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ABSTRACT
Cyber-Physical Systems (CPS) have gained popularity due to the
increased requirements on their uninterrupted connectivity and
process automation. Due to their connectivity over the network
including intranet and internet, dependence on sensitive data, het-
erogeneous nature, and large-scale deployment, they are highly
vulnerable to cyber-attacks. Cyber-attacks are performed by creat-
ing anomalies in the normal operation of the systems with a goal
either to disrupt the operation or destroy the system completely.
The study proposed here focuses on detecting those anomalies
which could be the cause of cyber-attacks. This is achieved by
deriving the rules that govern the physical behavior of a process
within a plant. These rules are called Invariants. We have proposed
a Data-Centric approach (DaC) to generate such invariants. The en-
tire study was conducted using the operational data of a functional
smart power grid which is also a living lab.

KEYWORDS
Machine Learning, Anomaly Detection, Cyber-Physical Attack,
Cyber-Physical System, Critical Infrastructure, Industrial Control
System, Association Rule Mining, Electrical Power Plant

1 INTRODUCTION
Critical Infrastructure (CI) such as Electrical Power and Water
Treatment Plants are integral parts of developed countries. These
CIs are highly vulnerable to cyber-attacks due to the increased
requirements on their uninterrupted connectivity and process au-
tomation. Therefore, it is critical to take appropriate measures to
protect them from cyber-attacks. In any CI, the intrusion is detected
when the plant shifts its behavior from normal state to anomalous
state. Several studies have been proposed to detect such anomalous
behavior in water treatment plants [3, 17], in power grids [10, 13].
One such approach to detect anomalous behaviour is through a
set of well-defined rules. These rules are designed to detect the
anomalous behavior of the CI by leveraging plant physics. These
rules are often referred to as physics-based Invariants or Invariants.
Rules/Invariants can be derived using different approaches like the
Design-Centric approach (DeC), and the Data-Centric approach
(DaC) The Design-Centric approach has its limitations [16], such
as:

(1) Many operational plant designs consist of lengthy documen-
tation of design diagrams making it impossible to derive an
efficient set of invariants.

(2) Legacy plants will not be able to use a design-centric ap-
proach because as designs evolve, the documentation be-
comes obsolete.

(3) DeC approach needs Experts who can decipher plant design
and generate invariants of it.

(4) Confidentiality related concerns may restrict complete ac-
cess to the documents for the professional generating these
invariants.

In the current study, we have used DaC approach to generate invari-
ants. We have used an unsupervised rule-based machine learning
technique, Association Rule Mining (ARM) [5] to derive invari-
ants from the data obtained from Electrical Power and Intelligent
Control (EPIC) testbed. EPIC testbed is used as an example for
operational CI. EPIC is a testbed that replicates a real electrical
power grid system and is a living lab capable of supplying power
to other CIs such as Water Treatment Plants [1]. EPIC comprises
four stages, namely Generation, Smart-Home, Transmission, and
Micro-grid, hence can replicate the end-to-end operation of a full-
scale power system. Each stage has its relays (Intelligent Electronic
Devices or IEDs), local switches, a power supply unit, and PLCs
(Programmable Logic Controller) connected in a fiber optic ring
network. The Supervisory Control and Data Acquisition (SCADA)
workstation is used to monitor the entire system and also provides
supervisory control [1]. The motivation for the current study is
captured in the following research questions.

RQ1: Can we use the DaC approach to generate invariants for
a smart power grid? RQ2: How efficient is the DaC approach in
generating invariants for a smart power grid?

Contribution: A Data-Centric approach to generate invariants for a
smart power grid.

2 EPIC PLANT AND DATASET
2.1 EPIC Plant and Sub-processes
Electric Power and Intelligent Control (EPIC) is a power grid testbed
which consists of four stages namely Generation, Transmission,
Micro-grid, and Smart Home. These stages are connected to SCADA
via a gateway (as shown in Figure 2). SCADA provides supervi-
sory control and is used to monitor the entire power grid. Each of
the four stages of EPIC has switches, PLCs, power supply units,
protection, and communication systems in a fiber optic ring net-
work. WAGO PLCs control the opening and closing of breakers
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and contain the synchronization logic for the generators. High-
availability Seamless Redundancy (HSR) and Media Redundancy
Protocol (MRP) switches are used in the ring network for redun-
dancy. The generation stage consists of two generators, each rated
at 10kVA and providing a maximum of 20kVA. The Micro-grid stage
consists of photovoltaic (PV) panels rated at 33kW and an energy
storage system (ESS) with a rated power of 15kW. EPIC can be oper-
ated in two modes i.e., Micro-grid and normal. In Micro-grid mode,
the generators, PV, and ESS are directly connected to the Smart-
Home to represent shorter transmission lines. In normal mode, an
auto-transformer (T1) is used to step up or step down the voltage
at the transmission stage to the Smart-Home directly. Smart-Home
consists of two load banks, 30kVA and 15kVA respectively along
with a spinning load i.e., a motor to represent loads such as pumps,
heat and ventilation system, etc. The motor is loaded electrically
using the third generator rated at 10kVA and feeds the power back
to the generation stage. Two other CIs i.e., a Water Treatment Plant
and a Water Distribution Plant are also connected at the Smart-
Home stage which allows these CIs to function using the power
generated in EPIC.
In the electric layout of EPIC [1] the main power supply is obtained
from the main grid through a circuit breaker (Main CB). It is then
used to drive the variable speed drive motors (VSD1 and VSD2)
referred to as M1 and M2. The generators, G1 and G2 are connected
with PV panels and ESS which enables the study of the islanded or
grid-connected mode [1]. Different IEDs prefixed with their stage
name protect the electrical system, e.g., GIED is an IED for protect-
ing the Generation stage. The IEDs also function as measuring and
control devices (actuators for the CBs). EPIC plant consists of four
loads, referred to as water testbed and load demand. Load Demand
is further sub-divided into the critical, non-critical load, and motor
load. For further details on the electrical and network details the
readers can refer [6]

Figure 1: Case Study: EPIC Testbed

2.2 EPIC Dataset
The authors in [6] have published a comprehensive dataset for
EPIC with time-stamps, the dataset was collected under multiple
scenarios and 4 different scenarios of the normal operation of the
EPIC testbed with a sampling rate of 1 second is considered in this
paper.

Scenario 01: Synchronising two generators without load and
angle difference from -180 to 0 and 0 to 180 degrees. The data was
generated on Oct 19 2018 from 02:22 PM to 02:54 PM, having 512
data points and 292 attributes.

Scenario 02: Synchronising two generators with a PV system
and resistive load of 7KW for 20 minutes. The data was generated
on Oct 19 2018 from 03:45 PM to 04:05 PM, having 797 data points
and 292 attributes.

Scenario 03: Synchronising three generators with a resistive
load of 4KW for around 20 minutes. The data was generated on Oct
19 2018 from 04:06 PM to 04:28 PM, having 863 data points and 292
attributes.

Scenario 04: Continuous supply of power to SWaT [12] and
WADI [7] testbeds of water treatment and distribution plants re-
spectively. The data was generated on Nov 07 2018 from 02:57 PM
to 03:21 PM, having 695 data points and 391 attributes.

3 ASSOCIATION RULE MINING
Association Rule Mining (ARM) [5], also referred to as "Frequent
Pattern Mining", is used to explore patterns in the dataset to find re-
lations between different attributes. This relation is often expressed
as a rule such as in 1. It is a rule-based unsupervised machine learn-
ing approach in which we get antecedent followed by consequent
as the output such that antecedent X implies consequent Y.

𝑋 =⇒ 𝑌 (1)

3.1 Frequent Itemsets
ARM needs a dataset to generate frequent patterns to make the re-
lationships discoverable across state variables. In the current study,
the dataset D is the collection of sensor values from VSDs, motors,
generators, and IEDs at each time interval ordered chronologically.
An itemset is known as the grouping of one or more state vari-
ables, 𝑒 for example, is the state of VSDs, IEDs, and circuit breakers.
Itemsets A which have minimum support S in D are referred to as
frequent itemsets. Formally, support can be written as:

𝑆 (𝐴) = |𝑒𝜖𝐷 ;𝐴𝜖𝑒 |
|𝐷 | (2)

Configuring low support prompts a large number of frequent item-
sets which will likewise incorporate uncommon frequent itemsets,
while high support will prompt few frequent itemsets and this
would lead to a conservative model.

3.2 Rules
Frequent itemsets can also be broken down into antecedents and
consequents to generate rules of the type X⇒ Y where X and Y are
sets of items. This rule means that if transactional databases contain
X, then it tends to contain Y. Only those rules are made part of the
final set of association rules that satisfies the user-defined minimum

2
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Figure 2: EPIC Control Architecture.

confidence threshold. Confidence C checks that how many times
the rule gets true in the dataset when X has occurred. Confidence
for the rule X⇒ Y is defined as follows.

𝐶 (𝑋 ⇒ 𝑌 ) = 𝑆 (𝑋∪𝑌 )
𝑆 (𝑋 ) (3)

Configuring a low value of confidence results in inaccurate rules
than those generated with higher confidence values. State variables
of X and Y depend on the size of frequent itemsets i.e they can have
one or more state variables if the size of frequent itemsets is bigger
or vice versa.

Lift is another measure that tells the likelihood of the antecedent
and consequent coming together [8]. The lift is an implicit measure
also called interest measure that how many times antecedent and
consequent come together than expected if both were statistically
independent. If the value of lift is less than 1 then it means that
the antecedent and consequent appear less than expected. If it is
greater than 1 then it means they appear more than expected, and
it is equal to 1 then it means that they appear as expected. In this
study, the rules mined have been filtered to the value of lift greater
than or equal to 1. Lift for a rule X =⇒ Y can be calculated using
the following equation.

𝐿𝑖 𝑓 𝑡 (𝑋 ⇒ 𝑌 ) = 𝑆 (𝑋∪𝑌 )
𝑆 (𝑋 ) .𝑆 (𝑌 ) (4)

4 DERIVING INVARIANTS FROM EPIC
DATASET

The steps involved in using the data-centric approach to mine
invariants using association rule mining are described below:

4.1 Feature Engineering & Selection
The ARM is an unsupervised machine learning technique that re-
quires binary-valued attributes to generate finite quality rules. In
the EPIC system, we have attributes that are in different states
such as continuous quantitative, discrete quantitative, and nom-
inal qualitative. Converting these attributes into binary-valued
attributes requires statistical and domain knowledge regarding

electrical power systems. Continuous quantitative attributes are
converted to binary-valued attributes using interval tolerance val-
ues such as the voltage values of the attributes which should be
between the intervals of either 240 ± 5% (for phase voltages) or
420 ± 5% (for line voltages). A methodical study of EPIC control
strategy reveals that the states of attributes which are encoded as
status codes in our dataset such as Generation.Q1.STATUS, Micro-
Grid Q2.STATUS, Transmission.Q3.STATUS etc. are the states of
circuit breakers for each stage of the EPIC. It contains the following
encoded value of 10, 01, and 11 that have been decoded to OPEN,
CLOSE, and FAULT (or Trip) respectively. Some attributes are in
the transition states that have been converted to their initial or final
state in the system as shown in Figure 3 and 4. For example, even
though 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝐺𝐼𝐸𝐷1.𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 .𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 oscillates be-
tween 49.9 to 50.1 Hz, the values can be discretized to 1, whereas 0
state represents values are 0. The state and number of attributes
differ in different scenarios. Many attributes in our dataset that
contain a constant value throughout the operational period of the
EPIC testbed have been discarded. The invariants are mined from
the dynamic state of attributes that gave consequential states. Some
of the attributes selected for ARM are described in Table 5.

4.2 Invariants Generation & Validation
In the current study, the rules are mined using association rule
mining by setting the confidence as 100% and support as 60% using
Orange, an open-source data visualization, machine learning, and
data mining tool.
The rules generated under different scenarios were more than
100,000. The number of significant attributes used to derive in-
variants is 64, 25, 84, and 81 respectively for scenarios 01, 02, 03,
and 04. Because of spatial constraint, sub-set of rules generated
in scenarios 01, 02, 03, and 04 are listed in Tables 1, 2, 3, and 4
respectively.

The key advantage of the proposed technique in reference to DeC
is the invariant generation is not linked to the effectiveness of the
designer and the number of rules generated covers a wide range.
Furthermore, the intrusion detection system (IDS) can be designed
in such a manner to dynamically use different sub-set of invariants

3



Supp Conf Lift Antecedent Consequent
0.959 1 1.022 MicroGrid.Q2C.MODE_CLOSE=False MicroGrid.Q2B.MODE_CLOSE=False

0.955 1 1.022 MicroGrid.Q2B.MODE_SYNC_COMPLETED=False,
MicroGrid.Q2C.MODE_CLOSE=False MicroGrid.Q2B.MODE_CLOSE=False

0.916 1 1.089 Generation.Q1_2.MODE_CLOSE=False,
Generation.Q1_2.STATUS=CLOSE

Genera-
tion.Q1_2.STATUS_OPEN=False

0.914 1 1.089 Generation.Q1_2.STATUS_CLOSE=True,
MicroGrid.Q2B.MODE_SYNC_COMPLETED=False Generation.Q1_2.STATUS=CLOSE

0.914 1 1.089
Generation.Q1_2.MODE_CLOSE=False,
Generation.Q1_2.MODE_OPEN=True,
Generation.Q1_2.STATUS_OPEN=False

Genera-
tion.Q1_2.STATUS_CLOSE=True

Table 1: A sub-set of Invariants generated from Scenario 01

Supp Conf Lift Antecedent Consequent

0.959 1 1.034 Generation.GIED1.Measurement.L1_Current=0

Micro-
Grid.MIED1.Measurement.Real=0,

Micro-
Grid.MIED2.Measurement.Apparent=0

0.959 1 1.034 Generation.GIED1.Measurement.L2_Current=0

Micro-
Grid.MIED1.Measurement.Real=0,

Micro-
Grid.MIED2.Measurement.Apparent=0

0.956 1 1.034 MicroGrid.MIED2.Measurement.Apparent=0 Micro-
Grid.MIED2.Measurement.Real=0

0.955 1 1.046 SmartHome.SIED2.Measurement.Apparent=0 Micro-
Grid.MIED2.Measurement.Apparent=0

0.955 1 1.034
Generation.GIED1.Measurement.L1_Current=0,
Generation.GIED1.Measurement.L2_Current=0,
Generation.GIED1.Measurement.L3_Current=0

Micro-
Grid.MIED1.Measurement.Real=0

Table 2: A sub-set of Invariants generated from Scenario 02

Supp Conf Lift Antecedent Consequent
0.997 1 1.001 MicroGrid.Q2A.MODE_OPEN=False MicroGrid.Q2A.MODE_CLOSE=True
0.997 1 1.003 MicroGrid.Q2A.MODE_OPEN=False MicroGrid.Q2A.STATUS=OPEN
0.997 1 1.003 MicroGrid.Q2A.STATUS_CLOSE=False MicroGrid.Q2A.STATUS_OPEN=True

0.997 1 1.003 MicroGrid.Q2A.MODE_OPEN=False,
MicroGrid.Q2A.STATUS=OPEN MicroGrid.Q2A.MODE_CLOSE=True

0.995 1 1.003 Generation.GIED1.Measurement.Power_Factor=1,
MicroGrid.Q2A.STATUS=OPEN MicroGrid.Q2A.STATUS_OPEN=True

Table 3: A sub-set of Invariants generated from Scenario 03

to improve the anomaly detection process as the adversary may
not be aware of the exact set of invariants used in IDS or at least
makes it harder for the adversary to design the attacks. If a fixed
finite set is used it is comparatively easier for the adversary when
insider information is available for carrying out the attack, such
disadvantages could be minimized with the proposed approach.
The validation of the rules generated could be carried out by do-
main experts, using different persons for sub-set of the invariants
generated could drastically increase the difficulty for an adversary,
as no single person will have the complete information on all sets

of invariants used in the IDS. The authors are planning to use three
prong approach to validate the invariants, 1) using a random sub-set
and manual validation, 2) automated validation on the EPIC plant,
and 3) automated validation on the EPIC digital twin. The invariants
listed in the paper were validated manually by the authors.

5 RELATEDWORK
Invariant generation using ARM was proposed in [15, 16], which
was conducted for SWaT [12] testbed while in the current study,
invariant mining for a smart power grid was conducted which is

4



Supp Conf Lift Antecedent Consequent
0.999 1 1.001 MicroGrid.MAMI3.Power_Frequency=1 MicroGrid.MAMI3.Power_Factor=1

0.999 1 1.001 MicroGrid.MAMI3.Voltage_L1=1, MicroGrid.MAMI3.Voltage_L2=1,
MicroGrid.MAMI3.Voltage_L3=1,

Micro-
Grid.MAMI3.Active_Energy_KWh=1

0.999 1 1.001 MicroGrid.MAMI3.Power_Frequency=1 Micro-
Grid.MAMI3.Active_Energy_KWh=1

0.999 1 1.001 MicroGrid.MAMI3.Voltage_L1=1, MicroGrid.MAMI3.Voltage_L2=1,
MicroGrid.MAMI3.Voltage_L3=1,

Micro-
Grid.MAMI3.Power_Frequency=1

0.993 1 1.007 MicroGrid.MAMI2.Voltage_L1=1, MicroGrid.MAMI3.Voltage_L1=1
MicroGrid.MAMI2.Voltage_L2=1,
MicroGrid.MAMI3.Voltage_L2=1

Table 4: A sub-set of Invariants generated from Scenario 04

Figure 3: Attributes before Discretization

quite different from water treatment plant. Specific attacks on EPIC
process and adhoc IDS rules are presented in [2, 11], however, rules
for holistic IDS was not considered in the above papers. Similarly,
ARM was also used for attacks generation in [14]. They created
the attack vectors using the attacked data of SWaT. The study
reported in [4] also used the process invariants to detect cyber-
attacks on a water treatment system. In this study, the invariants
were generated from the dynamics of the plant. They also performed
physical attacks on an operational water treatment plant to evaluate
their approach. Though the results of the invariant-based attack
detection approach were satisfactory, attackers can still bypass the
system if the parameter values are known to any attacker.

Multi-level anomaly detection in Industrial Control System (ICS)
using Package signatures and LSTM was proposed in [9]. Their
framework was able to detect unseen attacks. It was able to deal

Figure 4: Attributes after Discretization

with complicated data with hybrid features and was able to achieve
high detection performance compared to other anomaly detec-
tion systems. The study in [19] introduced the application of two
methods, SPRT and auto-associative kernel regression (AAKR) for
intrusion detection in SCADA systems. This paper states the quick
detection of anomalies in the system using the aforementioned
methods. Different intrusion detection methods require different
indicators, so monitoring potentially valuable variables is an im-
portant system requirement. The study reported in [18] has used
machine learning methods to detect cyber-attacks. They reported
96.1% accuracy using unsupervised learning and 91.1% accuracy
using supervised learning.

5



Attributes Description
MicroGrid.MIED2.
Measurement.Apparent

Measures the apparent power
of microgrid 02.

MicroGrid.MIED1.Measurement.
Real

Measures the real power of mi-
crogrid 01.

MicroGrid.Q2B.STATUS_CLOSE,
MicroGrid.Q2A.MODE_OPEN,
MicroGrid.Q2C.STATUS_OPEN

Checks the status of the circuit
breakers of the microgrid.

Generation.GIED1.Measurement.
Reactive

Measure the reactive power
from generator 01.

SmartHome.SIED2.Measurement.
Apparent

Measures the apparent power
of smart home 02.

Generation.Q1_2.MODE_CLOSE,
Generation.Q1_2.MODE_OPEN,
Generation.Q1_2.STATUS_OPEN

Checks the status of the circuit
breakers of the generator.

MicroGrid.MAMI3.Voltage_L1,
MicroGrid.MAMI3.Voltage_L2,
MicroGrid.MAMI3.Voltage_L3

Measures the level of voltage
at lines L1, L2, and L3 from the
microgrid.

Table 5: Some of the attributes selected for ARM

6 CONCLUSIONS
The study sought to determine how a data-centric approach can be
used for the generation of invariants which would later serve as
monitors for anomaly detection. While the validation phase of the
data-centric approach can be made much more effective, we reach
the following conclusions:

(1) DaC approach appears better than DeC in the sense that it
considers a continuous functional mode of the plant that
would tune the state of attributes. The Design-centric ap-
proach may be inefficient for tuning attributes as its states
are assumed at the time when the plant is designed.

(2) For large-scale critical infrastructures, the generation of in-
variants must be automated due to a large number of sensors
and components governing the functioning of the plant. For
the process of automation data-centric approach is feasible.

(3) While the data-centric approach is more efficient in terms
of cost of time we can’t deny the significance of the design-
centric approach especially in the case of innovative and
modern plan design.

(4) The number of invariants derived is in large quantity adding
spatial complexity to work with them, which can be reduced
by tuning the model continuously to achieve a significant
set of invariants that depicts viable relations of attributes in
the given system.
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