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Abstract

We consider exact distance oracles for directed weighted planar graphs in the presence of
failing vertices. Given a source vertex u, a target vertex v and a set X of k failed vertices,
such an oracle returns the length of a shortest u-to-v path that avoids all vertices in X. We
propose oracles that can handle any number k of failures. We show several tradeoffs between
space, query time, and preprocessing time. In particular, for a directed weighted planar graph
with n vertices and any constant k, we show an O(n)-size, O(y/n)-query-time oracle." We
then present a space vs. query time tradeoff: for any ¢ € [1,+/n], we propose an oracle of
size nF 1o /g2F that answers queries in O(q) time. For single vertex failures (k = 1), our
n2+0(1)/ q>-size, @(q)—query—time oracle improves over the previously best known tradeoff of
Baswana et al. [SODA 2012] by polynomial factors for ¢ > n?, for any ¢ € (0,1/2]. For multiple
failures, no planarity exploiting results were previously known.

A preliminary version of this work was presented in SODA 2019. In this version, we show
improved space vs. query time tradeoffs relying on the recently proposed almost optimal distance
oracles for planar graphs [Charalampopoulos et al., STOC 2019; Long and Pettie, SODA 2021].

*This work was partially supported by Israel Science Foundation (ISF) grants 794/13 and 592/17.
'The O(-) notation hides polylogarithmic factors.



1 Introduction

Computing shortest paths is one of the most well-studied algorithmic problems. In the data structure
version of the problem, the aim is to compactly store information about a graph such that the
distance (or the shortest path) between any queried pair of vertices can be retrieved efficiently.
Data structures supporting distance queries are called distance oracles. The two main measures of
efficiency of a distance oracle are the space it occupies and the time it requires to answer a distance
query. Another quantity of interest is the time required to construct the oracle.

In recent decades researchers have investigated the shortest path problem in graphs subject to
failures, or more broadly, to changes. One such variant is the replacement paths problem. In this
problem we are given a graph G and vertices v and v. The goal is to report the u-to-v distance in G
for each possible failure of a single edge along the shortest u-to-v path. Another variant is that of
constructing a distance oracle that answers u-to-v distance queries subject to edge or vertex failures
(u,v and the set of failures are given at query time). Perhaps the most general of these variants is
designing a fully-dynamic distance oracle; a data structure that supports distance queries as well
as updates to the graph such as changes to edge lengths, edge insertions or deletions and vertex
insertions or deletions.

One obvious but important application of handling failures is in geographical routing [30].
Further motivation for studying this problem originates from Vickrey pricing in networks [39, 27];
see [15] for a concise discussion on the relation between the problems. A long-studied generalization
of the shortest path problem is the k-shortest paths problem, in which not one but but several
shortest paths must be produced between a pair of vertices. This problem reduces to running k
executions of a replacement paths algorithm, and has many applications itself [19].

In this paper we focus on these problems, and in particular on handling vertex failures in planar
graphs. Observe that edge failures easily reduce to vertex failures. Indeed, by replacing each
edge (a,c) of G with a new dummy vertex b and appropriately weighted edges (a,b) and (b, ¢);
the failure of edge (a,c) in G corresponds to the failure of vertex b in the new graph. Note that
this transformation does not depend on planarity. In sparse graphs, such as planar graphs, this
transformation only increases the number of vertices by a constant factor. Also note that there is no
such obvious reduction in the other direction that preserves planarity. In general graphs, one can
replace each vertex v by two vertices v, and vy, assign to vy, (resp. voyt) all the edges incoming
to v (resp. outgoing from v) and add a 0-length directed edge e from v, t0 vout. The failure of
vertex v in the original graph corresponds to the failure of edge e in the new graph. However, this
transformation does not preserve planarity.

1.1 Related Work

General Graphs. Demetrescu et al. presented an O(n?log n)-size oracle answering single failure
distance queries in constant time [15]. Bernstein and Karger, improved the construction time in [6].
Interestingly, Duan and Pettie, building upon this work, showed an O(n?log® n)-size oracle that
can report distances subject to two failures, in time O(logn) [17]. Based on this oracle, they then
casily obtain an O(n¥)-size oracle answering distance queries in O(1) time for any k > 2. Oracles
that require less space for more than 2 failures have been proposed, such as the ones presented
in [41, 40], but at the expense of (n) query time. Such oracles are unsatisfactory for planar graphs,

where single source shortest paths can be computed in linear or nearly linear time.

Planar Graphs. Exact (failure-free) distance oracles for planar graphs have been studied ex-
tensively over the past three decades [16, 3, 13, 21, 37, 8, 14, 26, 10, 23, 34]. A very recent



series of papers [26, 14, 10, 34, 11] has established Voronoi diagrams as a useful tool for design-
ing distance oracles in planar graphs. In particular, in [34], the authors showed an plito()
10g2+0(1) n-query-time oracle.

As for handling failures, the replacement paths problem (i.e. when both the source and destination
are fixed in advance) can be solved in nearly linear time [18, 33, 42]. For the single source, single
failure version of the distance oracle problem (i.e. when the source vertex is fixed at construction
time, and the query specifies just the target and a single failed vertex), Baswana et al. [5] presented
an oracle with size and construction time O(nlog®n) that answers queries in O(log3 n) time. They
then showed an oracle of size O(n?/q) for the general single failure problem (i.e. when the source,
destination, and failed vertex are all specified at query time), that answers queries in time O(q) for
any ¢ € [1, nt/ 2. They concluded the paper by asking whether it is possible to design a compact
distance oracle for a planar digraph which can handle multiple vertex failures. We answer this
question in the affirmative.

Fakcharoenphol and Rao, in their seminal paper [21], presented distance oracles that require
O(n?/3 log™/? n) and O(n*/" log!3/5 n) amortized time per update and query for non-negative and
arbitrary edge-weight updates respectively.? The space required by these oracles is O(nlogn). Klein
presented a similar data structure in [31] for the case where edge-weight updates are non-negative,
requiring time O(n?31og®?n). Klein’s result was extended in [28], where, assuming non-negativity
of edge-weight updates, the authors showed how to handle edge deletions and insertions (not
violating the planarity of the embedding), and in [29], where the authors showed how to handle
negative edge-weight updates, all within the same time complexity. In fact, these results can all be
combined, and along with a recent slight improvement on the running time of FR-Dijkstra [25], they

yield a dynamic distance oracle that can handle any of the aforementioned edge updates and queries

2/3 log5/3 n
log‘i/3 logn

insertions can also be handled within the same time complexity. The main challenge lies in handling

vertices of high degree.

An exact fault-tolerant distance labeling scheme for planar graphs, accommodating for a single
failure was recently presented [4]. For the case where one is willing to settle for approximate
distances, Abraham et al. [2] gave a (1 + €) labeling scheme for undirected planar graphs with
polylogarithmic size labels, such that a (1 + €)-approximation of the distance between vertices u
and v in the presence of |F'| vertex or edge failures can be recovered from the labels of u, v and the
labels of the failed vertices in O(|F|?) time. They then use this labeling scheme to devise a fully
dynamic (1 + €)-distance oracle with size O(n) and O(y/n) query and update time.?

On the lower bounds side, it is known that an exact dynamic oracle requiring amortized time
O(nl/ 2*5), for any constant § > 0, for both edge-weight updates and distance queries, would refute
the APSP conjecture, i.e. that there is no truly subcubic combinatorial algorithm for solving the
all-pairs shortest path problems in weighted (general) graphs [1].

-size,

within time O(n ). We further extend these results by showing that vertex deletions and

1.2 Our Results and Techniques

In this work we focus on distance queries subject to vertex failures in planar graphs. Our results
can be summarized as follows.

1. We show how to preprocess a directed weighted planar graph G in @(n) time into an oracle of
size O(n) that, given a source vertex u, a target vertex v, and a set X of k failed vertices,

2Though this is not mentioned in [21], the query time can be made worst case rather than amortized by standard
techniques.
3A fully dynamic distance oracle supports arbitrary edge and vertex insertions and deletions, and length updates.



reports the length of a shortest u-to-v path in G\ X in O(v/kn) time. See Lemma 10.

2. We extend the exact dynamic distance oracles mentioned in the previous section to also handle
vertex insertions and deletions without changing their space and time bounds. See Theorem 11.

3. For k allowed failures, and for any r € [1,7], we show how to construct an n*+1to() /rk_size
oracle that answers queries in time @(k\/?) For k = 1, this improves over the previously best
known tradeoff of Baswana et al. [5] by polynomial factors for r > n!, for any ¢ € (0,1]. To
the best of our knowledge, this is the first tradeoff for £ > 1. See Fig. 1 for an illustration
and Corollary 17 and Theorem 18 for more tradeoffs.
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Figure 1: Left: Tradeoff of the Space (S) vs. the Query time (Q) for exact distance oracles for a
single failed vertex (i.e. k = 1) on a doubly logarithmic scale, hiding subpolynomial factors. The
previous tradeoff is indicated by a solid line, while the new tradeoff is indicated by a dashed line.
Right: The same tradeoff for k = 1,...,5, shown with different colours. The points on the z-axis
correspond to the result of [17], while the new tradeoffs are indicated by dashed lines.

Our nearly-linear space oracle that reports distances in the presence of k failures in (5(\/@)
time is obtained by adapting a technique of Fakcharoenphol and Rao [21]. In a nutshell, a planar
graph can be recursively decomposed using small cycle separators, such that, in each level of the
decomposition, the boundary of each piece (i.e. the vertices of the piece that also belong to other
pieces in this level) is a union of a constant number of cycles with relatively few vertices. Instead of
working with the given planar graph, one computes distances over its dense distance graph (DDG);
a non-planar graph on the boundary vertices of the pieces which captures the distances between
boundary vertices within each of the underlying pieces. Fakcharoenphol and Rao developed an
efficient implementation of Dijkstra’s algorithm on the DDG. This algorithm, nicknamed FR-Dijkstra,
runs in time roughly proportional to the number of vertices of the DDG (i.e. boundary vertices),
rather than in time proportional to the number of vertices in the planar graph. Roughly speaking,
Fakcharoenphol and Rao show that to obtain distances from u to v with k edge failures, it (roughly)
suffices to consider just the boundary vertices of the pieces in the recursive decomposition that
contain failed edges. Since pieces at the same level of the recursive decomposition are edge-disjoint,
the total number of boundary vertices in all the required pieces is only O(v/kn). This O(n)-size,
(’N)(\/%)—query—time oracle, supporting distance queries subject to a batch of k edge cost updates,
leads to their dynamic distance oracle.

The difficulty in handling vertex failures is that a high degree vertex x may be a boundary vertex
of many (possibly €2(n)) pieces in the recursive decomposition. Then, if z fails, one would have to
consider too many pieces and too many boundary vertices. Standard techniques such as degree



reduction by vertex splitting are inappropriate because when a vertex fails all its copies fail. To
overcome this difficulty we define a variant of the dense distance graph which, instead of capturing
shortest path distances between boundary vertices within a piece, only captures distances of paths
that are internally disjoint from the boundary. We show that such distances can be computed
efficiently, and that it then suffices to include in the FR-Dijkstra computation (roughly) only pieces
that contain z, but not as a boundary vertex. This leads to our nearly-linear-size oracle reporting
distances in the presence of k failures in O(v/kn) time (item 1 above). See Section 3. Plugging the
same technique into the existing dynamic distance oracles extends them to support vertex deletions
(item 2 above). See Section 4.

Our main result, the space vs. query time tradeoff (item 3 above), is obtained by a combination
of this technique, employment of external DDGSs, and the recent static exact distance oracle
presented in [34]. See Section 5. In the case where one is willing to sacrifice space in order to make
preprocessing more efficient, we show an alternative tradeoff in Section 6. Such an oracle could
be preferable in the case that one has to reconstruct the data structure every once in a while due
to unfixable failures or other updates in the graph. This tradeoff is achieved by a combination
of FR-Dijkstra on our variant of the DDG with r-divisions, external DDGSs, and efficient point
location in Voronoi diagrams —a tool that is used internally by the exact oracles we use as a black
box in the other trafeoff. Finally, in Section 7 we show how to efficiently construct our oracles; in
particular, the efficient construction of external D DGs may be of independent interest.

2 Preliminaries

In this section we review the main techniques required for describing our result. Throughout the
paper we consider a weighted directed planar graph G = (V(G), E(G)), embedded in the plane.
(We use the terms weight and length for edges and paths interchangeably throughout the paper.)
We use |G| to denote the number of vertices in G. Since planar graphs are sparse, |E(G)| = O(|G])
as well. For an edge (u,v), we say that u is its tail and v is its head. dg(u,v) denotes the distance
from u to v in G. We denote by dg(u, v, X) the distance from u to v in G \ X, where X € V(G) or
X C V(G); if the reference graph is clear from the context we may omit the subscript. We assume
that the input graph has no negative length cycles. If it does, we can detect this in (’)(nlggglzg”n)
time by computing single source shortest paths from any vertex [38]. In the same time complexity,
we can transform the graph in a standard way so that all edge weights are non-negative and shortest
paths are preserved. We further assume that shortest paths are unique as required for a result
from [24] that we use; this can be ensured in O(n) time by a deterministic perturbation of the
edge weights [20]. Each original distance can be recovered from the corresponding distance in the
transformed graph in constant time.

Separators and recursive decompositions in planar graphs. Miller [35] showed how to
compute a Jordan curve that intersects the graph at O(y/n) vertices and separates it into two pieces
with at most 2n/3 vertices each. Jordan curve separators can be used to recursively separate a
planar graph until pieces have constant size. The authors of [32] show how to obtain a complete
recursive decomposition tree 7 of G in O(n) time. 7 is a binary tree whose nodes correspond to
subgraphs of G' (pieces), with the root being all of G and the leaves being pieces of constant size.
For each vertex u of GG, we fix an arbitrary leaf-piece in 7 that contains u, and denote this piece by
P,,. We identify each piece P with the node representing it in 7. We can thus abuse notation and
write P € T.

An r-division [22] of a planar graph, for r € [1,n], is a decomposition of the graph into O(n/r)



pieces, each of size O(r), such that each piece has O(y/r) boundary vertices, i.e. vertices incident
to edges in other pieces. Another usually desired property of an r-division is that the boundary
vertices lie on a constant number of faces of the piece (holes). For every r larger than some constant,
an r-division with this property (i.e. few holes per piece) is represented in the decomposition tree
T of [32]. Throughout the paper, to avoid confusion, we use “nodes” when referring to 7 and
“vertices” when referring to G. We denote the boundary vertices of a piece P by dP. We refer to
non-boundary vertices as internal.

Lemma 1 ([26]). Each node in T corresponds to a piece such that (i) each piece has O(1) holes,
(ii) the number of vertices in a piece at depth € in T is O(n/c}), for some constant c; > 1, (iii) the
number of boundary vertices in a piece at depth £ in T is (’)(\/ﬁ/cg), for some constant co > 1.

We use the following well-known bounds (see e.g., [26]).
Proposition 2. >, |P| = O(nlogn), > pcr [0P] = O(n) and Y- per |0P]* = O(nlogn).
We show the following bound that will be used in future proofs.

Proposition 3. Y |P||0P|?> = O(n?).
PeT

Proof. Let P{, Py, ..., Pf be the pieces at the /-th level of the decomposition. Y, |Pf| = O(n) since
the pieces are edge-disjoint. We know by Lemma 1 that \BP]-Z | = O(v/n/ch) for all j and hence
\8Pf’2 = O(n/c3) for all j. It follows that >, |Pf||0Pf|?> = O(n?/c3") and the claimed bound
follows by summing over all levels of T. O

Dense distance graphs and FR-Dijkstra. The dense distance graph of a piece P, denoted
DDGp is a complete directed graph on the boundary vertices of P. Each edge (u,v) has weight
dp(u,v), equal to the length of the shortest u-to-v path in P. DDGp can be computed in time
O((|oP|* + | P|) log |P|) using the multiple source shortest paths (MSSP) algorithm [31, 9]. Over
all pieces of the recursive decomposition this takes time O(n log? n) in total and requires space
O(nlogn) by Proposition 2. We next give a —convenient for our purposes— interface for FR-
Dijkstra [21], which is an efficient implementation of Dijkstra’s algorithm on any union of DDGS.
The algorithm exploits the fact that, due to planarity, certain submatrices of the adjacency matrix
of DDG p satisfy the Monge property. (A matrix M satisfies the Monge property if, for all i < ¢/
and j < j', M;; + My j» < My ;j + M; j» [36].) The interface is specified in the following theorem,
which was essentially proved in [21], with some additional components and details from [29, 38].

Theorem 4 ([21, 29, 38]). A set of DDGs with O(M) wvertices in total (with multiplicities), each
having at most m wvertices, can be preprocessed in time and extra space O(M logm) in total, so
that, after this preprocessing, Dijkstra’s algorithm can be run on the union of any subset of these
DDGs with O(N) vertices in total (with multiplicities) in time O(N log N logm), by relazing edges
in batches. Fach such batch consists of edges that have the same tail.

The algorithm in the above theorem is called FR-Dijkstra. It is useful in computing distances in
sublinear time, as demonstrated by Lemma 6 and Corollary 7 which are a reformulation of ideas
from [21] and are provided below for completeness.

Definition 5. The cone of a vertez u of G is the union of the following DDGs: (i) DDGp,, with u
considered a boundary vertex of P,. (i) For every (not necessarily strict) ancestor P of P,, DDGg
of the sibling Q of P.



Lemma 6. Let x and y be two vertices in the cone of a vertex u. The x-to-y distance in G equals
the x-to-y distance in this cone of u.

Proof. Let P, = Py, P1, ..., P; = G be the ancestors of P, ordered by decreasing depth in 7. Let
Q; be the sibling of P; in 7. Let cone; be DDGp, U Uj<l. DDGg;. We will prove by induction that
for any two vertices z,y € cone;, the x-to-y distance in P; equals the z-to-y distance in cone;. This
statement is trivially true for ¢ = 0. Let us assume it is true for k. Consider an z-to-y shortest
path p in P41, where x,y € conegy1. Path p can be decomposed into maximal subpaths that are
entirely contained in Py or Q) and whose endpoints are in {z,y} U (0P, N 0Q}). For each such
subpath we either have a path with the same length in cone; by the inductive assumption, or an
edge of DDGg, . This shows that the length of p is at least the length of the z-to-y distance in
coneg. Since every edge of cone, corresponds to some path in Py, the opposite also holds, so the
two quantities are equal. O

Corollary 7. Let u,v be two distinct vertices in G. Let p be a shortest u-to-v path in G. If p is
not fully contained in P, then we can compute the length of p by running FR-Digkstra on the union
of the cone of u and the cone of v. This takes O(y/n) time.

Proof. Since p is not fully contained in P,, p must visit a vertex w in the separator of the LCA of
P, and P, in 7. We are done by decomposing p into the prefix ending at w and the suffix beginning
at w, and applying Lemma 6. The running time follows by Theorem 4 and Lemma 1. O

3 Near Linear Space Data Structure for any Number of Failures

In this section we show how to adapt the approach of [21] for distance oracles supporting cumulative
edge changes to support distance queries with failed vertices. The main technical challenge lies in
dealing with failures of high-degree vertices, since such vertices may belong to many pieces at each
level of the decomposition. For example, think of a failure of the central vertex in a wheel graph,
which belongs to all the pieces in the recursive decomposition. Note that standard degree reduction
techniques such as vertex splitting are not useful because when a vertex fails all its copies fail. This
is in contrast with the situation when dealing only with edge-weight updates, since each edge can be
in at most one piece per level. We circumvent this by defining and employing the strictly internal
dense distance graph. The main intuition is that strictly internal DDGs enable us to handle pieces
that only contain failed boundary vertices, i.e. do not contain any internal vertex that fails. Then,
only pieces that contain internal failed vertices are “problematic”. Note however, that a vertex is
internal in at most one piece per level of the decomposition.

Definition 8. The strictly internal dense distance graph of a piece P, denoted DDG%, is a complete
directed graph on the boundary vertices of P. An edge (u,v) has weight d%(u,v) equal to the length
of the shortest u-to-v path in P that is internally disjoint from OP.

The sole difference to the standard definition is that in our case paths are not allowed to go
through OP. Observe that the shortest path in P between two vertices of 0P is still represented in
DDG%, just not necessarily by a single edge as in DDG p. This establishes the following lemma.

Lemma 9. For any piece P and any two boundary vertices u,v € OP, the u-to-v distance in DDG%
equals the u-to-v distance in DDGp.

We now discuss how to efficiently compute DDG%. We construct a planar graph P, by creating a
copy of P and incrementing the weight of each edge uv, such that u € 9P, by C = 2 EeeE(G) lw(e)].
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DDG p can be computed in O((|0P* + |P|)log|P|) time using MSSP [31, 9]. Observe that any
u-to-v path in P that starts at P and is internally disjoint from AP has exactly one edge uw with
u € JP, so its length is at least C' and less than 2C, while any u-to-v path that has an internal
vertex in OP is of length at least 2C. Therefore, the u-to-v distance in P is equal to C plus the
length of the shortest u-to-v path in P that is internally disjoint from P if the latter one is not oc.
We thus set d(u,v) = dp(u,v) — C. This completes the description of the computation of DDG%.
Note that since C is defined in terms of G rather than P, edge weights greater than C'in DDG%
effectively represent infinite length in the sense that such edges will never be used by any shortest
path (in P nor in GG). Also note that it follows directly from the definition of the Monge property
that subtracting C' from each entry of a Monge matrix preserves the Monge property. Therefore, we
can use Jp DDGY% in FR-Dijkstra (Theorem 4) instead of |Jp, DDGp.

Preprocessing. We compute a complete recursive decomposition tree 7 of G in time O(n) as
discussed in Section 2. We compute DDGY for each non-leaf piece P € 7 and preprocess it as in
FR-Dijkstra. By Proposition 2, Theorem 4 and the above discussion, the time and space complexities
are O(nlog®n) and O(nlogn), respectively.

Query. Upon query (u,v, X ), we run FR-Dijkstra on the union of the following DDG®s, which
we denote by D(u, v, X) or just D when the arguments are clear from the context (inspect Fig. 2
for an illustration):

1. For each w € {u,v}, DDG% of P, \ X with w regarded as a boundary vertex. This can be
computed on the fly in constant time since the size of the leaf-piece P, is constant.

2. For each w € {u, v}, for each ancestor P of P, (including P,), DDGY, of the sibling @ of P
if @ does not contain any internal (i.e. non-boundary) vertex that is in X.

3. For each z € X, DDGY,_of P, \ X. This can be computed on the fly in constant time since
the size of the leaf-piece P, is constant.

4. For each x € X, for each ancestor P of P, (including P,), DDGY, of the sibling Q of P if @
does not contain any internal vertex that is in X.

We can identify these DDG®s in O(klogn) time by traversing the parent pointers from each P;,
for 7 € X, and marking all the nodes that have an internal failed vertex. We make one small but
crucial change to FR-Dijkstra. When running FR-Dijkstra, we do not relax edges whose tail is a
failed vertex. This guarantees that, although failed vertices might appear in the graph on which
FR-Dijkstra is invoked, the u-to-v shortest path computed by FR-Dijkstra does not contain any
failed vertices. We therefore obtain the following lemma.

Lemma 10. There exists a data structure of size O(nlogn), which can be constructed in O(nlog?n)
time, and answers the following queries in O(Vkn log? n) time. Given vertices u and v, and a set
X of k failed vertices, report the length of a shortest u-to-v path that avoids the vertices of X.

Proof. We have already discussed the space occupied by the oracle and the time required to build
it. It remains to analyze the query algorithm.

Correctness. First, it is easy to see that no edge (y, z) of any of the DDG®s in D represents a
path containing a vertex z € X, unless {y, 2} N X # (). The latter case does not affect the correctness
of the algorithm, since in FR-Dijkstra we do not relax edges whose tail is a failed vertex. Hence,
the algorithm never computes a distance corresponding to a path going through a failed vertex.



Figure 2: A portion of the complete recursive decomposition tree 7 of a graph G. The light gray
and red pieces are the ones that would be considered by the failure-free distance oracle upon query
d(u,v). However, given the failure of vertex x, the DDG® of the red piece is invalid. The dark gray
pieces are the ones that our algorithm considers instead of the red piece. The DDG®s of the dark
gray pieces, that are descendants of the red piece, allow us to represent its DDG® subject to the
failure of x.

It remains to show that the shortest path in G \ X is represented in D. For this, by Corollary 7,
it suffices to prove that for each piece A in the cone of u (and similarly in the cone of v), either
DDGS for A\ X belongs to D, or D contains enough information to reconstruct DDG¢ for A\ X
(i.e. subject to the failures) during FR-Dijkstra. In the latter case we say that DDGS is represented
in D. Note that, for any piece P, DDGY% is represented in D if the DDG®s of its two children in
T are represented in D. (This follows by an argument identical to the one used in the proof of
Lemma 6.) If A contains no internal failed vertex then DDG is in D by point 1 or 2 above. We
next consider the case that A does contain some failed vertex z € X as an internal vertex. Thus A
is an ancestor of P,. To show that A is represented in D, we prove that for any failed vertex y € X,
the DDG® of any non-root ancestor of P, in 7T is represented in D.

We proceed by the minimal counterexample method. For any y € X, DDG}y is in D since it is
computed on the fly in point 3. Let F' be the deepest node in 7 that is a strict ancestor of P, for
some y € X and whose DDG® is not represented in D. It follows that one of F’s children must also
be an ancestor of P, and by the choice of I its DDG® is represented in D. Let the other child of F°
be J. If J is an ancestor of some P,, z € X, then DDG?Y is also represented in D by the choice of
F. Otherwise, J does not contain any internal failed vertex, and hence DDGY is in D by point 4.
In either case, the DDG®s of both children of F' are represented in D, so DDGY, is also represented
in D, a contradiction.

Time complexity. Let r = n/k and consider an r-division of G in T. The pieces of this r-division
have (’)(\/i;) = O(Vkn) boundary vertices in total and this is known to also be an upper bound on



the total number of boundary vertices (with multiplicities) of ancestors of pieces in this r-division
(cf. the discussion after Corollary 5.1 in [26]).

Recall that we have chosen a leaf-piece P; for each vertex ¢ € {u,v} U X. Each piece (other than
the P;s) whose DDG® belongs to D is a sibling of an ancestor of some P;. This implies that each
i € {u,v} U X contributes the DDG®s of at most two pieces per level of the decomposition. Let the
ancestor of P; that is in the r-division be R;. For each P;, we only need to bound the total size
of pieces it contributes that are descendants of R;, since we have already bounded the total size
of the rest. We do so by applying Lemma 1 for the subtree of T rooted at each R;. (The extra
O(y/r) boundary vertices we start with do not alter the analysis of this lemma as these many are

anyway introduced by the first separation of R;.) It yields 2, §= where ¢ > 1, which is O(y/r).
2

Summing over all k + 2 pieces P; we obtain the upper bound O(k+/r) = O(Vkn).
FR-Dijkstra runs in time proportional to the total number of vertices of the DDG®s in D up to
a log? n multiplicative factor and hence the time complexity follows. O

Remark. By using existing techniques (cf. [29, Section 5.4]), we can report the actual shortest path
p in time O(|p|loglog A,), where A, is the mazimum degree of a vertex of p in G.*

4 Dynamic Distance Oracles can Handle Vertex Deletions

In this section we briefly explain how the techniques of Section 3, and specifically our notion of
strict dense distance graphs (D DG°®s) can be used to facilitate vertex deletions in dynamic distance
oracles for planar graphs. The dynamic distance oracle of [21] for non-negative edge-weight updates
was improved and simplified in [31]. In [31], the algorithm obtains an r-division of G, and then
computes and preprocesses the DDGs of the pieces of the r-division in O(nlogn) time to allow for
FR-Dijkstra computations in the union of these DDGSs in time (9(% log? n). For a given query
asking for the distance from some vertex u to some vertex v, the algorithm performs standard
Dijkstra computations within the piece containing u (resp. v) to compute the distances from u to the
boundary vertices of the piece (resp. from the boundary vertices of the piece to v). The algorithm
then combines this with an FR-Dijkstra computation on the boundary vertices of the r-division.
Given an edge update, only the DDG of the unique piece in the r-division containing the updated
edge needs to get updated, and this requires O(rlogr) time. The balance is at r = n2/3 logz/3 n,
yielding O(n?/3 log®/? n) time per update and query. This result was extended in [28], where the
authors showed how to allow for edge insertions (not violating the planarity of the embedding)
and edge deletions and further in [29] where the authors showed how to handle arbitrary (i.e. also
negative) edge-weight updates. The time complexity was improved by a log*/3 logn factor in [25].

We observe that, by using DDG®s instead of standard DDGs, vertex deletions can also be
handled as follows. Each vertex is either a boundary vertex in each piece of the r-division containing
it, or an internal vertex in a unique piece. If a deleted vertex is a boundary vertex, we just mark it
as such and do not relax edges outgoing from it during (FR-)Dijkstra computations. If a deleted
vertex is internal, we recompute the DDG° of the piece containing it, and reprocess it in time
O(rlogr) exactly as in the case of edge-weight updates. The only slightly technical issue we need
to take into account is that in Section 3, edge weights in DIDG® are shifted by the large constant C
(recall that C' is defined as twice the sum of edge weights in the entire graph G). The problem is

4This remark also applies to the dynamic distance oracle presented in Section 4 and to the oracles presented
in Section 5. However, it does not apply to the oracles presented in Section 6, where we use some DDGs without
storing MSSP data structures or exact distance oracles for the underlying graphs, which would allow us to retrieve the
path underlying each DDG edge efficiently.



that C' might change after each update operation, and this update affects the weights of all the
edges in all DDG®s. This can be easily solved using indirection. Instead of using the explicit value
of C' in each edge weight, we represent C' symbolically, and store the actual value of C' explicitly
at some placeholder. Updating C' can be done in constant time because only the explicit value at
the placeholder needs to be updated. Whenever an edge weight is required by the algorithm, it
is computed on the fly in constant time using the value of C stored in the placeholder. The data
structures underlying FR-Dijkstra do not make use of any integer data structures like predecessor
data structures —all used data structures are comparison based. Hence, since the value of C' is
greater than all edge-weights at the time they are built, they are identical to the data structures
that would have been built for this piece with any subsequent value of C'. Vertex additions do
not alter shortest paths, and hence can be treated trivially. Note that, as in [28], we can afford to
recompute the entire data structure from scratch after every O(y/r) operations. This guarantees
that the number of vertices and number of boundary vertices in each piece remain O(r) and O(,/r),

respectively, throughout. We formalize the above discussion in the following theorem.
2
Theorem 11. A planar graph G can be preprocessed in time (’)(nlégglog"n) so that edge-weight updates,

edge insertions not violating the planarity of the embedding, edge deletions, vertex insertions and
2/3 log®/3 n
10g4/3 logn

deletions, and distance queries can be performed in time O(n ) each, using O(n) space.

5 Tradeoff I: Space vs. Query Time

In this section we describe a tradeoff between the size of the oracle and the query time.

5.1 More Preliminaries and Notation

We will be using exact distance oracles as a black-box, and as there are different tradeoffs, we denote
the space, the query time and the preprocessing time for such a distance oracle over a planar graph
of size n as o(n), u(n) and 7(n), respectively. Let us formally state results from [34].

Theorem 12 ([34]). Given a planar graph G of size n, there exists a distance oracle that can be
built in n®/2°M) time and admits either of:

(a) n't°D) space and log?+°M)

n query time, or
(b) nlog? M n space and n°Y query time.
We now define another useful modification of dense distance graphs.

Definition 13. The strictly external dense distance graph DDG?, . (Py,...,P;) of G for pieces

ext

Py, ..., P;is a complete directed graph on the boundary vertices of Pi,...,P;. The edge (u,v) has
weight equal to the length of the shortest u-to-v path in G\ (( U P;) \ {u,v}).
j=1

DDGg,,s can be preprocessed using Theorem 4 together with DDG®s so that we can perform
efficient Dijkstra computations in any union of DDGYg,;s and DDG"s.
The number of pieces in an r-division is at most cn/r for some constant c. For convenience, we

define ) ( )k )
en/r cn n
g(nmk):< p )S T S g

where the last inequality holds for k larger than some constant depending on c¢. We use g(n,r, k)
throughout to encapsulate the dependency on k.
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5.2 The Oracle

Warm up. Let us first sketch a warm-up @(’Z—;)—size oracle with O(y/r) query time that can
handle single failures, using the approach of Section 3. Suppose that we store DDGYy,,s for all
triples of pieces of the r-division and that we have preprocessed these for efficient FR-Dijkstra
computations together with the DDG®s. The total space required is O(g(n,r,3)(y/r)?) = @(?—3)
Upon query, we first retrieve pieces R, R, and R, containing u, v and x, respectively —assume for
now that these pieces are distinct. Then, we run FR-Dijkstra on DDG?,,(Ry, Rz, Ry), the cone of
u in R,, the cone of v in R, and the pieces that allow us to represent the DDG of R, subject to
the failure of . The query time is (5(\/77) This approach can be generalized to give an oracle that

can handle k failures, by considering (k + 2)-tuples of pieces of the r-division.” The space required
nk+2

is O(nlogn + g(n,rk +2)((ky/r)? + ky/rlogn)) = @(m) and the query time is O(ky/7).

Strategy. Instead of storing information for (k 4 2)-tuples of pieces as in the warm-up, we will
store the analogous information for (k + 1)-tuples and more information for k-tuples. Given u,v, X,
where X = {z1,...x}, we show how to compute d¢(u, v, X) relying on the information stored for
the tuples (Ry, Ry, ..., Ry,) and (Ry,, ..., Ry, ). Let us define Y = (Ute{u}uX OR;) \ X. Our aim
is to decompose the sought path on the last vertex of Y it visits.

Auxiliary data structure. We define u-TO-k-BOUNDARY (u, X, R,v) queries as follows. The
input is

e a vertex u,

e a set of vertices X = {x1,..., 2%} of cardinality k,

e aset R consisting of at most k + 1 pieces of a specified r-division, such that each j € {u}UX
is in some R € R,

e a vertex v € R for some R € R, which may be null.

The output of the query is the distance from u to each of the vertices of {v} U ([Uper OR) \ X in
G\X.S

Lemma 14. There exists a data structure of size O(”I;_,:l logn), which can be constructed in time

(9(”’::1 log?n), and answers u-TO-k-BOUNDARY (u, X, R, v) queries in O(ky/rlog®n) time.

Proof. We first perform the precomputations of Section 3. We also obtain an r-division of G from
T in O(n) time. Let us denote the pieces of this r-division by Ry, ..., R,.
We compute DDGg,(Riy, ..., R, ) for each (k + 1)-tuple (R;,,..., R;,,,) of pieces in the

ext
r-division. The DDG¢, ;s for all (k + 1)-tuples can be computed in time (’)((mr):Jrl (k,_ll)! log? n) for

some constant ¢, as shown in Lemma 22 in Section 7; this dominates the preprocessing time. We
preprocess these DDGYy, ;s together with the standard DDG®s, using Theorem 4, to allow for efficient
FR-Dijkstra computations. The total space required is O(g(n,r, k + 1)((ky/7)? + ky/rlogn)) =

nk:+1

O(* 5 logn).

SWe consider the elements of tuples to be unordered throughout.
STf v is null, we can just set it to be any vertex in (Uger OR) \ X. In what follows, we thus do not treat this case
separately.
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Let us now consider a u-TO-k-BOUNDARY (u, X, R,v) query. Let D = D(u,v,X) be the set
of DDG"s specified in the query procedure of Section 3 (and illustrated in Fig. 2). Now, let the
restriction of D to R be defined as

Dr ={DDGp € D: P is a weak descendant of some R € R}.

We then run FR-Dijkstra on the union of Dr and the DDGS,, of a (k + 1)-tuple that contains all
elements of R, not relaxing edges whose tail is in X if encountered. This takes time O(k+/r log®n).
O

Example 15. In order to develop some intuition of the above proof, consider Fig. 2, and suppose
that red piece (say Ry) and the unique dark gray piece that contains both u and v (say Rg) are
pieces of the r-division. Then, upon a u-TO-k-BOUNDARY(u,{z},{R1, Ra2},v) query, we would
run FR-Dijkstra on the union of the DDG®s of all gray pieces that are weak descendants of either
Ry or Ry (corresponding to Dr) and DDG? ,(R1, Re), not relaxing edges whose tail is in X if
encountered.

Extra preprocessing: exact distance oracles. For each k-tuple of pieces R = (R;,,..., R;,)
of the r-division we compute and store an exact distance oracle for graph G, which is obtained
from G\ (Ujeqiy,.in3 25 \ Ujeqin,....ix )OR;) by increasing the weight of edges whose tail is in OR; for
some j € {i1,...,ix} by a constant W so that they are not internal vertices in any shortest path.
We are now ready to describe the query procedure; Fig. 3 provides an illustration of the setting.

Figure 3: An illustration of the setting of the query. The case where v does not lie in any piece from
R is shown. Suppose that the shortest u-to-v path is as shown. Part I of the query computes the
length of its black portion using FR-Dijkstra, while part II computes the length of its red portion
using an exact distance oracle for Gg.

Query part I: u-to-Y. With the above lemma at hand, we can easily compute the u-to-Y
distances. We first retrieve k + 1 not necessarily distinct pieces, Ry, Rz, ..., Ry, , such that u € R,
and z; € R;,. To support that, each vertex stores a pointer to some piece of the r-division that
contains it. In the degenerate case that these v is in one of those pieces, then we are done by
performing a u-TO-k-BOUNDARY (u, X, R,v) query, with R = {Ry, Ry,,..., Ry, }. (In order to
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be able to check whether a vertex is in some particular piece of T efficiently, we store, for each
piece in T, a binary tree with the vertices in the piece.) If on the other hand v does not lie in
any piece from R, then any shortest u-to-v path must go through some vertex y € Y. A u-TO-k-
BOUNDARY (u, X, R, null) query returns the distance from u to each y € Y in G\ X. This takes
time O(ky/rlog?n).

Query part II: Y-to-v. For each y € Y we perform a y-to-v distance query in the exact distance
oracle for Gr. We then simply have to take the minimum of dg(u,y, X) + dg, (y, v) among all
y € Y and substract W from this value to retrieve the sought distance. The time required is

O(ky/F(log? n + p(n))).

Theorem 16. Assume that given a planar graph G with n vertices, one can construct in 7(n) time
a o(n)-size distance oracle that answers queries in u(n) time. Then, for any integer r € [1,n] and
for any integer k < T, there exists a data structure of size @(ﬁ—:o(n)), which can be constructed

in time @(?—:T(n)), and can answer the following queries in O(kv/r(log?n + u(n))) time. Given
vertices u and v and a set X of at most k failed vertices, report the length of a shortest u-to-v path
in G\ X.

Remark. Our distance oracle can actually handle any number f of failures that lie in at most k
pieces of the r-diwision in time O((k + v/fk)\/T). This follows from the fact that the DDG°s we
will add for a piece with f; failures have total size (7)(\/]”7“) by the same analysis as in the proof
of Lemma 10 and the fact that, given f1,..., fi such that Zle fi = f, we have Zi-c:l Vi <V fk
by the Cauchy-Schwarz inequality. This remark applies to Theorem 18 as well.

Proof of Theorem 16. The time complexity of the query algorithm is analyzed above. We next
analyze its correctness, the space required by our data structure and its construction time.

Query correctness. Let p be a shortest u-to-v path in G\ X. Let z be the last vertex of p that
belongs to Y, if any such vertex exists. The distance dg(u, z, X) from u to z in G\ {z} is computed
by the FR-Dijkstra, while the distance from z to v in G\ X is obtained from the query to the exact
distance oracle. In the complementary case, in which no vertex of p is in Y, we have that v € R,
and hence the sought distance is computed by the u-TO-k-BOUNDARY (u, X, R,v) query. It is easy
to see that we do not obtain any distance that does not correspond to an actual path in G\ X.

Space complexity. The space required for the exact distance oracles is @(’;—:a(n)) This dominates
nk+1

the O(" & logn) space required by the data structure of Lemma 14 in the O(+) notation.

Preprocessing time. This is also dominated by the O(:—:T(n)) time required to build the exact
distance oracles, at least in the O(-) notation. O

By combining Theorems 12 and 16 we obtain the following tradeoffs.

Corollary 17. Given a planar graph G of ksize n, there exists a distance oracle that supports up to
k vertex failures that can be built in time % - n3/2+°W) and admits either of:
k

(a) TTLT . plto(l) space and k+/r - log2+o(1) n query time, or

(b) O <:f—,l: : n) space and k/r - n°Y query time.
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6 Tradeoff II: Faster Preprocessing, More Space

We now proceed to describe the tradeoff that was the main result in a preliminary version of this
work [12], and is encapsulated in the following theorem.”

Theorem 18. For any integer r € [1,n] and for any integer k < %, there exists a data structure of

size O(%\mr + nlog?n), which can be constructed in time @(%vnr +n?), and can answer
the following queries in O(k+/rlog®n) time. Given vertices u and v and a set X of at most k failed
vertices, report the length of a shortest u-to-v path that avoids X.

For a fixed 7, such that the oracles underlying both Corollary 17 and Theorem 18 have query
time roughly k+/7, the oracles of Corollary 17 require space smaller by roughly a factor of nl/2 / rl/2
compared to the oracle that we present in this section. Interestingly, however, the preprocessing
time of the oracles of Corollary 17 can be worse by polynomial factors for some range of values of r.
E.g., for r = n'/*, compare ?—: -n3/2 with ’7}—: 32 Jrt/2 42,

6.1 Voronoi Diagrams with Point Location

Let P be a directed planar graph with real edge-lengths, and no negative-length cycles. Let S be a
set of vertices that lie on a single face of P; we call the elements of S sites. Each site s € S has a
weight w(s) > 0 associated with it. The additively weighted distance between a site s € S and a
vertex v € V, denoted by d} (s, v) is defined as w(s) plus the length of the s-to-v shortest path in P.

Definition 19. The additively weighted Voronoi diagram of (S,w) (V D(S,w)) within P is a partition
of V(P) into pairwise disjoint sets, one set Vor(s) for each site s € S. The set Vor(s) which is called
the Voronot cell of s, contains all vertices in V (P) that are closer (w.r.t. dp(. , .)) to s than to any
other site in S (assuming that the distances are unique). There is a dual representation VD*(S,w)
of a Voronoi diagram V D(S,w) as a planar graph with O(|S|) vertices and edges.

Theorem 20 ([26, 24]). Given subsets Si,...,S;, of S, and additive weights w;(u) for each u € S],
we can construct o data structure of size O(|P|log|P|+ >, |Si|) that supports the following (point
location) queries. Given i, and a vertex v of P, report in O(log? |P|) time the site s in the additively
weighted Voronoi diagram V D(S;,w;) such that v belongs to Vor(s) and the distance d}(s,v). The

time and space required to construct this data structure are O(|P||S)? + 3, 1S!]).

Remark. Part of Theorem 20 is proved in [26], though not stated there explicitly as a theorem. It
is a tradeoff to Theorem 1.1 of [26], requiring less space, and hence more applicable to our problem.

6.2 Handling a Single Failure
For ease of presentation we first describe an oracle that can handle just a single failure. We prove
the following lemma, which is a restricted version of Theorem 18.

Lemma 21. For any r € [1,n], there exists a data structure of size (9(7::;22 + nlog?n), which can

be constructed in time (5(:5—;2 +n?), and can answer the following queries in O(y/rlog®n) time.
Given vertices u, v, x, report the length of a shortest u-to-v path that avoids x.

"This result was obtained before the recent breakthroughs in exact distance oracles, which have now allowed us to
get the tradeoffs of Corollary 17.
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Strategy. We change part II of the query, i.e. computing Y-to-v distances. After having computed
u-to-Y distances in G\ X, we identify an appropriate piece @ in 7 that contains v, and does not
contain u nor x. Exploiting the fact that distances within @ remain unchanged when z fails, we
employ Voronoi Diagrams with point location for the piece @, adapting ideas from [26].

Additional preprocessing. For each pair of pieces (R;, R;) of the r-division we compute and
store the following. Let S be a separator in the recursive decomposition, separating a piece into two
subpieces @ and R, such that R; C R and R; € Q. For each y € OR; U OR;, for each hole h of Q,
we compute and store a Voronoi diagram with the point location data structure for (), with sites
the boundary vertices of () that lie on h, and additive weights the distances from ¥y to these sites in
G\ (R UR))\ {y)):

We now show that the space required is (’N)(%—Z) The space required for the first part of the

query is @("72) by Lemma 14. We next analyze the space required for storing the Voronoi diagrams.
We consider O(g(n,r,2)) = (’)(%2) pairs of pieces (R;, R;), and for each of the O(y/r) boundary
vertices of each such pair we store, in the worst case, a Voronoi diagram for each of the O(1) holes
of each sibling of the nodes in the root-to-R; and root-to-R; paths in 7. The total number of
sites of all Voronoi diagrams we store for a pair of pieces can be upper bounded by O(y/n) by
noting that the number of sites of a Voronoi diagram for a piece at level £ of T is O(y/n/ch)
by Lemma 1. By Theorem 20, the space required to store a representation of a set of Voronoi
diagrams with the functionality allowing for efficient point location queries for a piece P, with sites
a subset of the boundary vertices of P, lying on a hole h is O( Y per(Spn + |P|log|P|)), where
Sp, is the total cardinality of these sets of sites. Summing over all holes of all pieces P, noting

that > pcr > Spa = O(Zi—//j) by the above discussion, and using Proposition 2, the total space
required for all Voronoi diagrams is O(% +nlog?n).

As for the preprocessing time, the precomputations of Lemma 14 take (5(”72) The additive
weights can be computed in time O(”TZ\/Wlog?’ n); see Lemma 23 in Section 7. Further, we show

in Lemma 24 that we can compute all required Voronoi diagrams in time O(n? 4+ S), where S is the
size of their representation described in Section 6.1.

Query. We first retrieve a piece R, of the r-division, containing v. We then proceed as follows
(inspect Fig. 4 for an illustration).

1. Following parent pointers from R, in 7, we find the highest ancestor @) of R, containing
neither w nor x. Thus, the sibling R of @ in 7 contains a vertex ¢ € {u,xz}. We find a
descendant R; of R that is in the r-division and contains 7. We then find any piece R; of
the r-division containing the element of {u,z} \ {i}. Note that, by choice of ), R; is not a
descendant of Q. Finding these pieces requires time O(log?n).

2. We perform a u-T0-1-BOUNDARY (u, {z}, (Ry, Ry), null) query. This takes time O(/rlog?n)
and returns dg(u,y, x) for each y € OR, U OR,.

3. For each y € (R, UOR,)\ {x}, for each hole h of Q, we perform an O(log? n)-time query to the
Voronoi diagram stored for R,,, R, y, and h to get the distance from y to v in G\ ((R,UR;)\{y})-
The required distance is the minimum dg(u,y, x) + d(y, v, (R, U R;) \ {y}) over all y. Each
query takes O(log? n) time and hence the total time required is O(y/r log®n).

We now argue the correctness of the query algorithm. Let p be a shortest u-to-v path that
avoids z. Let z be the last vertex of p that belongs to OR, UJR,. Let h’' be the hole of @ such that
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(a) Root-to-R; paths in 7. (b) The u-to-v path in G \ {z}.

Figure 4: To the left: A view of the root-to-R; paths in 7. Straight edges denote edges of the tree,
while snake-shaped edges denote paths. To the right: A view of the shortest path in G. The paths
in blue are represented by the DDG®s, the paths in green by DDG¢,; and the length of the path in
red is returned by the point location query in the Voronoi diagram.

the last vertex of p that belongs to the boundary of @ belongs to hole A'. The distance dg(u, z, x)
from u to z in G\ {z} is computed by the FR-Dijkstra computation in step 2, while the distance
from z to v in G \ {x} is obtained from the query to the Voronoi diagram stored for R, R, z, and
I'. It is easy to see that we do not obtain any distance that does not correspond to an actual path
in G\ {z} and hence the correctness of the query algorithm follows.

6.3 Handling Multiple Failures
We now explain how to straightforwardly generalize the approach presented in the previous subsec-

tions to obtain oracles that can handle multiple failures.

Preprocessing.
1. We perform the precomputations of Lemma 14.

2. For each (k4 1)-tuple of pieces (R;,,...,R;, ) of the r-division we compute and store the
following. Let S be a separator in the recursive decomposition, separating a piece into () and

R, such that for some j, R;; C R and none of the other pieces of the tuple is a subgraph of
k+1

Q. For each y € |J OR;;, for each hole h of Q, we store a Voronoi diagram with the point
j=1

location data structure for ), with sites the boundary vertices of @ that lie on h, and additive

k+1
weights the distances from y to these sites in G\ (( U Ry;) \ {y}).
j=1
Query. The algorithm is then essentially the same as that of Section 6.2.
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1. We find the highest ancestor @ of R, in 7 that does not contain any of the elements of
{u} U X and retrieve a descendant of its sibling in the r-division that does contain some
element ¢ € {u} U X. We then identify a piece R; in the r-division for each j € {u} U X \ {i}.
This requires time O(klog?n).

2. We perform a u-T0-k-BOUNDARY (u, X, R, v) query, for R = (Ry, Ry, . .., Ry, ), which requires
time O(k+/T).

3. We perform O(k+/r) point location queries to Voronoi diagrams of @, each requiring time
O(log? n).

We hence obtain our second tradeoff theorem, restated here for convenience.

Theorem 18. For any integer r € [1,n] and for any integer k < ™, there erists a data structure of
size O(%\/nT + nlog?n), which can be constructed in time @(%\/nr +n?), and can answer

the following queries in (Q(k:\/?log2 n) time. Given vertices u and v and a set X of at most k failed
vertices, report the length of a shortest u-to-v path that avoids X.

Proof. The correctness of the query algorithm follows by an argument identical to the one for the
case of single failures (see Section 6.2); its time complexity is analyzed above. We next analyze the
space required by our data structure and its construction time.

Space Complexity. The space occupied by the data structure of Lemma 14 is O(”i:l logn).
We bound the space required for the Voronoi diagrams by O(g(n,r,k + 1)kv/nkr 4+ nlog®n) as
follows. For each of the O(k+/r) boundary vertices of each of the O(g(n,r, k + 1)) (k + 1)-tuples,
we store a Voronoi diagram for each of the O(1) holes, of (at most) each of the siblings of the
nodes in the root-to-R; path in T for each R; in the tuple. With an argument identical to the
one used in the proof of Lemma 10, the total number of boundary vertices (with multiplicities)
of all of these pieces is O(v/kn). Hence the total number of sites of all Voronoi diagrams that we
store is O(g(n,r, k + 1)kv/nkr). By Theorem 20, the size required to store them with the required

functionality is thus O(g(n,r, k+1)kvnkr+3> pos |P|log |P|) = O ((C:ijl - & - Vnkr + nlog? n),
where the last equality follows by Proposition 2.
Thus, since k < n/r, the total space required is

k41 kL
(9<(Cn) C (kr+Vnkr)+nlog2n> :(’)((cn)-k'-vnk‘rﬂLnlOgn)-

ST rk+1

Preprocessing time. The preprocessing of Lemma 14 takes (9(”];21 log? n) time. We can compute

the required additive weights of all (k + 1)-tuples in time @) (% . ﬁ Y/ nk:r), employ-

ing Lemma 23. Finally, constructing the Voronoi diagrams requires time (§(n2 + 8S), where S is the
total size of their representation, which is equal to the total number of sites in these diagrams (with
multiplicities), as shown in Lemma 24; this dominates the time complexity. O

7 Efficient Preprocessing

In this section we show how to efficiently compute the data structures described in Sections 5 and 6.
Throughout this section, and similarly to Section 3, when using FR-Dijkstra to compute DDG®s,
or other distances corresponding to shortest paths with a restriction on the vertices they can go
through, we do not relax edges whose tail is a vertex that is not allowed to be on a shortest path.
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It is shown in [32, Theorem 3] that, given a geometrically increasing sequence of numbers
V = (r1,7r2,...,1,), where ry is a sufficiently large constant, r;11/r; = b, for all i, for some constant
b> 1, and r, = n, we can obtain r-divisions for all r € V in time O(n) in total. These r-divisions
satisfy the property that a piece in the r;-division is a weak descendant (in 7) of a piece in the
rj-division for each j > 1.

We first show how to efficiently compute the external DDG®s for all k-tuples of pieces of an
r-division, r € V. Our algorithm is a natural adaptation of the top-down technique of [7] for
computing external DDGs to computing strictly external DDGs of k-tuples.

Lemma 22. Given r; € V and an integer d < T%_, one can compute DDGZ,, for all d-tuples of

ext
d
pieces of each ry-division, t > 1, in time O(%ﬁ log? n) for some constant ¢ > 1.
Ty :

Proof. We prove this lemma by induction on V from top to bottom. For r, = n, the only piece is
G, and DDGS,,(G) is the empty graph. Assume inductively that we have DDG? (R, ..., Ry) for
every d-tuple (Rq, ..., Ry) of pieces at the r;11-division. Let Q1,...,Qq be pieces at the r;-division.
Note that every piece at level r; is contained in some piece at level 7,11, but a piece at level ;11
might contain multiple pieces at level r;. Let Ry,..., Ry be pieces of the r;yi-division such that
each @; is a subgraph of some Rj; see Fig. 5 for an illustration. (If the r;;i-division has less than d
pieces we just take all of them.) Let Qg be the maximal subset of {Q1,...,Qq} such that each
piece in Q; is contained in R;. For every j € {1,...,d} let us denote the allowed internal part of

R; by R’;. Formally,

R-r\ | U @\

QEQR;

Let us define the boundary of R} to be

or;|J| U o@

Since R; and each Q,, € Qr, have O(,/riy1) and O(,/r;) boundary vertices respectively, R; has
O(yTit1 + /7| Qr;|) = O(|Qr,|y/Ti+1) boundary vertices (recall that r;iq1/r; =b).

G i
c®

R3

©)

Figure 5: The setting in the proof of Lemma 22. We have Qp, = {Q1,Q4} and Qg, = (). For each j,
R’ is the colored part of R;. For instance, Ry = Rz \ (Q2 \ 0Q2) and R} = Ry.
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Let DDGO/ be the a complete directed graph on the boundary vertices of R’ such that the edge
(u,v) has Welght ds : (u,v) equal to the length of the shortest u-to-v path in R’ that is internally

disjoint from the boundary of R.
We compute DDGY, in a similar manner to the query of Section 3 by running FR-Dijkstra on

the union of the followinjg DDG®s. For each piece Q. € Qg,, for each ancestor @ of @, (including
Q) that is a strict descendant of R; in T, we take the DDG$ of the sibling P of @) if P contains
no piece of Qr;. The pieces of Qr, have O(|Qg,|/ri) boundary vertices in total and the total
number of boundary vertices for their considered ancestors is bounded by O(|Qg,|,/Ti+1), as the
number of boundary vertices in any root-to-leaf path in 7 decreases geometrically (cf. Lemma 1).
Running FR-Dijkstra from each of the O(|Qg,|\/ri+1) boundary vertices of R’ yields DDG}L; and

requires O(|Qg, [\/Ti+1| QR; [/Tit1 log?n) = O(| Qr, [*rit1 log?n) time in total. When summing over
Ry,..., Rg we get
2

d d
Z|QR].]2'TZ-+1-1og2n§ri+1~log2n' Z|QRj\ = d* iy -log’n.
J=1 =

Note that the equality follows from the fact that Z;l 11QR;| = d.
Let D = DDGS,y (R, ..., Ra) UUL, DDGY,). Bachof DDGy (R, ..., Ra) and UL, DDGS,
J
contributes O(d,/r;1+1) boundary vertices to D. We run FR-Dijkstra on D from each boundary
vertex of @, for m € {1,...d} to obtain DDG?,;(Q1,...,Qq). There are O(d,/r;) such boundary

vertices, so this requires time O(d\/rid(\/riz1 + /Ti) log? n) = O(d? - ri41 - log® n).
We can thus compute DDGS,,(Q1,...,Qq) for all d-tuples at level r; in time

Z. P (d—2)!

)

d d
c')((g(n,n-,d)-d?.ml.log%):(9<(C7Z).ri+1 ; d? - log? n>zo((cj) R .1og2n>,
T

assuming that we have the DDG? ;s for all d-tuples of pieces of r4-divisions, ¢ > i.
The time to compute the DDG¢ ;s for all d-tuples of pieces of all r4-divisions, ¢ > 4, is, inductively,

1 1 v—i 1 t 1
(9((0”) (d— log”n - Z v 1)7 and Z 1:7.d—121<bd—1) :O<rd_1>

t=i+1 Tt t= z+1 i

since b9~! > 1. Thus, computing the DDG?,,s for d-tuples of pieces of the r;-division dominates
the time complexity. O

We next show how to efficiently compute the additive distances with respect to which the Voronoi
diagrams stored by our oracle are computed.

Lemma 23. Let R, be an r-division, such that r € V, and let d < 7 be an integer. For all d-tuples
of pieces Ry, ..., Ry in R, and for all pieces Q) € T such that Q) does not contain any of the pieces
R;, and Q is a sibling of a node in the root to-R; path in T for some R;, one can compute the

distances from each y € U OR; to each boundary vertex of Q in the graph G\ (( U R; ) \ {y})
i=1

d
time O((CT#) . (d_12)! -vndr - log® n) in total, for some constant ¢ > 1.

Proof. Let us consider a d-tuple of pieces (Ry,..., Ry) and a piece @), satisfying the properties in
the statement of the lemma. To compute the desired distances, we run FR-Dijkstra from each
Yy e ngl OR; on the union of the following D DGs:
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1. DDGY,.

2. For each piece R; € {R1,..., Ry} for each ancestor A of R; (including R;) in T, we take the
DDGS of the sibling B of A if B contains no piece of Ry, ..., Ry.

This correctly computes the distances by the same arguments that were applied in Section 3.
It remains to analyze the time complexity. Consider the (n/d)-division of G in 7. By the same
argument that was applied in the proof of Lemma 10 we can bound the number of boundary vertices

for all the included DDG®s by O(vdn). There are O(d+/r) choices of y € U OR;, so the time

required to run FR-Dijkstra from each y is O(dv/7 - Vdn -log?n) = O(d - \/77 log®n).

Each piece R; € {R1,..., Ry} has O(logn) nodes in the root-to-R; path in 7, hence computing
the distances for all possible choices of Q requires time O(d?v/nrdlog? n). Finally, in order to
compute the distances for all d-tuples of pieces we need time

O((g(n,r,d) - d?* - Vnrd -log3n) = O <(c;z) -d*V'nrd - log® n> , as claimed. O

Lemma 24. We can compute the representation of the Voronoi diagrams described in Section 2
with respect to sets of sites of total cardinality S, each corresponding to a piece P € T and consisting
of nodes of OP that lie on a single hole of P, and specifying an additive weight for each of these
nodes in time O(n? + S) in total.

Proof. We apply Theorem 20 and construct all the Voronoi diagrams corresponding to each of the
O(1) holes of each piece as a batch. For a hole h of a piece P, the time required is O(|P||dP|? +
> nSph), where Spy, is the total cardinality of the sets of sites corresponding to nodes of P lying
on h. Then we have that

> (IPlOPP? +>ISpal) = O(n* + 8),
PeT I

by Proposition 3 and hence the stated bound follows. O

8 Final Remarks

Perhaps the most intriguing open question related to our results is whether it is possible to answer
distance queries subject to even one failure in time O(1) with an o(n?)-size oracle.
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