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ABSTRACT
The trend to consume high-quality videos over the internet lead to
a high demand for sophisticated and robust video player implemen-
tations. dash.js is a prominent option for implementing production
grade DASH-based applications and products, and is also widely
used for academic research purposes. In this paper, we introduce the
latest additions and improvements to dash.js. We focus on various
features and use cases such as player performance and robustness,
low latency streaming, metric reporting and digital rights man-
agement. The features and improvements introduced in this paper
provide great benefits not only for media streaming clients, but
also for the server-side components involved in the media stream
process.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Security
and privacy → Digital rights management.
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1 INTRODUCTION
In 2019, 60% of the global application internet traffic was caused
by video streaming applications. [14] Streaming providers such as
Netflix and YouTube accounted for 12.6% and 8.7% of the global
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application traffic, respectively. [14] The two main streaming for-
mats used for the delivery of video content over the internet are
HTTP Live Streaming (HLS) and Dynamic Adaptive Streaming over
HTTP (MPEG-DASH). According to the Bitmovin Video Developer
Report of 2021, HLS is used by 73% of the streaming providers while
MPEG-DASH reaches 64% adaption. [4]

The trend to consume high-quality videos over the internet leads
to a high demand for sophisticated and robust video player imple-
mentations. Unreliable and erroneous player behavior results in bad
user experience and potential loss of customers. A major challenge
for player development is the heterogeneity of target platforms
and devices, ranging from gaming consoles to Smart TVs, mobile
devices, and desktop browsers. To benefit from continuous code
contributions and improvements coming from the community and
to support a wide variety of these platforms and devices, 57% of
streaming providers use an open source code-base for their video
players. [4]

In this paper, we introduce the latest additions and improvements
to dash.js, a free, open-source MPEG-DASH player. dash.js is a
prominent option for implementing commercial, production grade
DASH-based applications and products. Moreover, dash.js serves
as a reference client for academic purposes.

The remainder of the paper is structured as follows: Section 2,
introduces dash.js and the underlying technology stack. Section 3
covers performance and robustness improvements to dash.js. This
includes MPD patching as a mean to reduce the bandwidth and
parsing requirements on the client side, as well as the latest improve-
ments in terms of multiperiod playback. Moreover, the reason for
gaps in the media buffer and their handling in dash.js is described.
Furthermore, ways of recovering from MSE errors are introduced.
Section 3 closes with an introduction of the UTC synchronization
logic in dash.js. Section 4 discusses the problems that media players
are facing when playing with low latency. Low on Latency+ and
Learn2Adapt as two new ABR algorithms specifically designed for
low latency streaming are introduced. Next, Section 5 covers the
CommonMedia Client Data (CMCD) implementation in dash.js and
the benefits for media players and CDNs when using CMCD. The
paper closes with a discussion of the latest improvements regarding
Digital Rights Management (DRM) in Section 6 and the conclusion
in Section 7
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2 DASH.JS
dash.js, is a free, open-source MPEG-DASH player. It is available on
GitHub 1 and NPM 2 under the BSD license. dash.js is an outcome of
the Dash Industry Forum (DASH-IF) , a group of leading streaming
companies promoting and catalyzing the adoption of MPEG-DASH.
[10] Since 2019 Fraunhofer FOKUS is the official maintainer of
the dash.js project and has reviewed and contributed major new
features and improvements to the dash.js source-code. [9] dash.js is
written in JavaScript and uses the Media Source Extensions (MSE)
and the Encrypted Media Extensions Encrypted Media Extensions
(EME) defined by World Wide Web Consortium (W3C).

As most of the common target platforms support both MSE and
EME, dash.js is a prominent option for a production grade player.
A single player, running on all the required target devices and plat-
forms, eliminates the need for maintaining different codebases. This
results in time and resource savings. In addition, users of dash.js
benefit from the continuous active development of the player and
code contributions from the development community. Examples of
companies using dash.js in production are British Broadcasting Cor-
poration (BBC) [1] and Deutsche Telekom 3. dash.js is also widely
used in the academic field, for instance for researching new ABR
algorithms.

dash.js offers a wide set of features related to adaptive media
streaming. This includes playback of dynamic and static content
using the DASH and Smooth Streaming format. Moreover, mul-
tiple DRM systems (Widevine, Playready, Clearkey) and multiple
versions of the EME (0.1b,2014,2015+) are supported. dash.js of-
fers a flexible and extendable buffer and throughput-based ABR
decision logic and support for CMAF based low-latency streaming.
Furthermore, multiple subtitles formats such as embedded (CEA-
608, CEA-708), fragmented (TTML, IMSC1, EBU-TT) and sideloaded
(WebVTT, TTML) are supported. Additionally, dash.js offers sup-
port for multi-audio, thumbnails and offline playback.

3 PERFORMANCE AND ROBUSTNESS
IMPROVEMENTS

This Section covers changes and additions to dash.js regarding
player performance and player robustness. First, MPD patching as
a mechanism to minimize the amount of data required to update
the Media Presentation Description (MPD) on the client side is
introduced. Next, improvements for multiperiod playback and gap
handling are discussed. In addition, the handling of MSE errors is
explained. The Section closes with an illustration of the improved
UTC synchronization mechanism in dash.js

3.1 MPD patching
In a typical dynamic streaming session, the Media Presentation
Description (MPD) is frequently updated. MPD updates mainly
include the addition and removal of media segments and period
elements. Although some parts of the MPD can change between
two consecutive MPD updates, most parts of it remain unchanged.
Consequently, only the clients freshly joining the streaming session
need all information from the MPD. For existing clients, a lot of the
1https://github.com/Dash-Industry-Forum/dash.js
2https://www.npmjs.com/dashjs
3https://web.magentatv.de/

information in the MPD is already known and does not need to be
signaled again.

The size of MPDs using a <SegmentTimeline> or <SegmentList>
mechanism tend to increase very fast. In Performance Considerations
of HTML5-Based Dynamic Packaging for Media Streaming [16] we
examined the relationship betweenmanifest sizes and parsing times
of HTML5 based video players on different platforms. We found
that parsing of a manifest with a size of 191kb can take up to
2500ms on devices with low computational power. Consequently,
the reduction of manifest sizes has a significant influence on the
performance of the player and the quality of experience for the end
user. In the worst case, a player cannot keep up with the signaled
manifest update frequency, simply because the manifest parsing
time exceeds the specified update frequency. Another essential
point is the bandwidth requirement on the server and the client
side. Large manifest files with lots of redundant information lead
to wasted bandwidth on the client side and higher delivery costs
on the server side.

MPEG-DASH 5th Edition introduces MPD patching as a mech-
anism to provide only mandatory MPD information to the client,
minimizing bandwidth and parsing requirements. The complete
MPD is only fetched once at playback start. Subsequent updates to
the MPD are provided through MPD patches. MPD patches only
contain new information, such as additional media segments. First
results from Hulu showed that MPD patching significantly reduce
the size and the parsing time of the transferred XML data [5].

dash.js introduced support for MPD patching in version 3.2.1
4. The basic workflow for MPD patching in dash.js is depicted in
Figure 1. At playback start, the full MPD is requested. For every
other MPD update, dash.js checks if a <PatchLocation> element is
defined on MPD level. The <PatchLocation> points to the server that
provides the patching information. In case a valid <PatchLocation>
is defined the patching information are requested, otherwise the
full MPD is fetched. MPD patching uses XPath 5 to address spe-
cific paths of the XML based manifest file. An example of an MPD
patching manifest is depicted in Listing 1. In this example, a new
<S> element is added to the existing <SegmentTimeline> element.
Moreover, the MPD@publishTime and the MPD@PatchLocation are
updated. In case the provided MPD patch is invalid or incompatible,
the full MPD is requested again. Patches are considered incompat-
ible if either the MPD@id does not match the Patch@mpdId, or
MPD@publishtime does not match Patch@originalPublishTime, or
MPD@publishtime is greater than Patch@publishTime.

Listing 1: Example of a patch manifest
<?xml v e r s i o n = " 1 . 0 " encod ing ="UTF−8" ?>
<Patch mpdId= " channe l " o r i g i n a l P u b l i s hT ime = " 2019 −10 −18T22 : 0 6 : 1 4 " pub l i shT ime= "

2019 −10 −18T22 : 0 6 : 1 7 "
xmlns= " urn : mpeg : dash : schema : mpd−pa tch : 2 0 2 0 " xmlns : p= " urn : i e t f : params : xml :

schema : patch −ops " >
<p : r e p l a c e s e l = " /MPD/ @publishTime " >2019 −10 −18T22 : 0 6 : 1 7 > < / p : r e p l a c e >
<p : r e p l a c e s e l = " /MPD/ Pa t chLo c a t i on [ 0 ] " >

< Pa t chLo c a t i on t t l = " 60 " > / pa t ch / channe l . mpd? pub l i shT ime =2019 −10 −18T22
: 0 6 : 1 7& s =5095823234< / P a t chLo c a t i on >

< / p : r e p l a c e >
<p : add s e l = " /MPD/ Pe r i od [@id = ' 1 ' ] / Adap t a t i onS e t [@id = ' 2 ' ] / SegmentTemplate /

SegmentTimel ine " >
<S t = " 5095823234 " d= " 360360 " / >

< / p : add>
< / Pa tch>

4https://github.com/Dash-Industry-Forum/dash.js/releases/tag/v3.2.1
5https://www.w3.org/TR/1999/REC-xpath-19991116/

33

https://github.com/Dash-Industry-Forum/dash.js
https://www.npmjs.com/dashjs
https://web.magentatv.de/
https://github.com/Dash-Industry-Forum/dash.js/releases/tag/v3.2.1
https://www.w3.org/TR/1999/REC-xpath-19991116/


Latest advances in the development of the open-source player dash.js MHV ’22, March 1–3, 2022, Denver, CO, USA

Figure 1: The basic workflow for MPD patching.

3.2 Multiperiod playback
Multiperiod playback is the foundation for important use cases
such as ad-insertion and transition between encrypted and non-
encrypted content. The structure of a typical multiperiod MPD is
depicted in Figure 2. In this case, the main content is interrupted
by two ads and a short ad-slate. Ad slates are used in case the total
duration of the ads returned by the ad server does not match the
duration of the ad opportunity.

Figure 2: An example of a multiperiod MPD. The main con-
tent is interrupted by two ads and a short ad-slate.

dash.js version 4.0 6 introduced various improvements related
to playback of multiperiod content.

One of the new key features is the support for prebuffering
multiple upcoming periods. In previous versions of dash.js the
prebufferingwas limited to a single period. This lead to small buffers
and stability problems in case of upcoming short periods such as ad-
slates. By prebuffering multiple upcoming periods dash.js maintains
a stable buffer level and is less prone to bandwidth fluctuations.
6https://github.com/Dash-Industry-Forum/dash.js/releases/tag/v4.0.0

Another important change is the adjustment of the DVR window.
Before dash.js 4.0 the DVR window was bound to the currently
active period as illustrated in Figure 3. Consequently, seeking was
limited to a single period, even if the DVR window defined in the
MPD included multiple periods. With dash.js 4.0 the DVR window
for multiperiod streams is implemented in a specification-compliant
manner, enabling seeking between the periods.

Figure 3: The DVR window in dash.js 3.x is limited to the
current active period. dash.js 4.0 removes this restriction.

Another important change in dash.js 4.0 is the support for tran-
sition between non-encrypted and encrypted periods. Most MSE
based devices require a reset of the MediaSource when switching
from non-encrypted to encryptedmedia segments. This is due to the
reason that the SourceBuffers were initialized with an unencrypted
initialization segment. dash.js accounts for this requirement and
thereby enables playback of streams that start with an unencrypted
period and then transition to an encrypted period.

3.3 Gap handling
A huge problem for MSE based players are gaps in the presentation
timeline. Most MSE implementations cannot handle situations in
which the media buffer is not continuous. They stall as soon as the
play position reaches a gap. Figure 4 depicts an example of such
a situation. In this case, segment 1 and segment 2 are perfectly
aligned, while there is a gap between segment 2 and segment 3.
Playback stalls at the end of segment 2 unless the situation is solved
by the player.

Figure 4: Gaps in the presentation timeline can lead to play-
back stalling if not handled by the player.

There are multiple reasons for gaps in the media buffer. For
starters, subsequent periods might not align timing wise and conse-
quently segments at period boundaries do not align as well. Another
reason are periods with a positive@eptDelta or a negative@pdDelta
as depicted in Figure 5. A positive @eptDelta means that the ear-
liest presentation time of the first segment in the period is larger
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than the@presentationTimeOffset. Consequently, the segment is not
aligned with the start of the period. Similar, a negative@pdDelta
results in a gap at the end of the Period.

Figure 5: A positive@eptDelta and negative@pdDelta lead
to gaps at the start and the end of a period.

Another prominent reason for gaps are video segments that are
partially shifted out of a period. MSE based players typically define
an append window matching the period boundaries. An append
window "represents a single continuous time range with a single
start time and end time. Coded frames with presentation timestamp
within this range are allowed to be appended to the SourceBuffer
while coded frames outside this range are filtered out. The append
window start and end times are controlled by the appendWindow-
Start and appendWindowEnd attributes respectively". [17]

An example of a shifted segment resulting in a negative@ept-
Delta is depicted in Figure 6. By moving segment 1 out of the period
all frames up to Period@start are outside the append window and
are filtered out. Typically, a media segment only contains a sin-
gle keyframe right at the start of the segment. In this example,
the keyframe at the beginning of segment 1 is also filtered out.
As a consequence, all media samples from Period@start up to the
next keyframe can not be decoded and are discarded. This usually
means that all samples of segment 1 are filtered (since there is only
one I-frame at the beginning), leading to a large gap ranging from
Period@start to segment 2.

Figure 6: A negative@eptDelta shifts a segment partially out
of its period. All media samples up to the next keyframe
that is included in the period can not be decoded and are
discarded

dash.js implements a separate controller to account for possible
gaps in the media buffer. Since native implementations stall at gap
boundaries, dash.js triggers a seek to the next playable position in
the buffer. For static content, the seek can be done immediately.
For dynamic content, the player needs to maintain a consistent live
edge. For that reason, it needs to wait for the duration of the gap
before triggering a seek to the next range in the buffer.

With dash.js version 4.2.0 the existing gap handling implementa-
tion was extended to also account for gaps signaled in the MPD. As
an example, consider Figure 4 again. The gap the between segment
2 and segment 3 can originate from misaligned segments, but can

also be caused by missing segment information in the manifest.
Simply put, there might not be a media segment specified in the
MPD for the time between segment 2 and segment 3. To handle
such scenarios’ dash.js will automatically adjust the seek position
once a client seeks into the gap. Depending on which segment is
closest to the target seek position, either the last part of segment 2,
or the first part of segment 3 is fetched and played.

3.4 MSE errors
Errors thrown directly by the MSE typical lead to playback failure.
In most cases, an error puts the MSE in a state that it cannot recover
from. Hence, manual error recovery by the player is required to deal
with such situations.With dash.js version 4.1.0 7 support for MSE er-
ror recovery was introduced. Errors thrown by the MSE are caught
and handled by the internal classes responsible for the specific
media type (audio or video) that caused the error. For that reason,
the current playback position is saved, the segment that caused the
error is blacklisted and the MSE is completely reset with all the
attached SourceBuffers. After the reset, the player resumes from the
previous playback position and omits the blacklisted segment. The
resulting gap in the media buffer caused by the blacklisted segment
is handled by the gap handler described in Section 3.3

3.5 UTC synchronization
During playback of dynamic presentations, a wall clock is used as
the timing reference for player decisions. It is critical to synchronize
the clocks of the DASH player and the server components when
using a dynamic presentation. The MPD timeline of a dynamic
presentation is mapped to wall clock time, and many playback
decisions are clock-driven and assume a common understanding of
time by the DASH client and server components. [11] [12]

Clock synchronizationmechanisms are described by UTCTiming
elements in the MPD. [12] With version 4.1.0 dash.js introduced
optimization regarding clock synchronization. By default, dash.js
performs a clock synchronization at playback start, issuing a request
to the timing server. The offset between the client and the server
clock is calculated and used for all timing related calculations and
decisions. In addition to the single initial request, dash.js performs
a predefined number of background requests to verify the initially
calculated offset. That way, player startup is not delayed, but the
calculated offset is verified.

Moreover, dash.js initiates a synchronization request after each
MPD update. This behavior is adjusted dynamically during runtime,
as illustrated in Listings 2. 𝑠ℎ𝑜𝑢𝑙𝑑𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛() com-
pares the current wallclock time against the time of the last sync at-
tempt. In case the difference is larger than 𝑡𝑖𝑚𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑆𝑦𝑛𝑐𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
a synchronization request is issued. Otherwise, playback continues
without a clock sync.

7https://github.com/Dash-Industry-Forum/dash.js/releases/tag/v4.1.0
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Listing 2: dash.js code to check if a synchronization request
is to be made
function shou l dPe r f o rmSynch ron i z a t i on ( ) {

t r y {
c on s t t imeBetweenSyncAttempts = ! isNaN ( in t e rna lT imeBe tweenSyncAt tempts )

? in t e rna lT imeBe tweenSyncAt t empt s :
DEFAULT_TIME_BETWEEN_SYNC_ATTEMPTS ;

i f ( ! t imeOfLas tSync | | ! t imeBetweenSyncAttempts | | isNaN (
t imeBetweenSyncAttempts ) ) {

return true ;
}

return ( ( Date . now ( ) − t imeOfLas tSync ) / 1 0 0 0 ) >= t imeBetweenSyncAttempts
;

} catch ( e ) {
return true ;

}
}

After each regular synchronization attempt, dash.js adjusts its
internal 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑇𝑖𝑚𝑒𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑆𝑦𝑛𝑐𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 parameter based on
predefined thresholds. The concrete implementation is depicted
in Listing 3. If the difference between the previous and the cur-
rent client-server offset is within an allowed threshold, then the
time to the next sync attempt is increased. Otherwise, the time to
the next sync attempt is decreased. The relevant adjustment and
configurations parameters can be set as part of the dash.js settings.

Listing 3: dash.js code to adjust the time between UTC syncs
function ad jus tT imeBetweenSyncAt tempts ( o f f s e t ) {

c on s t i s O f f s e t D r i f tW i t h i n T h r e s h o l d = _ i sO f f s e tD r i f tW i t h i n Th r e s h o l d ( o f f s e t ) ;

i f ( i s O f f s e t D r i f tW i t h i n T h r e s h o l d ) {
// The drift between the current offset and the last offset is within

the allowed threshold. Increase sync time
ad jus tedTimeBetweenSyncAt tempts = Math . min ( t imeBetweenSyncAttempts ∗

t imeBetweenSyncAt temptsAdjus tmentFac tor ,
maximumTimeBetweenSyncAttempts ) ;

} e l se {
// Drift between the current offset and the last offset is not within

the allowed threshold. Decrease sync time
ad jus tedTimeBetweenSyncAt tempts = Math . max ( t imeBetweenSyncAttempts /

t imeBetweenSyncAt temptsAdjus tmentFac tor ,
minimumTimeBetweenSyncAttempts ) ;

}

i n t e rna lT imeBe tweenSyncAt t empt s = ad jus tedTimeBetweenSyncAt tempts ;
}

4 LOW-LATENCY STREAMING
One of the major challenges in OTT streaming is reducing the
live-streaming latency. This can be crucial for live events like sport
games or for an optimal streamer-user interaction in eSports games.
The Common Media Application Format (CMAF) introduces the
concept of "chunks". A CMAF chunk allows the client to access
parts of the segments media data before the segment is completely
finished. Compared to "classic" non-chunked streaming, a player
for low latency streaming has to overcome additional challenges
regarding throughput estimation and maintaining a consistent live
edge. In "Performance of Low-Latency HTTP-based Streaming Play-
ers", Zhang et al. evaluated six different low latency players and
concluded that LL-DASH players can maintain latencies in the
range of 3-4 seconds for different network conditions [18].

Common throughput-basedABR algorithms calculate the through-
put by dividing the segment size by the download time. This way
of throughput calculation is not applicable for clients operating
in low latency mode. Since segments are transferred via HTTP
1.1 chunked transfer encoding, the download time of a segment
is similar to its duration in case the download of that segment is
started prior to its completion. For instance, the download time
of a segment with six second duration will be approximately six

seconds. There will be idle times in which no data is transferred
from the server to the client. However, the connection remains
open while the client waits for new data. The total download time
includes these idle times. Consequently, the total download time is
not a good indicator for the available bandwidth on the client side.

When playing in low latency mode the client needs to maintain a
consistent live edge allowing only small deviations compared to the
target latency. To maintain a consistent live edge, players typically
adjusts the playback rate of the video (catchup mechanism), or
perform a seek back to the live edge.

dash.js version 3.2.0 introduced two low latency-specific ABR
algorithms, namely Low on Latency+ (LoL+) [3] and Learn2Adapt
(L2A) [13]. Both algorithms are an outcome of the Twitch’s ACM
MMSys 2020 Grand Challenge 8. dash.js ships with a fully config-
urable sample player to evaluate the various options and settings
related to low latency streaming 9.

4.1 Low on Latency+
Low on Latency+ is designed as a series of sophisticated yet robust
player improvements for low latency live-streaming. LoL+ consists
of five essential modules. The bitrate selection module implements
a learning-based ABR algorithm to choose a suitable bitrate for
each segment download. The ABR algorithm is based on an SOM
model that considers multiple QoE metrics as well as bandwidth
variability. The playback speed control module implements a hybrid
algorithm that considers both the current latency and buffer level to
control the playback speed. The throughput measurement module
accurately calculates the throughout by removing the idle times
between the chunks of a segment through a three-step algorithm.
The QoE evaluation module computes the QoE considering five key
metrics: selected bitrate, number of bitrate switches, rebuffering
duration, latency and playback speed. Lastly, the weight selection
module implements a two-step dynamic weight assignment for the
SOM model features. [3] [15]

A fully configurable LoL+ sample player can be found in the
sample section of dash.js 10.

4.2 Learn2Adapt
Learn2Adapt strikes to find a favorable balance between keeping the
buffer as short as possible, while provisioning against its complete
depletion. This is achieved by selecting the highest sustainable
bitrate for each video fragment, that does not completely consume
the buffer budget available at the time of request. L2A-LL is, in
essence, an optimization solution with the objective of minimizing
latency, while at the same time maximizing achievable video bitrate
and ensuring uninterrupted and stable streaming. [13]

L2A-LL formulates the ABR optimization problem under an on-
line (machine) learning framework, based on convex optimization.
First, the streaming client is modelled by a learning agent, whose
objective is to minimize the average buffer displacement of a stream-
ing session. Second, certain requirements regarding the decision
set (available bitrates) and constraint functions are fulfilled by a)

8https://github.com/twitchtv/acm-mmsys-2020-grand-challenge
9https://reference.dashif.org/dash.js/nightly/samples/low-latency/testplayer/
testplayer.html
10http://reference.dashif.org/dash.js/nightly/samples/low-latency/lolp_index.html
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allowing the learning agent to make decisions on the video bitrate
of each fragment, according to a probability distribution and by
b) deriving an appropriate constraint function associated with the
upper bound of the buffer queue, that adheres to time averaging
constraints. [15]

A fully configurable L2A sample player can be found in the
sample section of dash.js 11.

5 COMMON MEDIA CLIENT DATA
CTA-5004 - CommonMedia Client Data (CMCD) defines data that is
collected by the media player and is sent as a custom HTTP header
or query parameter alongside each object request to a CDN. CMCD
allows the correlation of CDN data with metrics collected on the
client side. Session identifiers allow thousands of individual CDN
logs to be interpreted as a single playback session. Themetric values
defined in the CMCD specification can be useful for log analysis,
quality of service monitoring, and delivery enhancements. Using
the client state information, CDNs can prioritize certain clients and
cross-correlate performance problems with specific devices and
platforms. In addition, CDNs can use information about upcoming
segment requests signaled by the player to cache media segments
at the edge ahead of the client request. [6] [2]

Since version 3.2.1 12 dash.js is fully compliant with the CMCD
specification. A separate CMCD model class is responsible for col-
lecting the CMCD-specific information and parameters. For that
purpose, hooks for internal events are registered and the internal
state of the class is updated once CMCD relevant parameters are
updated. Before requests to the CDN, a valid CMCD payload is
generated and appended by either adding separate CMCD header
fields or by appending the CMCD information as query parameters
to the request url. dash.js ships with a sample illustrating the usage
and configuration of CMCD 13.

6 DIGITAL RIGHTS MANAGEMENT
Digital rights management (DRM) is a way to protect copyrights for
digital media. This approach includes the use of technologies that
limit the copying and use of copyrighted works and proprietary
software. [8]

A DRM system cooperates with the device’s media platform to
enable playback of encrypted content. Decrypted samples and the
content keys are protected against potential attacks. [7] dash.js
supports two DRM systems namely Widevine and Playready and
also offers support for Clearkey protection. Clearkey is primarily
used for client and media platform development and test purposes
and does not offer the same level of security as DRM systems like
Widevine and Playready.

6.1 MPD based license server signaling
DRM systems use the concept of license requests as the mechanism
for obtaining content keys. [7] Since version 4.2.0 dash.js supports
the signaling of license server URLs via MPD parameters. For that
reason, the MPD author defines an <dashif:Laurl> element as part

11http://reference.dashif.org/dash.js/nightly/samples/low-latency/l2all_index.html
12https://github.com/Dash-Industry-Forum/dash.js/releases/tag/v3.2.1
13https://reference.dashif.org/dash.js/nightly/samples/advanced/cmcd.html

of the ContentProtection> descriptor. An example of such signaling
is depicted in Listing 4

Listing 4: Signaling of a license server url viaMPDparamaters
[7]
<Con t en t P r o t e c t i o n

schemeIdUr i = " urn : uuid : d0ee2730 −09b5 −459 f −8452 −200 e52b37567 "
va l u e = " FirstDRM 2 . 0 " >
< d a s h i f : L au r l > h t t p s : / / example . com / Acqu i r eL i c en s e < / d a s h i f : L au r l >

< / Con t e n t P r o t e c t i o n >

6.2 Manifest-based key rotation
Key rotation is a prominent option to for periodic re-authorization
of the client, as well as forcing rights to be reevaluated at program
boundaries. For that reason, an update of the 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡_𝐾𝐼𝐷 in the
manifest file can be used to signal a change of the content key.
[7] dash.js supports such manifest-based key rotation since ver-
sion 4.2.0. Once the 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡_𝐾𝐼𝐷 is changed, a new key session is
created and a license requests is issued. When a valid license has
been received, the newly created key session is updated to enable
decryption of the content using the new content key.

7 CONCLUSION
The trend to consume high-quality videos over the internet lead
to a high demand for sophisticated and robust video player im-
plementations. In this paper, we introduced the latest additions
and improvements to dash.js, an open source MPEG-DASH player
provided by DASH-IF.

We discussed MPD patching as a mean to provide only non-
redundant and mandatory MPD update information to the player,
minimizing bandwidth and parsing requirements. Moreover, im-
provements to the multiperiod implementation were highlighted,
focusing on prebuffering, the calculation of the DVR window and
the transition between non-encrypted and encrypted periods. Gap
and MSE error handling as essential mechanism to avoid playback
stalling and to guarantee a robust player operation were intro-
duced. Furthermore, improvements to the UTC synchronization
were highlighted.

In the context of low-latency streaming, two newABR algorithms
were introduced, namely Low on Latency+ (LoL+) and Learn2Adapt
(L2A). Both, LoL+ and L2A aim to overcome the challenge of finding
the optimal video and audio quality when streaming with low
latencies and small buffers.

Common Media Client Data (CMCD) as a mean to monitor and
evaluate streaming sessions and to optimize CDN delivery was
introduced. Finally, we discussed advances in the field of Digital
Rights Management (DRM). For that reason, means to use the MPD
in order to provide license server information and enable key rota-
tion were discussed.

Future work in dash.js includes optimization of the existing
throughput calculation and XML parsing functionalities. Moreover,
we are looking into running MSE operations in webworkers, pro-
viding a new reference UI, adding support for Producer Reference
Time (PRFT) boxes and enhancing the existing CMCD implementa-
tion with support for custom key/value pairs.
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