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In the context of COVID-19 pandemic, social networks such as Facebook, Twitter, YouTube and Instagram stand out as important
sources of information. Among those, YouTube, as the largest and most engaging online media consumption platform, has a large
influence in the spread of information and misinformation, which makes it important to study how the platform deals with the
problems that arise from disinformation, as well as how its users interact with different types of content. Considering that United
States (USA) and Brazil (BR) are two countries with the highest COVID-19 death tolls, we asked the following question: What are
the nuances of vaccination campaigns in the two countries? With that in mind, we engage in a comparative analysis of pro and
anti-vaccine movements on YouTube. We also investigate the role of YouTube in countering online vaccine misinformation in USA
and BR. For this means, we monitored the removal of vaccine related content on the platform and also applied various techniques to
analyze the differences in discourse and engagement in pro and anti-vaccine "comment sections". We found that American anti-vaccine
content tend to lead to considerably more toxic and negative discussion than their pro-vaccine counterparts while also leading to 18%
higher user-user engagement, while Brazilian anti-vaccine content was significantly less engaging. We also found that pro-vaccine
and anti-vaccine discourses are considerably different as the former is associated with conspiracy theories (e.g. ccp), misinformation
and alternative medicine (e.g. hydroxychloroquine), while the latter is associated with protective measures. Finally, it was observed
that YouTube content removals are still insufficient, with only approximately 16% of the anti-vaccine content being removed by the
end of the studied period, with the United States registering the highest percentage of removed anti-vaccine content(34%) and Brazil
registering the lowest(9.8%).
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1 INTRODUCTION

Political polarization and disinformation are among the main challenges to expand global vaccination campaigns against
the COVID-19 pandemic. Online platforms such as Facebook, Twitter, YouTube and Instagram are social networks whose
global structure shapes the flow of information and affect individual and collective behavior in issues such as vaccine,
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elections, extremism [8] and racism. Social networks are also the main places where disinformation [23], denialist
narratives, confusion and political disputes find a fertile ground on which to grow and spread throughout society [18].
For these reasons, it is important to understand the dynamics of online battles between anti- and pro-vaccination
groups in order to better comprehend the actions of both groups, so as to enable more effective courses of action to
be taken to mitigate the consequences of such battles. Online influence operations are used by different political and
ideological groups to disseminate information, lies, conspiracy theories and misleading facts. United States and Brazil
have been on the global epicenter of the COVID-19 infodemic [19]. Both countries have the highest death tolls since
the start of the pandemic1. According to the World Health Organization, the coronavirus infodemic undermines the
global response and jeopardizes measures to control the pandemic [25]. Different studies found that anti-vaccine groups
manage to manipulate social media with effective communication strategies that capture audiences to disseminate
their messages. Commenting on online platforms have been considered one of the most popular forms of public online
participation [14]. Comments are the way in which online collective debates take form around specific topics promoted
by videos. They represent the relation between different groups of society with official vaccination campaigns and
reflect the degree of polarization around vaccination.

Social platforms play an important role in identifying and removing online anti-vaccine misinformation to limit the
consequences it can do to a country’s vaccination movement. We monitored counter influence operations to characterize
the language of comments and videos that were removed from YouTube.

In this paper, we present two case studies that investigate the behavior of anti and pro-vaccine groups in different
political contexts, represented by the use of social media in the United States and Brazil. In order to understand the
nuances of vaccination campaigns in the two countries, we have the four following research questions, that are explored
in our analysis of the data sets we have collected from YouTube.

• What are the characteristics that differentiate pro-vaccine and anti-vaccine online comments?
• What kind of language drives engagement in online comments?
• What are similarities and differences between pro and anti-vaccination campaigns in United States and Brazil?
• What are characteristics of the pro and anti-vaccine videos removed from YouTube?

In this work we examine characteristics of pro and anti-vaccine movements. Our analysis explores the polarization
dynamics of comment sections of political and ideological YouTube channels and videos. On YouTube, we observe that
both language and engagement level are characteristics of different narratives of the ideological groups involved in
battles around vaccines. It has been observed by other references that frequent commenters are more political, more
polarized, and more toxic than the average user of social media platforms [15]. Through the use of NLP tools, we study
the nature and language of comments of both pro- and anti-vaccination groups.

Our data collection efforts resulted in a dataset with more than 8.5M comments in more than 3.0M YouTube accounts
in the two countries. We analyze this large dataset extensively:

• We found that negative emotions are much more popular and prevalent in anti-vaccine comment sections and
content.

• We noticed the removal of anti-vaccine content on YouTube seems to be insufficient to stop anti-vaccine videos.
• We showed the contrast between the two groups: anti-vaccine discourse is associated with conspiracy theories,
misinformation and alternative medicine, while pro-vaccine discourse is related to protective measures.

1https://covid19.who.int/
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• We found that user-user engagement is much higher on comments in removed videos, which could suggest that
content deemed inappropriate leads to more discussion.

2 RELATEDWORK

Numerous studies have been done in the past regarding disinformation and anti-vaccine campaigns, producing countless
results throughout the years. Many of those results in regards to anti-vaccination were reviewed by Hussain et al. [9],
who gave an overview of the movement, including the influence of technology. They mention previous work that found
that 32% of the videos on YouTube about immunization were anti-vaccine and had higher rates and more views than
pro-vaccine videos [13]. Another study identified that 43% of websites found in search engines when searching for
"imunization" and "vaccination" were anti-vaccine [4].

The cross-platform nature of such campaigns was illustrated by the research conducted by [24], which investigated
an online cross-platform disinformation campaign targeting a rescue group operating in Syria called White Helmets.
They found that anti-White Helmets accounts did more "cross-posting" from YouTube to Twitter, creating a bridge
between the two platforms, directing Twitter users to a large set of videos critiquing the previously mentioned group.

Another relevant study in the context of disinformation-campaigns was conducted by [1], which explores the
influence of bots, Russian trolls and content polluters on vaccine discourses on Twitter. They find that these kinds of
users tend to tweet about vaccination at higher rates than the average user. Additionally, they conclude that accounts
posing as legitimate users create false equivalency, eroding public consensus on vaccination.

In this same vein, [22] examines the critical social impacts of disinformation, its extension beyond the narrow window
of automated or paid actors such as bots and hired trolls—the window that tends to get the most media and research
attention, and the need for more robust, cross-disciplinary treatments of information operations.

The competition between pro and anti-vaccination views was illustrated by [12], which explores the interconnected
clusters across geographical locations and languages. They found that, while smaller, anti-vaccination clusters are
highly entangled with undecided clusters, while pro-vaccine clusters are more peripheral. Their theoretical framework
predicts the dominance of anti-vaccination views in a decade. They propose that the insights provided by the framework
are used to interrupt the shift to negative views.

Focusing instead on the the role of social media companies in misinformation regarding Covid-19, Burki [2] presents
distinct views by experts. While some argue that the companies’ pledges to act against anti-vaccine movements were
insufficient, others see issues of freedom of speech and fear that the removal of posts would turn the authors into
martyrs.

By exploring user behavior in YouTube live streaming chat during Trump’s 2020 presidential campaingn in the
United States Liebeskind et al. [17] find, through the use of Natural Language Processing algorithms, that most messages
express sentiment, with positive sentiment outweighing the negative. They also found that heavy users tend to use more
emojis and express more sentiment while using less abusive language. Finally, they concluded that sarcasm invokes
engagement.

The toxicity in YouTube comment sections was studied by A. Obadimu et al. [20], who examined comments posted
on anti- and pro-NATO channels. They discovered that those on anti-NATO channels have a higher tendency to
be toxic. By applying Latent Dirichlet Allocation(LDA) topic modelling, they also found that topics extracted from
anti-NATO channels were more geared towards negative components and geographical locations when compared to
their pro-NATO counterparts.

3
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3 DATA COLLECTION

In order to understand ideological battle on social media around vaccines, we need to look at videos, channels and
cultural contexts. We are interested in two contexts of using YouTube, represented by two different countries: the
United States and Brazil. In addition to the two different countries, we focus on two classes of groups, pro-vaccination
and anti-vaccination in each country. We collected data from different YouTube channels, videos and comments to
allow us to compare distinct types of content and analyze their characteristics. For this means, YouTube Data API
v3 was used to collect data on 142 YouTube channels that contain videos related to the COVID-19 pandemic and the
vaccination process. These channels were discovered by different means, such as keyword searches, suggestions by the
YouTube algorithm after the keyword searches, journalistic reports2, inspection of YouTube links shared on Facebook’s
CrowdTangle, as well as through a searchable snapshot of the Parler social network3, which includes posts, comments
and users that existed before it was shut down on January 10th. Channels of important and popular political figures in
the online platforms (e.g., Brazilian president Jair Bolsonaro and his family), educational (e.g., “University of Sao Paulo
channel”) or government institutions (e.g., “Ministry of Health”), several news sources (e.g., CNN, Forbes, The New
York Times), hospitals (e.g., "Hospital Israelita Albert Einstein"), well-known medical doctors (e.g., “Drauzio Varella”) or
users who have a large number of subscribers or followers (e.g., “Atila Iamarino”) were also tracked. The category (anti-
or pro-vaccine) that each channel belongs to was determined manually upon inspection of the channel videos.

Data on videos posted by these channels was collected and filtered using a set of relevant keywords4. This set of
keywords is related to the COVID-19 pandemic and the vaccination process. The resulting dataset includes the video
title, the channel title, the video ID, the channel ID, the time of publication, the description of the video, tags, and topic
categories. The comments and transcript of each video that contained at least one of the keywords used were also
collected. In total, 16820 videos were found to be relevant to the proposed study: 6648 anti-vaccine videos and 10172
pro-vaccine videos. The data collection period started on 11th July 2021 and ended on 3rd October 2021.

A total of 8.540.234 comments were collected, of which 172.578 had at least one hashtag and 107.429 had a link to
at least one of the following websites : YouTube, Facebook, Instagram, Twitter, Reddit, and Gab. Table 1 shows basic
statistics grouped by Channel Category and Channel Country for the dataset with YouTube comments. Table 2 shows
the distribution of links to relevant social networks within the database.

Channel Category Channel Country Accounts Number Total Comments Comments per Account % incl URL

Anti-Vaccine BR 539.678 2.308.712 4,28 21,54%
Pro-Vaccine BR 350.774 649.644 1,85 22,33%
Anti-Vaccine USA 280.979 584.844 2,08 13,50%
Pro-Vaccine USA 1.233.565 3.017.758 2,45 12,99%
Anti-Vaccine OTHER 248.463 709.947 2,86 14,57%
Pro-Vaccine OTHER 437.707 1.261.304 2,88 18,14%

Table 1. Basic Statistics by Channel Category and Country for the YouTube Dataset. % incl URL represents the percentage of the
total number of comments that contain URLs. While building this table, we discarded 8.025 comments that have neither country nor
category.

2These include: The Disinformation Dozen, CCDH <https://www.counterhate.com/disinformationdozen>, “Canais na internet ganharam dinheiro com
fake news sobre Covid, informa Google à CPI” (Title in English: Internet channels made money with fake news about Covid, Google informs Parliamentary
Inquiry Committee).
3Parler Snapshot <https://parler.adatascienti.st/>
4shorturl.at/bpzCD
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URL Brazil United States Others

youtu.be 9.485 31.520 23.601
youtube.com 4.432 18.976 15.602
facebook.com 759 1.619 1.382
twitter.com 161 979 1.023

instagram.com 191 255 181
reddit.com 3 135 100
gab.com 7 255 181

Total 15.038 53.739 42.070
Table 2. Number of YouTube comments with links to websites by country.

4 METHODS AND TOOLS

We use a four-dimension approach to analyze the content of comments, and videos. Through our analyses, we evaluate
(a) engagement, (b) tone of the language, (c) toxicity and (d) lexical analysis. We also developed a tool to monitor counter
misinformation operations, i.e videos and channels removal.

4.1 Engagement

User-user engagement, such as the number of replies to comments, are useful measures for understanding how users
interact with different kinds of content. This may be useful in the context of influence operations in social media since,
by finding how the engagement varies among videos/posts, it is possible to evaluate whether or not the comment
section seems to be influenced by the nature of the content.

Each social media platform allows their users to interact in different ways, for example, while Twitter and Gab allow
retweeting/reblogging, liking posts, replying to posts and many other forms of interaction, YouTube comments only
track replies and likes. As such, the engagement metric used for each platform has to be calculated differently to account
for such diversity.

YouTube user-user engagement has previously been explored in literature [16], where it was measured as the total
number of replies in a given comment divided by the number of comments in the video where it was posted:

𝛽 =
Total number of replies

Number of comments in video
, (1)

where 𝛽 denotes the reply-based engagement.
When looking at user-user engagement metrics, it is important to consider the popularity of the analyzed videos, as

previous studies [16] show a negative relationship between video popularity and this metric.
Besides, for US videos, specifically, VADER [11] sentiment analysis,a tool which is tailored for English text and maps

lexical features to emotion intensities known as sentiment scores, was used to determine comments’ sentiment. By
using the sentiment metrics for each comment, we wanted to explore if the sentiment of a comment interfered with
its engagement and whether the category(anti or pro-vaccine) of the video in which the comment was posted lead
to comments of a given sentiment being more or less popular. As previous studies have shown that in other social
networks such as Twitter [7], negative sentiments lead to higher engagement regardless of the nature of the content, it
was interesting to explore if such tendencies were also true for YouTube.

5
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4.2 Tone of comments

We want to understand whether variations regarding the tone of the comments vary as a function of the video nature
(i.e., pro- or anti-vaccine), as well as whether the tone is different when people mention other platforms in an effort to
increase the reach of the comment.

4.2.1 Valence. We look at how words are associated with each group using the measure of political valence proposed
in [3]. We adapt political valence to the context of this study as a measure that encodes the relative prominence of a term

among Pro-Vaccine and Anti-Vaccine users. Valence V of a term t is defined as:

𝑉 (𝑡) = 2 ∗
𝑁 (𝑡,𝐴)
𝑁 (𝐴)

𝑁 (𝑡,𝑃 )
𝑁 (𝑃 ) + 𝑁 (𝑡,𝐴)

𝑁 (𝐴)
− 1 (2)

where N(t,P) and N(t,A) are the counts of occurrences of a term t, and N(P) and N(A) is the number of total terms in the
Pro-Vaccine and Anti-Vaccine texts (i.e., comments), respectively. This equation bounds the valence between -1, for
terms only used in Pro-Vaccine texts, and +1, for terms appearing only in Anti-Vaccine texts.

The valence metric was then used to analyze the usage of words in comments from Anti-Vaccine and Pro-Vaccine
channels during 2020 and 2021, seeking to capture the changes in the tone of comments from one year to another.

4.2.2 Toxicity. The toxicity of comments was evaluated using the Perspective API 5 tool. We worked with the
definition of toxicity used by the tool to identify whether a text (i.e., comment) could be perceived as toxic. Toxicity
refers to “a rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion”. Perspective is a
tool developed by Google that leverages deep learning to estimate the toxicity score of a text. Therefore, we can use
such score to measure how much toxicity on average is published in comments on American and Brazilian channels.

4.3 Lexical Categories Analysis

Given the considerable number of video removals, it became interesting to ascertain why the removal of these videos
occurred and, thus, it was important to explore their statistics when compared to other videos of the same category that
are still online. For this, a sample with the same number of videos was drawn from the dataset and their statistics were
collected for comparison. The ECDF distributions in Figure 1 show the distribution of video statistics for the sample
and removed videos.

To further compare the removed videos and the sample, it was interesting to study the difference in emotions present
in their transcripts and comment sections. For this,the Empath [6] tool was used, as it is useful for analyzing text across
lexical categories and also generating new lexical categories to use for an analysis. For this analysis, the following
categories were used among the available Empath categories:

• positive: ’joy’, ’love’, ’politeness’.
• negative: ’aggression’, ’anger’, ’disgust’, ’hate’, ’kill’, ’nervousness’, ’pain’, ’rage’, ’sadness’, ’suffering’, ’terrorism’,

’violence’.
Ottoni et al. [21] proposed an analysis of right-wing YouTubers using Empath which could be used for our analysis,

thus, following their proposed methodology, the following steps as well as the textual processing steps of lemmatization
were performed. First, the Empath for transcripts and comments were obtained, then, the mean Empath for comments
from each video was obtained. After that, the mean Empath for each channel was calculated, followed by the cosine

5https://www.perspectiveapi.com/
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(a) Comment count ECDF (b) View count ECDF

(c) Like count ECDF (d) Dislike count ECDF

Fig. 1. Video Statistics ECDFs

similarity between comment and transcript Empath for each video.The similarity between a video’s comments and its
transcript is defined as

𝑆𝑣 = cos(𝐸𝑣,𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 , 𝐸𝑣,𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 ), (3)

where 𝑆𝑣 denotes the similarity between the comments and transcript of video v, 𝐸𝑣,𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 denotes the Empath
metrics for the video transcript and 𝐸𝑣,𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 denotes the mean Empath metrics for the video comments.

By following the proposed steps using these relevant Empath categories, it is possible to obtain information on how
much each comment and video is related to a given category. This information is useful to determine which categories
prevail on a given kind of content and can be used to correlate video and comments content for each Empath category.

As Empath currently does not natively support Portuguese, this analysis was only done for American videos.
.
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4.4 Counter misinformation operations

It is well-known that while YouTube is an important source of vaccine-related information to many people, it is also
plagued by misinformation [5]. The platform is aware of this issue and follows four principles in an attempt to mitigate
the impact of fake news in its environment: (i) rewarding trusted content creators, (ii) removing content that violates
YouTube policies, (iii) reducing recommendations of borderline content, and (iv) raising up authoritative sources for
news and information sources6. However, the measures taken in accordance to the principles above have been shown
to be insufficient [10].

In this study, we analyze the content removal in YouTube by the means of tracking the status of the videos on the
database mentioned above. This was achieved using the YouTube Data API v3 on a daily basis to detect video take
downs, be it by the user or by the platform. The period during which video removals were tracked ranges from May
30,2021 to October 3,2021.

5 RESULTS

5.1 Engagement

Tables 3 and 4 show the mean YouTube video views in the United States and in Brazil respectively. As mentioned, it is
important to know the video popularity before looking at engagement metrics, since it is expected that lower popularity
leads to higher engagement. The data from these tables will be discussed in the following sections.

Absolute Relative

All videos 143139.5 1.0
Anti-vaccine 57576.5 0.40
Pro-vaccine 188843.2 1.31
All Removed videos 20095.2 0.14
Removed Anti-vaccine 16256.9 0.11
Removed Pro-vaccine 84449.3 0.58

Table 3. Mean YouTube views per category on American videos

Absolute Relative

All videos 71190.1 1.0
Anti-vaccine 82902.3 1.16
Pro-vaccine 60948.1 0.85
All Removed videos 41124.0 0.57
Removed Anti-vaccine 41124.0 0.57
Removed Pro-vaccine* - -
*There were no removed pro-vaccine videos in Brazil

Table 4. Mean YouTube video views per category on Brazilian videos

6https://www.youtube.com/howyoutubeworks/our-commitments/fighting-misinformation/
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5.1.1 United States. Table 5 shows the relative mean engagement with YouTube comments for each category and
sentiment. The numbers were normalized by dividing all values by the mean engagement of all the comments in
American videos. It is important to acknowledge that the comments from removed videos were obtained before the
video was taken down.

General Anti-vaccine Pro-vaccine Removed anti-vaccine Removed pro-vaccine

All comments 1.0 1.13 0.95 8.11 3.82
Comments w/links 0.59 0.82 0.55 4.35 3.90
Comments w/hashtags 0.72 0.95 0.68 16.96 2.32

Negative sentiment
All comments 0.95 1.24 0.86 9.64 4.66
Comments w/links 0.92 1.38 0.84 3.44 3.37
Comments w/hashtags 1.08 1.24 1.04 11.79 2.79

Positive sentiment
All comments 1.15 1.14 1.16 7.51 3.77
Comments w/links 0.91 0.91 0.90 9.38 6.99
Comments w/hashtags 0.85 1.42 0.73 32.37 4.50
*The mean engagement of all comments is 0.0006061521773068392

Table 5. Mean relative user-user engagement of comments per category of American YouTube videos

It can be seen that there is significantly higher engagement for removed videos irrespective of the sentiment of
the comment. It is also interesting that while, in general, negative pro-vaccine comments show lower engagements,
the opposite happens with positive sentiments, which may suggest that optimism is a more popular, or at least more
discussed, view in this kind of content. In anti-vaccine content, however, negative sentiments are slightly more engaged
with, which could suggest that pessimism causes more discussion in this category. Additionally, the fact that both
positive and negative sentiments have greater mean engagement than the mean for all anti-vaccine comments is
explained by neutral comments having lower mean engagement.

Another interesting aspect to consider is the much higher user-user engagement in the removed videos, which could
be an indicative that content deemed inappropriate by YouTube (or by the user who decided to remove their own video),
sparks more discussion.

Additionally, comments with links to other social network websites or other YouTube videos have shown, in most
categories, comparable mean engagement to the mean for that category. But, when considering the whole database,
they have shown considerably lower mean engagement. This could suggest that users in YouTube comment sections, in
general, are less interested in links to other websites/videos than in purely conversational comments.

When contrasting the relative popularity of content belonging to a given category and its user-user engagement, it
can be seen that, while the expectation would be for less popular(on average) videos to have higher engagement, it can
be seen that this does not always happen, for example, despite being more popular on average, comments in removed
pro-vaccine videos have much lower mean engagement when compared to comments in anti-vaccine videos.

5.1.2 Brazil. Table 6 shows the relative mean engagement with YouTube comments for each category for Brazil. The
numbers were obtained by dividing all values by the mean engagement of all the comments in Brazilian videos.

It can be seen that, for Brazil, anti-vaccine content had much lower mean user-user engagement when compared
with pro-vaccine, which is the opposite of what happened in the case of the United States. However, similarly to the

9
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General Anti-vaccine Pro-vaccine Removed anti-vaccine Removed pro-vaccine**
All comments 1.0 0.48 1.32 0.69 -
Comments w/links 0.83 0.18 3.45 0.48 -
Comments w/hashtags 0.25 0.14 1.11 0.27 -
*The mean engagement of all comments is 0.0008826060131351426
**There were no removed pro-vaccine videos in Brazil

Table 6. Mean relative user-user engagement of comments per category of Brazilian YouTube videos

United States, comments with links and hashtags in general had relatively lower engagement, which could suggest that
YouTube users are more interested in purely conversational comments.

Unlike in the United States, removed Brazilian videos did not show extreme user-user engagement, however, they
did show greater engagement than the videos of the same category that were not removed.

5.2 Tone of comments

5.2.1 Valence. Figure 2 and Figure 3 shows valence score of words used, from April 2020 to June 2021, in US and
Brazilian comments 7, respectively. We observe that, in both countries, anti-vaccine discourse is more associated with
conspiracy theories(e.g., communist, ccp, chinese), misinformation and alternative medicine (e.g., inject_disinfectant,
quercetin, ivermectin, hydroxychloroquine). Whereas pro-vaccine discourse is associated with election and protective
measures (e.g. president, administration, mask, healthy).

Fig. 2. Valence of words used in 2020 and 2021 in comments from US.

5.2.2 Toxicity. Figure 4a and Figure 4b show the toxicity probability of US comments and Brazilian comments,
respectively. We observe that, in both countries, comments on Anti-Vaccine channels have more toxicity probability
than those on Pro-Vaccine channels. For instance, in the United States, 75% of comments on Anti-Vaccine channels
have toxicity probability between 0.125 and 0.55, whereas on the Pro-Vaccine channels, 75% of comments have toxicity
probability between 0.09 and 0.27. In Brazil, we observe a similar characteristic. However, the majority of comments
(75%) published in Pro-Vaccine are even less toxic than the comments published in Pro-Vaccine in the United States.

7The words in the figure are translated from Portuguese to English.
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Fig. 3. Valence of words used in 2020 and 2021 in comments from Brazil.
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(a) Toxicity probability of YouTube comments from US.
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(b) Toxicity probability of YouTube comments from Brazil.

Fig. 4. Toxicity probability of YouTube comments.

5.3 Lexical Categories Analysis

To compare the different video categories, for both removed as well as the samples, the previously mentioned mean
Empath metric for each video was used to generate Figures 5 and 6.

From them, it can be seen that in all categories, comments tend to have greater metrics in positive categories, while
transcripts do not seem to show higher scores in negative categories in general. Additionally, transcripts from videos
that are still online seem to have greater positive scores than their removed counterparts.

Besides that, it can be observed that surprisingly, comments in the sampled non-removed pro-vaccine videos are more
negative than those from removed videos, which could be a consequence of the low sample size. However, comments
on anti-vaccine videos have shown greater negative scores in all categories when compared to the sample, with the
exception of the “rage” category. Unsurprisingly, in most categories, especially for the removed videos, anti-vaccine
content has greater negative scores.

Figure 7 presents a matrix in which each element is the correlation between average similarities and an Empath
category. From it, it can be seen that pro vaccine videos with less fraction of negative emotions on their transcripts
have high similarity between caption and comments. Anti-vaccine transcripts, however, showed positive correlations
with negative Empath categories, suggesting that a higher fraction of negative emotions correlates to a high similarity,
in other words, whenever content creator and commenters’ views are aligned, anti-vaccine videos show more negative
emotions, while pro-vaccine videos show less negative emotions. Both of these statements are especially true for
removed content, as the correlations in absolute value, are higher for them.
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Fig. 5. Empath for removed videos comments and transcripts. The y axis represents the mean Empath metric.

Looking at the comments it can be seen that removed pro vaccine comment sections have low correlation with
positive emotions. Furthermore, removed anti-vaccine comments also show low correlations for some of the negative
Empath categories.

5.4 Counter misinformation operations

During the data collection period, a total of 1141 videos were removed, of which 648 are from the United States, 306
are from Brazil, and 187 are from other countries. It is important to highlight that while most removed videos are
anti-vaccine, 47 pro-vaccine videos were removed in the United States. Moreover, 5 anti-vaccine channels from the
United States and 2 from other countries were taken down. No channels from Brazil were removed during the the
discussed period.

As it can be seen, while it is true that a large number (approximately 16%) of anti-vaccine videos were removed, most
of the anti-vaccine videos were still available at the end of the tracking period, which illustrates why the measures
taken by YouTube are said to be insufficient. It is important to note that most, if not all, pro-vaccine content removals
happened due to the video creators themselves and not due to actions taken by YouTube. An even lower percentage of
removals was found when looking at channels, where only 7% of anti-vaccine channels were removed.

Another interesting aspect to consider is that the United States registered the largest absolute number and percentage
of removed anti-vaccine videos, as 601 out of 1755 videos were removed(34%). Brazil registered the lowest ratio of
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Fig. 6. Empath for sample videos comments and transcripts.The y axis represents the mean Empath metric.

removals, with only 306 out of 3121 videos being removed(9.8%). This could suggest that YouTube measures for filtering
videos are more effective in some countries.

6 CONCLUSION

In the context of the COVID-19 pandemic, online social media platforms were important sources of information for many
people. However, amidst the endless stream of content posted on those platforms, misinformation was widespread. As
anti-vaccine content flooded the social networks, the efforts to prevent their spread grew, leading to different reactions
from the various platforms. YouTube, the platform of interest for this study due to its large reach, dealt with this kind
of content by the means of demonetizing [2], raising awareness via information panels 8, reducing recommendation for
questionable videos, and content removal.

Despite the aforementioned attempts to filter content and reduce disinformation, most comments and videos were
still accessible at the end of the data collection period, with only about 16% of anti-vaccine videos being taken down.
For this reason, it became clear that it is important to study the difference between anti and pro-vaccine content to
ascertain what differentiates those two categories and what are common characteristics among people who consume
these kinds of videos, seeking to understand the dynamics of "comment sections".

By analyzing comments in both anti and pro-vaccine videos, we found that, on average, English speaking users
engage more with anti-vaccine content. This is specially noticeable when looking at the removed videos, which are

8https://support.google.com/youtube/answer/9004474?hl=en
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Fig. 7. Correlation between similarities and Empath categories

supposedly more controversial, as the user-user engagement on those is significantly higher than the average of the
database. Additionally, we note that positive sentiments seem to be more popular in pro-vaccine "comment sections",
while the same can be said for negative sentiments in anti-vaccine "comment sections". Moreover, during the study, it
was possible to observe higher toxicity probability on anti-vaccine comments, corroborating to the observation that
negative statements are more popular in this environment. This is further explored when looking at the similarities
between videos and their comments, as it is observed that anti-vaccine videos are more similar to their "comment
section" when they show negative emotions, with the opposite being true for pro-vaccine content.

In conclusion, in this study, the removal of videos by the YouTube platform was monitored and different methods
were used to analyze anti and pro-vaccine "comment sections", finding key differences between them. Future work could
explore similar concepts for different social network platforms such as Facebook, Instagram, and Twitter, seeking to
ascertain whether the tendencies observed match those found on YouTube. Finally, the removal of content on YouTube
could be explored over a larger time frame with a larger database, in an attempt to better understand the effectiveness
of the actions taken by the platform.
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