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Transferring Performance between Distinct Configurable
Systems : A Case Study

Luc Lesoil, Hugo Martin, Mathieu Acher, Arnaud Blouin and Jean-Marc Jézéquel
IRISA, Université de Rennes 1, INSA Rennes
France

ABSTRACT

Many research studies predict the performance of configurable
software using machine learning techniques, thus requiring large
amounts of data. Transfer learning aims to reduce the amount of
data needed to train these models and has been successfully ap-
plied on different executing environments (hardware) or software
versions. In this paper we investigate for the first time the idea of
applying transfer learning between distinct configurable systems.
We design a study involving two video encoders (namely x264 and
x265) coming from different code bases. Our results are encour-
aging since transfer learning outperforms traditional learning for
two performance properties (out of three). We discuss the open
challenges to overcome for a more general application.
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1 INTRODUCTION

Software offers more and more options that users can (de)select to
customize the system for their specific needs. With the exploding
number of options e.g., +2041 options in three years for the Linux
kernel [21], it becomes complex to accurately estimate the individ-
ual impact of options, difficult to predict software performance and
unthinkable to measure exhaustively the configuration space of
real-world systems. To overcome this problem, related work has
proposed to train machine learning models a.k.a. performance mod-
els [10] taking software configurations as input, training the model
to link a configuration to a performance value and finally capa-
ble of predicting the performance of a new configuration. But this
method has a cost [25]: since we feed the model with configurations
and performance, we have to measure numerous configurations.
Transfer learning techniques [21, 24] aim at reducing this measure-
ment cost: if a performance model has already been trained on
one executing environment, we can reuse this model to reduce the
number of measurements needed for a second executing environ-
ment [13], assuming that both environments are similar (e.g., same
operating system). We propose to apply transfer learning to distinct
software systems performing the same task, such as compilers (e.g.,
gcc and 11vm), container managers (e.g., podman and docker), etc.
Intuitively, the model trained on one software could be used -at
least partially- to train the other performance model, as depicted in

Figure 1 for x264 and x265. This paper presents the first minimal
example showing that under certain conditions, it is possible to
transfer performance models across software systems. We also dis-
cuss the limitations of our work and highlight the open challenges
to face when scaling to other software systems. Data! and code?
are publicly available.
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Figure 1: Can x264 be used to predict x265 performance?

2 TRANSFER LEARNING ACROSS SOFTWARE
SYSTEMS: A PROOF OF CONCEPT

2.1 Research Questions

To get started with this topic, we first study the differences of per-
formance between different software systems executing the same
task. Are the distribution of performance consistent across simi-
lar software systems? If they are, we can probably use similarities
between their performance distributions when training the model.
We then address the main issue of paper : Can we transfer per-
formance from one software system to another? How useful
is it compared to non-transfer technique? How much do we gain,
both in terms of measurements and accuracy? More specifically,
we want to ensure that transfer learning does indeed outperform
simple learning and avoid any instance of negative transfer.
To answer these questions, we design the following study.

2.2 Study Design

2.2.1 Measure Performance. We gather measurements about
the performance of two software systems.

Software Systems. We select x264 and x2653, two video encoders.
X264 and x265 realize the same task, but with different compression
standards (resp. H.264 and H.265). It has a profound impact on the
visual quality algorithms internally implemented. Though x265

!Dataset available at : https://zenodo.org/record/5662589

2Code available at : https://anonymous.4open.science/r/TL_cross_soft-855B/

3See x264 and x265 webpages : https://www.videolan.org/developers/x264.html and
https://www.videolan.org/developers/x265.html
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has the ambition to borrow heavily from x264’s features, x265 is
not directly based on x264 source code. x265 is fully developed in
C++ (and assembly) whereas x264 is written in C. x265 also imple-
ments novel algorithms such as CU-Tree the successor to x264’s
macroblock-tree. Overall, x264 and x265 are two distinct software
projects (i.e., X264 is not a version or a fork of x265). Importantly,
both are developed by VideoLAN, which makes it easier to find
similarities between them (same options, same conventions, etc.).
From this respect, x264 and x265 can be seen as a favorable yet
challenging case of transfer learning across systems.

Configuration Options. We search for common configuration
options in their documentation. For instance, and according to their
documentation, both x264 and x265 implement the features —ref
and —preset. —ref could be set to 1, 8 or 16 while —preset can be fast
or slow. Possible resulting configurations like (slow, 1) or (fast, 16)
are accepted and valid for x264 and x265. In the end, we keep 35
configuration options common to x264 and x265 (out of resp. 118
and 168)*. We exploit these common features and make their values
vary in order to generate a set of 3125 configurations working for
both systems. We check the uniformity of the resulting distribution
of options’ values with a Kolmogorov-Smirnov test [22]°.

Input Data. We select eight input videos [18] extracted from the
Youtube UGC Dataset [33], well-known in the community of video
compression. For this selection, we vary the content (LiveMusic,
Sports) and the resolution (360P, 480P) of videos.

Performance Properties. We then use x264 and x265 to transcode
these eight videos from the mkv to the mp4 format. During each ex-
ecution, we measure the percentage of cpu usage, etime the elapsed
time in seconds and the file size of the resulting video in bytes.

Executing Environment. We measure all performance sequentially
on a dedicated (and warmed-up) server - model Intel(R) Xeon(R)
CPU D-1520 @ 2.20GHz, running Ubuntu 20.04 LTS.

2.2.2 Compare Performance. We analyze the differences be-
tween the distribution of performance properties of x264 and x265.
As a measure of (dis)similarity, we compute their Spearman rank-
based correlation [15]. It is suited for our case since all performance
properties are quantitative variables relative to the same config-
urations. If both encoders obtain the same rankings in terms of
performance, the correlation is close to 1, and there is a good chance
of getting good results with transfer learning. If they react differ-
ently to the same configurations, the correlation is close to 0 and
the transfer might be challenging to achieve.

2.2.3  Transfer Performance. Third, and as displayed in Figure 1,
we try to transfer the performance from x264 (i.e., source software)
to x265 (i.e., target software). We use Model Shift, a simple and state-
of-the-art transfer learning approach defined by Valov et al. [32].
The protocol should be read following Figure 2 :

1. First, it trains a shifting function, mapping the performance
distribution of the source on the target software’s performance
distribution, 2. Then, it trains a performance model on the source
software, 3. Finally, it predicts the performance distribution of the

4The list of selected configuration options can be consulted here : https://anonymous.
4open.science/r/TL_cross_soft-855B/replication/x26x/README.md

SResults can be consulted at: https://anonymous.4open.science/r/TL_cross_soft-855B/
replication/x26x/x264_x265_options.ipynb
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Figure 2: Model Shift, an approach of transfer learning

source software and applies the shifting function to the predic-
tions, in order to estimate the performance of the target software
system. We compare Model Shift to a simple baseline acting as a
control approach, training a performance model directly on the
target software, without using any measurement of the source. We
call this baseline No Transfer. For both, we used a Random Forest
algorithm [26] to predict software performance, without tuning
its hyperparameters. We separate the dataset of the target into
training and test, varying the size of the training set. In the evalua-
tion, we compare and display the Mean Absolute Percentage Error
(MAPE) [23] between the predicted values (i.e., predicted by the
approaches) and the real values (i.e., measured on the test set of the
target software). To reduce the variance induced by machine learn-
ing randomness, we repeated the process five times and display
the average MAPE for the test sets. We rely on the python library
scikit-learn [28].°

2.3 Evaluation

2.3.1 Compare Performance. Among the three performance
properties, we can distinguish three cases : between x264 and x265,
the cpu consumption has an average a correlation close to 0 (lower
than 0.1), the elapsed time etime is overall positively correlated
(about 0.75), and there is almost no differences between the sizes of
the resulting mp4 videos (correlations close to 1). Transferring sizes
is likely to be easy and transferring cpu consumption will probably
be too difficult. The elapsed time @ is in between.

Table 1: Correlations between the performance distribu-
tions of x264 and x265 for eight input videos

Video cpu | etime | size
Animation 0.05 0.74 | 0.98
CoverSong 0.0 0.73 | 0.98
Gaming -0.02 0.81 | 0.99
Lecture 0.07 0.75 | 0.98
LiveMusic 0.01 0.77 | 0.99
LyricVideo 0.14 0.73 | 0.96
MusicVideo | 0.07 0.75 | 0.99
Sports -0.0 0.78 | 0.98

2.3.2 Transfer Performance. In Figure 3, we depict the results
varying for different inputs and performance properties:

® A description of our python environment can be consulted at: https://anonymous.
4open.science/r/TL_cross_soft-855B/replication/requirements.txt
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Figure 3: Mean Average Percentage Error (y-axis, lower is better) when transferring x264 to x265 performance depending on
the training size (x-axis, log scale), for eight input videos and three performance properties

o The transfer of cpu consumptions is almost always negative. For

example, after 15 configurations in the training set for the Cov-
erSong video, in Figure 3d, the baseline is always more accurate
than transfer learning. For the Lecture video, in Figure 3e, it is
even always a negative transfer.

For etime, the transfer is cost-effective at first, until a given
training size e.g., 65 for Figure 3c. After this threshold, the error
of the baseline keeps dropping while the errors stabilise for the
transfer. For the Animation video, in Figure 3a, and for a budget of
500 configurations, No Transfer decreases to a MAPE of 35+1.3 %
and Model Shift stays at 220 + 21 %.

Finally, for the encoded sizes of videos, Model Shift is at least
equivalent to the baseline whatever the number of configurations
and the video. This can be explained by the high correlations
observed in Table 1. At first, the transfer is really outperforming
the baseline e.g., in Figure 3h, for 5 configurations, the transfer
has an error of about 106 + 64 % while the baseline amounts to
1071 % 556 %.

Conclusion. The effectiveness of the transfer varies with the
performance property we consider. Overall, it is possible to outper-
form the No Transfer baseline for 2 performance properties (out
of 3), especially when the budget (i.e., the number of configura-
tions in the training set) is low. As noticed by [12], the greater the
correlation between performance distributions, the more accurate
the transfer. As a concrete advice for developers, this correlation
could be a cheap indicator to estimate a priori whether transfer
techniques are adapted between two systems.

3 THREATS TO VALIDITY

Due to the cost of measurements (58 days of system time), we
did not measure performance more than once. Therefore, the per-
formance distribution of x264 and x265 could change with new
measurements. To address this threat, we check the results for eight
different input videos; given their consistency, we are confident
that similar conclusions could be drawn by reproducing the exper-
iment. Another threat to validity is related to the use of machine

learning algorithms, which leads to non-deterministic results. To
mitigate this threat, we display the average result of five runs of
the model. In Section 2.2, we only select the configuration options
common to x264 and x265, ignoring a large majority of features.
This represents a potential threat to validity when generalising the
transfer to the whole configuration space.

4 DISCUSSION

Although our experiment is encouraging to further explore this
research direction, it does not cover all possible cases of transfer
learning between software systems. In this section, we identify
three lines of research and for each (1) we point out the limitations
of our study; (2) we discuss the open challenges to overcome when
transferring performance between distinct software systems; (3) we
describe the potential approaches and solutions.

4.1 Find Transferable Software Systems

4.1.1 Limitation. A threat to our study is the choice of x264
and x265. There might be other pairs of systems for which non-
functional properties are dissimilar e.g., with a correlation of zero,
the transfer learning might perform poorly. For x264 and x265 our
experiments show that two non-functional properties out of three
are positively and strongly correlated.

4.1.2  Open challenge. We cannot guarantee the effectiveness
of transfer learning for every pair of software systems. What is
difficult is to know whether transfer will work for a given pair
of software systems.

4.1.3  Possible Solution. For now, the only reasonable assump-
tion we can make is to choose software systems within the same
domain e.g., compilers like gcc, 11vm or clang, container managers
like podman or docker, learning libraries like theano, pytorch or
tensorflow, text editors like emacs, gedit or vim, video encoders
like vp9, x264, or x265 Measures on how performance distribu-
tions differ (e.g., with correlations) across systems can provide a
first indicator on whether transferring is worth.



4.2 When and How to Transfer?

4.2.1 Limitation. The results of Section 2 show some limits of
transfer learning: after a given training size, the interest in adding
noisy measures — such as source data — decreases. This learning
size is a switching point, as shown by Figure 3a: before this point,
it is preferable to use transfer learning and after this point, we
should switch to simple learning. This point seems difficult to esti-
mate a priori i.e., without any measurement. This may depend on
the complexity of the configuration space: the more complex the
configuration space, the more configurations are needed to make
an accurate prediction. And the more configurations needed to be
accurate, the larger the switching point.

4.2.2 Open Challenge. 1t is challenging to know when to ap-
ply transfer learning and when to switch to non-transfer learning.
These results could also be better (or worse) with other transfer
learning techniques (see Section 5). The challenge here is to deter-
mine the best learning approach to use for a pair of software
systems.

4.2.3 Possible Solution. Empirical studies comparing different
approaches on representative pairs of systems would be of great
help in addressing this challenge. Specialized learning algorithms,
capable of handling distribution shifts across software systems, are
also expected.

4.3 What to Transfer?

4.3.1 Limitation. Our choice of configuration options is another
limitation of our study. We have deliberately considered a favorable
case: since x264 and x265 have been developed by the same team,
the two systems share a common set of configuration options with
the same range of values.

4.3.2  Open Challenge. In general, the configuration spaces will
often be very different between the source and the target systems,
making the sampling of configurations difficult in practice. The chal-
lenge is to map the configuration space of the source to the
configuration space of the target. We illustrate these differences
between configuration spaces with vp9, x264, and x2657:

o The same feature is implemented in the source and the target
with different names e.g., —level for x264 and —level-idc for x265;

o The same feature is implemented in the source and the target,
but a value is only implemented in one software system e.g.,
unlike for x265, the motion-estimator feature —me of x264 does
not implement the ’star’ pattern search;

o The feature of one system encapsulates one feature (or more)
of the other e.g., activating —fullrange in x264 is equivalent to
choose —range full for x265;

o The feature is only implemented in one software system e.g., the
feature —rc-grain of x265 does not exist for x264;

e The feature does not have the same default value for the source
and the target e.g., —gpmax is set to 51 by default for x264 and
set to 69 by default for x265;

7One can verify our illustrations with the lists of features, available at:
https://cinelerra-gg.org/download/CinelerraGG_Manual/VP9_parameters.html for vp9,
http://www.chaneru.com/Roku/HLS/X264_Settings.htm for x264,
https://x265.readthedocs.io/en/2.5/cli.html for x265.

e Both software systems do not have the same requirements or
feature interactions e.g., for x265, passing a input video in the
yuv format does not work unless you specify —input-res, while it
does for x264;

o The same feature is implemented in the source and the target, but
the scale of the values differ between the source and the target.
For instance, the constant rate factor —crf goes from 0 to 63 for
vp9 but from to 0 to 51 for x264 and x265, which is problematic
when comparing a value (e.g., —crf = 35) that will not have the
same meaning for all systems. We could even imagine a situation
where the values of a configuration option are increasing for one
system and decreasing for the other.

In addition, and as acknowledged by [17], the study of configuration
options also requires domain knowledge, which is also true when
mapping the configuration spaces of different software systems.

4.3.3  Possible Solutions. Mapping configuration spaces could be
envisioned using recent advances in the variability community. We
propose a very simple protocol: (i) Align features [20, 31] between
systems; (ii) Meticulously model both configuration spaces e.g.,
with feature models [5, 14]; (iii) Analyse [8] and instrument [1,
2] them in order to create a resulting feature model generating
configurations accepted by both systems. If the objective is purely
to predict performance, heterogeneous transfer learning may be a
possible black-box alternative (see Section 5) that infers the existing
relationships between distinct configuration spaces.

5 RELATED WORK

Performance Comparison. In many areas, related work compares
the performance of different tools performing the same task [6, 9,
19, 27, 29, 30]. These empirical evidences could be relevant; if two
software systems have similar performance distributions, they are
good candidates for the transfer.

Transfer Learning. We list here few other transfer learning tech-
niques that could be applied across software systems. Jamshidi et al.
define Learning to Sample (L2S) [13]: it combines an exploitation
of the source and an exploration on the target to sample a list of
configurations, improving the overall accuracy of the learning algo-
rithm. As many other transfer learning works [4, 24], it is applied
to transfer performance of executing environments. Martin et al.
develop TEAM:s [21], a transfer learning approach predicting the
performance distribution of the Linux kernel using the measure-
ments of its previous releases. Between two releases, related the
same system but distant in time, one could consider that it is a
simple case of transfer across systems. Krishna et al. implement
BEETLE [16], that we could use to find one bellwhether software
i.e., a source software that lead to better transfer results whatever
the target. Jodo et al. propose Weighted Multisource Tradaboost [3].
Applied to our case, it would exploit multiple source software sys-
tems and give them different weight values based on their similarity
with the target system. This approach can be useful to apprehend
the wide diversity of existing systems.

Heterogeneous Transfer Learning. Heterogeneous Transfer Learn-
ing [7, 11, 34] (HTL) is an extension of homogeneous transfer learn-
ing handling the differences between the source and the target
feature spaces (a.k.a., configuration spaces when studying software
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variability). It creates a representation of the feature space, in be-
tween the source and the target, and finally transforms both feature
spaces so they fit in this representation. Applied to the transfer
across software systems, it would handle the changes of features
between the configuration space of the source software and the
configuration space of the target software. Moving to HTL would
generalise our work to a more realistic case, where we can decide
to select any feature of the source and the target systems.

6

CONCLUSION

This short paper shows it is challenging yet possible to transfer
performance between distinct configurable software systems, us-
ing two video encoders (namely x264 and x265). We also discuss
the limitations of our work and highlight the open challenges to
overcome when generalising the applicability of transfer learning
across distinct systems.
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