, we propose IOHanalyzer, a new user-friendly tool for the analysis, comparison,

and visualization of performance data of IOHs.

Implemented in R and C++, IOHanalyzer is fully open source. It is available on CRAN and GitHub. IOH-

analyzer provides detailed statistics about fixed-target running times and about fixed-budget performance of

the benchmarked algorithms with a real-valued codomain, single-objective optimization tasks. Performance

aggregation over several benchmark problems is possible, for example in the form of empirical cumulative dis-

tribution functions. Key advantages of IOHanalyzer over other performance analysis packages are its highly

interactive design, which allows users to specify the performance measures, ranges, and granularity that are

most useful for their experiments, and the possibility to analyze not only performance traces, but also the

evolution of dynamic state parameters.

IOHanalyzer can directly process performance data from the main benchmarking platforms, including

the COCO platform, Nevergrad, the SOS platform, and IOHexperimenter. An R programming interface is

provided for users preferring to have a finer control over the implemented functionalities.

CCS Concepts: • Theory of computation → Random search heuristics; Design and analysis of

algorithms; Bio-inspired optimization;

Additional Key Words and Phrases: Evolutionary computation, black-box optimization, performance analysis

Our work has been financially supported by the Paris Ile-de-France region and by a public grant as part of the Investisse-

ment d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with the Gaspard Monge Program

for optimization, operations research, and their interactions with data sciences. Furong Ye acknowledges financial support

from the China Scholarship Council, CSC No. 201706310143. Parts of our work have been inspired by working group 3 of

COST Action CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImApp-

NIO)’ supported by the European Cooperation in Science and Technology.

Authors’ addresses: H. Wang, D. Vermetten, F. Ye, and T. Bäck, LIACS, Leiden University, Niels Bohrweg 1, Leiden, The

Netherlands; emails: {h.wang, d.l.vermetten, f.ye, t.h.w.baeck}@liacs.leidenuniv.nl; C. Doerr, Sorbonne Université, CNRS,

LIP6, 4 place Jussieu, Paris, France, Carola; email: Doerr@lip6.fr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2688-3007/2022/04-ART3 $15.00

https://doi.org/10.1145/3510426

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://orcid.org/0000-0002-4933-5181
https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0002-8707-4189
https://orcid.org/0000-0002-4981-3227
https://orcid.org/0000-0001-6768-1478
mailto:permissions@acm.org
https://doi.org/10.1145/3510426
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510426&domain=pdf&date_stamp=2022-04-05

3:2 H. Wang et al.

ACM Reference format:

Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck. 2022. IOHanalyzer: Detailed

Performance Analyses for Iterative Optimization Heuristics. ACM Trans. Evol. Learn. Optim 2, 1, Article 3

(April 2022), 29 pages.

https://doi.org/10.1145/3510426

1 INTRODUCTION

Optimization problems not admitting exact solution approaches affect almost all aspects of our
daily lives. They appear, for example, in product design, scheduling, data analysis, and machine
learning (e.g., hyper-parameter tuning). For instance, it is sometimes important to analyze the
optimization procedure when training a neural network, which helps us understand the learning
process. The intractability of these problems can have various reasons, e.g., a lack of problem-
specific knowledge, limited access to problem data, or the inherent complexity of the underlying
problem. Iterative optimization heuristics (IOHs) are algorithms designed to search for high-
quality solutions of such problems. IOHs are characterized by a sequential structure, which aims
to evolve good solutions by iteratively sampling the decision space. The distribution from which
the solution candidates are sampled is adjusted after each iteration, to reflect the new information
obtained from the last evaluations.

IOHs are often randomized, both with respect to candidate generation and with respect to se-
lecting the information stored from one iteration to the next. The optimization behavior of IOHs is
therefore a highly complex system with many dependencies. This makes it very difficult to predict
how well a particular IOH performs on a given problem. Existing theoretical results are limited
to rather simple algorithms and/or problems, which are typically not representative for the com-
plex strategies used in practice (see [1, 11, 50] for recent surveys of theoretical results). To gather a
good understanding of the performance and the search behavior of realistic IOHs and applications,
we are therefore often restricted to an empirical evaluation of these solvers, from which we may
extrapolate accurate performance predictions. Supporting such empirical evaluations through a
systematic experimental design is one of the primary goals of algorithm benchmarking. Algorithm
benchmarking addresses the selection of problem instances that are most suitable for an accurate
performance extrapolation, the experimental setup of the data generation, the choice of the perfor-
mance indicators and their visualizations, the choice of the statistics used to compare two or more
algorithms, etc. In practice, those various aspects of algorithm benchmarking make it laborious
and demanding for researchers to handle the details of experimentation, which calls for a stan-
dard and easy-to-use software implementation of algorithm benchmarking that would drastically
reduce the manual work for practitioners.

1.1 IOHanalyzer: Overview and Availability

In this work, we present IOHanalyzer, a versatile, user-friendly, and highly interactive platform for
the assessment, comparison, and visualization of IOH performance data. IOHanalyzer is designed
to assess the empirical performance of sampling-based optimization heuristics in an algorithm-
agnostic manner. Our key design principles are (1) an easy-to-use software interface, (2) inter-
active performance analysis, and (3) convenient export of reports and illustrations.

IOHanalyzer is developed as the data analysis component of IOHprofiler, a benchmarking plat-
form that aims to integrate various elements of the entire benchmarking pipeline, ranging from
problem (instance) generators and modular algorithm frameworks over automated algorithm con-
figuration techniques and feature extraction methods to the actual experimentation, data analysis,
and visualization [12]. An illustration of the interplay between these different components is pro-
vided in Figure 1. Notably, IOHprofiler already provides the following components:

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://doi.org/10.1145/3510426

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:3

Fig. 1. IOHanalyzer is a module of the IOHprofiler benchmarking environment, which targets different steps
of the benchmarking pipeline.

• IOHproblems: a collection of benchmark problems. This component currently comprises
(1) the PBO suite of pseudo-Boolean optimization problems suggested in [13], (2) the 24
numerical, noise-free BBOB functions from the COmparing Continuous Optimizers

(COCO) platform [30], and (3) the Wmodel problem generator proposed in [65].
• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used for the bench-

mark studies presented in [2, 9, 13] are available. This subsumes textbook algorithms for
pseudo-Boolean optimization, an integration to the object-oriented algorithm design frame-
work ParadisEO [40], and the modular algorithm framework for CMA-ES variants originally
suggested in [59] and extended in [9]. Further extensions for both combinatorial and numer-
ical solvers are in progress.
• IOHdata: a data repository for benchmark data. This repository currently comprises the

data from the experiments performed in [13], a sample data set used in this paper, and some
selected data sets from the COCO repository [26]. IOHdata also contains performance data
from Facebook’s Nevergrad benchmarking environment [52], which can be fetched from
their repository upon request.
• IOHexperimenter: the experimentation environment that executes IOHs on IOHprob-

lems or external problems and automatically takes care of logging the experimental data.
It allows for tracking the internal parameter of IOHs and supports various customizable
logging options to specify when to register a data record.
• IOHanalyzer: the data analysis and visualization tool presented in this work.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:4 H. Wang et al.

IOHanalyzer takes as input benchmarking data sets, generated, e.g., by IOHexperimenter,
through the COCO platform, or through the Nevergrad environment. Of course, users can also
use their own experimentation platform (the formatting requirements for the input files are de-
scribed in Appendix A). IOHanalyzer provides an evaluation platform for these performance traces,
which allows users to choose the performance measures, the ranges, and the precision of the dis-
played data according to their needs. In particular, IOHanalyzer supports both a fixed-target and
a fixed-budget perspective, and allows various ways of aggregating performances across different
problems (or problem instances). In addition to these performance-oriented analyses, IOHanalyzer
also offers statistics about the evolution of non-static algorithmic components, such as, for exam-
ple, the hyperparameters suggested by a self-adjusting parameter control scheme. These features
will be described in more detail in Section 3, where the reader can also find illustrated examples.

The R programming interface of IOHanalyzer offers a fine control on the data and functionalities
implemented therein. IOHanalyzer is written in R and C++ and makes use of the two R packages
plotly [55] and shiny [8]. The version of the software described in this paper is v0.1.6.1, which
has been made available on zenodo [62]. This repository also contains all datasets used for the
examples illustrated in this paper. For users less experienced with programming in R we offer a
web-based graphical user interface (GUI), to which users can load their own data or use data
from the IOHdata repository.

The stable release of the IOHanalyzer package is distributed through CRAN (https://CRAN.R-
project.org/package=IOHanalyzer). It can be easily installed in an R console:

R> install.packages("IOHanalyzer")

The latest version is hosted on GitHub (https://github.com/IOHprofiler/IOHanalyzer, part of the
IOHprofiler project), which can be installed using the devtools library as follows:1

R> devtools::install_github("IOHprofiler/IOHanalyzer")

An up-to-date documentation is maintained on the wiki page, available at https://iohprofiler.github.
io/. The web-based GUI of IOHanalyzer is hosted at http://iohprofiler.liacs.nl.

The first use case of IOHanalyzer was the comparison of different variants of the (1+ λ) evolu-

tionary algorithm (EA) [14]. A number of improvements were made subsequently, and the first
study of an important number experiments was reported in [13]. In the meantime, IOHanalyzer
has been used in a number of studies, including [6, 35, 67]. It is under constant development. Some
of the major ongoing extensions will be discussed in Section 4.

1.2 Related Benchmarking Environments

As argued above, benchmarking IOHs is an essential task towards a better understanding of IOHs.
It is therefore not surprising that a large number of different tools have been developed for this
purpose. For reasons of space, we can only summarize a few of them and concentrate on those
which come closest to IOHanalyzer in terms of functionality and scope.

In evolutionary computation, the arguably best established benchmarking environment is the
already mentioned COCO platform [30]. Originally designed to compare derivative-free opti-
mization algorithms operating on numeric optimization problems [29], the tool has seen several
extensions in the last years, e.g., towards multi-objective optimization [58], mixed-integer opti-
mization [57], and large-scale optimization [60]. COCO consists of an experimentation part that
produces data files with detailed performance traces, and an automated data analysis part in which

1The GitHub-page gets updated more frequently with minor changes, while the CRAN-version is generally updated only

when major modifications are made.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://CRAN.R-project.org/package=IOHanalyzer
https://github.com/IOHprofiler/IOHanalyzer
https://iohprofiler.github.io/
http://iohprofiler.liacs.nl

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:5

a fixed number of standardized analyses are automatically generated. The by far most reported per-
formance measures from the COCO framework are empirical cumulative distribution func-

tion (ECDF) curves, see Section 2 for definitions. The COCO software has a strong focus on fixed-

target performances [27], i.e., on the time needed to find a solution of a certain quality.
COCO has been a major source of inspiration for the development of IOHprofiler. What concerns

the performance assessment, the key difference between COCO and our IOHanalyzer is in the
interactive interface that allows users of IOHanalyzer to study different performance measures, to
change their ranges, and granularity. As mentioned, COCO performance files can be conveniently
analyzed by IOHanalyzer.

Another important software environment for benchmarking sampling-based optimization
heuristics is the Nevergrad framework [52]. As with COCO, Nevergrad implements functionali-
ties for both experimentation and performance analysis, accommodating continuous, discrete, and
mixed-integer problems. It has a strong focus on noisy optimization, but also comprises several
noise-free optimization problems. In addition to studying IOHs, Nevergrad has a special suite to
compare one-shot optimization techniques, i.e., non-iterative solvers. The current focus of Nev-
ergrad is to be seen on the problem side, as it offers several new benchmark problems, such as
the structured optimization problems which are aggregated in their own test suite. Nevergrad also
provides interfaces to the following benchmark collections: LSGO [45], YABBOB [46], Pyomo [32],
MLDA [24], and MuJoCo [56]. The performance evaluation, however, is much more basic than
those of COCO or IOHanalyzer, in that only the quality of the finally recommended point(s) is
stored, but no information about the search trajectory. That is, apart from taking a fixed-budget

perspective, Nevergrad does not store performance traces, but only the final output. IOHanalyzer
can interpret and visualize the csv files produced by Nevergrad. An extension of Nevergrad to
allow for the same tracking features as IOHanalyzer is currently under construction, in a joint
collaborative effort between the Nevergrad and the IOHanalyzer development teams.

Focusing on the algorithm design task, HeuristicLab [63] provides a relatively large collection
of various IOHs (e.g., population-based search algorithms) as well as machine learning algorithms
(e.g., Support Vector Regression), which are represented as graphs of operators. In HeuristicLab,
new algorithms can be constructed by combining existing operators in a graphical user interface,
avoiding the laborious coding details. While IOHprofiler mainly targets the black-box optimization
problem, HeuristicLab incorporates a very diversified set of benchmark problems, ranging from the
symbolic regression to data analysis problems. It implements the parallel execution of algorithms
for the ease of benchmarking. In contrast to IOHanalyzer, which is available via a web interface and
contains many detailed performance analyses and interactive plots, HeuristicLab is distributed via
platform-dependent applications and includes some basic static plots (e.g., box plots) for assessing
the empirical performance from a fixed-budget perspective.

Several other tools have been developed for displaying performance data and/or the search
behavior in decision space. However, all tools that we are aware of allow much less flexibility
with respect to the performance measures, the ranges, and the granularity of the analysis or fo-
cus on selected aspects of performance analysis only (e.g., [5, 17] study statistical significance,
whereas [20, 53] aim to visualize performance with respect to multiple objectives). The ability of
IOHanalyzer to link the evolution of algorithms’ parameters to the evolution of solutions’ quality
seems to be unique.

2 BACKGROUND

This section provides the background and motivation for developing IOHanalyzer. In particular,
we discuss black-box problems and their optimization and we recall the most relevant performance
indicators that will be used in subsequent sections.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:6 H. Wang et al.

ALGORITHM 1: Blueprint of an iterative optimization heuristic (IOH) optimizing a function f :
S → R.

1: procedure ioh
2: t ← 0 � iteration counter
3: H (0) ← ∅ � search history information
4: choose a distribution Λ(0) on N � distribution of the number of samples
5: while termination criterion not met do

6: t ← t + 1
7: sample λ(t) ∼ Λ(t − 1) � nbr. of points to be evaluated

8: Based onH (t − 1) choose a distribution D (t) on Sλ (t) � choice of sampling
distribution

9: sample
(
x (t,1), . . . ,x (t,λ (t))

)
∼ D (t) � candidate generation

10: evaluate f
(
x (t,1)

)
, . . . , f

(
x (t,λ (t))

)
� function evaluation

11: chooseH (t) and Λ(t) � information update
12: end while

13: end procedure

2.1 Iterative Optimization Heuristics

We study the optimization of problems of the type f : S → R, i.e., we assume our problem to be
a single-objective, real-valued objective function (i.e., problems for which the quality of possible
solutions is rated by real numbers), defined over a search spaceS. We do not make any assumption
on the setS; it can be discrete or continuous, constrained or unconstrained. We do not require that
f is explicitly modeled, i.e., f can very well be a black-box optimization problem, i.e., a problem
for which we are able to evaluate the quality of points x ∈ S (e.g., through computer simulations
or through physical experiments) but for which we do not know the mapping x �→ f (x) without
performing such evaluations. Intermediate gray-box settings are also possible, i.e., problems for
which some information about the mapping x �→ f (x) is available (see, for example, the discussion
in [66], where a setting is analyzed in which users have information about the interaction between
different variables). To ease notation, we nevertheless speak of black-box optimization in such
cases, i.e., even when some a priori information about the problem f is available. We emphasize
that the sampling-based optimization algorithms studied in our work can be competitive even
when the problem f is explicitly known. The low auto-correlation binary sequence (LABS)

problem is a good example for such a problem that can be defined in two lines, but for which
the best known solvers are sampling-based [51]. The only important feature of the performance
traces that can be analyzed by IOHanalyzer is that they rely on the evaluation of possible solution
candidates – regardless of how these have been created.

For convenience of presentation, we consider in this document maximization as objective.
Note, though, that IOHanalyzer automatically detects whether minimization of maximization is
considered, and adjusts the plots and statistics accordingly. For example, the COCO and Never-
grad data sets typically consider minimization, whereas the PBO suite of IOHproblems studies
maximization.

The class of algorithms that we are interested in are Iterative Optimization Heuristics

(IOHs). IOHs are entirely sampling-based, i.e., they sample the search space S and use the
function values f (x) of the evaluated samples x to guide the search. Algorithm 1 provides a
blueprint for IOHs. Classical examples for IOHs are deterministic and stochastic local search
algorithms (this class includes Simulated Annealing [42] and Threshold Accepting [16] as two

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:7

prominent examples), genetic and evolutionary algorithms [19], Bayesian Optimization and
related global optimization algorithms [38], Estimation of Distribution algorithms [43], and Ant
Colony Optimization algorithms [15].

2.2 Selected Performance Indicators

Unlike in optimization scenarios in which problem data is accessible without function querying
and where solutions are hence typically generated constructively (as opposed to the sampling-
based approach taken by IOHs), the most commonly studied performance measures in black-box
optimization are based on the number of function evaluations. That is, instead of counting arith-
metic operations or CPU time, we measure performance by counting the number of function eval-
uations that are performed to reach a certain quality threshold (fixed-target setting) or we measure
the quality of the best found solution that could be recommended after a certain budget of func-
tion evaluations has expired (fixed-budget setting). Measuring the performance in the number of
function evaluations is a classic assumption made in the black-box optimization literature [27]. In
contrast to CPU time, this measure is machine-independent and not (or at least much less) sensitive
with respect to the actual implementation.

As discussed above, many state-of-the-art IOHs are randomized in nature, therefore yielding
random performance traces even when the underlying problem f is deterministic. The perfor-
mance space is spanned by the number of evaluations, by the quality of the assessed solutions,
and by the probability that the algorithm has found within a given budget of function evaluations
a solution that is at least as good as a given quality threshold.

Basic Notation. To define the performance measures covered by IOHanalyzer we use the follow-
ing notation.

• F denotes the set of problems under consideration. Each problem (or problem instance,
depending on the context) f ∈ F is assumed to be a function f : S → R. The dimension

of S is denoted by d . We often consider scalable functions that are defined for several or all
dimensions d ∈ N. In such cases, we make the dimension explicit.
• A = {A1,A2, . . .} is the set of algorithms under consideration.A can be finite or infinite. Of-

ten,A is a configurable meta-algorithmic framework, which allows users to specify param-
eters such as the degree of parallelism, the intensity of the local perturbations, the memory
size, the use (or not) of recombination operators, etc.
• We denote by r the number of independent runs of an algorithm A ∈ A on problem f ∈ F

in dimension d .
• T (A, f ,d,B,v, i) ∈ N∪ {∞} is a fixed-target measure. It denotes the number of function eval-

uations that algorithm A performed, in its i-th run and when maximizing the d-dimensional
variant of problem f , to find a solution x satisfying f (x) ≥ v . When A did not succeed in
finding such a solution within the maximal allocated budget B, T (A, f ,d,B,v, i) is set to ∞.
Several ways to deal with such failures are considered in the literature, as we shall discuss
in the next paragraphs.
• Similarly to the above, V (A, f ,d, t , i) ∈ R is a fixed-budget measure. It denotes the function

value of the best solution that algorithm A evaluated within the first t evaluations of its i-th
run, when maximizing the d-dimensional variant of problem f .

Descriptive Statistics. We next recall some basic descriptive statistics.

• The average function value given a budget value t is simply

V̄ (t) = V̄ (A, f ,d, t) =
1

r

r∑
i=1

V (A, f ,d, t , i).

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:8 H. Wang et al.

As we do with all other measures, we omit explicit mention of A, f , and d when they are
clear from the context.
• The Penalized Average Runtime (PAR-c score, where c ≥ 1 is the penalty factor) for a

given target value v is defined as

PAR-c(v) = PAR-c(A, f ,d,B,v) =
1

r

r∑
i=1

min
{
T (A, f ,d,B,v, i), cB

}
, (1)

i.e., the PAR-c score is identical to the sample mean when all runs successfully identified
a solution of quality at least v within the given budget B, whereas non-successful runs are
counted as cB. In IOHanalyzer, we typically study the PAR-1 score, which, in abuse of nota-
tion, we also refer to as the mean.
• Apart from mean values, we are often interested in quantiles, and in particular in the sam-

ple median of the r values
{
T (A, f ,d,B,v, i})r

i=1 and
{
V (A, f ,d, t , i})r

i=1, respectively. By de-
fault, IOHanalyzer calculates the 2%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 98% percentiles
(denoted as Q2%,Q5%, . . . ,Q98%) for both running times and function values.
• We also study the sample standard deviation of the running times and function values, re-

spectively.
• The empirical success rate is the fraction of runs in which algorithm A reached the given

target v within the maximal number B of allowed function evaluations. That is, in the case
of a maximization problem,

p̂s = p̂s (A, f ,d,B,v) =
1

r

r∑
i=1

1(V (A, f ,d,B, i) > v) =
1

r

r∑
i=1

1(T (A, f ,d,B,v, i) < ∞), (2)

where 1(E) is the characteristic function of the event E.

Expected Running Time. An alternative to the PAR-c score is the expected running time

(ERT). ERT assumes independent restarts of the algorithm whenever it did not succeed in find-
ing a solution of quality at least v within the allocated budget B. Practically, this corresponds
to sampling indices i ∈ {1, . . . , r } (i.i.d. uniform sampling with replacement) until hitting an in-
dex i with a corresponding value T (A, f ,d,B,v, i) < ∞. The running time would then have been
mB+T (A, f ,d,B,v, i), wherem is the number of sampled indices of unsuccessful runs. The average
running time of such a hypothetically restarted algorithm is then estimated as

ERT(A, f ,d,B,v) =

∑r
i=1 min

{
T (A, f ,d,B,v, i),B

}
rp̂s

=

∑r
i=1 min

{
T (A, f ,d,B,v, i),B

}
∑r

i=1 1(T (A, f ,d,B,v, i) < ∞)
. (3)

Note that ERT can take an infinite value when none of the runs was successful in identifying a
solution of quality at least v .

Cumulative Distribution Functions. For the fixed-target and fixed-budget analysis, IOHanalyzer
estimates probability density (mass) functions and computes empirical cumulative distribu-

tion functions (ECDFs). For the fixed-budget function value, its probability density function is
estimated via the well-known Kernel Density Estimation (KDE) method, which approximates
the density function by a superposition of kernel functions (e.g., Gaussian functions with a fixed
width) centered at each data point [33]. Intuitively, a set of crowded data points would lead to a very
peaky empirical density due to massive superpositions of the kernel, while a set of distant points

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:9

can only generate a relatively flat curve. For the fixed-target running time (an integer-valued ran-
dom variable), we estimate its probability mass function by treating it as a real value and applying
the KDE method. For a set {T (A, f ,d,v, i)}ri=1 of fixed-target running times, its ECDF is defined as
the fraction of runs which successfully found a solution of quality at least v within a budget of at
most t function evaluations. That is,

ECDF(A, f ,d,v, t) =
1

r

r∑
i=1

1(T (A, f ,d,v, i) ≤ t).

ECDF values are most typically used in aggregated form. IOHanalyzer uses the following two
aggregations:

• The aggregation over a setV of target values:

ECDF(A, f ,d,V, t) = 1

r |V |
∑

v ∈V

r∑
i=1

1(T (A, f ,d,v, i) ≤ t), (4)

i.e., the fraction of (run,target value) pairs (i,v) for which algorithm A has identified a solu-
tion of quality at least v within a budget of at most t function evaluations.
• Given a set of functions F and a mapping V : F → 2R that specifies the target values to

consider for each function, the ECDF can be further aggregated by the following definition:

ECDF(A,F ,d,V, t) = 1

r
∑

f ∈F |V (f) |
∑
f ∈F

∑
v ∈V (f)

r∑
i=1

1(T (A, f ,d,v, i) ≤ t). (5)

The aggregated ECDFs for function valuesV (A, f ,d, t , i) can be defined in the similar manner. By
default, IOHanalyzer can generate the targets in a linear or log-linear way, as well as the predefined
targets commonly used in the COCO framework. However, all of these targets can be changed by
the user.

3 GRAPHICAL USER INTERFACE

The web-based Graphical User Interface (GUI) may be the most convenient access to IOHan-
alyzer for users who are not sufficiently familiar with programming in R, as well as for users
who are more interested in comparing (with) data from the existing data sets collected in the
performance data repository IOHdata. In this and the next section we use an exemplary data
set called “sample_data” prepared for this article, which comprises selected performance data
from the study presented in [13]. This data set is already available in the web-based GUI and
the user can load it from the “Load Data from Repository” box therein (see the bottom right
part in Figure 2). More precisely, we have selected from this data set the performance files for
two algorithms (Randomized Local Search (RLS) and the Genetic Algorithm (GA) variant
(1, λ) GA, see [13] for a detailed description and references) on four problems in two dimensions
d ∈ {16, 100}. All problems analyzed in [13] are of the type f : {0, 1}n → R, and both the problem
suite as well as the dataset are named PBO (for pseudo-Boolean optimization) in IOHprob-

lems and IOHdata, respectively. To use this data set locally, users need to create a folder named
repository/sample_data under the home directory (i.e., ∼/repository/sample_data), down-
load the data set from https://github.com/IOHprofiler/IOHdata/blob/master/sample_data.rds, and
move the data set to this location.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://github.com/IOHprofiler/IOHdata/blob/master/sample_data.rds

3:10 H. Wang et al.

Fig. 2. Screenshot of the GUI immediately after launching the GUI server. Some general information, such as
the current version and relevant links are provided at the top. The user can choose a data set from our online
data repository in the drop-down menu of right column, or upload local data using the column on the left.

The IOHanalyzer GUI is invoked through the following commands:

R> library(IOHanalyzer)
R> runServer()
Loading required package: shiny

Listening on http://127.0.0.1:3943

This will start the GUI server on the local machine (hence using IP address 127.0.0.1) and a ran-
dom port number. The web browser will be launched and connect to this address immediately after
starting the server. The screenshot of the “welcome page” is shown in Figure 2. The performance
statistics are arranged in four major sections, which can be chosen in the side menu on the left.
The side menu is organized as follows.

(1) Upload Data: In this section users can upload their own performance data files and/or
choose the data from the repository against which the data shall be compared. The format
of the data files which can be uploaded is discussed in Appendix A.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:11

(2) General Overview: On this tab, we show a summary of algorithms, function/problems,
dimensions, the number of runs, and the best reached function values per function and al-
gorithm appearing in the data set loaded by the user.

(3) Fixed-Target Result: This section covers the fixed-target performance statistics summa-
rized in Table 1. A detailed description will be given in Section 3.2.

(4) Fixed-Budget Results: This section covers the fixed-budget statistics summarized in
Table 2.

(5) Position Information: A parallel coordinate plot allows the user to display the final point
resulting from each run of an algorithm. This can be used for comparing the distribution of
the final solutions found across many algorithms.

(6) About: A concise description of the IOHanalyzer and installation guide are included here,
together with information on the development team, the license, and acknowledgements.

(7) Settings: Here, the user can change the color schemes, the font size, and the image size used
in plotting and other general settings controlling the calculation of descriptive statistics.

In general, the interactive plotting (enabled by the plotly library) is turned on by default, dis-
playing more details in the plot when the user hovers the mouse over it, e.g., the value of a curve
at the mouse cursor. The interactive plotting also allows the user to zoom in/out and to hide/show
a curve from some algorithms, which will be helpful when many algorithms are rendered simul-
taneously. Also, all plots can be downloaded in the following formats: pdf, png, eps, and svg.
Most data tables can be downloaded in csv format.

3.1 The “Upload Data” Section

The GUI interface to load the experimental data is shown in Figure 2. in which the user is asked
to upload a compressed archive. The following compression formats are supported: *.zip, *.bz,
*.tar, *.xz, *.gz and *.rds (previously processed). Note that, when the user’s data set is very
large to handle, it is possible to speed up the uploading (and hence plotting) procedure by toggling
option Efficient mode on, in which the original data set is downsampled uniformly at random.
Note that the data-uploading module will automatically detect whether maximization or mini-
mization has been the objective, given the uploaded data set follows the formatting requirements
described in Appendix A.

When using the online version of GUI (http://iohprofiler.liacs.nl/), the user can also load the
data sets from IOHdata, using the “Load Data from Repository” box on the right (see Figure 2).

After loading the data, IOHanalyzer will prompt a summary table of loaded data sets in the “List
of Processed Data” box on the bottom of the page (not shown in Figure 2). This allows users to
check if the data loading process has been performed correctly.

3.2 The “Fixed-Target Results” Section

In the fixed-target section, the user can analyze the number of function evaluations that the algo-
rithms performed before finding for the first time a solution meeting a certain quality criterion.
This section has two main subsections, one for the performance evaluation of a single function and
one for the evaluation of performance data for multiple functions. Table 1 summarizes the main
fixed-target performance statistics that IOHanalyzer offers.

3.2.1 The “Single Function” Subsection. The single function subsection offers six different types
of fixed-targets results, which are grouped as follows: (1) data summary, (2) expected runtime,
(3) probability mass function, (4) cumulative distribution, (5) algorithm parameters, and (6) sta-
tistics. These groups will be described in the following paragraphs. Note that, in the header of

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

http://iohprofiler.liacs.nl/

3:12 H. Wang et al.

Table 1. The Functionalities Implemented in the Fixed-target Results Section of IOHanalyzer

Section Group Functionality Description

Si
n

g
le

Fu
n

ct
io

n
s

Data Summary

Data Overview
The best, worst, mean, median values and success rate of selected al-
gorithms.

Runtime Statistics
The mean, median, quantiles, success rate and ERT at an evenly spaced
sequence of targets controlled by fmin, fmax and Δf .

Runtime Samples
The running time sample at an evenly spaced sequence of targets con-
trolled by fmin, fmax and Δf .

Expected

Runtime

ERT: single function
The progression of ERT over targets, whose range is controlled by the
user.

Expected Runtime Comparisons
Comparing the ERT values of selected algorithms at pre-computed tar-
gets across all problem dimensions on a chosen problem.

Probability Mass

Function

Histogram
The histogram of the running time at a target specified by the user on
one function.

Probability Mass Function
The probability mass function of the running time at a target specified
by the user on one function.

Cumulative

Distribution

ECDF: single target
On one function, the ECDF of the running time at one target specified
by the user.

ECDF: single function On one function, ECDFs aggregated over multiple targets.

Algorithm

Parameters

Expected Parameter Value
The progression of expected value of parameters over targets, whose
range is controlled by the user.

Parameter Statistics
The mean, median, quantiles of recorded parameters at an evenly
spaced sequence of targets controlled by fmin, fmax and Δf .

Parameter Sample
The sample of recorded parameters at an evenly spaced sequence of
targets controlled by fmin, fmax and Δf .

Statistics Hypothesis Testing
The two-sample Kolmogorov-Smirnov test applied on the running time
at a target value for each pair of algorithms. A partial order among
algorithms is obtained from the test.

M
u

lt
ip

le
Fu

n
ct

io
n

s

Data Summary
Multi-Function Statistics Descriptive statistics for all functions at a single target value.

Multi-Function Hitting Times Raw hitting times for all functions at a single target value.

Expected

Runtime

ERT: all functions
The progress of ERTs are grouped by functions and the range of targets
are automatically determined.

Expected Runtime Comparisons
The ERTs at the best target found on each function (one fixed dimen-
sion) is plotted against the function ID for each algorithm.

Cumulative
Distribution

ECDF: all functions On all functions, ECDFs aggregated over multiple targets.

Deep Statistics

Ranking per Function
Per-function statistical ranking procedure from the Deep Statistical
Comparison Tool (DSCTool) [18].

Omnibus Test
Use the results of the per-function ranking to perform an omnibus test
using DSC.

Posthoc comparison Use the results of the omnibus test to perform the post-hoc comparison.

Ranking Glicko2-based ranking

For each pair of algorithms, a running time value at a given target is
randomly chosen from all sample points in each round of the compar-
ison. The glicko2-rating is used to determine the overall ranking from
all comparisons.

Portfolio
Contribution to portfolio (Shapley-
values)

Calculate the approximated Shapley values indicating the contribution
of each algorithm to the overall portfolios ECDF.

IOHanalyzer, there are two drop-down menus that allow the user to select the dimension and
function, respectively. They are available in the sidebar when data has been loaded.

Group 1: Fixed-Target Results � Single Function � Data Summary: This group provides basic
statistics on the distribution of the fixed-target running time, which are grouped in three different
tables:

• Table Data Overview: A screenshot of this table is given in Figure 3. It simply summarizes
the range of function values observed in the data set, with the purpose to offer its users
a quick overview of the quality of the solutions that were evaluated by the algorithms. In
Figure 3, we show the data overview of the “sample_data” data set, where the following
values are listed for each triple of function, dimension, and algorithm: (1) the total number
of runs, (2) the worst of all function values recorded in any of the runs (“worst recorded”),
(3) the worst of the best function values reached in any of the runs (“worst reached”), (4) the

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:13

Fig. 3. Screenshot of the overview table of function values reached in the “sample_data” data set on function
1 in 16D.

best function value reached in any of the runs (“best reached”), (5) the mean (with respect
to all runs) best function values (“mean reached”), (6) the median (with respect to all runs)
best function value (“median reached”), and (7) the number of runs which successfully hit
the “best reached” function value (“succ”).
• Table Runtime Statistics at Chosen Target Values: A screenshot of this table is

given in Figure 4. The user can set the range and the granularity of the results in the box
on the left. The table shows fixed-target running times for evenly spaced target values.2

More precisely, the table provides the success rate and the number of successful runs as
defined in Equation (2), the sample mean, median, standard deviation, the sample quantiles:
Q2%,Q5%, . . . ,Q98%, and the expected running time (ERT) as defined in Equation (3). The
user can download this table in csv format, or as a LATEX table.
• Table Original Runtime Samples: This table uses the same principle as the Runtime
Statistics, but instead displays the values for each individual run. For this table, the user
can choose between a “long” (all sample points are arranged in a column) and a “wide” format
(all sample points are arranged in a row).

Group 2: Fixed-Target Results � Single Function � Expected Runtime: An interactive plot illus-
trates the fixed-target running times. An example of this plot is shown in Figure 5. The interac-
tive plot can be adjusted in the menu on the left as shown in the figure. These options include
showing/hiding mean and/or median values along with standard deviations and scaling the axes
logarithmically. The user selects the algorithms to be displayed as well as the range of target val-
ues within which the curves are drawn. By default, this range is set as [Q25%,Q75%] of all function
values measured in the data set. The displayed curves can be switched on and off by clicking on
the legend on the bottom of the plot.

Group 3: Fixed-Target Results � Single Function � Probability Mass Function: For a selected target
valuev , the histogram of the running time, as displayed in Figure 6, shows the number of runs i for

2These target values are evenly spaced between the user-specified minimum and maximum values (whose default values

are set to be the extreme values found in the data) on a linear or log scale, based on the difference in order of magnitude

between the extreme values found for the specified function. This same principle is used in all similar tables and plots

where both a minimum and maximum target can be chosen by the user. A notable exception is the cumulative distribution

functions, where arbitrary sets of target values can be chosen by the user.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:14 H. Wang et al.

Fig. 4. Screenshot of the data summary table of some descriptive statistics on the running time.

Fig. 5. Screenshot of the expected running time plot.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:15

Fig. 6. Screenshot of the histogram of running time (given a fixed target of 10 on Function 1 in dimension 16).

which the running time falls into a given interval [t , t + Δt), namely
∑r

i=1 1(t ≤ T (A, f ,d,v, i) <
t + Δt). The bin size Δt is determined according to the Freedman-Diaconis rule [22], which is
based on the interquartile range of the sample {T (A, f ,d,v, i)}ri=1. The user has two options: (1) an
overlayed display, where all algorithms are displayed in the same plot, or (2) a separated one, where
each algorithm is displayed in an individual sub-plot, as shown in Figure 6.

In addition to the histogram, the probability mass function (Figure 7) might be helpful to get a
finer look at the shape of the empirical distribution ofT . The user can switch on/off the illustration
of all sample points (depicted as dots), or only the empirical probability mass function itself. It is
important to point out that the probability mass function is estimated in a “continuous” manner,
where running time samples are considered as R-valued and then the Kernel Density Estimation

(KDE) method is taken to estimate the function.3

Group 4: Fixed-Target Results � Single Function � Cumulative Distribution. The empirical cu-

mulative distribution function (ECDF) of the running time is computed for target values speci-
fied by the user. In addition to calculating ECDFs for a single target value, it is recommended to ag-
gregate ECDFs over multiple targets, to obtain an overall performance for solving different targets.
For the default target values, the tool takes 10 evenly spaced values in [Q25%,Q75%] of all measured
function values in a data set. Such a functionality is exemplified in Figure 8: a set of evenly spaced
target values can be generated by specifying the range and step-size of the target value.

In this example, with the following setup, fmin = 4, fmax = 16, and Δf = 1.33, the target value
sequence, 4, 5.33, 6.66, . . . , 16 is used to calculate the ECDF. These values are shown in the bar on

3Strictly speaking, this method gives imprecise estimations when there are many duplicated values, which can be quite

likely in discrete optimization (such as in our examples). Improvements are planned for the future version.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:16 H. Wang et al.

Fig. 7. Screenshot of the empirical probability mass function of running time for target value 10 on Function 1
in dimension 16).

the top of the plot, as can be seen in Figure 8. In the same figure it can be seen for algorithm RLS
(blue curve) that within a budget of 24 function evaluations, around 76% of (target, run) pairs have
been successful. For algorithm (1, λ) GA (purple curve) this value is only 53%.

Group 5: Fixed-Target Results � Single Function � Algorithm Parameters. One of the key motiva-
tions to build IOHprofiler was the ability to analyze, in detail, the evolution of control parameters
which are adjusted during the search. Such dynamic parameters can be found in most state-of-the-
art heuristics. While in numerical optimization a non-static choice of the search radius, for example,
is needed to eventually converge to a local optimum, dynamic parameters are also more and more
common in discrete and mixed-integer optimization heuristics [10, 39]. In the fifth group of fixed-
target results for a single function, the evolution of the parameters is linked to the quality of the
best-so-far solutions that have been evaluated. In the experimentation (i.e., data generation) phase,
the user selects which parameters are logged along with the evaluated function values. These val-
ues are then automatically detected by IOHanalyzer and can be chosen in this group for analysis.

As with the interactive plots on expected running time, the user can choose the range of tar-
gets, which parameters and algorithms to plot, and the scale (either logarithmic or linear) of x-
and y-axis. We omit the example for parameters as the GUI is similar to the one in Figure 5. As
with “Fixed-Target Results � Single Function � Data Summary”, this subsection also provides for
each parameter tables of descriptive statistics (sample mean, median, standard deviation, and some
quantiles) as well as the original parameter values.

Group 6: Fixed-Target Results � Single Function � Statistics. To address the robustness of
empirical comparisons, the samples from all algorithm must undergo a proper statistical test
procedure [34]. In IOHanalyzer, a standard multiple testing procedure is implemented to compare
the fixed-target running time for each pair of algorithms on a single function, for which the

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:17

Fig. 8. Screenshot of aggregated ECDF curve over multiple targets.

well-known Kolmogorov-Smirnov test is applied to the ECDFs of running times. Moreover, the
Bonferroni procedure is used to correct the p-value in multiple testing. To demonstrate this func-
tionality, we show, in Figure 9, the testing outcome of a data set on 12 reference algorithms.4 on the
PBO problem set from [13], instead of the exemplary two-algorithm data set used previously. Here,
the test is conducted across all 12 algorithms on function f 1 and dimension 64 with a confidence
level of 0.01. The result of this procedure is illustrated by a table of pairwisep-values, a color matrix
of the statistical decision, and a graph depicting the partial order induced by the test (i.e., an arrow
pointing from Algorithm 1 to Algorithm 2 is to be read as Algorithm 1 dominating Algorithm 2
with statistical significance. As with all tables and figures in IOHanalyzer, these can be downloaded
in several formats, including *.tex and *.csv for tables and *.pdf and *.eps for figures.

3.2.2 The “Multiple Functions” Subsection. This subsection contains three groups of fixed-target
results for multiple functions: (1) expected runtime comparison across all functions for one dimen-
sion, (2) aggregated Empirical Cumulative Distribution over all functions, and (3) Glicko2-based
ranking.

Group 1: Fixed-Target Results � Multiple Functions � Expected Runtime: In this group, the tool
depicts the ERT values against multiple functions as a radar-plot, as shown in Figure 10. For each
function, the target value used for calculating the ERT is determined by default as follows: firstly,
for each algorithm, we obtained the 2% percentile of the best function values reached in multiple
runs. Secondly, we took the largest value among all such 2% percentiles as the target value on this
function. In this radar-plot, we revert the axis such that the bigger ERT values are further away
from the center of the circle compared to smaller ones, indicating that better algorithms will cover
a larger area.

4This data set is available at https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/2019gecco-ins1-11run.rds. It

can be loaded to the web-based GUI by selecting the PBO data set in the “upload data” section. The data set comprises the

results of the experimental study described in [13].

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/2019gecco-ins1-11run.rds

3:18 H. Wang et al.

Fig. 9. Screenshot of the multiple testing procedure applied on all 12 reference algorithms on function f 1

and dimension 625. The table shows the p-values resulting from the pairwise KS-test between each pair of
algorithms. Then, based on the α = 0.01, the resulting hypothesis-rejections are shown in both the matrix-
plot and the network.

Group 2: Fixed-Target Results � Multiple Functions � Cumulative Distribution: In this group,
ECDFs of running times are aggregated across multiple functions, as defined in Equation (5). This
functionality is illustrated in Figure 11: a table of pre-calculated target values are provided for each
function (all test functions are included by default). This table of targets can easily be edited di-
rectly in the GUI, or by a downloading-editing-uploading procedure (which should, of course, not
change the format of the tables, just the values).

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:19

Fig. 10. Screenshot of ERT of RLS and the (1, λ) GA on four PBO problems, where the ERT values are shown
for each selected problem in a radar plot with inverted axis (values are decreasing when moving away from
the center). Loosely speaking, an algorithm with a larger span on the plot is considered better, e.g., RLS
dominates (1, λ) GA on problem F01, F02, and F23 while the latter is superior on F19.

Note that for these ECDF-figures, the corresponding Area Under the Curve (AUC) can also be
calculated to get a single value for each algorithm. These AUC-tables are available in the same tab
as the ECDF plot.

Group 3: Fixed-Target Results � Multiple Functions � Ranking: This group provides a ranking
functionality to compare algorithms across multiple functions and dimensions, in which we em-
ploy the Glicko-2 rating system [25] (commonly used in chess games) to rank the algorithms, based
on multiple simulated games between them (25 by default). In each game, for every function and
dimension, the winner of each pair of algorithms is determined by sampling from the running time
values (given a target value) uniformly at random and checking which random sample is better. An
overall rating is computed from those games’ outcome, which is then used to rank the algorithms.
Algorithms with a better rank win more rounds than those with a poor rank, indicating that when
sampling a runtime on an arbitrary function, these algorithms tend to perform better. This way
of ranking allows us to aggregate performance over an arbitrary number of functions and targets,
while inherently managing uncertainty of the performance metrics by doing the repeated rounds
and comparing individual values for each ‘game’.

3.3 The “Fixed-Budget Results” Section

The fixed-budget section offers performance analysis for the quality of the best solution that the
algorithms could identify within a given budget of function evaluations. The results are similar
to those presented in the fixed-target section (Section 3.2) except that subsection “Fixed-Budget
Results � Multiple Functions � Cumulative Distribution” is still under development and hence
not yet available at the time of writing. Table 2 summarizes the main functionalities.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:20 H. Wang et al.

Fig. 11. Screenshot of aggregated ECDF curve across multiple functions and targets.

3.4 The “Position Information” Section

Within this section, the user can visualize the final search points in their decision space in
a parallel coordinate plot. In version 0.1.6.1, this functionality is only supported for data
generated by the SOS-framework [7]. A processed dataset in this format is available on

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:21

Table 2. The Functionalities Implemented in the Fixed-budget Results of IOHanalyzer

Section Group Functionality Description

Si
n

g
le

Fu
n

ct
io

n

Data Summary

Data Overview
The minimum and maximum of running times for selected algo-
rithms.

Target Value Statistics
The mean, median, and quantiles of the function value at a se-
quence of budgets controlled by Bmin, Bmax and ΔB .

Target Value Samples
The function value samples at an evenly spaced sequence of bud-
gets controlled by Bmin, Bmax and ΔB .

Expected Tar-
get Value

Expected Target Value: single
function

The progression of expected function values over budgets, whose
range is controlled by the user.

Probability
Density
Function

Histogram The histogram of the function value a user-chosen budget.

Probability Density Function
The probability density function (using the Kernel Density Esti-
mation) of the function value at a user-chosen budget.

Cumulative

Distribution

ECDF: single budget
On one function, the ECDF of the function value at one budget
specified by the user.

ECDF: single function On one function, ECDFs aggregated over multiple budgets.

Area Under the ECDF
On one functions, the area under ECDFs of function values that
are aggregated over multiple budgets.

Algorithm

Parameters

Expected Parameter Value
The progression of expected value of parameters over the budget,
whose range is controlled by the user.

Parameter Statistics
The mean, median, quantiles of recorded parameters at an evenly
spaced sequence of budgets controlled by Bmin, Bmax and ΔB .

Parameter Sample
The sample of recorded parameters at an evenly spaced sequence
of budgets controlled by Bmin, Bmax and ΔB .

Statistics Hypothesis Testing
The two-sample Kolmogorov-Smirnov test applied on the run-
ning time at a target value for each pair of algorithms. A partial
order among algorithms is obtained from the test

M
u

lt
ip

le
Fu

n
ct

io
n

s

Data Summary
Multi-Function Statistics Descriptive statistics for all functions at a single target value.

Multi-Function Hitting Times Raw hitting times for all functions at a single target value.

Expected

Target Value

Expected Target Value: all func-
tions

The same as above except that the expected function values are
grouped by functions and the range of budgets are automatically
determined.

Expected Target Value: Compari-
son

The expected function value at the largest budget found on each
function is plotted against the function ID for each algorithm.

Deep Statistics

Ranking per Function
Per-function statistical ranking procedure from the Deep Statisti-
cal Comparison Tool (DSCTool) [18].

Omnibus Test
Use the results of the per-function ranking to perform an om-
nibus test using DSC.

Posthoc comparison
Use the results of the omnibus test to perform the post-hoc com-
parison.

Ranking Glicko2-based ranking

For each pair of algorithms, a function value at a given budget
is randomly chosen from all sample points in each round of the
comparison. The glicko2-rating is used to determine the overall
ranking from all comparisons.

IOHdata.5 This dataset contains a DE-variant which was generated for the analysis of Structural
Bias in DE [61], which can be confirmed visually using the parallel coordinate plot functionality.

Development on extending this position-based functionality to other data sources and more
types of analysis is in progress.

3.5 Command-Line Interface

In addition to the web-based graphical interface, we provide a command-line interface (CLI) via
a feature-rich R-package, which allows for more fine-grained control of various types of analysis
and visualization described in this section. All functionality discussed in this paper can also be

5https://github.com/IOHprofiler/IOHdata/tree/master/SOS.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://github.com/IOHprofiler/IOHdata/tree/master/SOS

3:22 H. Wang et al.

accessed through this CLI. A demonstration of the key aspects of this CLI on an example data set
is available on the wiki page https://iohprofiler.github.io/IOHanalyzer/R/.

4 DISCUSSION AND OUTLOOK

We have presented IOHanalyzer, a highly versatile environment for evaluating the performance
data of iterative optimization heuristics. IOHanalyzer – and, more generally, the whole IOHprofiler
project – are under continuous development. Extensions planned for the near future comprise,
most notably, an increased compatibility with the following benchmarking environments

and platforms:

• General-purpose benchmarking platforms. As mentioned, IOHanalyzer has already
been extended to visualize data sets generated with Facebook’s Nevergrad platform [52].
We are now working on various other interfaces, which will allow Nevergrad users to use
the logging functionalities of IOHprofiler and to access the problems made available in IOH-
profiler. Likewise, we are working towards an interface that allows users of IOHprofiler to
more easily access the benchmark problems of Nevergrad.
• Modular algorithm frameworks and automated configuration tools. The modular al-

gorithm framework ParadisEO [4] and the modular CMA-ES framework proposed in [59]
have already been integrated into IOHprofiler. An integration of other modular algorithm
frameworks such as those presented in [21, 23, 49, 54], together with automated algorithm
configuration tools such as irace [47], SMAC [36], hyperband [44], and MIP-EGO [64], will
pave the way to a more generic research environment for automated configuration of opti-
mization algorithms. For supervised learning approaches, we shall interface IOHprofiler and
feature-extraction techniques such as those collected in the R package flacco [41].
• Collections and generators of benchmark problems. As we are doing for the Never-

grad platform, we are working on easier interfaces with other collections of benchmark
problems as well as with generators of these. Already implemented are the 23 discrete
problems described in the PBO suite from [13], a (slight variation of the) W-model [65]
(see https://iohprofiler.github.io/ for details of our implementation), and the 24 numeric
optimization problems from the BBOB suite [31] of the COCO platform [30]. Extensions
to other problem types, such as multi-objective or noisy optimization, are also being
considered.
• Other statistical evaluation techniques. Several interfaces of IOHanalyzer with tools

aimed at visualizing or analyzing the performance data are currently under consideration.
For example, an integration of the software to efficiently compute empirical attainment func-

tions provided by [20] could help to visualize the time-quality-robustness trade-off of IOHs.
Building on the initial study [6] we are considering the integration of the rank-based
Bayesian inference statistics, which were introduced to the evolutionary computation com-
munity via [5]. Other advanced statistical procedures may also be added, e.g., the Deep Sta-

tistical Comparison tool (DSCtool) suggested in [17].
• Performance aggregation and anytime performance measures. Finally, we are also

implementing different ways to aggregate performances over multiple test problems. In this
respect we are, among others, looking into so-called performance profiles [48], which is the
empirical cumulative distribution of normalized performance values across problems. Re-
lated to this, we observe an increasing interest in measuring and/or optimizing for anytime
performance metrics [3, 37]. We are carefully observing this development and are consid-
ering different ways to extend the statistics of IOHanalyzer with other suggested anytime
performance measures.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://iohprofiler.github.io/IOHanalyzer/R/
https://iohprofiler.github.io/

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:23

Computational details. The results in this paper were obtained using R 4.1.1 and version
0.1.6.1 of IOHanalyzer with the following packages, Rcpp 1.0.7, shiny 1.6.0 and plotly 4.9.4.1. For
the C/C++ compiler, gcc version 10.3.0 is used (for Rcpp).

APPENDIX

A SUPPORTED DATA FORMAT

IOHanalyzer aims to be as flexible as possible, and to achieve this, it supports data from many
different sources. This means that data can be presented in many different formats. At the time of
writing, the list of supported formats is as follows:

• IOHprofiler data format, which is motivated by and modified from the COCO data format.
• COCO data format as defined in [28].
• The Nevergrad format from [52].
• The SOS format from [7].
• A “two-column” format is a simplified version of the IOHprofiler format. We describe this

format in the upcoming paragraph on “Raw-data”.

When loading the data in the programming interface (and in the graphical user interface as well), it
is not necessary to specify its format as IOHanalyzer attempts to detect this automatically. For most
data formats,6 data files are organized in the same manner within the file system. The structure of
data files is as follows:

./

IOHprofiler_f1.info

data_f1

IOHprofiler_f1_DIM64.dat

IOHprofiler_f1_DIM64.cdat

IOHprofiler_f1_DIM100.dat

IOHprofiler_f1_DIM100.cdat

. . .

IOHprofiler_f2.info

data_f2

IOHprofiler_f2_DIM64.dat

IOHprofiler_f2_DIM64.cdat

IOHprofiler_f2_DIM100.dat

IOHprofiler_f2_DIM100.cdat

. . .

IOHprofiler_f3.info

. . .
Generally, in the folder (e.g., ./ here) that contains the data set, the following files are mandatory

for IOHanalyzer:

• Meta-data (.info) files summarize the algorithmic performance for each problem instance,
with the following naming convention: IOHprofiler_f1.info for problem f 1. Note that
one meta-data file can consist of several dimensions. Please see the details below.

6The IOHprofiler, COCO and the two-column formats have the same basic structure, while Nevergrad uses pure csv files

instead, and will thus not be discussed in this section.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

3:24 H. Wang et al.

• Raw-data (.dat, .cdat etc) are csv-like files that contain performance information indexed
by the running time. Raw-data files are named in a similar manner as the meta-data files, for
example, IOHprofiler_f1_DIM100.dat for problem f 1 and dimension 100. Raw-data files
are organized in sub-folders for each problem. It is important to note that those three data
formats only differ in the structure of the raw-data files.

Meta-data. When benchmarking, it is common to specify a number of different dimensions,
functions and instances, resulting in a quite large number of data files (e.g., *.dat files). It would
make the data organization more structured if some meta data are provided. Here, the meta data
are implemented in a format that is very similar to that in the well-known COCO environment. The
meta data are indicated with suffix .info. A small example is provided as follows:

suite = 'PBO', funcId = 19, DIM = 16, algId = 'self_GA'
%
data_f19/IOHprofiler_f19_DIM16.dat, 1:16001|3.20000e+001, 1:16001|3.20000e+001,
1:16001|3.20000e+001, 1:16001|2.80000e+001, 1:16001|3.20000e+001
suite = 'PBO', funcId = 19, DIM = 100, algId = 'self_GA'
%
data_f19/IOHprofiler_f19_DIM100.dat, 1:100001|1.92000e+002, 1:100001|1.88000e+002,
1:100001|1.80000e+002, 1:100001|1.76000e+002, 1:100001|1.76000e+002

Note that the IOHanalyzer relies on the meta-data present in the info-files for its processing of
associated data. Thus, it is crucial to ensure that these files are correct, especially when convert-
ing data from other formats into IOHprofiler or two-column formats. The meta data is structured
in the following “three-line” format (two examples of this “three-line” structure are provided in
the example above), storing the high-level information on all instances of a tuple of (dimension,
function).

• The first line stores some meta-information of the experiment as (name, value) pairs. Note
that such pairs are separated by commas and three names, funcId, DIM and algId are case-

sensitive and mandatory.
• The second line always starts with a single %, indicating what follows this symbol should

be the general comments from the user on this experiment. By default, it is left empty.
• The third line starts with the relative path to the actual data file, followed by the meta-

information obtained on each instance, with the following format:

1︸︷︷︸
instance ID

: 1953125︸���︷︷���︸
running time

| 5.59000e + 02︸�����������︷︷�����������︸
best-so-far f(x)

By default, the data files (*.dat, *.cdat, *.tdat, dots) are organized in the group of test func-
tions, which are again stored in sub-folders with naming convention: data_[function ID]/,
e.g., data_f10/. Moreover, when several dimensions are tested, the corresponding informa-
tion above is written into the meta data one after the other.

Raw-data. Despite the fact that different methods can be used to store data (resulting in four
types of data file, which also determines the extension, e.g., .dat or .cdat), the files take the same
format, which is adapted from csv format to accommodate multiple runs/instances. An example
of the structure of these files is shown below.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:25

"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .

1 +2.95000e+02 +2.95000e+02 0.000000 . . .

2 +2.96000e+02 +2.96000e+02 0.001600 . . .

4 +3.07000e+02 +3.07000e+02 0.219200 . . .

9 +3.11000e+02 +3.11000e+02 0.006400 . . .

12 +3.12000e+02 +3.12000e+02 0.001600 . . .

16 +3.16000e+02 +3.16000e+02 0.006400 . . .

20 +3.17000e+02 +3.17000e+02 0.001600 . . .

23 +3.28000e+02 +3.28000e+02 0.027200 . . .

27 +3.39000e+02 +3.39000e+02 0.059200 . . .

"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .

1 +3.20000e+02 +3.20000e+02 1.000000 . . .

24 +3.44000e+02 +3.44000e+02 2.000000 . . .

60 +3.64000e+02 +3.64000e+02 3.000000 . . .

"function evaluation" "current f(x)" "best-so-far f(x)" "parameter" . . .

.

Note that, each separation line (line that starts with "function evaluation") serves as a sep-
arator among different independent runs of the same algorithm. Therefore, it is clear that the
data block between two separation lines corresponds to a single run on a combination of dimen-
sion, function, and instance. In addition, a parameter value (named "parameter") is also tracked
in this example and recording more parameter value is also facilitated (see below). Columns
"current f(x)" and "best-so-far f(x)" stand for the current function value and the best
one found so far, respectively. Here, "current f(x)" stands for the function value observed
when the corresponding number of function evaluation is performed while "best-so-far f(x)"
keeps track of the best function value observed since the beginning of one run. Only two columns,
"function evaluation" and "best-so-far f(x)" are mandatory in this format. The two-

column data format mentioned previously is to describe the minimal case where only those two
columns are present in the raw data.

In order to emulate the data format generated by IOHexperimenter, it is very important to pay
attention to the following principles for the data format:

• The double quotation (") in the separation line shall always be kept and it cannot be replaced
with single quotation (').
• The numbers in the record can either be written in the plain or scientific notation.
• To separate the columns, a single space or tab can be used (only one of them should be used

consistently in a single data file).
• If the performance data is tracked in the improvement-based scheme, where a row is written

only if the "best-so-far f(x)" is improved, the user must make sure that each block of
records (as divided by the separation line) ends with the last function evaluation. This allows
the used budget to be extracted from the data-file when required.
• Each data line should contain a complete record. Incomplete data lines will be dropped when

loading the data into IOHanalyzer.
• The parameter columns, which record the state of (dynamic) internal parameters during

the search, are fully customizable. The user can specify which parameter to track when
running their algorithm using the IOHexperimenter. For more details on how to setup this
parameter tracking in IOHexperimenter, please refer to our wiki page (https://iohprofiler.
github.io/IOHexp/Cpp/#using-logger).
• In case the quotation mark is needed in the parameter name, a single quotation (') should

be used.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://iohprofiler.github.io/IOHexp/Cpp/#using-logger

3:26 H. Wang et al.

ACKNOWLEDGMENTS

We thank Arina Buzdalova, Maxim Buzdalov, Raphaël Cosson, Johann Dréo, Tome Eftimov, Pietro
S. Oliveto, Ofer M. Shir, Markus Wagner, and Thomas Weise for various suggestions that have
helped us improve IOHanalyzer and the presentation of this tool. We also thank the COCO team,
in particular Anne Auger, Dimo Brockhoff, and Nikolaus Hansen, as well as the Nevergrad team,
Jeremy Rapin and Olivier Teyaud, for help with their platforms. We also thank the anonymous re-
viewers of TELO whose comments have helped us to improve the presentation and reproducibility
of this work.

REFERENCES

[1] Anne Auger and Benjamin Doerr. 2011. Theory of Randomized Search Heuristics. World Scientific.

[2] Amine Aziz-Alaoui, Carola Doerr, and Johann Dréo. 2021. Towards large scale automated algorithm design by inte-

grating modular benchmarking frameworks. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’21,

Companion Material). ACM, 1365–1374. https://doi.org/10.1145/3449726.3463155

[3] Jakob Bossek, Pascal Kerschke, and Heike Trautmann. 2020. A multi-objective perspective on performance assessment

and automated selection of single-objective optimization algorithms. Appl. Soft Comput. 88 (2020), 105901. https://doi.

org/10.1016/j.asoc.2019.105901

[4] Sébastien Cahon, Nordine Melab, and El-Ghazali Talbi. 2004. ParadisEO: A framework for the reusable design of

parallel and distributed metaheuristics. J. Heuristics 10, 3 (2004), 357–380. https://doi.org/10.1023/B:HEUR.0000026900.

92269.ec

[5] Borja Calvo, Josu Ceberio, and Jose A. Lozano. 2018. Bayesian inference for algorithm ranking analysis. In Proc. of

Genetic and Evolutionary Computation Conference (GECCO’18, Companion Material). ACM, 324–325.

[6] Borja Calvo, Ofer M. Shir, Josu Ceberio, Carola Doerr, Hao Wang, Thomas Bäck, and Jose A. Lozano. 2019. Bayesian

performance analysis for black-box optimization benchmarking. In Proc. of Genetic and Evolutionary Computation

Conference (GECCO’19, Companion Material). ACM, 1789–1797.

[7] Fabio Caraffini and Giovanni Iacca. 2020. The SOS platform: Designing, tuning and statistically benchmarking opti-

misation algorithms. Mathematics 8, 5 (2020), 785.

[8] Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. 2019. shiny: Web Application Framework

for R. https://CRAN.R-project.org/package=shiny. R package version 1.3.2.

[9] Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck. 2021. Tuning as a means of as-

sessing the benefits of new ideas in interplay with existing algorithmic modules. In Proc. of Genetic and Evolutionary

Computation Conference (GECCO’21). ACM, 1375–1384. https://doi.org/10.1145/3449726.3463167

[10] Benjamin Doerr and Carola Doerr. 2020. Theory of parameter control for discrete black-box optimization: Prov-

able performance gains through dynamic parameter choices. In Theory of Evolutionary Computation: Recent Develop-

ments in Discrete Optimization. Springer, 271–321. https://doi.org/10.1007/978-3-030-29414-4_6 Also available online

at https://arxiv.org/abs/1804.05650.

[11] Benjamin Doerr and Frank Neumann. 2020. Theory of Evolutionary Computation—Recent Developments in Discrete

Optimization. Springer.

[12] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018. IOHprofiler: A benchmarking and

profiling tool for iterative optimization heuristics. arXiv e-prints, Article arXiv:1810.05281 (Oct 2018), arXiv:1810.05281.

arXiv:cs.NE/1810.05281

[13] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas Bäck. 2020. Benchmarking discrete op-

timization heuristics with IOHprofiler. Appl. Soft Comput. 88 (2020), 106027. https://doi.org/10.1016/j.asoc.2019.106027

[14] Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, and Thomas Bäck. 2018. Towards a theory-guided benchmarking

suite for discrete black-box optimization heuristics: Profiling (1 + λ) EA variants on OneMax and LeadingOnes. In

Proc. of Genetic and Evolutionary Computation Conference (GECCO’18). ACM, 951–958.

[15] Marco Dorigo and Thomas Stützle. 2004. Ant Colony Optimization. MIT Press.

[16] Gunter Dueck and Tobias Scheuer. 1990. Threshold accepting: A general purpose optimization algorithm appearing

superior to simulated annealing. J. Comput. Phys. 90 (1990), 161–175.

[17] Tome Eftimov, Peter Korosec, and Barbara Korousic-Seljak. 2017. A novel approach to statistical comparison of meta-

heuristic stochastic optimization algorithms using deep statistics. Inf. Sci. 417 (2017), 186–215. https://doi.org/10.1016/

j.ins.2017.07.015

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://doi.org/10.1145/3449726.3463155
https://doi.org/10.1016/j.asoc.2019.105901
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1145/3449726.3463167
https://doi.org/10.1007/978-3-030-29414-4_6
https://arxiv.org/abs/1804.05650
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1016/j.ins.2017.07.015

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:27

[18] Tome Eftimov, Gasper Petelin, and Peter Korosec. 2020. DSCTool: A web-service-based framework for statistical com-

parison of stochastic optimization algorithms. Appl. Soft Comput. 87 (2020), 105977. https://doi.org/10.1016/j.asoc.2019.

105977

[19] A. E. Eiben and James E. Smith. 2015. Introduction to Evolutionary Computing, Second Edition. Springer. https://doi.

org/10.1007/978-3-662-44874-8

[20] Carlos M. Fonseca, Andreia P. Guerreiro, Manuel López-Ibáñez, and Luís Paquete. 2011. On the computation of the em-

pirical attainment function. In Proc. of Evolutionary Multi-Criterion Optimization (EMO’11) (LNCS), Vol. 6576. Springer,

106–120.

[21] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012.

DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research 13 (2012), 2171–2175.

[22] David Freedman and Persi Diaconis. 1981. On the histogram as a density estimator: L2 theory. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete 57, 4 (01 Dec 1981), 453–476.

[23] Christian Gagné and Marc Parizeau. 2006. Genericity in evolutionary computation software tools: Principles and case

study. International Journal on Artificial Intelligence Tools 15, 2 (April 2006), 173–194.

[24] Marcus Gallagher and Sobia Saleem. 2018. Exploratory landscape analysis of the MLDA problem set. In Proceedings

of PPSN18 Workshops.

[25] Mark E. Glickman. 2012. Example of the Glicko-2 system. Boston University (2012), 1–6.

[26] Nikolaus Hansen, Anne Auger, and Dimo Brockhoff. 2020. Data from the BBOB workshops. https://coco.gforge.inria.

fr/doku.php?id=algorithms-bbob.

[27] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, Dejan Tusar, and Tea Tusar. 2016. COCO: Performance assessment.

CoRR abs/1605.03560 (2016). arXiv:1605.03560 http://arxiv.org/abs/1605.03560.

[28] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2009. Real-Parameter Black-Box Optimization Bench-

marking 2009: Experimental Setup. Research Report RR-6828. INRIA. https://hal.inria.fr/inria-00362649.

[29] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Posík. 2010. Comparing results of 31 algorithms

from the black-box optimization benchmarking BBOB-2009. In Proc. of Genetic and Evolutionary Computation Confer-

ence (GECCO’10, Companion Material). ACM, 1689–1696.

[30] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff. 2020. COCO: A plat-

form for comparing continuous optimizers in a black-box setting. Optimization Methods and Software (2020), 1–31.

https://doi.org/10.1080/10556788.2020.1808977 arXiv:https://doi.org/10.1080/10556788.2020.1808977

[31] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-Parameter Black-Box Optimization Bench-

marking 2009: Noisy Functions Definitions. Research Report RR-6869. INRIA.

[32] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A. Hackebeil, Bethany L. Nicholson, and

John D. Siirola. 2017. Pyomo-optimization Modeling in Python. Vol. 67. Springer.

[33] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd Edition. Springer. https://doi.org/10.1007/978-0-387-84858-7

[34] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. 2013. Nonparametric Statistical Methods. Vol. 751. John Wiley

& Sons.

[35] Naama Horesh, Thomas Bäck, and Ofer M. Shir. 2019. Predict or screen your expensive assay: DoE vs. surrogates in

experimental combinatorial optimization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’19).

ACM, 274–284.

[36] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for general algo-

rithm configuration. In Proc. of Learning and Intelligent Optimization (LION’11) (LNCS), Carlos A. Coello Coello (Ed.),

Vol. 6683. Springer, 507–523. https://doi.org/10.1007/978-3-642-25566-3_40

[37] Alexandre D. Jesus, Arnaud Liefooghe, Bilel Derbel, and Luís Paquete. 2020. Algorithm selection of anytime algo-

rithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’20). ACM, 850–858. https://doi.org/10.

1145/3377930.3390185

[38] Donald R. Jones. 2001. A taxonomy of global optimization methods based on response surfaces. Journal of Global

Optimization 21, 4 (01 Dec 2001), 345–383.

[39] Giorgos Karafotias, Mark Hoogendoorn, and A. E. Eiben. 2015. Parameter control in evolutionary algorithms: Trends

and challenges. IEEE Transactions on Evolutionary Computation 19 (2015), 167–187.

[40] Maarten Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. 2002. Evolving objects: A general purpose evolution-

ary computation library. Artificial Evolution 2310 (2002), 829–888. http://www.lri.fr/~marc/EO/EO-EA01.ps.gz. Latest

release available on https://nojhan.github.io/paradiseo/.

[41] Pascal Kerschke and Heike Trautmann. 2016. The r-package FLACCO for exploratory landscape analysis with applica-

tions to multi-objective optimization problems. In Proc. of IEEE Congress on Evolutionary Computation (CEC’16). IEEE,

5262–5269. https://doi.org/10.1109/CEC.2016.7748359 Flacco is available at http://kerschke.github.io/flacco/.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://doi.org/10.1016/j.asoc.2019.105977
https://doi.org/10.1007/978-3-662-44874-8
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
http://arxiv.org/abs/1605.03560
https://hal.inria.fr/inria-00362649
https://doi.org/10.1080/10556788.2020.1808977
http://arxiv.org/abs/https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1145/3377930.3390185
http://www.lri.fr/~marc/EO/EO-EA01.ps.gz
https://nojhan.github.io/paradiseo/
https://doi.org/10.1109/CEC.2016.7748359
http://kerschke.github.io/flacco/

3:28 H. Wang et al.

[42] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220 (1983),

671–680.

[43] Pedro Larrañaga and José Antonio Lozano (Eds.). 2002. Estimation of Distribution Algorithms. Springer. https://doi.

org/10.1007/978-1-4615-1539-5

[44] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A novel

bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18 (2017), 185:1–185:52. http://jmlr.org/

papers/v18/16-558.html.

[45] Xiaodong Li, Ke Tang, Mohammmad Nabi Omidvar, Zhenyu Yang, and Kai Qin. 2013. Benchmark functions for the

CEC’2013 special session and competition on large-scale global optimization. (01 2013).

[46] Jialin Liu, Antoine Moreau, Mike Preuss, Jeremy Rapin, Baptiste Roziere, Fabien Teytaud, and Olivier Teytaud. 2020.

Versatile black-box optimization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO). ACM, 620–

628. https://doi.org/10.1145/3377930.3389838

[47] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle. 2016. The

irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives 3 (2016), 43–58.

[48] Jorge J. Moré and Stefan M. Wild. 2009. Benchmarking derivative-free optimization algorithms. SIAM Journal on

Optimization 20, 1 (2009), 172–191.

[49] Antonio J. Nebro, Juan J. Durillo, and Matthieu Vergne. 2015. Redesigning the JMetal multi-objective optimization

framework. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’15, Companion Material). ACM,

1093–1100. https://doi.org/10.1145/2739482.2768462

[50] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinatorial Optimization – Algorithms and

Their Computational Complexity. Springer.

[51] Tom Packebusch and Stephan Mertens. 2016. Low autocorrelation binary sequences. Journal of Physics A: Mathemat-

ical and Theoretical 49, 16 (2016), 165001.

[52] Jeremy Rapin and Olivier Teytaud. 2018. Nevergrad - A gradient-free optimization platform. https://GitHub.com/

FacebookResearch/Nevergrad.

[53] Lennart Schäpermeier, Christian Grimme, and Pascal Kerschke. 2021. To boldly show what no one has seen before: A

dashboard for visualizing multi-objective landscapes. In Proc. of Evolutionary Multi-Criterion Optimization (EMO’21)

(LNCS), Vol. 12654. Springer, 632–644. https://doi.org/10.1007/978-3-030-72062-9_50

[54] Eric O. Scott and Sean Luke. 2019. ECJ at 20: Toward a general metaheuristics toolkit. In Proc. of Genetic and Evolu-

tionary Computation Conference (GECCO’19, Companion Material). ACM, 1391–1398. https://doi.org/10.1145/3319619.

3326865

[55] Carson Sievert. 2018. Plotly for R. https://plotly-r.com.

[56] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for model-based control. Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5026–5033. https://doi.org/10.1109/IROS.

2012.6386109

[57] Tea Tusar, Dimo Brockhoff, and Nikolaus Hansen. 2019. Mixed-integer benchmark problems for single- and bi-

objective optimization. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’19). ACM, 718–726.

[58] Tea Tusar, Dimo Brockhoff, Nikolaus Hansen, and Anne Auger. 2016. COCO: The bi-objective black box optimization

benchmarking (bbob-biobj) test suite. CoRR abs/1604.00359 (2016). arXiv:1604.00359 http://arxiv.org/abs/1604.00359.

[59] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016. Evolving the structure of evolution

strategies. In Proc. of IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1–8. https://doi.org/10.1109/

SSCI.2016.7850138

[60] Konstantinos Varelas, Ouassim Ait ElHara, Dimo Brockhoff, Nikolaus Hansen, Duc Manh Nguyen, Tea Tusar, and

Anne Auger. 2020. Benchmarking large-scale continuous optimizers: The BBOB-largescale testbed, a COCO software

guide and beyond. Appl. Soft Comput. 97, Part (2020), 106737. https://doi.org/10.1016/j.asoc.2020.106737

[61] Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Bäck. 2021. Is there anisotropy in

structural bias? CoRR abs/2105.04480 (2021). arXiv:2105.04480 https://arxiv.org/abs/2105.04480.

[62] Diederick Vermetten, Hao Wang, Furong Ye, Carola Doerr, and Thomas Bäck. 2021. IOHanalyzer version 0.1.6.1 +

example datasets. (Oct 2021). https://doi.org/10.5281/zenodo.5599719

[63] Stefan Wagner, Gabriel Kronberger, Andreas Beham, Michael Kommenda, Andreas Scheibenpflug, Erik Pitzer, Stefan

Vonolfen, Monika Kofler, Stephan Winkler, Viktoria Dorfer, and Michael Affenzeller. 2014. Advanced Methods and

Applications in Computational Intelligence. Topics in Intelligent Engineering and Informatics, Vol. 6. Springer, Chapter

Architecture and Design of the HeuristicLab Optimization Environment, 197–261. http://link.springer.com/chapter/

10.1007/978-3-319-01436-4_10.

[64] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Bäck. 2017. A new acquisition function for Bayesian

optimization based on the moment-generating function. In 2017 IEEE International Conference on Systems, Man, and

Cybernetics, SMC 2017, Banff, AB, Canada, October 5-8, 2017. IEEE, 507–512. https://doi.org/10.1109/SMC.2017.8122656

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://doi.org/10.1007/978-1-4615-1539-5
http://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1145/3377930.3389838
https://doi.org/10.1145/2739482.2768462
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1007/978-3-030-72062-9_50
https://doi.org/10.1145/3319619.3326865
https://plotly-r.com
https://doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/1604.00359
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1016/j.asoc.2020.106737
https://arxiv.org/abs/2105.04480
https://doi.org/10.5281/zenodo.5599719
http://link.springer.com/chapter/10.1007/978-3-319-01436-4_10
https://doi.org/10.1109/SMC.2017.8122656

IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics 3:29

[65] Thomas Weise and Zijun Wu. 2018. Difficult features of combinatorial optimization problems and the tunable w-model

benchmark problem for simulating them. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’18,

Companion Material). ACM, 1769–1776.

[66] L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray box optimization for Mk landscapes (NK

landscapes and MAX-kSAT). Evol. Comput. 24, 3 (2016), 491–519. https://doi.org/10.1162/EVCO_a_00184

[67] Furong Ye, Carola Doerr, and Thomas Bäck. 2019. Interpolating local and global search by controlling the variance of

standard bit mutation. In Proc. of IEEE Congress on Evolutionary Computation (CEC’19). IEEE, 2292–2299.

Received June 2021; revised January 2022; accepted January 2022

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 1, Article 3. Publication date: April 2022.

https://doi.org/10.1162/EVCO_a_00184

