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Bloom and cuckoo filters provide fast approximate set membership while using little memory. Engineers
use them to avoid expensive disk and network accesses. The recently introduced xor filters can be faster
and smaller than Bloom and cuckoo filters. The xor filters are within 23% of the theoretical lower bound in
storage as opposed to 44% for Bloom filters. Inspired by Dietzfelbinger and Walzer, we build probabilistic
filters—called binary fuse filters—that are within 13% of the storage lower bound—without sacrificing query
speed. As an additional benefit, the construction of the new binary fuse filters can be more than twice as fast
as the construction of xor filters. By slightly sacrificing query speed, we further reduce storage to within 8%
of the lower bound. We compare the performance against a wide range of competitive alternatives such as
Bloom filters, blocked Bloom filters, vector quotient filters, cuckoo filters, and the recent ribbon filters. Our
experiments suggest that binary fuse filters are superior to xor filters.
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1 INTRODUCTION

Querying a database for the presence of a key may be expensive. To accelerate processing, we
sometimes use probabilistic filters. A probabilistic filter indicates quickly whether a given key is
present in a set while using less memory than the set itself. In exchange for its small size and
high speed, the probabilistic filter allows a small probability that it may falsely report that a key
is present while it is not (a false positive). The false positives may be later pruned after checking
against the actual set. If there are few false positives, the net result might be higher speed. To
guarantee a bound of € on the false-positive probability, we require at least log, 1/€ bits per key.

The conventional probabilistic filter is the Bloom filter [1, 19]. Bloom filters use at least 44%
more memory than the theoretical lower bound: 1.44log, 1/e bits per key. Furthermore, the lower
the false-positive probability, the more random access queries and hash-function computations are
needed (~ log, 1/¢): e.g., seven accesses are required for a 1% false-positive probability. Cuckoo
filters [11] are often superior to Bloom filters. They may require as few as two distinct cache-line
accesses and they may use less memory than Bloom filters. E.g., they may use only 30% to 40%
more memory than the optimal bound in the 12-bit and 16-bit cases.

Based on a proposal by Dietzfelbinger and Pagh [7], we recently proposed the xor filter as a
practical competitive alternative [13]. It requires three random accesses, irrespective of the desired
false-positive probability, and it is within 23% of the optimal memory usage. Experimentally, we
found that xor filters can be both smaller and faster than Bloom and cuckoo filters for many realistic
scenarios. E.g., they can be twice as fast at query time as Bloom filters with a similar false-positive
probability. By sacrificing query-time performance, we could further compress part of the xor
filter, getting within 15% of the theoretical lower bound: we called the resulting filters xor+. The
space-saving feature of xor+ filters comes at a significant performance cost.

We wondered: could we get much closer to the theoretical lower bound in storage while keeping
the high performance of xor filters? Building on theoretical work by Dietzfelbinger and Walzer [8],
we propose a novel practical approach, the binary fuse filters. They are conceptually similar to xor
filters, and they rely on nearly the same simple code. Yet for sets spanning at least ten thousand
keys, they are preferable to xor filters. Indeed, they offer a significantly reduced size of ~13% over
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the theoretical bound (down from 23% with xor filters), while maintaining the same good query
time.

A downside of xor and xor+ filters [13] is their relatively slow construction time. They typically
require more construction time (e.g., 2X) than competing alternatives. The binary fuse filters, in
addition to their smaller size, also benefit from faster construction times. In some instances, the
construction speed can be twice that of xor filters. In effect, binary fuse filters render xor filters
practically obsolete.

Both the original xor filters and the new binary fuse filters are based on a 3-wise construction. To
further reduce the size of the filter, we introduce 4-wise binary fuse filters. We achieve an overhead
over the theoretical bound of only about 8% in exchange for a modest increase in query time (*30%)
compared to xor filters. The net result is advantageous compared to xor+ filters for users who need
to minimize space usage.

2 RELATED WORK

We are interested in fast and practical probabilistic filters with nearly optimal memory usage. A
probabilistic filter is built from a set. Given a candidate key, it never fails to correctly report that
the key belongs to the set, but it may sometimes erroneously report set membership, with a small
probability. In practice, given a bound on the false-positive probability, probabilistic filters have a
determined capacity at the time of the construction with a corresponding memory usage. Given a
desired bound € on the false-positive probability, we need at least log, 1/€ bits per key in the set in
general.

Data structure like hash tables or B-trees have a capacity and memory usage that can be increased
or reduced over time. Practical probabilistic filters offering bounded false-positive probability and
nearly optimal memory usage usually have a fixed capacity determined at construction time. Some
of these probabilistic filters, such as the xor filter, assume that all keys are available at construction
time whereas others, like Bloom filters, allow a progressive construction. Some filters, such as
counting Bloom filters and cuckoo filters, allow removing keys. Constructing a new filter can be
fast: many filters require less than 100 ns per key at construction time (see § 4). We may construct
a Bloom filter faster than we may sort the input data [13].

The conventional probabilistic filter is the Bloom filter [1]. It is made of an array of bits and a
collection of k hash functions hy, h, . . ., h that map keys to bit indexes. When adding a key to
the filter, we compute the k hash functions and set the corresponding k bits to 1. When doing a
membership test, we check whether the values of the k bits are set to 1. Bloom filters use as little as
1.44log, 1/e bits per key, when setting k = log, 1/e. That is, Bloom filters use ~ 44% more memory
than the lower bound of log, 1/¢ bits per key in the best case, when they are at full capacity.

Thus, Bloom filters require many independent random accesses in a bit array and much com-
putation when the false-positive probability € is small: e.g., we may need k = 14 hash-function
computations and random accesses per query for € = 1/10 000. Blocked Bloom filters [15, 23]
provide higher speed by requiring that all bits corresponding to a given key fit in a small block of
bits. It comes at a significant storage penalty (e.g., 30% more than Bloom filters) but can provide
more speed by reducing cache misses and computation. State-of-the-art blocked Bloom filters also
benefit from the fast SIMD (single-instruction-multiple-data) instructions available on commodity
processors [22]. If reduced space is not a critical feature, block Bloom filters are competitive.

There is a broad family of alternatives to the Bloom filter approach relying instead on the concept
of a fingerprint. We choose a hash function that maps each potential key to a k-bit word. Given a
set, we construct a data structure that maps each key of the set to its fingerprint. At query time,
we compare the computed fingerprint with the retrieved fingerprint from the data structure. If
they match, then we conclude that the key might be in the set. As long as the data structure acts



as a map for the keys of the original set, there can be no false negative: any key in the set is
correctly identified as being potentially in the set since the fingerprints are identical. If a key is
not in the set, then the data structure could return any other fingerprint. We randomly pick the
fingerprint-generating function from a universal family [4] so that the probability that two distinct
keys map to the same fingerprint is no more than 1/2*—our false-positive probability is € = 1/2.
If we could construct a data structure that contained just k bits per key in the original set, we
would have an ideal probabilistic filter in the sense that it would have the smallest possible storage
requirement given a false-positive bound. It is possible to get close to such a lower bound, but
engineers often wish for fast construction and fast query speeds.

Several practical probabilistic filters based on fingerprints have been proposed. Golomb-compressed
sequences [23] store the sorted partial hash codes and fingerprints, encoded as differences between
values. Golomb-compressed sequences have relatively poor query performance. Cuckoo filters [11]
store fingerprints in a cuckoo hash table. At full capacity (= 94%), they use less space than Bloom
filters for a comparable false-positive probability, and they are typically faster at query time for
low false-positive probabilities. There are other related competitive approaches such as quotient
filters [20, 21] and Morton filters [3].

In practice, a Bloom filter may be constructed with a given capacity for a given objective
false-positive probability. When it contains fewer values than the set capacity, the false-positive
probability will be lower. As more keys are added, the false-positive probability increases. In
contrast, fingerprint techniques have generally a fixed false-positive probability.

In recent work, we proposed the xor filter as a new competitive fingerprint technique [13]. It can
be viewed as a reduced form of the Bloomier filter [5, 6]. The xor filter is made of an array of k-bit
words. At query time, we map the provided key to three locations in the array, and we compute the
bitwise xor of the three corresponding words. We check that it matches the fingerprint of the key.
By following the algorithm from Botelho et al. [2], we demonstrated practically that it was possible
to map the fingerprints from a set of size n to an array containing ~ 1.23 X n words—as long as n
is large enough. In effect, we leave about 23% of the words to zero. Furthermore, we can further
compress the array to try to recover some of the wasted (zero) space with an approach that we
called the xor+ filter. However, the xor+ filter comes at a significant performance penalty since bit
values cannot be directly accessed with a single memory lookup. The even more recently proposed
ribbon filters are also based on fingerprints, but—unlike xor filters—use Gaussian elimination.
Dillinger and Walzer [9] find that though xor filters have better query-time performance, ribbon
filters have several advantages. Ribbon filters are more configurable than xor filters, supporting
many different false-positive probabilities and they can trade construction time for space efficiency.
Ribbon filters also have fast construction time compared to xor filters: our own experiments support
this observation.

3 BINARY FUSE FILTER

The binary fuse filter is a variation on the xor filter [13]. It is made of a fingerprint function, an
array of fingerprints and a hash function from keys to locations in the array of fingerprints. We
review the construction of the xor filter.

We start from a set of n distinct keys from a given universe of keys. Furthermore, we need a
fingerprint function that maps each possible value from the universe to a word value (e.g., an 8-bit
word). The size of the word in bits determines the false-positive probability: each additional bit
reduce the false-positive probability by half. The fingerprint function may be provided by the user.
The construction itself consists of picking a hash function and populating an array of fingerprints.



We begin by describing a 3-wise construction though we also extend it to a 4-wise construction.
We pick three hash functions mapping each key of the set to three distinct locations in the array.
These hash functions are picked at random from a family of hash functions. For each key, we want
to pick one primary location out of the three array locations. Furthermore, we seek an ordering of
the keys such that no key is mapped to the primary location of an earlier key.

The xor filter is built out of such a construction. To construct an xor filter, we pick an array, which
contains ~ 1.23n words, and we divide it into three nearly equal segments (of size ~ 1.23n/3).!
Given a 3-way hash function from the set to the array, each word in the array is mapped from
~ 3/1.23 ~ 2.4 keys of the set, on average. We can count how many keys from the set are mapped to
each location. We can scan the array, and when we find a location that corresponds to exactly one
key from the set, we match this key to this location. We remove the matched key from consideration
as if it never existed: we decrement the three counters corresponding to its corresponding three
distinct locations. Each time we remove a key, we potentially create new locations corresponding
to a single key. With high probability, this peeling process eventually terminates when all keys have
been removed. As a result, we have constructed an injective function. In case of failure, we restart
the process with different hash functions—again picked at random. The exact success probability
depends on the size of the set and on the size of the array: we found empirically that it was greater
than 90% when the array contains 1.23n + 32 words [13]. For large sets, the probability converges to
100%. We can bound the failure probability and thus the expected construction time: a lower bound
of 90% on the success rate implies that the expected number of trials is no more than = 1.1. We can
then build an xor filter as follows. We start from the last matched key, and we iterate backward
through all keys—in the reversed order that they were matched. Each time, we query the three
word values in the array corresponding to the key, and modify the value in the array at the one
location corresponding to the key so that the bitwise exclusive or (xor) value of the three word
values is equal to the fingerprint of the key. By construction, once we have read an array value,
we never modify it again. Thus, if we pick any key from the set, and xor the three corresponding
values from the array, we find again the fingerprint of the key.

To query an xor filter, starting from a potential key, we compute the three hash functions. We
access the three corresponding locations in the array. We compute the bitwise exclusive or value of
the three values, and we compare it with the fingerprint of the potential key. If the key is part of
the set, then the fingerprint matches the aggregate of the three values. If the key is not part of the
set, then it is likely that its fingerprint differs from the aggregate.

An xor filter is fast at query time. Although we query three distinct locations in the array to check
any membership, modern processors can sustain ten, twenty or more memory loads in parallel at
any one time per core. However, the construction can be relatively slow since we rely extensively
on unpredictable random accesses. As the size of the array grows, our construction struggles to
make good use of the fast cache of the processor. We can slightly optimize the construction with
buffers, but we have been unable to make the construction of the xor filter as fast as that of a
comparable Bloom filter.

The xor filter relies on a three-way partition of the array. Dietzfelbinger and Walzer [8] suggest
an approach that might be preferable, especially for larger values of n: we can divide the array into
many small same-size non-overlapping segments (e.g., hundreds) and then have the hash function
pick three distinct locations corresponding to three consecutive segments.? They note that this
construction works well for large values of n. For small values of n, we can set the number of
segments to three, in which case the construction, and the space usage, match the xor filter. Hashing

IThe ratio 1.23 between the size of the array and the size of the set holds asymptotically for n large.
2Walzer [25] examined a variation where the segments are overlapping.



keys to a power-of-two integer range is easier and faster than hashing to an arbitrary range. Thus,
to ease the computation, we further require that the segments span a power of two. Hence, the
generation of the hash function may only involve the selection of a starting segment followed
by the efficient computation of three hash values within a power-of-two range. In this manner,
we hash keys to three locations within three consecutive segments. Except for this difference in
the choice of the hash functions, everything is conceptually the same as for xor filters during the
construction and the queries. We intuitively improve locality: a set value is mapped to a smaller
range of addresses in memory. It also allows us to use a smaller array while still having a low
failure probability. For large sets, we only need an array with ~ 1.125n elements (see Table 1): a
space reduction of nearly 10% compared to the xor filter. Following Dietzfelbinger and Walzer’s
terminology, we name this approach a fuse filter. We further qualify it as binary because of the
requirement that the disjoint segments span a power of two.

So far, we have limited the discussion to three hash functions. By replacing the three hash
function with four hash function, we can reduce even more the size of the array, making it closer to
n. The construction is the same. We map each key to four (instead of three) locations in the array.
We find in practice that for large sets (e.g., containing one million keys), we only need an array of
size 1.075n. It is a modest space saving of about 5% compared to the three-wise fuse filter, but a
saving of ~ 15% compared to the xor filter. We call the resulting construction a 4-wise fuse filter.

In theory, we could increase further the arity to achieve further space savings, as suggested by
Dietzfelbinger and Walzer [8], but we are already within 7.5% of the theoretical lower bound with
the 4-wise construction. Furthermore, each increase in the arity comes with a computational cost.
In the other direction, decreasing the arity increases the storage requirements. In effect, the cuckoo
filter could be viewed as a practical realization of the 2-wise scenario, although it requires the
replacement of simple array locations with buckets for efficiency.

In Fig. 1, we compare theoretical bounds of various probabilistic filters including the binary
fuse filters. We omit xor+ filters which require 1.08241og,(1/€) + 0.5125 bits per entry: strictly
worse than 4-wise binary fuse filters (1.075 log,(1/€)). Over the selected range (27'¢ to 27%), the
4-wise fuse filter is the most economical. For very small false-positive probabilities, a cuckoo filter
becomes slightly smaller. For example, the 3-wise and 4-wise fuse filter require 65 bits and 62 bits
respectively to achieve the same false-positive probability as a 64-bit cuckoo filter (3 X 1076%).

We find it interesting that it is possible to build a binary fuse filter much faster than an xor filter.
The main speed limitation when building an xor filter over a large set is related to the random
accesses. It takes much time, for example, to load and update three counter values at three random
locations in a large array. A binary fuse filter can be constructed with better memory locality as
follows. See Algorithm 1.

e A given key is mapped to consecutive segments in the array (e.g., three segments in the
3-wise case). In a first pass through the input keys, we partially sort them to a second buffer
by the segment they are mapped to. This can be done efficiently, in linear time with a single
pass, because there are few segments (e.g., 300).

e We can then scan through the partially sorted keys and update a temporary array of counters—
such an array tells us how many keys map to a given location. Because the keys are sorted by
segment, a forward pass through the keys tends to access the counters in a forward manner,
thus reducing the number of cache misses compared to a random approach.

e We scan the array of counters to identify the locations corresponding to a single key. The
corresponding keys are added to a stack. Since we scan forward, the later keys in the stack
tend to correspond to later locations.
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Fig. 1. Theoretical memory usage for Bloom filters (optimized for space), cuckoo filters (at maximal capac-
ity [11, Table 2]), xor filters and binary fuse filters given a desired bound on the false-positive probability
from 2716 to 278,

e We then unwind the stack, virtually removing the keys, and conditionally adding the newly
isolated keys. These marked keys are added to another stack. This process tends to visit
the locations backwards, from the last locations to the first locations. Usually, the process
terminates successfully.

e Finally, starting from the latter stack, we can construct the binary fuse filter, by making sure
that the bitwise exclusive or of the values at the three locations map to the fingerprint of the
keys. By construction, we tend to go from locations that are at the beginning of the array,
working toward the end of the array.

In effect, given that the disjoint segments are hundreds of times smaller than the overall array (see
Fig. 2), we naturally tend to work in a local manner which makes it easier for the system to keep
the needed values inside the CPU cache. The only additional effort is the initial partial sort, but it is
relatively inexpensive.

Algorithm 1 relies on an array of sets. In practice, we implement the sets using an integer-value
counter and a fixed-length mask initialized at zero. When adding a key, we increment the counter
and compute the exclusive-or of the key with the mask, storing the result as the new mask. We
similarly remove a key by decrementing the counter and computing an exclusive-or. When the set
is a singleton, the mask contains the element value.

Table 1 provides the formulas to compute the size of the fingerprint array and the size of the
segment sizes. For large sets, the array sizes tend toward 1.125n (3-wise) and 1.075n (4-wise)
according to these formulas. In practice, we further round up the fingerprint array size so that it is
a multiple of the segment size. We also ensure that there are at least 3 segments in the 3-wise case,
and at least 4 segments in the 4-wise case, but that is only a concern for tiny sets. We arrive at these
parameters empirically after building simulations. We find that the failure probability, when using
these formulas for sets ranging from a few keys to hundreds of millions, are less than 1%—typically
far lower than 1%.
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Table 1. Initial fingerprint array sizes and segment sizes given a set of size n. The actual fingerprint array
sizes are rounded up so that they are divisible by the segment sizes.

array size segment size

6
3-wise [(0.875+0.25 max(l, Ij’fglg )) nJ > |1.125n]  2Uogasn+2:25] & 4.8 058

105
4-wise {(0.77+0.305 max(l, %)) nJ > [1.075n]  2Uogn n=05] 5 0.7 065

4 EXPERIMENTS

We test our algorithms using freely available C++ software.> We support both Linux and macOS
platforms. We use the GCC 10 compiler with the compiler flags -03. Under the x64 systems, we
add the -march=native flag for the benefits of the blocked Bloom filter—which requires AVX2
instructions. All software is single-threaded. We never access the disk or the network during the
benchmarks.

Our primary test platform is an x64 Linux server with an Intel processor with Skylake microar-
chitecture: an Intel i7-6700 processor running at 3.4 GHz GHz, with 8 MiB of L3 cache. For each
filter, we run 3 tests, and report the median. Our error margin is less than 3%.

Our secondary test platform is an x64 Linux server with an AMD EPYC 7262 (Rome Zen 2, 2019)
processor running at 3.39 GHz. It has 32 KiB of L1 data cache, 512 KiB of L2 cache and 128 MiB of
L3 cache. Here, our error margin is much higher: 25%, and this is why it is not our primary test
platform. We expect that run-to-run variations are mostly due to caching effects, which seem to
be much higher here than for the older Skylake processors. We ruled out frequency throttling:
our benchmarking tool reports the effective processor frequency under Linux and the frequency
variations are small (less than 1%). Because of the higher error margin, we run 15 tests for each
filter, and report the median. The results are reported in appendix A.

3https://github.com/FastFilter/fastfilter_cpp
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Algorithm 1 Filter Construction for 3-wise binary fuse filters.

Require: a set containing n (distinct) keys S from universe U
Pick a fingerprint function F from U to k-bit integers for some value of k > 0 which determines
the false-positive probability (e = 1/2F).
Allocate H « an array of size ~ 1.125n containing k-bit integers (initialized at zero), divided
into segments of size 2110853 7+2:25] (see Table 1).

repeat
Pick hash functions hy, hy, h; from U to array locations in H so that hy(x), hy(x), h2(x) occupy
three distinct and consecutive segments.
Sort the keys x in set S by the index of the segment containing hy(x): the first keys should
map to the first segment, then the next segment and so forth.
Allocate an array c of sets having the same size as H. The sets are initially empty.
Scan through the keys x in set S in order, and add x to the sets c[ho(x)], c[h1(x)], c[h2(x)].
Scan through the array c in order, and each time a singleton is found, append the location to a
stack (Q).
Initialize an empty stack P
while stack Q is not empty do
Pop a location i from the stack Q
if c[i] is a singleton then
Append the key x contained in c[i] and its location i to the stack P
Remove the key x from lists c[ho(x)], c[h1(x)], c[h2(x)]. If any of these sets become
singleton, add their location to stack Q.
end if
end while
until the size of Pis n

while stack P is not empty do
Pop a key x and a location i from the stack P. We have that i € {h(x), h1(x), ha(x)}.
Set H[i] « H[ho(x)] xor H[hi(x)] xor H[hy(x)] xor F(x).

end while

return H as well as the corresponding hash functions hq, 1, h,

Though our benchmarking software is written in C++, we have ported the binary fuse filters to
other programming languages such as Java, C and Go, and we make them freely available.* We
verified that our good results are not specific to our C++ implementations.

For performance reasons, both our xor filters [13] and binary fuse filters rely whole-byte fin-
gerprint sizes (e.g., 8-bit, 16-bit). We do not expect our filters to be practical in terms of speed for
arbitrary word sizes. We exclude xor+ filters from consideration: they require more storage than
4-wise binary fuse filters and they are slower than xor filters both at query and construction time
(e.g., by a factor of two). When constructing xor or binary fuse filters, we do not work directly on
the input keys during construction, but rather on their hashed values: therefore, the construction
performance is not sensitive to the choice of the keys in the provided set.

“https://github.com/FastFilter/
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We compare our results against several competitive filters. Implementation details are impor-
tant, and a missed optimization can provide a misleading picture. However, we make all our
implementations freely available online.

We implemented the standard Bloom filter algorithm with configurable false-positive proba-
bility and size. We test with 12 and 16 bits per key, and the respective number of hash functions
k that are needed for the lowest false-positive probability. For fast construction and member-
ship tests, we rely on double hashing: we hash only once with a 64-bit function, treated as
two 32-bit values h; (k) and h; (k). The hash functions are g;(k) = hy (k) +i - hy(k) mod 232
fori=0,...,k — 1. We use an optimized construction algorithm that hashes the keys in bulk,
within batches, before setting the bits in the array—thus improving memory-level parallelism.
Thus, our implementation of Bloom filters is not naive: we attempt to provide a sensible
baseline.

We use a highly optimized blocked Bloom filter from Apache Impala. It was designed for
the Intel AVX2 256-bit instruction set. Queries require access to a single cache line. We
have extended the implementation so that it works under processors not supporting AVX2
instructions—but the results are not equally impressive. Hence, we only benchmark the
blocked Bloom filter with AVX2 instructions enabled.

We modified the original cuckoo filter implementation [10]. The maximum load was reduced
from 0.96 to 0.94: a recommended workaround suggested by the cuckoo-filter authors. We
further modified the code to lift the restriction to a power-of-two capacity [11] since it may
otherwise leave too much excess capacity. We use 12-bit and 16-bit fingerprints.

We use the original implementation of ribbon filters [9] which was made available online
as a GitHub fork of our own benchmarking code.’ We modified the implementation of the
ribbon filters so that they use the same hashing algorithm as all other tested algorithms. It
ensures that the construction of the filters is not practically sensitive to input values. There
is a wide range of ribbon filters, and an exhaustive survey is beyond our scope. We use both
the standard and homogeneous ribbon filters (8-bit and 15-bit versions).

We use a slightly modified implementation of vector quotient filters [21] which was made
available online.® We optimized the implementation to speed up both construction and
lookup by replacing remainder instructions with multiply-and-shift routines [17]. The relative
maximum load was set to 0.93, to ensure reliable successful construction. We slightly changed
the calculation of the fingerprint (tag) so that the false-positive probability is consistent
with the expectation for 8-bit fingerprints (1/2%). On our test platforms, we rely on AVX2
instructions: AVX-512 instructions are unavailable. We considered speeding up construction
by pre-sorting the entries, but found empirically that doing so would reduce the maximum
load to about 0.85.

Our benchmark begins with a set of random 64-bit integers as keys. In practice, engineers
might have sets of variable-length strings or other values, but we assume that all such objects
can be hashed to 64-bit integers. Such hashing might cause collisions—when two values hash to
the same value—which would increase the false-positive probability. Yet 64-bit hashing should
have a negligible effect on the false-positive probability (~ 1/2%* times the size of the set).” In our
implementation, we make no assumption about the distribution of the keys other than they should
be distinct: we check that our results are similar when, for example, we use sequential keys (e.g.,

Shttps://github.com/pdillinger/fastfilter_cpp
®https://github.com/splatlab/vqf
7We assume that n/2% < e where n is the size of the set.


https://github.com/pdillinger/fastfilter_cpp
https://github.com/splatlab/vqf

1,2,3,...). For all implementations, we use a randomly seeded 64-bit murmur hash function [14] to
compute the fingerprint from the key.

A common use case for a probabilistic filter is a large number of candidate keys that are not,
in fact, in the set. Thus, we may want to use a query set that is distinct from the filtered set. Yet
there may be other use cases. Thus, we generate large random query sets with 100 million keys
containing a variable fraction of keys from the filtered set. We select the scenario where 25% of
the keys are in the set. We shuffle the query sets so that keys that are in the set may appear at
any location—this should prevent the branch predictor in the processor from being unrealistically
accurate.
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Fig. 3. Comparison between 8-bit xor and binary fuse filters for various number of keys. The number of bits
per entry for the 16-bit filters would be double.

In Fig. 3, we present the construction time per key and the number of bits per key for variable
numbers of keys in the filtered set. All these filters are based on an 8-bit construction and have an
expected false-positive probability of 1/2% ~ 0.4%. We compute the construction time by repeating
the construction as many times as necessary so that the total duration is at least 0.1 s. When more
than one construction is needed, we compute the average time. We find that the construction
time of both the 3-wise and 4-wise binary filters are similar and more than twice as fast as the
construction of a comparable xor filter (Fig. 3a). The construction of the xor filter is not naive: it
is an optimized construction and uses buffers to improve memory-level parallelism. The memory
usage of the binary fuse filters is predicted by the formula in Table 1. Nevertheless, it is maybe
useful to plot the actual memory usage of our implemented filters (Fig. 3b). Recall that we round
up the array sizes so that we have an integer number of segments so that we do not use exactly
[0.875 + 0.25 max (1, log,, 10°) | bytes per key.

As expected, experimentally, we find that for large sets—with at least a million keys—the 3-wise
filter reaches 9 bits/key, or 12.5% worse than the theoretical minimum, while the 4-wise reaches
about 8.6 bits per key, or 7.5% worse than the theoretical minimum. These memory usages are
preferable to the xor filter which uses 9.84 bits per key or 23% worse than the theoretical minimum.
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For smaller sets, the benefits of the binary fuse filters are less significant. For tiny sets (fewer than
20 000 keys), xor filters might even be slightly smaller due to a smaller overhead.®

Our benchmark consists of first constructing the probabilistic filter. And then, after picking a
given query set, we repeatedly check whether keys of the query set are in the set according to the
filter. We count the number of matches in a tight loop. To avoid undue compiler optimizations,
we prevent the inlining of the contain function calls using the noinline function attribute under
GCC. We find that our results are accurate with a run-to-run standard error of about 1% for filtered
sets containing 100 million keys and for query sets containing 10 million keys.

In Fig. 4, we plot the construction time per key. For filters that have a parameter determining
the false-positive probability, we plot all values with lines between them: e.g., with xor filters, we
include both the 8-bit and 16-bit versions. The fastest construction is with the blocked Bloom filter,
but it has a relatively high fast-positive probability. The binary fuse as well as the ribbon filters offer
the fastest construction for filters that have less than 20% space overhead and a low false-positive
probability. We find that xor and cuckoo filters have slower construction. The vector quotient filters
have faster construction than cuckoo filters.
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Fig. 4. Construction time versus the false-positive probability (%) for some families of filters on an Intel
Skylake system with 100 million keys. The lines between pairs of marks are for improved readability: only the
marks represent actual data.

In Fig. 5a, we plot the memory usage of the various filters normalized against the theoretical
minimum: log, 1/€ where € is the measured (effective) false-positive probability. A relative measure
makes comparisons between filters having different false-positive probabilities easier. The blocked
Bloom filter has the worst memory efficiency, followed by the Bloom and vector quotient filters.
The standard and homogeneous ribbon filters as well as the binary fuse filters are more economical
in our tests.

8More expensive constructions [12] could be advantageous for small sets.



In Fig. 5b, we present the query-time performance. The fastest filter is the blocked Bloom filter.
We find that the xor and 3-wise binary fuse filters have the next best performance. The 4-wise
binary fuse filter and cuckoo filters have similar albeit slightly worse query performance in our
tests. The Bloom filters are slower, followed by the ribbon and vector quotient filters.

By comparing Fig. 4 and Fig. 5b, we find that most filters have a query time (per key) that is
within a factor of two of the construction time (per key). In our experiments, only the xor and
cuckoo filters are several times more expensive to construct than to query.
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Fig. 5. Relative space usage compared to theoretical minimum and query time (25% in-set) versus the false-
positive probability (%) for some families of filters on an Intel Skylake system with 100 million keys. The lines
between pairs of marks are for improved readability: only the marks represent actual data.

5 CONCLUSION

In many applications, we must index a static set at high speed, and using little space. Though Bloom
filters remain a competitive solution, they use 44% more space than the theoretical lower bound
while practical solutions such as 3-wise binary fuse filters use far less (only ~ 12%). While our new
work on binary fuse filters makes our recent work on xor filters in large part obsolete, we should
draw the reader’s attention to ribbon filters which perform well in our experiments.’

Xor and binary fuse filters require access to the full set of keys at construction time. In this sense,
they are immutable. Alternatives have typically a fixed memory usage and a maximal capacity,
but they also allow more flexibility such as progressive construction (adding keys one by one).
This observation suggests at least two directions for future research. On the one hand, we could
design more flexible algorithms to build binary fuse filters: e.g., so that they become bulk updatable.
On the other hand, we could seek to better document applications where immutable probabilistic
filters are best suited: e.g., when the filter is sent over a network, bundled with a front-end or used
in a multi-threaded environment where locking is undesirable [18, 24].

9For an exhaustive analysis and experimental assessment of ribbon filters, we refer the interested reader to Dillinger and
Walzer [9].



Our experimental evaluation is single-threaded. In networking or database applications, filters
must be capable of high concurrency. Future work should assess binary-fuse filters performance on
multiple cores with a focus on memory bandwidth, core-level memory parallelism and realistic
tasks. We also did not consider advanced SIMD-based optimizations such as those made possible
by the AVX-512 instruction sets [16].

In our software implementation, we rely on randomized murmur hash functions [14] to construct
our filters. However, theoretical analysis often relies on fully random hash functions [8, 25]. Future
research could seek to bridge this gap between theory and practice: fully random hash functions
are typically impractical.
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A BENCHMARK RESULTS ON AMD

In Fig. 6a, we plot the construction time per key. We find that on this platform, binary fuse filters
are faster to construct than ribbon filters. In Fig. 6b, we plot the query time per key. We find that
ribbon filters are slightly worse, relatively speaking, compared to our primary test platform. The
vector quotient implementation relies on the pdep instruction which is slow on this AMD processor:
it makes the vector quotient implementation non- competitive and we omit it from consideration.
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Fig. 6. Construction and query time versus the false-positive probability (%) for some families of filters on an
AMD Rome system with 100 million keys. The lines between pairs of marks are for improved readability: only
the marks represent actual data.
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