
Towards facilitating software engineering for production
systems in Industry 4.0 with behavior models

Bianca Wiesmayr
bianca.wiesmayr@jku.at

LIT CPS Lab, Johannes Kepler University Linz

Linz, Austria

ABSTRACT

With the growing adoption of Industry 4.0 concepts in produc-

tion systems, new challenges arise in engineering control software.

Highly distributed control with tight real-time constraints and

safety regulations results in increasingly complex software. Current

research focuses on increasing the abstraction with new architec-

tures and modularization of software. The presented PhD research

addresses modeling of the interactions between control software

components, and of the emergent behavior of these compositions.

Such behavior models can support the initial implementation, and

facilitate (semi-)automated testing and monitoring of control soft-

ware. Finally, visualizing behavior in a model can enhance under-

standability of existing control software, when software developers

need not access abstracted hierarchy levels to deduct their function-

ality. This work aims at optimizing the benefit of behavior models

in developing control software: Modeling the expected behavior

directly for new software will allow using them throughout the

software life-cycle. For legacy software, the initial development

effort of behavior models will be minimized by automatically cap-

turing behavior models from the implementation. The approach is

evaluated in case studies and user studies to integrate experiences

from the industrial domain into this software engineering research.

CCS CONCEPTS

• Software and its engineering→Domain specific languages;

• Computer systems organization → Embedded and cyber-

physical systems.

KEYWORDS

Model-driven software engineering, Control software, IEC 61499

ACM Reference Format:

Bianca Wiesmayr. 2022. Towards facilitating software engineering for pro-

duction systems in Industry 4.0 with behavior models. In 44th Interna-

tional Conference on Software Engineering Companion (ICSE ’22 Companion),

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3510454.3517070

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3517070

1 INTRODUCTION

Mass customization emerged in modern industrial automation as

part of Industry 4.0. It requires producers to flexibly adjust their

goods to varying market demands, thus demanding highly adapt-

able manufacturing equipment, both in hardware and software [51].

Such Cyber-Physical Production Systems (CPPSs) are nowadays

highly automated and interconnected with plant-wide systems that

orchestrate the production, such as order tracking or quality mon-

itoring. Based on the input from these systems and on data from

sensors, control software manipulates actuators, such as motors.

Due to high requirements on safety and throughput of a production

system, its software is executed with tight real-time constraints

on embedded devices, typically Programmable Logic Controllers

(PLCs). Software complexity is introduced by the large number of

interacting subsystems, which are often autonomous and operate

in parallel [51]. Subsystems may be updated independently, thus

additionally posing challenges for software evolution [35]. With In-

dustry 4.0, the software share in industrial automation is increasing

[37, 50] and at the same time the software complexity is increasing

[13, 42]. Software engineering techniques, which can help tackling

this complexity, are not a core competence of automation engineers

and therefore not state of the art in the domain [40, 42].

Industrial standards (i.e., ISO/IEC) are significant for production

plants [13], as the life-cycle of a production system can span up to

several decades [38]. Industrial standards are not a core concern

of current software engineering research [49]. The currently es-

tablished graphical and textual DSLs (domain-specific languages)

for implementing control software are defined in IEC 61131–3 [1].

A newer standard, IEC 61499 [30], addresses many modern chal-

lenges in developing control applications for distributed systems.

It standardizes an executable domain-specific modeling language

(xDSML) for control applications that is targeted at automation

engineers, not software engineers [52]. This language abstracts

the control logic from the hardware and low-level communication,

thus fostering a component-based design [53]. IEC 61499 supports

a model-driven architecture [54], but does not cover the whole soft-

ware development process. For instance, requirements engineering

is not possible within the means of the standard [36]. Furthermore,

hierarchical structures help reducing complexity [53], but this ab-

straction reduces the visibility of the encapsulated functionality [5].

IEC 61499 mostly supports modeling of hierarchical structures,

while its behavior models are limited to the intra-object behavior of

software components. The hypothesis of this PhD research is that

using executable behavior models within IEC 61499 allows to support

control software engineers in modeling or automatically visualizing

interactions between software components, or finding inconsistencies

305

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510454.3517070&domain=pdf&date_stamp=2022-10-19

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Bianca Wiesmayr

between the expected and implemented behavior. Partially automat-

ing these processes allows to increase the acceptance of model-driven

approaches among domain experts and to optimize the benefits of the

proposed software engineering approach.

Leveraging the acceptance of modeling languages in industrial

automation requires addressing developer needs and domain re-

quirements. Several research challenges are specific to the automa-

tion domain and have to be addressed [37]: Developed approaches

need to be usable by the domain experts (automation engineers).

Automation engineers in industry have only limited knowledge

of computer science, hence possible modeling methods are con-

strained. This constraint was also taken into account in the current

specification of IEC 61499 [54]. Furthermore, languages need to

support software evolution and versioning over decades. Software

changes are frequently implemented directly on the embedded de-

vice at the production site, and such updates often take effect live

during runtime of the software. Finally, control software closely

interacts with the mechanical and electrical parts of the system

(e.g., controlling a robotic arm). Control processes have tight hard

real-time requirements, which particularly affect distributed sys-

tems due to the additional communication between subsystems. As

control software is only one part of a CPPS [33], its relation to the

full production system, including mechanical components, has to

be considered. During commissioning of the plant, integration tests

require software updates directly on the embedded system (PLC).

Such changes are applied under time pressure, they may therefore

not be propagated back to the original model [37]. Inconsistencies

can be introduced when evolving the implementation without up-

dating the model, or by erroneous semantic differences between

the model and the implementation [8].

2 RELATEDWORK

General-purpose modeling languages have been applied for control

software. The most prominent example is the Unified Modeling

Language (UML) [20]. The large variety of structural and behav-

ioral diagrams in UML allow its use in various disciplines, as the

language scope can be extended or restricted via profiles to adapt

to domain-specific needs. Various profiles for the domain of con-

trol software have been proposed: A widely applied example is the

UML profile for Modeling and Analysis of Real-Time and Embed-

ded Systems (UML MARTE), which extends UML with real-time

capabilities, and has been standardized [22]. UML for Real-Time

Embedded Systems (UML-RT) focuses on systems with soft real-

time constraints [4], not factory automation. Less extensive profiles

were developed specifically for industrial control systems, e.g., the

RT-ICS profile [15]. For most specific profiles, however, the lack of

tool support restricts their practical applicability.

Modeling of full automation systems addresses the close interac-

tion between control software and the physical components. The

profile UML4IoT allows effectively integrating cyber-physical com-

ponents into manufacturing systems [34]. Also the Systems Mod-

eling Language (SysML, [21]) has been applied in the automation

domain with dedicated extension profiles [32, 41]. SysML or the

domain-specific GRAFCET [18] capture the expected behavior and

structure of a full automation system, not only its software. In

general, these languages are not directly executable and have there-

fore been applied in conjunction with executable languages, such

as those defined for control software in IEC 61131-3 [39, 41] or

IEC 61499 [10, 24, 33]. Such an approach acknowledges the het-

erogeneity of involved engineering disciplines and their different

modeling needs. Control loops may require differential equations,

while reactions of a system can be modeled as a Discrete Event

System. Multi-paradigm modeling therefore combines various ap-

proaches to best support engineering of each aspect of a CPPS (e.g.,

MPM4CPS [2], or model-integrated mechatronics [33]).

For control software engineering, languages have to address the

respective challenges [37]. Limitations of the current standard

IEC 61499 can be summarized from the literature. The standard

IEC 61499 only defines the language and the execution semantics,

but neither a concrete implementation of a runtime [52] nor a sug-

gested development process [9]. We can differentiate two main

reasons for using general-purpose modeling languages together

with IEC 61499: authors either aim at an integrated development

of both physical and cyber components, or address disadvantages

of IEC 61499 by:

• Introducing a standardized development process [14]

• Supporting developers in capturing requirements [36]

• Modeling the interaction between components in behavior

diagrams before the actual implementation [6]

• Planning and designing an architecture for the hierarchical

IEC 61499 models [11]

• Using established modeling tools from other languages to

generate an IEC 61499 model [10]

Most model transformations were performed manually or code was

generated directly from a UML model. However, early works from

Thramboulidis [31] involves automated model transformations be-

tween UML diagrams and IEC 61499 software. These works provide

tool support and cover additional stages of the software engineering

process (such as requirements engineering). This unidirectional ap-

proach allows transforming models between different stages of the

software engineering process, but does not support automatically

deriving behavior models from an existing implementation. This

increases the modelling effort and requires manually propagating

changes from the CPPS back to the model, leading to potential

inconsistencies that are difficult to detect.

3 RESEARCH QUESTIONS

The following research questions (RQs) aim at facilitating soft-

ware engineering for production systems by automating parts of

the model-driven process. A key goal is a bidirectional mapping

between behavior models and the control software. As stated in

the research hypothesis, this PhD research focuses on modeling

interactions between software components. IEC 61499 currently

standardizes two behavior models, the state-based ECC (Execution

Control Chart), and scenario models at the interface of software

components (Service Sequences). Both models are limited to indi-

vidual software components.

RQ1: How can we increase the utility of behavior models de-

fined in IEC 61499 w.r.t. the application areas consistency

checking, testing, and documentation/visualization?

Manually modeled Service Sequences have been used for verifi-

cation of connections [26] and specifying unit tests [12]. It will

be necessary to describe the relations between Application model,

306

Towards facilitating software engineering for production systems in Industry 4.0 with behavior models ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

ECC, and Service Sequences, and to allow transformations between

the models where feasible. Not all relevant information can be

captured in current behavior models [26], leading to the RQ:

RQ2: What are limitations of the currently standardized be-

havior models w.r.t. implementation, consistency checking,

testing and documentation/visualization?

Behavior models will be therefore used for the implementation

of case studies to reveal the relations between the behavior spec-

ification and the IEC 61499 constructs. By focusing on software

engineering processes such as testing, relevant limitations can be

identified. These limitations form the input for extending IEC 61499

with behavior modeling approaches:

RQ3: Which domain-specific requirements does a behavior

model have to fulfill for software models according to IEC

61499, i.e., applications and software components (Function

Blocks)?

Experiences with industrial users and own case studies can help

analyzing the required domain information (e.g., events, data, real-

time constraints, non-functional requirements) for using a behavior

model in our defined application areas. Potential extensions of the

standard have to comply with the requirements from RQ3:

RQ4: Which human-comprehensible behavior models fulfill

these requirements and can be integrated in IEC 61499?

The identified behavior models should be optimized for usability

by domain experts. To increase the acceptance of model-driven

design, different abstraction levels need to be closely integratedwith

each other. Furthermore, models should be transferred seamlessly

between different phases in the design process [39] to reduce error

proneness and improve reuse. Finally, we use the newly identified

behavior models in the defined application areas:

RQ5: How can we integrate the behavior models into the de-

sign flow to provide a benefit for developers regarding the

defined application areas?

Answering this research question requires a clear guideline on

applying the behavior models, and efficient tool support for the

engineering process. If a single model cannot fulfill all posed re-

quirements, we have to outline which model is viable in a specific

situation. Inconsistencies may furthermore occur if certain details

are represented differently in alternative views of the same model.

Such inconsistencies should be revealed automatically. To facilitate

adoption of the new behavior specifications, required extensions of

the standard are proposed. This includes a standard-compliant XML

exchange format if the behavior models have to be stored separately

and cannot be derived automatically from the IEC 61499 model.

Such extensions have to be backwards compatible with preceding

versions of the standard. A comprehensive assessment allows engi-

neers to evaluate whether the proposed approach is applicable for

their use case, leading to:

RQ6: What are the limitations of the new approach?

Limitations of the provided approach have to be investigated re-

garding functional requirements (e.g., supported languages and

domains) and non-functional requirements (e.g., performance, ef-

fort, and usability of the approach).

In this PhD research, a Design Science approach [43] is followed.

Experiences from users (automation engineers from production

system manufacturers) are driving the investigation. The state of

the art and practice is analyzed based on literature reviews and an

initial user study that includes interviews with industrial experts.

Case studies and cooperations with domain experts grant a better

understanding of the problem domain. Prototyping technologies

allows to demonstrate a proof-of-concept. All results will be avail-

able open source as part of the 4diac IDE from the Eclipse 4diacTM

project [7]. New implementations are repeatedly evaluated in prac-

tice via case studies and a final user study, leading to continuous

improvements of the designed methodology.

4 CONTRIBUTIONS

The main expected contributions are:

• C1: Enhancing software engineering for distributed control

systems with visual behavior models, including a mechanism

to capture behavior models from legacy software automati-

cally [45, 46]

• C2: A model execution framework for the DSML IEC 61499

including a model interpreter [46]

• C3: Tool support for control software engineers to imple-

ment and test models, as well as to improve model compre-

hension [48]

This work does not replace, but supplements existing languages

and tools that are used in the domain. Behavior models for applica-

tions (C1) will provide an important infrastructure for IEC 61499,

e.g., as test specification and for software updates [27]. The work

for C2 includes defining execution semantics for IEC 61499, which

can serve as a reference implementation for tool developers, but

also allows using infrastructure from the community of DSML en-

gineering (e.g., [16]). Similar approaches were followed for UML

with Foundational UML (fUML) [23] and the Action Language for

fUML [19]. The latter is a high-level language for specifying exe-

cutable behavior. Open source tool support (C3) will provide the

required infrastructure for applying the designed concepts in prac-

tice. User studies furthermore add experiences made in the domain

of industrial automation to the body of knowledge of developing

visual modeling tools.

5 EVALUATION

Regarding the technical implementation, case studies are the main

mechanism for evaluation. Case Study 1 will be the capping sta-

tion [53], which is commonly used as an automation example in

the literature. As Case Study 2, with a realistic scope, the VDMA

demonstrator will be used (e.g., [3]), which demonstrates key fea-

tures from Industry 4.0 in a distributed control system. Scenarios

of each application are manually modeled as behavior models (e.g.,

Activity Diagrams) and used as a basis for the IEC 61499 imple-

mentation. In a proof-of-concept, the standardized behavior models

for software components will be first tightly integrated with the

implementation (RQ1, i.e., Service Sequences and the state-based

Execution Control Chart). Considering our application areas, this

requires interpreting the models directly, visualizing traces of the

software as Service Sequences, and using these specifications as

test cases. The case studies will also demonstrate examples for lim-

itations of the graphical models (RQ2). Requirements for behavior

models (RQ3) are furthermore explained based on both case studies.

307

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Bianca Wiesmayr

Table 1: Published papers (upper part) and papers that are in progress or planned (lower part).

Paper Title/Topic Venue Case Study RQ

[46] Model-Execution Framework for IEC 61499 components IEEE ETFA’21 - 1

[44] Using behavior models to guide the application structure IEEE ICPS’20 - 1, 2

[28] Implementing interactions based on Activity Diagrams IEEE ETFA’21 1 1, 2

[18, 47] Translation patterns for implementing (hierarchical) Grafcets in IEC 61499 IEEE ETFA’20 - 1, 2

[48] User Study on Maintaining Large-Scale Automation Software MODELS’21 1 2

[45] Requirements for dynamic interface models of IEC 61499 IEEE ETFA’20 - 1, 3

Comparing behavior models for IEC 61499 Applications IEEE INDIN’22 2 3, 4

Model-Execution Framework for IEC 61499 applications TII 1 4, 5

User Study: Control software engineering with behavior models SoSym 3 5, 6

RQ4 is evaluated by extending the implemented approach with the

chosen new models. To successfully answer this question, the sug-

gested approach has to facilitate the software engineering process.

For instance, the engineering effort should be lower compared to

manual testing, the round-trip engineering time should be reduced,

and inconsistencies should be revealed automatically. For this eval-

uation, especially the counter-examples from RQ2 are relevant, as

these previously could not be modeled in IEC 61499. Regarding the

practical applicability of the approach, especially on RQ4 and RQ5,

a user study with industrial experts is required. These experts are

recruited from industry partners of our research lab. The user study

aims at evaluating whether domain experts can understand and

apply the new model(s) based on a real-world control application

from their own field (Case Study 3). Furthermore, severe usability

issues in involved tools could prevent developers from using the

model(s). In a multi-stage approach, involved processes and tools

will be evaluated based on the Cognitive Dimensions approach

[5], before conducting an experiment with domain experts. Con-

cerning RQ6, particularly the maximum supported complexity of

the control software has to be identified based on our case studies.

This complexity can be measured in lines of code (i.e., lines in the

standardized XML), but also in software metrics, which provide

a more comprehensive view on the software [29]. The quality of

mined specification models can be also evaluated based on metrics

[17, 25]. For the case studies, the execution time for recording traces

will be measured to estimate the applicability of the approach for

large-scale software.

6 INITIAL RESULTS AND TIMELINE

Regarding understanding models, a multi-stage usefulness study on

maintaining large-scale control software was conducted based on

case study 1, providing insights on how engineers interact with

the programming tool and the software models. The publication

at this year’s MODELS conference [48] includes results from a

user study with industrial experts, and has already resulted in

numerous tool improvements for the 4diac IDE. The user study

revealed that the industrial experts have difficulties working with

hierarchical structures. The abstraction of hierarchical composition

is furthermore incomplete, as the content of subapplications had to

be accessed to understand the purpose of software parts.

Investigating the implementation of application behavior models

resulted in a structured translation approach from the specification

language GRAFCET (used by system engineers) to the executable

language IEC 61499 (used by software engineers) [18, 47]. The iden-

tified translation patterns retain hierarchical structures and cover

operation mode switching, which is also used for error handling

(Best Paper Award for Factory Automation at the IEEE ETFA 2020

for [18]). The results can be generalized to other state-based models.

For instance, activity diagrams were used as a means to design fully

distributed architectures of IEC 61499 software [28].

Finally, automatically generating behavior models from the con-

trol software requires a semantics-aware tool infrastructure. There-

fore, a model execution framework for software components of IEC

61499 (Basic Function Blocks with a simplified state-based diagram

and textual algorithms) was created (cf. [46]). Using this framework

allows automatically generating behavior models that capture the

relation between inputs and outputs that is observable at the inter-

face (i.e., Service Sequences). Furthermore, these diagrams can be

used as a test specification. This approach is currently restricted by

the limited expressiveness of Service Sequences. Interpreting con-

trol software has several advantages over executing it in runtimes:

The interpreter allows executing partial models, and it improves

the platform-independence because models are executed directly.

Furthermore, immediate feedback is feasible, possibly reducing the

round-trip engineering time. When component tests are created

using the designed fluent interface developed in Java, the tests can

also be executed remotely as unit-tests. Domain experts benefit

from tool integration for this execution framework. They can then

specify expected behavior graphically and run the interpreter, even

without access to a runtime. Applying structured implementation

guidelines (e.g., [47]) furthermore requires less knowledge about

software architectures.

In 2020 and 2021, 8 articles were presented at 4 international con-

ferences (cf. paper plan in Table 1). The goal is to complete this PhD

in 2023, after submitting core contributions to established journals

from the modeling community (e.g., SoSym) and the automation

engineering community (e.g., TII). The next step is extending the

model execution framework of Basic Function Blocks to cover full

IEC 61499 applications to (i) capture application behavior models

that illustrate the interactions between the software components in

the applications (scenarios), and (ii) test whether existing scenarios

are consistent to the current implementation.

REFERENCES
[1] TC 65/SC 65B. 2013. IEC 61131 - Programmable controllers, Part 3: Programming

languages (3 ed.). International Electrotechnical Commission (IEC), Geneva.
[2] Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink, Hans

Vangheluwe, and AndreasWortmann. 2021. Multi-paradigmmodelling for cyber–
physical systems: a descriptive framework. Software & Systems Modeling 20, 3
(2021), 611–639.

[3] Virendra Ashiwal and Alois Zoitl. 2021. Messaging Interaction Patterns for
a Service Bus Concept of PLC-Software. In 26th International Conference on

308

Towards facilitating software engineering for production systems in Industry 4.0 with behavior models ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Emerging Technologies and Factory Automation (ETFA). IEEE, Västeras, Sweden.
[4] Mojtaba Bagherzadeh, Karim Jahed, Benoit Combemale, and Juergen Dingel. 2019.

Live-UMLRT: A Tool for Live Modeling of UML-RT Models. In ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, Munich, Germany, 743–747.

[5] Alan Blackwell and Thomas Green. 2003. Notational Systems — The Cognitive
Dimensions of Notations Framework. In HCI Models, Theories, and Frameworks,
John M. Carroll (Ed.). Morgan Kaufmann, San Francisco, 103–133.

[6] Christos Tranoris and Kleanthis Thramboulidis. 2003. Integrating UML and the
function block concept for the development of distributed control applications.
In International Conference on Emerging Technologies and Factory Automation
(ETFA). IEEE, Lisbon, Portugal, 87–94.

[7] Eclipse 4diac. 2021. 4diac IDE 2.0. https://www.eclipse.org/4diac
[8] Stefan Feldmann, Konstantin Kernschmidt, Manuel Wimmer, and Birgit Vogel-

Heuser. 2019. Managing inter-model inconsistencies in model-based systems
engineering: Application in automated production systems engineering. Journal
of Systems and Software 153 (2019), 105–134.

[9] Georg Frey and Tanvir Hussain. 2006. Modeling Techniques for Distributed
Control Systems Based on the IEC 61499 Standard - Current Approaches and
Open Problems. In 8th International Workshop on Discrete Event Systems, 2006.
IEEE, Ann Arbor, MI, USA, 176–181.

[10] Carlos A. Garcia, Exteban Castellanos, and Marcelo V. García. 2018. UML-Based
Cyber-Physical Production Systems on Low-Cost Devices under IEC-61499. Ma-
chines 6, 2 (2018), 22.

[11] Carlos A. Garcia, Esteban X. Castellanos, Cesar Rosero, Carlos Sanchez, and
Marcelo V. García. 2017. Designing Automation Distributed Systems Based on
IEC-61499 and UML. In 5th International Conference in Software Engineering
Research and Innovation (CONISOFT). IEEE, Merida, Mexico, 61–68.

[12] Reinhard Hametner, Benjamin Kormann, Birgit Vogel-Heuser, Dietmar Winkler,
and Alois Zoitl. 2011. Test case generation approach for industrial automation
systems. In 5th International Conference on Automation, Robotics and Applications.
IEEE, Wellington, New Zealand, 57–62.

[13] Robert Harrison, Daniel Vera, and Bilal Ahmad. 2016. Engineering Methods and
Tools for Cyber–Physical Automation Systems. Proceedings of the IEEE 104, 5
(2016), 973–985.

[14] Tanvir Hussain and Georg Frey. 2006. UML-based Development Process for
IEC 61499 with Automatic Test-case Generation. In International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE, Prague, Czech
Republic, 1277–1284.

[15] Kamran Latif, Aamer Nadeem, and Gang Lee. 2011. A UML Profile for Real Time
Industrial Control Systems. In Software Engineering, Business Continuity, and
Education. Vol. 257. Springer, Berlin, Heidelberg, 97–107.

[16] Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combe-
male, and Wieland Schwinger. 2020. Behavioral interfaces for executable DSLs.
Software & Systems Modeling 19, 4 (2020), 1015–1043.

[17] David Lo and Siau-cheng Khoo. 2006. QUARK: Empirical Assessment of
Automaton-based Specification Miners. In 2006 13th Working Conference on Re-
verse Engineering. 51–60.

[18] Oscar Miguel-Escrig, Julio-Ariel Romero-Perez, Bianca Wiesmayr, and Alois
Zoitl. 2020. Distributed implementation of Grafcets through IEC 61499. In 25th
International Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, Vienna, Austria, 402–409.

[19] Object Management Group. 2017. Action Language for Foundational UML:
Version 1.1. https://www.omg.org/spec/ALF/1.1/About-ALF/

[20] Object Management Group. 2017. OMG Unified modelling language (OMG UML):
Version 2.5. https://www.omg.org/spec/UML/About-UML/

[21] Object Management Group. 2019. OMG Systems Modeling Language (OMG
SysML): Version 1.6. https://www.omg.org/spec/SysML/1.6/PDF

[22] Object Management Group. 2019. OMG UML Profile for MARTE. https:
//www.omg.org/spec/MARTE

[23] Object Management Group. 2021. Semantics of a Foundational Subset for Exe-
cutable UML Models (FUML): Version 1.5. https://www.omg.org/spec/FUML/

[24] Seno Panjaitan and Georg Frey. 2006. Combination of UMLModeling and the IEC
61499 Function Block Concept for the Development of Distributed Automation
Systems. In 11th International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, Prague, Czech Republic, 766–773.

[25] Michael Pradel, Philipp Bichsel, and Thomas R. Gross. 2010. A framework for the
evaluation of specification miners based on finite state machines. In 2010 IEEE
International Conference on Software Maintenance. 1–10.

[26] Herbert Prähofer and Alois Zoitl. 2013. Verification of hierarchical IEC 61499
component systems with behavioral event contracts. In 11th IEEE International
Conference on Industrial Informatics (INDIN). IEEE, Bochum, Germany, 578–585.

[27] Laurin Prenzel and Sebastian Steinhorst. 2021. Automated Dependency Resolu-
tion for Dynamic Reconfiguration of IEC 61499. In 26th International Conference
on Emerging Technologies and Factory Automation. IEEE, Västeras, Sweden.

[28] Lisa Sonnleithner, BiancaWiesmayr, Virendra Ashiwal, and Alois Zoitl. 2021. IEC
61499 distributed design patterns. In 26th International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, Västeras, Sweden.

[29] Lisa Sonnleithner and Alois Zoitl. 2020. A Software Measure for IEC 61499
Basic Function Blocks. In 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, Piscataway, NJ, 997–1000.

[30] TC65/WG6. 2012. IEC 61499-1, Function Blocks - part 1: Architecture (2 ed.).
International Electrotechnical Commission (IEC), Geneva. www.iec.ch

[31] Kleanthis Thramboulidis. 2005. Model-integrated mechatronics - Toward a new
paradigm in the development of manufacturing systems. IEEE Transactions on
Industrial Informatics 1, 1 (2005), 54–61.

[32] Kleanthis Thramboulidis. 2010. The 3+1 SysML View-Model in Model Integrated
Mechatronics. Journal of Software Engineering and Applications 3, 2 (2010), 109–
118.

[33] Kleanthis Thramboulidis and Andrea Buda. 2010. 3+1 SysML view model for
IEC61499 Function Block control systems. In 8th International Conference on
Industrial Informatics. IEEE, Osaka, Japan, 175–180.

[34] Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4IoT-A UML-based
approach to exploit IoT in cyber-physical manufacturing systems. Computers in
Industry 82 (2016), 259–272.

[35] Martin Törngren and Paul Grogan. 2018. How to Deal with the Complexity of
Future Cyber-Physical Systems? Designs 2, 4 (2018), 40.

[36] Chris Tranoris and Kleanthis Thramboulidis. 2002. From requirements to function
block diagrams: a new approach for the design of industrial control applications.
In 10th Mediterranean Conference on control and automation (MED). IEEE, Lisbon,
Portugal, 9–12.

[37] Birgit Vogel-Heuser, Christian Diedrich, Alexander Fay, Sabine Jeschke, Ste-
fan Kowalewski, Martin Wollschlaeger, and Peter Göhner. 2014. Challenges
for Software Engineering in Automation. Journal of Software Engineering and
Applications 07, 05 (2014), 440–451.

[38] Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer, and Matthias Tichy. 2015.
Evolution of software in automated production systems: Challenges and research
directions. Journal of Systems and Software 110 (2015), 54–84.

[39] Birgit Vogel-Heuser, David Friedrich, Uwe Katzke, and Daniel Witsch. 2005.
Usability and benefits of UML for plant automation - some research results. atp
international 3, 1 (2005).

[40] Birgit Vogel-Heuser and Alexis Sarda-Espinosa. 2017. Current status of software
development in industrial practice: Key results of a large-scale questionnaire.
In 15th International Conference on Industrial Informatics (INDIN). IEEE, Emden,
Germany, 595–600.

[41] Birgit Vogel-Heuser, Daniel Schütz, Timo Frank, and Christoph Legat. 2014.
Model-driven engineering of Manufacturing Automation Software Projects – A
SysML-based approach. Mechatronics 24, 7 (2014), 883–897.

[42] Valeriy Vyatkin. 2013. Software Engineering in Industrial Automation: State-of-
the-Art Review. IEEE Transactions on Industrial Informatics 9, 3 (2013), 1234–1249.

[43] Roel Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer, Berlin and New York and Dordrecht.

[44] Bianca Wiesmayr, Lisa Sonnleithner, and Alois Zoitl. 2020. Structuring Dis-
tributed Control Applications for Adaptability. In 3rd International Conference on
Industrial Cyberphysical Systems (ICPS). IEEE, Tampere, Finland, 236–241.

[45] Bianca Wiesmayr and Alois Zoitl. 2020. Requirements for a dynamic interface
model of IEC 61499 Function Blocks. In 25th International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, Vienna, Austria, 1069–1072.

[46] Bianca Wiesmayr, Alois Zoitl, Antonio Garmendia, and Manuel Wimmer. 2021.
A Model-based Execution Framework for Interpreting Control Software. In 26th
International Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, Västeras, Sweden. https://epub.jku.at/obvulioa/content/pageview/6408776

[47] Bianca Wiesmayr, Alois Zoitl, Oscar Miguel-Escrig, and Julio Romero-Perez. 2021.
Distirbuted implementation of hierarchical Grafcets through IEC 61499. In 26th
International Conference on Emerging Technologies and Factory Automation (ETFA).
IEEE, Västeras, Sweden.

[48] Bianca Wiesmayr, Alois Zoitl, and Rick Rabiser. 2021. Assessing the Usefulness
of a Visual Programming IDE for Large-Scale Automation Software. In 2021
ACM/IEEE 24th International Conference on Model Driven Engineering Languages
and Systems (MODELS). ACM, Fukuoka, Japan (virtual).

[49] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wimmer.
2020. Modeling languages in Industry 4.0: an extended systematic mapping study.
Software & Systems Modeling 19, 1 (2020), 67–94.

[50] Hang Yin and Hans Hansson. 2018. Fighting CPS Complexity by Component-
Based Software Development of Multi-Mode Systems. Designs 2, 4 (2018), 39.

[51] Ray Y. Zhong, Xun Xu, Eberhard Klotz, and Stephen T. Newman. 2017. Intelligent
Manufacturing in the Context of Industry 4.0: A Review. Engineering 3, 5 (2017),
616–630.

[52] Alois Zoitl and Robert W. Lewis. 2014. Modelling control systems using IEC 61499
(2. ed. ed.). IET Control engineering series, Vol. 95. IET, London.

[53] Alois Zoitl and Herbert Prähofer. 2013. Guidelines and Patterns for Building
Hierarchical Automation Solutions in the IEC 61499 Modeling Language. IEEE
Transactions on Industrial Informatics 9, 4 (2013), 2387–2396.

[54] Alois Zoitl and Valeriy Vyatkin. 2009. Different perspectives [Face to face; "IEC
61499 architecture for distributed automation: The ‘"glass half full" view. IEEE
Industrial Electronics Magazine 3, 4 (2009), 7–23.

309

