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Incorporating knowledge graphs (KGs) into recommender systems to provide explainable recommendation
has attracted much attention recently. The multi-hop paths in KGs can provide auxiliary facts for improving
recommendation performance as well as explainability. However, existing studies may suffer from two major
challenges: error propagation and weak explainability. Considering all paths between every user-item pair
might involve irrelevant ones, which leads to error propagation of user preferences. Defining meta-paths
might alleviate the error propagation, but the recommendation performance would heavily depend on the
pre-defined meta-paths. Some recent methods based on graph convolution network (GCN) achieve better
recommendation performance, but fail to provide explainability. To tackle the above problems, we propose
a novel method named Knowledge-aware Reasoning with Graph Convolution Network (KR-GCN). Specif-
ically, to alleviate the effect of error propagation, we design a transition-based method to determine the
triple-level scores and utilize nucleus sampling to select triples within the paths between every user-item
pair adaptively. To improve the recommendation performance and guarantee the diversity of explanations,
user-item interactions and knowledge graphs are integrated into a heterogeneous graph, which is performed
with the graph convolution network. A path-level self-attention mechanism is adopted to discriminate the
contributions of different selected paths and predict the interaction probability, which improves the relevance
of the final explanation. Extensive experiments conducted on three real-world datasets show that KR-GCN
consistently outperforms several state-of-the-art baselines. And human evaluation proves the superiority of
KR-GCN on explainability.
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1 INTRODUCTION

Recommender systems have played an increasingly important role in online platforms, which aim
to alleviate the impact of information explosion and provide personalized recommendation stick-
ing to the interests of users. In recent years, Knowledge Graphs (KGs), which can provide auxil-
iary information about users and items in heterogeneous graphs, have been proved to be effective
in improving recommendation performance [5, 42, 46, 64].

KGs can organizewell-structured external information to connect users and items, which cannot
only provide extra facts about items to generate more accurate recommendation, but also expand
users’ interests to a certain extent. Figure 1 shows an example of the KG enhanced recommenda-
tion, where the KG and user-item interactions are integrated. The historical interaction items of
users, such as The Three Musketeers and A Tale of Two Cities, can be linked to entities in the given
KG. Then, the attributes of the entities can be utilized to enhance recommendation, such as book
titles, writers, genre, and so on. Because historical interaction items and recommended items are
connected by entities as well as users, the recommendation enhanced by KGs can explore richer
path information than collaborative filtering methods [52, 57]. For example, the book Barnaby

Rudge can be recommended to Bob because they are connected by the entities Charles Dickens
and A Tale of Two Cities, which can hardly be recommended based on users’ historical interaction

in collaborative filtering methods. Meanwhile, one of the reasoning paths Bob
Interact−−−−−−−→ A Tale of

Two Cities
WrittenBy−−−−−−−−−→ Charles Dickens

Write−−−−−→ Barnaby Rudge can be provided as the reason for the
explainable recommendation.
A number of recent efforts have attempted to leverage KGs to make the knowledge-aware rec-

ommendation. These knowledge-aware recommendationmethods can be roughly categorized into
two types: path-based methods [19, 62] and embedding-based methods [4, 51]. Although these
knowledge-aware methods have achieved promising recommendation performance, challenges
still exist, mainly including error propagation in the path-based methods and weak explain-

ability in the embedding-based methods.
Path-based methods need to identify paths that carry the connectivity information between

users and items first, and then feed them into predictive models [10, 19, 38, 47, 50, 64]. However,
whenmodeling the interactions between the given user-item pair, the paths between the user node
and the item node are extracted as the propagation paths, and user preferences propagate along
these propagation paths in the graph. Considering all paths between the given pair might involve
irrelevant ones, which leads to error propagation of the user preferences. Taking Figure 1 as an

example, the path Bob
Interact−−−−−−−→Oliver Twist

Lanдuaдe−−−−−−−−→English
Lanдuaдe−1−−−−−−−−−−→Barnaby Rudge has little

effect on the recommendation and can be regarded as noise path. Using this path as the reasoning
path might introduce noise information into the user preferences, i.e., the error propagation of
the user preferences. Defining meta-path patterns [10, 64] might alleviate the problem of error
propagation, but the final recommendation performance would heavily depend on the pre-defined
meta-paths, which is impossible to reflect the complicated inference relations in reality and there is
noway tomodifymeta-paths during the learning process for optimization. Furthermore, designing
proper meta-paths requires a deep understanding of the specific application domain, which is
usually labor-intensive and almost impractical to be generalized.
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Fig. 1. An example of KG enhanced recommendation, where user-item interactions and KG are integrated.

The items are connected with users and entities, so as to explore rich path information and improve the

recommendation performance. The dotted line indicates that the path has little effect on the recommendation

and may even introduce noise, leading to error propagation.

Embedding-based methods tend to distill user preferences by mapping the embeddings of users
and items into a preference score. Specifically, more and more recent works start to utilize Graph
Convolution Network (GCN) [23] for computing the embeddings of users and items via propa-
gation and aggregation of their neighbors in the heterogeneous graphs [45, 46]. Such GCN-based
recommendation methods have proved to be successful in modeling the high-order relations in
KGs to provide better recommendations. And the state-of-the-art performance on public datasets
is mostly achieved by GCN-based methods. However, these GCN-based methods also have some
disadvantages. They compute the preference score only from the embeddings of users and items,
lacking much key information on the paths for multi-hop reasoning. Moreover, the explainable
recommendation can improve the acceptance and conversion rates of the recommended items.
GCN-based methods cannot output multi-hop paths as reasons for the recommendation, failing to
provide explainability.
To tackle the aforementioned problems, we propose a novel recommendation model named

Knowledge-aware Reasoning with Graph Convolution Network (KR-GCN), which aims to
study how accurate recommendation and trustworthy explainability can be achieved at the same
time. Specifically, to cope with the problem of error propagation, we design a transition-based
method to determine the triple-level scores and utilize the nucleus sampling strategy [18] to se-
lect triplets within the reasoning paths between every user-item pair adaptively. This strategy not
only alleviates the problem of error propagation, but also releases the domain knowledge depen-
dency on the pre-definedmeta-paths. To improve the recommendation performance and guarantee
the diversity of explanations, we integrate user-item interactions in recommendation and the KG
(i.e., user collaboration information and auxiliary knowledge about items) into a heterogeneous
graph, where the high-order relations in the heterogeneous graph are performed by the GCN. A
path-level self-attention mechanism is applied in our framework to discriminate the different con-
tributions of selected paths. The path with the highest weight is provided as the explanation for
recommendation, so as to improve the relevance of the final explanation. For example, providing
the explanation “The user who has bought the item A has also bought this item” is more persuasive
than the explanation “The user who has seen the item A has also seen this item” for recommen-
dation. The interaction probability between the given user and the candidate item is predicted via
aggregating these selected path representations with various attention scores. To evaluate the rec-
ommendation performance of the proposed model KR-GCN, we conduct a serial of experiments
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on three public benchmarks. The results indicate that our proposed KR-GCN outperforms state-
of-the-art methods like RippleNet [42], KGAT [46], and JNSKR [5]. And human evaluation proves
the superiority of the proposed model on explainability.
The main contributions of this article can be summarized as follows:

—We propose a novel knowledge-aware reasoning model named KR-GCN for the explainable
recommendation. A transition-based method is designed to score triplets, and nucleus sam-
pling is utilized to select triplets within the paths between every user-item pair adaptively,
which can reduce the impact of error propagation and does not rely on domain knowledge.

— To improve the recommendation performance and provide trustworthy explainability, GCN
is performed to learning node representations of the heterogeneous graph, including user-
item interactions and KG, which can guarantee the diversity of explanations. Then a path-
level self-attention mechanism is applied to discriminate the different contributions of se-
lected paths, which improves the relevance of the final explanation.

— Extensive experiments on three real-world datasets about books, business, andmusic demon-
strate that the proposed KR-GCN achieves improvements over state-of-the-art baselines.
And human evaluation proves that KR-GCN can provide trustworthy explainability com-
pared with baselines.

The rest of this article is organized as follows. In Section 2, we provide a comprehensive
overview of the related work, including KG-aware recommendation, explainable recommendation,
and graph neural network (GNN). In Section 3, we formulate the knowledge-aware recommen-
dation problem and describe the details of our proposed model KR-GCN. The experimental results
and analyses of the recommendation performance and explainability are presented in Section 4.
Finally, we conclude our work and plan future research directions in Section 5.

2 RELATEDWORK

In this section, we review the related work of the proposed KR-GCN, mainly including the KG-
aware recommendation, the explainable recommendation, and the GNN.

2.1 KG-Aware Recommendation

The related studies of KG-aware recommendation can be grouped into path-based and embedding-
based methods. Path-based recommendation methods [10, 19, 20, 29, 36, 47, 50] usually utilize
multi-hop paths in KGs to improve recommendation performance. Moreover, these multi-hop
paths can also be used as the propagation paths of user preferences, which can represent the
propagation of user preferences more intuitively. MCRec [19] and MEIRec [10] explicitly encode
meta-paths as interactions between the users and the items, where the meta-paths are pre-defined
according to the recommendation datasets. KPRN [47] extracts multi-hop paths from KGs for rec-
ommendation and generates path representations that contain the information of entities, entity-
type, and relations. PGPR [50] finds themulti-hop paths between users and items via reinforcement
learning and provides recommendation results along the reasoning paths. RuleRec [29] proposes
a joint learning framework to generate the rule-guided neural recommendation, where the joint
learning framework consists of a rule learning module and a recommendation module. The work
[64] devises a meta-heuristic based demonstration extractor and perform path finding by leverag-
ing these path demonstrations.
Embedding-based recommendation methods [1, 4, 43, 51, 54, 58] usually utilize knowledge

graph embedding (KGE) methods, such as TransE [3], TransH [48], DistMult [53], and ComplEx
[40], to learn the entity embeddings in KGs for the corresponding items and enhance the repre-
sentations for user-item interactions. CKE [58] adopts the KGE method TransR [27] to extract KG
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information and then combines the KG representations with textual and visual representations to
generate multi-modal representations for items. DKN [43] learns the entities contained in the news
via KGEmethods and incorporates these entity embeddings in the KGs into news recommendation
to capture the connections among different news, so as to perform click-through rate prediction.
KTUP [4] joins the tasks of item recommendation and KG completion to enhance the item embed-
dings and user preferences, where the user preferences are induced by the user-item interactions
and the relations in KG. Some models [32, 39, 42, 44–46, 55, 63] incorporate path features into
embedding-based methods to perform recommendation. RippleNet [42] models the propagation
of user’s preference from historical interests along paths in the KG to predict the user clicking
probability. KGCN [46] utilizes GCN to embed the entities in the KG, and then use these entities
to capture users’ interests. KGAT [45] models the high-order connections between user-item pairs
with embeddings refined by recursive propagation.

However, the path-based recommendation methods usually ignore the graph structure informa-
tion when capturingmulti-hop paths, andmost methods that utilize meta-paths to model user pref-
erences are difficult to reflect the complicated inference relations and inefficient to optimize in re-
ality. Furthermore, defining meta-paths requires domain knowledge and is usually labor-intensive.
Although the embedding-based recommendation methods are flexible and efficient, they cannot
output multi-hop paths as recommendation reasons, failing to provide explainability.

2.2 Explainable Recommendation

Explainable recommender systems [1, 6, 8, 9, 12, 13, 20, 26, 28, 29, 47] have played an increasingly
important role in recommendation task, or even inmachine learning. This is mainly because the ex-
plainable recommendation can greatly improve the effectiveness of recommendation (to help users
make decisions quickly) and the persuasiveness of recommendation (to improve the possibility of
users accepting or buying recommended items, i.e., acceptance and conversion rates). The explain-
able recommendation can provide a better interactive experience for users and bring considerable
benefits to application manufacturers. KPRN [47] extracts multi-hop reasoning paths from KGs to
infer user preferences. These multi-hop reasoning paths are assigned different weights and used
as explanations for the recommendation results. EIUM [20] captures the semantic paths between
specific user-item pair in KGs. Then these multi-hop paths are encoded and weighted, so as to pro-
vide the path-wise explanations for the sequential recommendation. RuleRec [29] is a rule-guided
recommendation method that utilizes the KG as an information source. RuleRec induces rules via
a rule learning module and then explores item associations between item pairs based on these
deduced rules, where the associations between item pairs are used as explanations. To improve
the fairness of explainable recommendation, [12] proposes a fairness-aware algorithm to allevi-
ate the algorithmic bias and perform fair explainable diversity. DEAML [13] utilizes an attentive
multi-view learning framework to combine predictions with different weights and proposes a dy-
namic programming algorithm to generate explanations for the personalized recommendation. To
perform the explainable recommendation, TMER [6] captures meta-path patterns between items
to explore the dynamic evolutions of user-item pairs based on temporal KGs. DESR [26] uses the
GaussianMixtureModel (GMM) and the capsule network to obtain users’ long-term preferences
and short-term demands, and combines these two via the serendipity vector. Then DESR devises
a back-routing scheme to provide explanations for the recommendation. The work [8] uses the
multi-task learning framework to learn the recommendation task and the explanation task, and
designs a hierarchical co-attention selector to model the interaction between two tasks. The work
[64] proposes a demonstration-based explainable recommendation method, which extracts reason-
ing paths by using several path demonstrations. AnchorKG [28] performs news recommendation
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by generating anchor KG for each article, and provides explanations in the form of multi-hop
relational reasoning paths.
Existing explainable recommendation methods usually provide the explainability by extracting

paths from the KGs and then encoding path information via some sequence algorithms, such as
RNN and LSTM. These methods can provide explanations for the recommendation, but the graph
structure information is not fully utilized. The graph structure information can reflect the influ-
ence of nodes by their neighbors, so using the graph structure information can improve user-item
interaction modeling to some extent.

2.3 Graph Neural Network

In recent years, the GNN has shown great potential in representation learning, and has achieved
considerable performance in many natural language processing tasks, such as text classification
[34, 61] and recommendation system [7, 31, 60], and so on. GNN aims to model the graph struc-
ture information and node representation information. The nodes in the graph are represented as
low-dimensional vectors, and then the learned node representations are used for the downstream
tasks by employing neural network models. Several typical GNNs include GCN [23], Graph At-

tention Networks (GAT) [41], Graph Auto-Encoders (GAE) [22], Graph Generative Networks
[24], and so on. In the recommendation task, GNN is typically employed to learn the node repre-
sentations for users and items. GraphRec [11] utilizes the GNN framework to embed the nodes
and interactions in the social graph and the user-item graph for the social recommendation. Three
aggregators are devised to perform node aggregation in two heterogeneous graphs. V2HT [25]
introduces a multi-view interactive feature recommendation framework based on graph informa-
tion propagation, which aims to alleviate the problem of data sparsity and long-tail distributions.
DGRec [37] employs dynamic graph attention neural network to perform social recommendation,
where the dynamic user behaviors and context-dependent social influence are utilized to infer
users’ interests. KGCN [45], KGCN-LS [44], and KGAT [46] automatically discover the high-order
connections in the KG and update node representations by aggregating the neighborhood infor-
mation. DANSER [49] uses two dual GAT for the social recommendation. The GAT in DANSER
are composed of a user-specific dual GAT and a dynamic and context-aware dual GAT. STAR-GCN
[59] learns the node representations in the graph via a multi-link graph convolutional encoder. To
enhance the representations and alleviate the cold start problem, STAR-GCN masks a few nodes
and reconstructs these nodes via their neighborhood information. IntentGC [63] adopts GCN to
capture users’ preferences and heterogeneous relationships, and devises a vector-wise convolution
function to perform faster recommendation.
Although the GCN-based methods have proved to be successful in modeling the high-order

relations in KGs to provide better recommendation. And the state-of-the-art performance on public
datasets is mostly achieved by GCN-basedmethods. However, these GCN-basedmethods also have
some disadvantages. They compute the preference score only from the embeddings of users and
items, lacking much key information on the paths for multi-hop reasoning and failing to provide
explainability.
Different from previous KG-aware and explainable recommendationmethods, KR-GCN not only

makes full use of the graph structure information, but also adaptively captures multi-hop paths in
the graph to solve the problem of error propagation without defining meta-path patterns. The het-
erogeneous graph and the multi-hop paths are encoded via GCN and LSTM, respectively. Since the
heterogeneous graph that we construct includes the user-item interactions and the KG, KR-GCN
can guarantee the diversity of explanations compared with the methods that rely solely on either
the KG or the user-item interactions. Furthermore, the relevance of the explanations is improved
via the path-level self-attention mechanism in KR-GCN.
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3 METHODOLOGY

In this section, we present the proposed recommendation model KR-GCN. Firstly, we formulate
the knowledge-aware recommendation problem. Then, we elaborate on the core components of
the proposed model KR-GCN, including Graph Encoding module, Path Extraction and Selection
module, Path Encodingmodule, and Preference Predictionmodule, as illustrated in Figure 2. Lastly,
we describe the training and optimization of KR-GCN. Specifically, we define the training objective
function of our model.

3.1 Problem Formulation

The goal of our work is to learn a prediction function for user preferences that can predict the in-
teraction probability between the given user and the target item, i.e., whether the user will interact
with the item that he has not interacted with before. Given a user set U and an item set V , for
the user u ∈ U , the items that u interacts with are denoted as Vu = {v1,v2, . . . ,vM } ⊂ V , where
M denotes the number of u’s historical interaction items.

The KG G (E,R ) is introduced as the complementary information and organized as structured
triples, where E and R are the entity set and relation set. In the KG enhanced recommendation,
the item v ∈ V is linked to the corresponding entity e ∈ E in the given KG G (Noting that in
the news recommendation scenario, an item corresponds to many entities). Then, the knowledge
can be incorporated into the recommendation by introducing the triplets that contain the entity e .
Taking Figure 1 as an example, the item Oliver Twist can be linked to the entity OliverTwist, which
relates to other entities in the form of triplets in G, such as the entity Charles Dickens. Given the
historical interaction items Vu of u, the target item v � Vu , as well as the KG G, the prediction
function for user preferences can be defined as

ŷuv = fΩ(u,v |Vu ,G ), (1)

where ŷuv denotes the interaction probability between the user u and the target item v , and f is
our recommendation model with the parameter set Ω.

3.2 KR-GCN

The proposed recommendation model KR-GCN consists of four modules: Graph Encoding, Path
Extraction and Selection, Path Encoding, and Preference Prediction. The architecture of KR-GCN
is illustrated in Figure 2. The Graph Encoding module is designed to learn the representations
of nodes in the heterogeneous graph. The Path Extraction and Selection module is devised to
extract paths between users and items from the heterogeneous graph and select higher-quality
reasoning paths. The Path Encoding module is used to learn the representations of the selection
reasoning paths. The Preference Prediction module predicts users’ preferences according to
the reasoning paths.

3.2.1 Graph Encoding. To accommodate embeddings for users, items, and entities, KR-GCN
encodes the heterogeneous graph including user-item interactions and KG by utilizing the graph
representation model GCN. The embeddings of nodes are computed via performing graph convo-
lution iteratively and aggregating local network neighborhood information. Then, the structure
information of the heterogeneous graph can be modeled and the high-order connectivities in the
graph can be captured. Moreover, because GCN updates each node embeddings by utilizing adja-
cent node embeddings, the problem of node ambiguity can be solved well. For example, the nodes
Dumas Jr. and Dumas Sr. can be distinguished according to their neighborhood nodes The Lady of
the Camellias and The Three Musketeers in the graph.
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Fig. 2. An illustration of KR-GCN model architecture. Four modules are included: Graph Encoding, Path

Extraction and Selection, Path Encoding, and Preference Prediction.

In KR-GCN, we adopt the weighted sum aggregator to capture the features of each given node
and their neighborhood nodes, where the neighborhood nodes are aggregated via mean function.
The sum aggregator combines these two representations with a non-linear activation function σ .
Specifically, for a given node i (i.e., a user, an item, or an entity), the embeddings can be initialized
randomly or using original node features pre-trained with external knowledge at the 0th layer. At
higher layers, the node embeddings are computed via graph convolution operation. The operation
on the node i at the (l + 1)th layer can be abstracted as

e (l+1)i = σ ��
�
W (l )

sel f
e (l )i +

∑
j ∈Ni

1

|Ni |W
(l )e (l )j

��
�
, (2)

where e (l+1)i and e (l )i are the embeddings of the node i at the (l + 1)th layer and lth layer, respectively.

Ni is the set of i’s neighborhood nodes and e (l )j is the jth neighborhood node of i at the lth layer.

W (l )
sel f

andW (l ) are the transformationweight matrices of i and i’s neighborhood node, respectively.

After L layers convolution operations, there are L representations for the given node i . Then, the

weighted sum operation is applied for the embeddings that calculated at each layer, i.e., from e (1)i

to e (L)i , so as to encode the given node i . Let ei denote the final representation of the node i , and
the weighted sum calculation of i’s representation is defined as

ei =
L∑
l=0

αle
(l )
i , (3)

where αl denotes the weight of the lth layer, i.e., the importance of the lth layer to the final target
node representation. Combining the embeddings that are calculated at each layer can help capture
different semantic information and make the representation more comprehensive [16].

3.2.2 Path Extraction and Selection. The latent relations among nodes are the high-order con-
nectivities in the graph, which can be extracted and formed as multi-hop paths explicitly between
node pairs, such as user-item pairs. Because the high-order connectivities between the given users
and the candidate items can reflect the potential interests of users, we explicitly extract multi-hop
paths between each user-item pair over the heterogeneous graph to obtain the representations of
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the user’s potential interests. Reasoning on paths suffers from the problem of error propagation, be-
cause considering all paths might involve the irrelevant ones. Defining meta-paths might alleviate
the problem of error propagation, but designing proper meta-paths requires a deep understanding
of domain-specific knowledge, which is labor-intensive and almost impractical to be generalized.
To cope with the error propagation and the knowledge dependence issues, we prune irrelevant
paths between each user-item pair. For each user-item pair (u, v), where u ∈ U and v ∈ V , we
can efficiently find reasoning paths betweenu andv over the graph and form the selected paths as
a path set Suv . Since the number of paths between the user-item pairs grows exponentially with
path hops, we extract multi-hop paths with the limitation that hops in every single path are less
than l . Following the setting in the work of [47], we set l = 3 in the experiment to gather three-hop
paths. The jth path in the path set Suv can be described as

Suv [j] = [i1, r1, i2, r2, . . . , in], (4)

where i is the single node (i.e., a user, an item, or an entity) and r is the relation that connects two
nodes within the path Suv [j]. i1 = u, in = v , and n is the number of nodes within Suv [j].
Considering that iterating all paths for each user-item pair is inefficient in real-world large-scale

KGs, we use the heuristic path search algorithm for path extraction and selection. Specifically, we
design a transition-based method to determine the triple-level scores and utilize nucleus sampling
to adaptively select triples within the paths between every user-item pair. This strategy captures
the transition features within a path and does not rely on any meta-path patterns. We use Δk−1
and Δk to denote the selected node sets in the k − 1th hop and the kth hop of path search. For
the node ik−1 in the node set Δk−1, we search its neighbors in the graph as next hop nodes of the
node ik−1. For the neighbor node ik , the score of the corresponding triplet (ik−1, rk−1, ik ) ∈ Tk−1,k
is calculated via the KGE method to measure the quality, whereTk−1,k is the triple set between the
k − 1th and the kth hops.

In knowledge-aware recommendation, the recommendation data includes user-item interac-
tions and KG, and there are associations and constraints within the triple in the KG. In this article,
the scores for all triplets are calculated via the KGE method TransH [48]. The KGE methods,
such as TransE and TransH, can be used to measure the quality of the paths by calculating the
scores of the triplets within the paths, so as to prune irrelevant paths from noisy graphs [56].
TransH is a transition-based KGE method, which associates each relation with a relation-specific
hyperplane and projects entity vectors on that hyperplane. The main reasons we choose TransH
include: (i) Many transition-based KGE methods, such as TransH, aim to model associations and
constraints within triples, which are simple but efficient; (ii). TransH can deal with one-to-many,
many-to-one, and many-to-many relation patterns in the graph. Considering that these relation
patterns widely exist in user-item interactions and KG, for example, a user clicks on multiple
movies, or a singer sings multiple songs, TransH is a proper choice to calculate the scores of triples
in the path extraction and selection module. In the experiment, TransH is trained in advance. For
simplicity, we use (h, r , t ) to denote the representations of target triplet, and the score calculation
of the triplet is defined as

f (h, r , t ) = −d (h, r , t ), (5)

d (h, r , t ) = | |h⊥ + r − t⊥||22 , (6)

where f (h, r , t ) is the score function, and d (h, r , t ) is the distance function. The vectors h⊥ and t⊥
are obtained by projecting h and t on the hyperplane of the relation r :

h⊥ = h −wT
r hwr , (7)

t⊥ = t −wT
r twr , (8)

wherewT
r andwr are normal vector of r .
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For the purpose of comparison, we also choose TransE [3] and DistMult [53], two typical KGE
methods, as triplet scoring functions. Different from TransH, TransE assumes that the relation r is
a translation vector connecting the embedded head entity h and tail entity t . The distance function
of (h, r , t ) in TransE is defined as

d (h, r , t ) = | |h + r − t | |22 . (9)

DistMult represents each relation as a diagonal matrix and projects the head entity vector to the
tail entity vector via this relation matrix. The distance function of (h, r , t ) in DistMult is defined as

dr (h, t ) = −hTMr t , (10)

where Mr denotes the projection matrix associated with the relation r , and hT is the transposed
vector of the vectorh. In DistMult, the larger thehTMr t is, the greater the plausibility of the triplet,
which is different from TransE and TransH. Therefore, we add a negative sign before the distance
function of DistMult to be consistent with the methods TransE and TransH.
After calculating the score of the triplet (ik−1, rk−1, ik ), we utilize nucleus sampling [18] to adap-

tively select triples within the paths between every user-item pair. TransH and the nucleus sam-
pling are used to perform path ranking and selection, and then solve the problem of error propaga-
tion, i.e., filtering low-quality paths. The KGE methods (such as TransE and TransH) can be used
to measure the quality of the paths by calculating the scores of the triplets within the paths [56].
Specifically, the triplets are ranked according to their scores calculated in formulas (5) and (6), so as
to prune irrelevant triplets as well as paths between each user-item pair. Nucleus sampling aims to
sample the top-p portion of the candidate probability distribution adaptively. Our goal is to make
low-quality paths score lower through formulas (5) (6) and filter them. For example, the pathOliver

Twist
Lanдuaдe−−−−−−−−→English

Lanдuaдe−1−−−−−−−−−−→Barnaby Rudge in Figure 1 is a low-quality path. The formulas
(5) and (6) are mainly used to model associations and constraints within triples. The higher the
semantic association within the triple (i.e., confidence), the higher the score of the triple. Then, the
probability of the path being selected is greater; that is, the triples with higher scores contribute
more to the path selection. Therefore, TransH and the nuclear sampling strategy mainly filter out
the paths with low confidence.
Instead of setting a fixed number of samples and sampling from the triple sets, such as top-k

sampling [33], the number of samples for nucleus sampling is determined by the sum of probability
values. At each hop, the triples are selected from the smallest possible triples set whose cumula-
tive probability exceeds a threshold, where the cumulative probability is calculated via summing
the triples’ probability scores. In this way, the number of sampling triples in the triple set can
be dynamically increased or decreased based on the probability distribution. In order to perform
nuclear sampling, the triple scores are normalized to compute the probabilities of the triples. The
probability score of the triple (ik−1, rk−1, ik ) is obtained via softmax function:

P (ik−1, rk−1, ik ) =
exp( f (ek−1i , e

k−1
r , e

k
i ))∑

(i′k−1,r ′k−1,i′k )∈Tk−1,k exp( f (e
k−1
i′ , e

k−1
r ′ , e

k
i′ ))
, (11)

where ek−1i , ek−1r , eki are the vectors of ik−1, rk , and ik , f (ek−1i , e
k−1
r , e

k
i ) is the score of the triple

(ik−1, rk−1, ik ) calculated by TransH, (i ′k−1, r ′k−1, i ′k ) is the triple in the set Tk−1,k . Given the
probability distribution of all triples between the k − 1th hop and kth hop, the selected triples
topp (Tk−1,k ) ⊂ Tk−1,k are defined as the smallest set that satisfies the following conditions:∑

(ik−1,rk−1,ik )∈topp (Tk−1,k )
P (ik−1, rk−1, ik ) >= p, (12)
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where p is the probability threshold. Then, the triples in topp (Tk−1,k ) are selected as the reason-
ing triples within the reasoning paths. At each hop, the triples are selected in the same way as
described above. Finally, the reasoning path set Suv can be formed to reflect the user u’s potential
interests, so as to alleviate the effect of error propagation.

3.2.3 Path Encoding. Inspired by [65], each user’s historical interaction items are encoded and
concatenated with corresponding embedded paths to enhance the representations of themulti-hop
paths, so as to reflect the user’s interests. In KR-GCN, the historical interaction set Vu serves as
an additional input. Although Suv already contains the path information between u and v , these
paths are mainly for the item v and cannot reflect other interests of the user u. For example, if
u clicks on a comedy and a documentary, u’ interest in the documentary is not considered when
exploring the correlation between u and comedy. To explore more interests of users, the mutual
effects between selected paths and the user’s historical interactions are captured by incorporating
the user’s historical interactions into selected paths. Moreover, themutual effects will be weakened
if their embeddings are combined after encoding by path encoder separately, because the later the
combination is, the weaker the semantic interaction. Considering that there is no timestamp that
corresponds to user-item interactions in the datasets, we combine the historical interaction items
with selected paths without exploiting the chronological order of historical interaction items. To
capture the mutual effects between selected paths and the user’s historical interactions, we design
a method of sequence combination, namely sequence concatenation. The combination of the path
sequence Suv [j] ∈ Suv and the historical interaction set Vu can be described as

Tuv [j] = Suv [j] ⊕ Vu , (13)

where ⊕ is the sequence concatenation operation, and Tuv [j] is the concatenated sequence.
KR-GCN utilizes the stack of the long short-termmemory (LSTM) and the attention network

to encode the selected reasoning paths based on the embeddings learned via graph convolutional
network. The LSTM path encoder is utilized for encoding the heterogeneous graph with respect to
the multi-hop reasoning paths between the user-item pairs. This module takes the outputs of the
graph encodingmodule and the path extraction and selectionmodule as input. The graph encoding
module provides node representations, and the path extraction and selectionmodule provides path
information for the path encoding module. Because there are multi-hop relational information
and sequential dependencies between different nodes in the paths, this module aims at capturing
the multi-hop relational information and encode the sequential dependencies within every single
path. The path sequence Suv [j] is initially embedded as [e1, e2, . . . , en], which is computed via
convolution and aggregation operations in graph convolutional networks. For the path sequence
Suv [j], the hidden state at the time slice t in LSTMs can be described as follows:

ht = LSTM (ht−1, ei ), (14)

where ht is the representation of the node it . Then attention mechanism is performed to choose
important features within the path Suv [j], which returns a vector to represent the single path
sequence Suv [j].

αht =
exp(ReLU (wht + b))∑n

t ′=1 exp(ReLU (wht ′ + b ′))
, (15)

Puv [j] =
n∑
t=1

αht · ht , (16)

where puv [j] is the learned representation of the selected path Suv [j] between the user u and the
item v , and αht denotes the importance of the node it to the path Suv [j]. Then the multi-hop
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reasoning paths (or latent relationships) Suv between the user u and the item v are represented
by a set of vectors puv . These path representations can reflect the propagation of u’s potential
interests.

3.2.4 Preference Prediction. In recommendation, different paths usually make varying contri-
butions to predict user preferences. To discriminate the different contributions of different paths
between each user-item pair on reasoning, a path-level self-attention mechanism is applied in KR-
GCN. With path-level self-attention, the path-specific weight over each path can be learned. Then,
the different importance of different paths can be obtained. And after that, all selected multi-hop
paths with different weights are aggregated to represent the user’s preferences. The path-level
self-attention mechanism is implemented as follows:

Puv = so f tmax

(
QKT

√
d

)
V , (17)

puv =maxpool (Puv ), (18)

where puv is the representation of the path set Suv through the self-attention mechanism and max-

pool operation. so f tmax (QKT

√
d
) aims to normalize representations into the probability distribution,

which returns the importance of each path on reasoning. maxpool (Puv ) is used to learn vector
representation for the path set Suv between the user u and the candidate item v . Q , K , and V
denote query, key, and value representations, and are calculated as follows:

Q =WQE, (19)

K =WKE, (20)

V =WV E, (21)

where WQ , WK , and WV denote the weight matrices, E is the input matrix of the path set Suv .
Finally, we conduct theMulti-Layer Perceptron (MLP) layers and an activation function on the
output Puv to compute the preference prediction score between the user u and the item v , i.e., the
probability of the user u interacting with the candidate item v .

ŷuv = σ (MLP (puv )), (22)

where σ (x ) = 1
1+exp(−x ) is the sigmoid function, and MLP (·) is the MLP layers with one output.

The final prediction score ŷuv is the interaction probability between the user u and the item v , i.e.,
the score of user preference prediction.
After computing the interaction probability of the given user-item pair, the reasoning path with

the highest weight is outputted as the explanation for the recommendation.

3.3 Training and Optimization

In the recommendation models, observed interactions are usually set as positive instances, and
unobserved interactions are set as negative instances. To train our recommendation model, we
employ the Bayesian Personalized Ranking (BPR) loss [35] in KR-GCN. BPR loss function is a
pairwise loss function. Specifically, BPR loss is devised to predict a positive instance higher than
a negative one, where the negative instance is randomly sampled from all items (removing the
items that the user has interacted with). The following objective function is minimized to train
our model:

LBPR =
∑

(u,v )∈Δ

∑
(u,v ′)∈Δ′

−lnσ (ŷuv − ŷuv ′ ) + λ | |Ω | |22 , (23)
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where σ (·) is the sigmoid function, Δ and Δ′ are the sets that contain positive and negative user-
item interactions, respectively. The parameter set Ω mainly contains learned embeddings in the
model as well as hyper-parameters, such as the weight matrices and bias. λ | |Ω | |22 is conducted to
prevent overfitting of the model, where λ is the regularization parameter. The optimization of the
above parameters is alternatively performed using Adam optimizer [21] with mini-batch.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed KR-GCN on three real-world datasets
about books, music, and business. In the following subsections, we first introduce the experimental
setup briefly, mainly including the description of the datasets, baselines, evaluation metrics, and
implementation details. Then, the performance comparison and analysis will be shown, in which
we compare the proposed KR-GCN with several baselines, discuss the effectiveness of our major
model components, and investigate the effects of several hyper-parameters on the performance.
Finally, the discussion on explainability will be presented. Human evaluation, statistical analysis,
and case study are conducted to demonstrate that KR-GCN can provide trustworthy explainability
compared with baselines.

4.1 Experimental Setup

4.1.1 Datasets. We conduct extensive experiments on three widely-used public datasets about
books, music, and business: Amazon-book, Last-FM, and Yelp2018. The detailed descriptions of the
datasets are shown in Table 1, including the information of user-item interactions and KGs, where
the KGs are introduced as complementary information to help generate more accurate and diverse
recommendations. The user-item interactions are organized in the form ofu : (i1, i2, . . . , in ), where
i1, i2, . . . , in denote the items that the user u has interacted with. These three datasets with KGs
are publicly available, which are released by [46].

—Amazon-book: Amazon-book is a popular dataset for the book recommendation, which is
selected from the dataset Amazon-review (including product reviews, product metadata, and
behavior links). Amazon-book contains binary implicit feedback between users and books.
If a user interacts with an item (a book), the interaction between them is 1; otherwise, the
interaction is 0. The KG for this dataset is constructed bymapping the book titles in Amazon-
book to the corresponding entities in Freebase [2]. The relations in the KG corresponding to
Amazon-book mainly relate to books, such as Genre, Topic, and Author.

— Last-FM: Last-FM is a recommendation dataset aboutmusic, which is extracted from Last.fm
online music systems. Last-FM also contains binary implicit feedback between users and
music. If a user interacts with a piece of music, the interaction between them is 1; otherwise,
the interaction is 0. The KG for Last-FM is also constructed by mapping the music to the
corresponding entities in Freebase. The relations in the KG corresponding to Last-FMmainly
relate to music, such as Artist, Producer, and Type.

— Yelp2018: Yelp2018 is extracted from Yelp challenge for Point of Interest (POI) recommen-
dation. This dataset contains users and their check-in business data, such as restaurants, mu-
seums, parks, and so on. If a user interacts with an item (e.g., a restaurant), the interaction
between them is 1; otherwise, the interaction is 0. The KG for Yelp2018 is constructed from
the local business information network. The relations in the KG corresponding to Yelp2018
mainly relate to restaurants information, such as Reservation and PriceRange.

In this article, we directly adopt the dataset division results from KGAT [46] for fair comparison.
For each dataset, the ratio of training and test set is 8 : 2, and the valid set is selected from the
training set to tune hyperparameters. Following previous recommendation models, the negative

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 4. Publication date: January 2023.



4:14 T. Ma et al.

Table 1. Statistics of Three Benchmark Datasets

Amazon-book Last-FM Yelp2018

User-Item
Interaction

#Users 70,679 23,566 45,919
#Items 24,915 48,123 45,538
#Interactions 847,733 3,034,796 1,185,068

Knowledge
graph

#Entities 88,572 58,266 90,961
#Relations 39 9 42
#Triplets 2,557,746 464,567 1,853,704

training instances are generated via the negative sampling strategy, which pairs each positive
user-item instance with one negative item that the user has not interacted with before.

4.1.2 Baselines. To examine the effectiveness of the proposed model KR-GCN, we compare
KR-GCN with the following baselines in the experiments, in which NFM, NCF, and MCRec are
knowledge-agnostic models while CKE, RippleNet, KGAT, and JNSKR are knowledge-aware mod-
els.

—NFM [15] combines second-order feature interactions captured by FM and high-order fea-
ture interactions captured by neural networks to solve the crossover problem of sparse fea-
tures. The factorization machine is considered a part of the neural network.

—NCF [17] replaces the inner product operation on the latent features of users and items with
a neural architecture. The user-item interactions are learned by leveraging a MLP, so as to
break through the limitations of the collaborative filtering methods.

—MCRec [19] explicitly encodes meta-paths as interactions between the users and the items,
where themeta-paths are pre-defined according to the recommendation datasets. To enhance
the interactions, a co-attention mechanism is used to learn representations effectively.

—CKE [58] extracts the KG information using the KGEmethod TransR [27] and then combines
the KG representations with textual and visual representations to generate multi-modal rep-
resentations for items.

—RippleNet [42] is a memory-network-like model. To predict the interaction probabilities
between the users and the items, RippleNet models the propagation of users’ preferences
from users’ historical interests along reasoning paths in the KG.

—KGAT [46] models the high-order relations between users and items. The embeddings of
users and items are refined by recursive propagation. And an attention mechanism is used
to discriminate the importance of different neighbors of the given node.

— JNSKR [5] applies a non-sampling optimization strategy for learning KGE. To characterize
user’s preferences over items, JNSKR encodes subgraphs via the knowledge-aware attentive
neural networks.

4.1.3 Evaluation Metrics. To evaluate the recommendation performance of the proposed KR-
GCN and the baseline models, we adopt the same evaluation metrics widely used in previous
recommendationmethods for fair comparisons. The evaluationmetrics in our experiments include
Recall and Normalized Discounted cumulative gain (NDCG) with the given cut-off value k
(k = 10, 20, 40). Recall@k is themetric for calculating the percentage of the desired recommendation
items ranked among the top k items, which is more concerned with the number of desired items
among the top k items than the ranking. NDCG@k is designed to measure whether the ground
truth appears in more advanced positions. This metric focuses more on the ranking of the desired
recommendation items. The all-ranking protocol is adopted in our experiments, which ranks all
items that have not been interacted with the given user.
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4.1.4 Implementation Details. In our implementation, we randomly initialize the model param-
eters with the Xavier method [14] and set the size of the mini-batch to 1024, the learning rate to
0.001. We select the number of GCN layers from {2, 3, 4}, the corresponding layer combination
coefficient αl from {1/3, 1/4, 1/5}. The probability threshold p in the nucleus sampling strategy is
selected from {0.86, 0.88, 0.9, 0.92, 0.94}. We also set the maximum hop of the path to 3, the dimen-
sion of the embeddings to 128 in the GCN and LSTM path encoder, and the unit number of the
LSTM to 256, the training epoch to 1,000. The probabilities of the triplets within every single path
are calculated by TransH, TransE, and DistMult, in which the dimension of the embeddings is fixed
to 200. The L2 regularization coefficient λ is selected from {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}. For the base-
line MCRec, following the setting in the work of KGAT [46], we manually define several types of
meta-paths for Amazon-book dataset, such as user-book-user-book, user-book-author-book, and
user-book-genre-book. The types of entities are obtained by using the relations author and genre

in the KG, such as the triples (e1,author ,a1) and (e1,дenre,д1).

4.2 Performance Comparison and Analysis

In the experiments, we compare the proposed model KR-GCN with several baselines on three real-
world datasets, so as to evaluate the effectiveness of KR-GCN as a whole. Then, we conduct an
ablation study to discuss the effectiveness of our major model components, including users’ his-
torical interaction items, path-level attention mechanism, GCN propagation layers, and selected
paths. Finally, we investigate the effect of several hyper-parameters on recommendation perfor-
mance.

4.2.1 Comparison with Baselines. Tables 2 and 3 present the performance comparison results of
the proposed model KR-GCN and several baselines on three datasets. Specifically, KR-GCN is the
proposedmodel that utilizes nucleus sampling, and KR-GCN (top-k) is a variant of KR-GCN, which
uses top-k sampling. KR-GCN (random) is the variant that samples k paths as input randomly. KR-
GCN (TransE) and KR-GCN (DistMult) are also variants of KR-GCN, which utilize TransE and
DistMult as triplet scoring functions. The major observations from the experimental results are
summarized as follows:
The proposed KR-GCN consistently outperforms the baselines and the variants by a margin

on three datasets. The performance comparison results demonstrate the high effectiveness of KR-
GCN. We attribute it to the fact that KR-GCN alleviates the challenges in the existing models.
Among all baselines, knowledge-aware models achieve better performance compared with

knowledge-agnostic models in most cases, which indicates the usefulness of incorporating KGs
into recommender systems to enhance recommendation performance. For knowledge-agnostic
models, NFM performs better than NCF on Amazon-book and Yelp2018, because NFM combines
the second-order feature interactions captured by FM and the higher-order feature interactions
captured by neural networks, which can alleviate the problem of sparse features. The perfor-
mance of the path-based model MCRec is limited by the design of the meta-paths. Compared with
knowledge-agnostic models, knowledge-awaremodels usually generatemore accurate and diverse
recommendation results by introducing auxiliary knowledge about items. The knowledge-aware
models KGAT and JNSKR yield better performance than CKE and RippleNet. This is because that
CKE ignores the global structure information of the graph, while KGAT captures the high-order
relations between users and items via a KG attention network. JNSKR improves recommendation
performance by applying an efficient non-sampling optimization strategy for learning KGE.
KR-GCN performs better than the GCN-based model KGAT, indicating that the recommenda-

tion performance improvements of the proposed model KR-GCN are not just due to the high
performance of GCN. JNSKR might achieve good performance on Amazon-book and Yelp2018,

ACM Transactions on Information Systems, Vol. 41, No. 1, Article 4. Publication date: January 2023.



4:16 T. Ma et al.

Table 2. Performance Comparisons of KR-GCN and Baselines on Amazon-Book and Yelp2018

Amazon-book

Models Recall@10 Recall@20 Recall@40 NDCG@10 NDCG@20 NDCG@40
NFM 0.0891 0.1366 0.1975 0.0723 0.0913 0.1152
NCF 0.0874 0.1319 0.1924 0.0724 0.0895 0.1111

MCRec – 0.1113 – – 0.0783 –
CKE 0.0875 0.1343 0.1946 0.0705 0.0885 0.1114

RippleNet 0.0883 0.1336 0.2008 0.0747 0.0910 0.1164
KGAT 0.1017 0.1489 0.2094 0.0814 0.1006 0.1225
JNSKR 0.1056 0.1558 0.2178 0.0842 0.1068 0.1271

KR-GCN(top-k) 0.1058 0.1573 0.2196 0.0863 0.1076 0.1296
KR-GCN(random) 0.1016 0.1493 0.2098 0.0809 0.1001 0.1228
KR-GCN(TransE) 0.1074 0.1582 0.2186 0.0874 0.1090 0.1305
KR-GCN(DistMult) 0.1095 0.1603 0.2203 0.0885 0.1107 0.1319

KR-GCN 0.1117 0.1635 0.2246 0.0892 0.1116 0.1332

improvement % 5.7% 4.9% 3.1% 5.9% 4.5% 4.7%

Yelp2018

NFM 0.0396 0.0660 0.1082 0.0603 0.0810 0.1094
NCF 0.0389 0.0653 0.1060 0.0603 0.0802 0.1087
CKE 0.0399 0.0657 0.1074 0.0608 0.0805 0.1091

RippleNet 0.0402 0.0664 0.1088 0.0613 0.0822 0.1097
KGAT 0.0418 0.0712 0.1128 0.0630 0.0867 0.1129
JNSKR 0.0456 0.0749 0.1209 0.0687 0.0917 0.1211

KR-GCN(top-k) 0.0461 0.0758 0.1213 0.0697 0.0921 0.1220
KR-GCN(random) 0.0420 0.0715 0.1128 0.0638 0.0869 0.1134
KR-GCN(TransE) 0.0473 0.0767 0.1249 0.0709 0.0937 0.1235
KR-GCN(DistMult) 0.0479 0.0805 0.1281 0.0714 0.0947 0.1248

KR-GCN 0.0491 0.0813 0.1297 0.0725 0.0963 0.1267

improvement % 7.6% 8.5% 7.2% 5.5% 5.0% 4.6%

Best results are in bold.

Table 3. Performance Comparisons of KR-GCN and Baselines on Last-FM

Models NFM CKE RippleNet KGAT
KR-GCN
(top-k)

KR-GCN
(random)

KR-GCN
(TransE)

KR-GCN
(DistMult)

KR-GCN

Recall@20 0.0829 0.0736 0.0791 0.0870 0.0876 0.0872 0.0880 0.0886 0.0892

NDCG@20 0.1214 0.1184 0.1238 0.1325 0.1332 0.1327 0.1338 0.1349 0.1353

Best results are in bold.

but lead to low efficiency as well. The negative sampling strategy is adopted in our KR-GCN in
the training process, and the non-sampling strategy could also be adopted in the follow-up work
to further improve the recommendation performance.
KR-GCN (top-k) is a comparison model with top-k sampling; that is, the number of selected

paths in the path selection module is fixed. The performance of KR-GCN is better than that of
KR-GCN (top-k), illustrating that adaptive path selection has advantages over static path selec-
tion. KR-GCN (random) is a variant model that samples k paths randomly. KR-GCN (random)
performs worse than KR-GCN and KR-GCN (top-k), indicating the importance and the effective-
ness of the path selection module, i.e., verifying the high quality and usefulness of the extracted
paths in KR-GCN. This also illustrates that the irrelevant paths will induce error propagation
and further impact recommendation performance, which is consistent with the motivation of
our article. KR-GCN uses the KGE method TransH to calculate the scores of triplets within the
multi-hop paths in the path selection module, while KR-GCN (TransE) and KR-GCN (DistMult)
use TransE and DistMult as triplet scoring functions, respectively. KR-GCN outperforms KR-GCN
(TransE) and KR-GCN (DistMult), indicating that TransH is a more appropriate choice than TransE
and DistMult for the recommendation task in calculating the scores of triplets within the multi-
hop reasoning paths. We attribute this to the fact that TransH can deal with the one-to-many,
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Table 4. Effects of Historical Interaction Items and Path-Level Attention

Models
Amazon-book Last-FM Yelp2018

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
w/o HI 0.1548 0.1048 0.0879 0.1329 0.0735 0.0903
w/o Att 0.1439 0.0993 0.0809 0.1257 0.0698 0.0859

w/o HI&Att 0.1422 0.0987 0.0783 0.1230 0.0664 0.0832
KR-GCN 0.1635 0.1116 0.0892 0.1353 0.0813 0.0963

many-to-one, and many-to-many relation patterns in the graph, and these relation patterns widely
exist in the user-item interactions and KG, especially in the user-item interactions. Although
TransE and DistMult can also be used to calculate multi-hop path scores, TransE cannot model
the relation patterns mentioned above very well, and DistMult cannot model symmetric relations
in the paths. For example, two triplets (ATale of Two cities,WrittenBy,Charles Dickens) and (Charles
Dickens, WrittenBy, A Tale of Two Cities) within the path would be calculated as the same scores
via DistMult, and the second triplet is clearly wrong.

Comparedwith the best performance results in baselines (i.e., JNSKR in Amazon-book, Yelp2018,
and KGAT in Last-FM), KR-GCN improves by 4.9%, 8.5%, and 2.5% measured by Recall@20, and
improves by 4.4%, 5.0%, and 2.1% measured by NDCG@20. We attribute the superior recommen-
dation performance of the proposed KR-GCN to leveraging graph structure information as well
as semantic information, and selecting reasoning paths that are more helpful for predicting user
preferences. To verify that KR-GCN outperforms baselines significantly, we conduct significance
testing, and differences between KR-GCN and baselines are significant (p < 0.05) using the t-test.
Specifically, to perform significance testing, we assume that it is no difference between the exper-
imental results of baselines and KR-GCN. The experimental results are compared to calculate the
p-value between each baseline and KR-GCN. Finally, we find that p < 0.05 for every two groups,
so the null hypothesis is rejected,. i.e., there is a significant difference between the experimental
results of KR-GCN and baselines.
Among all these models, path-based models MCRec, RippleNet, and the proposed KR-GCN

can provide explainability by providing reasoning paths for the recommendation. MCRec ex-
plicitly encodes meta-paths as the interactions between user-item pairs, in which the diversity
of reasoning paths (i.e., the explanations for the recommendation results) is limited because of
the design of the meta-paths. RippleNet tracks the paths from the userâĂŹs historical interac-
tions to the items in the KG, and then discovers possible reasoning paths as the explanations.
However, the collaborative information is ignored in RippleNet, for example, the multi-hop path

u1
Interact−−−−−−−→ i1

Interact−−−−−−−→ u2
Interact−−−−−−−→ i2 is not considered and utilized to reason user preferences.

Different from MCRec and RippleNet, KR-GCN first integrates the user-item interactions and KG
(i.e., user collaboration information and auxiliary knowledge about items) into a heterogeneous
graph. Then, KR-GCN extracts reasoning paths from the heterogeneous graph, and utilizes an
attention mechanism to discriminate the effects of different multi-hop paths between users and
items, thus providing trustworthy explainability. Moreover, KR-GCN prunes irrelevant paths in
the path selection module to mitigate interference in the reasoning and explanations.

4.2.2 Ablation Study. To investigate the effects of different model components on the perfor-
mance of KR-GCN, we first conduct an ablation study to analyze the effect of the users’ historical
interaction items and path-level attention mechanism. Then, we explore the components of GCN
propagation layers and the selected paths on the experimental results on three datasets.
We analyze the effects of the historical interaction items and path-level self-attention mech-

anism and then summarize the recommendation performance comparisons in Table 4. These
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two components are abbreviated as HI and Att. Removing either the historical interaction items
component or path-level self-attention mechanism component degrades the recommendation
performance, and the performance is worst when both components are removed. The evaluation
results prove that both the historical interaction items and the path-level self-attention mechanism
make contributions to infer user preferences. The component of users’ historical interaction
items is encoded as additional input features and combined with each path to reflect users’
interests, which can also enhance the representations of the path sequences. Leveraging the
path-level self-attention mechanism in KR-GCN can learn path-specific weight and discriminate
the contributions of different reasoning paths between users and items, so as to capture more
reasonable user interests and provide a more accurate recommendation.
To explore the effects of components of GCN propagation layers and selected paths, we con-

duct experiments on different GCN propagation layers, probability threshold of triplets, and path
hops, i.e., the length of paths. Figure 3 shows the recommendation performance comparisons of
different GCN propagation layers, probability threshold, and path hops. The comparison results
are measured by the metrics Recall@20 and NDCG@20 on the datasets Amazon-book, Last-FM,
and Yelp2018. L, p, and l denote the number of propagation layers in the graph encoding module,
the probability threshold in the nucleus sampling strategy, and the path hop in the path extrac-
tion module, respectively. For different GCN propagation layers and probability threshold, we can
observe that when L = 3 and p = 0.9, KR-GCN obtains better recommendation performance on
Amazon-book with all metrics, and when L = 4 and p = 0.92, KR-GCN obtains better performance
on Last-FM and Yelp2018, as shown in Figure 3(a)–(f). An intuitive explanation is that there are
more user-item interactions in Last-FM and Yelp2018 than in Amazon-book. More GCN propaga-
tion layers and higher path probability threshold represent richer training information. However,
the recommendation performance does not grow with the number of GCN propagation layers
and path probability threshold because more GCN propagation layers and higher path probability
threshold can also cause over-smooth and introduce interference information. For different path
hops, we compare the model performance when l = 3 and l = 5. The main reason is that the model
cannot utilize path information when l = 1, when l = 2 or l = 4, path extraction is unreasonable,
and when l > 5, the path extraction and selection is very inefficient. When I = 3, the path types
include: u − i − u/e − i , and when I = 5, the path types include: u − i − u/e − i − u/e − i and
u − i − e − e/i − e − i . As shown in Figure 3(g)–(i), when l = 3, the performance is better than when
l = 5 on three datasets. We attribute this to the fact that long paths enhance semantic information
but also weaken the associations between users and items.

4.2.3 Hyper-Parameter Study. KR-GCN involves a number of hyper-parameters. In this subsec-
tion, we investigate the sensitivity of hyper-parameters on the recommendation performance and
report the experimental results on two datasets in Figures 4 and 5.

—Dimension of the embeddings in the GCN. We first test the effects of the embedding
dimension d1 in the GCN on the performance. GCN is utilized to encode the heterogeneous
graph that integrates the user-item interactions and the KG. Therefore, parameter setting in
the GCN has a key effect on recommendation performance. Figure 4 shows the experimen-
tal results of different embedding dimension in the GCN on Amazon-book, Last-FM, and
Yelp2018, which are evaluated by the metrics Recall@20 and NDCG@20. The experimental
results demonstrate that with the growth of the embedding dimension, the recommendation
performance raises first and then starts to drop. We can see that KR-GCN achieves the best
recommendation performancewhen the embedding dimensiond1 is set to 128. This indicates
that the high embedding dimension can enhance node representations and improve model
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Fig. 3. Performance comparisons of different GCN propagation layers, path probability thresholds, and path

hops on three datasets.

performance, but the higher dimension is not always better, because additional dependencies
are also introduced.

—Dimension of the embeddings in the TransH. TransH is used to calculate the scores of
multi-hop paths in the path selection module. The parameters in TransH affect the selec-
tion of reasoning paths, and then affect the model performance. To explore the effects of
the parameters in TransH on the model performance, we start experiments with different
embedding dimension d2 in the TransH to check on its influence. The experimental results
of different embedding dimension in the TransH on Amazon-book, Last-FM, and Yelp2018
are shown in Figure 5. Recall@20 and NDCG@20 are also used as evaluation metrics. From
the experimental results, we can find that the embedding dimension d2 = 200 is the best
choice for KR-GCN. Similar to the conclusion of the embedding dimension in GCN, the high
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Fig. 4. The experimental results of different embedding dimension in the GCN on Amazon-book, Last-FM,

and Yelp2018.

Fig. 5. The experimental results of different embedding dimension in the TransH on Amazon-book, Last-FM,

and Yelp2018.

embedding dimension can improve model performance, but the higher dimension is not al-
ways better, because the higher dimension will lead to overfitting of the model.

4.3 Discussion on Explainability

In this subsection, we conduct the human evaluation, statistical analysis and case study to discuss
the explainability provided by KR-GCN and comparison models.

4.3.1 Human Evaluation on Explainability. To verify that the proposed model can provide more
trustworthy explainability for recommended items, the reasoning paths (i.e., recommendation
explanations) that provided by models are evaluated manually. The evaluation metrics include
Relevance and Diversity. Relevance is used to evaluate whether the explanations are closely re-
lated to the recommended items, for example, for the item Hamlet, taking Romeo and Juliet as an
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explanation is more relevant than English. Diversity is used to evaluate whether the explanations
include multiple relationships between every user-item pair. We define the Diversity of the path p
between the given user-item pair as follows:

Diversity (p) = α (N (Rp ) + N (type (Ep ))), (24)

where N (Rp ) is the number of the relations within the path p, type (Ep ) is the types of the entities
within the pathp,N (type (Ep )) is the number of these types, and α is a scale parameter of the direct
proportional function. The diversity of explanation is mainly related to the number of relations
and the number of entity types. For example, given the path p1 and p2:

p1 : u165
Interact−−−−−−−→ BlindLake

Interact−−−−−−−→ u28177
Interact−−−−−−−→ Flash f orward, (25)

p2 : u165
Interact−−−−−−−→ BlindLake

Genre−−−−−→ ScienceFiction
InGenre−−−−−−−→ Flash f orward, (26)

where the number of relations within the path p1 and p2 is 1 and 3, and the number of entity types
is 2 and 3, respectively. So the path p1 will be scored lower than the path p2 and more likely to be
the explanation for recommendation.
On one hand, when the length of the path is too long, the path extraction and selection will be

very inefficient, and the associations between users and items will also be weakened. On the other
hand, the diversity of the path is correlated with the number of path hops. How to make a good
balance within the length of the paths, the diversity of the paths, and the explainability is a key
issue.
We first determine the number of path hops. Because we mainly focus on the recommenda-

tion performance and explainability in this article, where the performance should be considered
a priority. And, the number of path hops is directly related to the recommendation performance.
In this article, the best choice for the number of hops is three hops on three datasets. After the
number of path hops is determined, we focus on the explainability of the model, i.e., the reasoning
paths provided by the model. Because the relevance of the reasoning paths will affect the model
performance, we first focus on the relevance of explanations, which is guaranteed by the path
selection module and the attention mechanism. Then, we focus on the diversity of explanations.
Specifically, when the number of paths hops is set, our goal is to make the reasoning paths include
more entity types and relations. In this article, we do not use the meta-path patterns to mine the
reasoning paths, so the limitations of entity type can be alleviated to a certain extent. To conclude,
our goal is to focus on the explainability of the recommendation model under the premise that the
recommendation performance is considerable; that is, we first focus on the path length, then the
relevance of the explanations, and finally, the diversity of the explanations.
To evaluate the explainability, we randomly sample 100 user-item pairs, and output reasoning

paths provided by models. Specifically, five reasoning paths with higher attention scores between
every user-item pair are selected for comparison. Then, we select 10 raters who have the machine
learning experience to evaluate the relevance and diversity of these reasoning paths. The evalua-
tion scores range from 0 to 10 for both metrics. Specifically, each model output 500 (100*5) paths.
We divide these paths into 5 groups, and each group contains 100 paths that correspond to 20 user-
item pairs. To avoid the problem of inconsistent labeling results between different raters, each
group (100 paths) is assigned to 2 raters for evaluation and the score of each path is obtained by
averaging the scores provided by two raters. Finally, the scores of all the comparison paths are
obtained.
Among the baselines, the path-based models MCRec and RippleNet have the ability to provide

explainability. The explainability comparisons of MCRec, RippleNet, and the proposed KR-GCN on
the Amazon-book are shown in Table 5. The evaluation results prove that our KR-GCN can provide
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Table 5. The Explainability Comparisons of MCRec,

RippleNet, and KR-GCN on Amazon-Book

Models
Amazon-book

Relevance Diversity
MCRec 7.21 6.43

RippleNet 6.82 7.16
KR-GCN 7.61 7.85

more relevant and diverse explanations compared with MCRec and RippleNet. We attribute this to
solving the error propagation problem of the paths and integrating the user-item interactions and
KG. The former improves relevance, and the latter improves diversity. In terms of relevance, KR-
GCN filters the irrelevant paths between user-item pairs to solve the problem of error propagation,
so the final reasoning paths are more relevant to the recommended items. In terms of diversity, KR-
GCN constructs a heterogeneous graph including user collaboration information and auxiliary
knowledge about items. Nodes and relations within the final explanation paths are not limited
by the types of user/item/entity/relations, that is, the diversity of explanations is not limited by
data. The diversity of reasoning paths in McRec is limited by designing meta-paths for KGs, and
RippleNet ignores user collaborative information, so the diversity of reasoning paths is also limited.
Compared with McRec and RippleNet, KR-GCN can provide more diverse explanations.

4.3.2 Statistical Analysis. To further demonstrate the explanations, we compare reasoning sub-
graphs provided by the proposed model KR-GCN and two baselines MCRec and RippleNet, where
the reasoning subgraphs are composed of the reasoning paths and have more complicated struc-
tures than the reasoning paths. Specifically, five reasoning paths with higher attention scores be-
tween every user-item pair are selected and formed into reasoning subgraphs for comparison.
The subgraphs provided by the three models are compared by computing the similarity of their
topological sequences, where the similarity of each two topological sequences is measured via
Levenshtein distance [30]. Figure 6 shows the statistical results of the subgraph similarity between
KR-GCN and two baselines (i.e., MCRec and RippleNet). The statistical results demonstrate that a
large number of reasoning subgraphs provided by KR-GCN and by baselines (especially RippleNet)
have high similarity, because many reasoning subgraphs are in the similarity interval of 50%–100%.
This indicates that the reasoning subgraphs provided by KR-GCN have some overlap with those
provided by baselines; that is, most of the reasoning paths provided by baselines can be covered by
KR-GCN. Furthermore, compared with the baselines, KR-GCN performs higher relevance because
of the attention mechanism, and the diversity is not limited. In general, we believe that KR-GCN
can generate higher-quality reasoning subgraphs to provide explanations for the recommendation.

4.3.3 Case Study on Explainability. We present an example from Amazon-book to demonstrate
the explainability of MCRec, RippleNet, and the proposed KR-GCN. Figure 7 shows the interac-
tions between the user u165 and the item Flashforward that are explored by three models. For all
models, five reasoning paths with higher attention scores are selected and formed into reasoning
subgraphs for comparison and display. We can find that KR-GCN provides more types of rela-
tionships between the user u165 and the item Flashforward than MCRec and RippleNet. The main
reason is that McRec only defines a limited number of meta-paths, and RippleNet ignores the user
collaboration information in the graph. As shown in Figure 7, three paths in MCRec only contain
the user-item interactions, i.e., the paths p3, p4, and p5, and all paths in RippleNet only contain
the KG information. In addition, the reasoning paths are not sorted and pruned in MCRec and
RippleNet, the final reasoning paths/subgraphs might include some low-quality and irrelevant
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Fig. 6. The statistical results of the subgraph similarity between baselines (i.e., MCRec and RippleNet) and

KR-GCN. The horizontal axis shows the similarity interval, and the vertical axis shows the proportion of the

number of subgraphs in a certain similarity interval to the number of all subgraphs.

Fig. 7. Real example from Amazon-book. The interactions between the user u165 and the item Flashforward

are explored by MCRec, RippleNet, and KR-GCN. The reasoning paths in red indicate the explanations for

recommendation.

paths, such as the path u165
Interact−−−−−−−→Blind Lake

Type−−−−→Book
InType−−−−−−→Flashforward in RippleNet. For

KR-GCN, the path p2 obtains the highest attention score as shown in Figure 7. We can summarize
the reason for recommending Flashforward tou165 as follows: the useru165 likes the book Blind Lake,
whose genre is science fiction, and Flashforward is also a science fiction.

5 CONLUSION

In this article, we propose a novel method named KR-GCN for the explainable recommendation.
We integrate user-item interactions and KG into a heterogeneous graph and encode the graph
with the GCN to improve the recommendation performance. To cope with the error propaga-
tion in the graph, we develop a transition-based method to score triplets within multi-hop paths
between every user-item pair and utilize nucleus sampling to adaptively select triplets. To provide
trustworthy explainability, we introduce a path-level self-attention mechanism to discriminate the
contributions of different selected paths and predict the interaction probability, and the path with
the highest weight is provided as the explanation for the recommendation. Extensive experiments
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on three real-world datasets show that the proposed KR-GCN achieves improvements over state-
of-the-art baselines. And, human evaluation proves that KR-GCN can provide more trustworthy
explainability compared with baselines.
Future research directions include (1) exploring other ways to take advantage of both GCN-

based methods and path-based methods, and (2) trying to apply path selection strategy in other
tasks, such as link prediction. On one hand, GCN-based methods have proved to be successful
in modeling the high-order relations in KGs to provide better recommendation. And the state-of-
the-art performance on public datasets is mostly achieved by GCN-based methods. Path-based
methods can make full use of reasoning paths to model the propagation of users’ interests, so
as to provide more accurate and explainable recommendation. So exploring ways to take advan-
tage of both can provide high-performance and user-friendly recommendation. On the other hand,
the path selection strategy is important for path-related tasks, not just for recommendation task.
The path selection strategy aims at finding more potential reasoning paths and avoid introduc-
ing interference information, which can also alleviate the problem of error propagation in other
path-related tasks.
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