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I T  WA S  A  warm, late summer afternoon when a long-
time client called. They needed someone to help them 
out of a jam—and fast. This client builds embedded 
devices found in offices around the world. Their 
latest creation had all the right security features, 
the best possible given their hardware constraints. 
These devices are driven by firmware running on 
a microcontroller that delivers robust wireless 
communications; I knew this was my kind of job.

The client’s engineers had attempted to build the 
right security features into their firmware: a bootloader 
that normally can’t be updated, a static root of trust 

contained therein, and cryptographi-
cally signed binary firmware updates. 
They had even hardened their boot-
loader to defend against anyone at-
tacking the firmware update protocol 
directly—countermeasures against 
people like me. The client was proud 
of how secure the design was; after all, 
most consumer products at the time 
had barely figured out firmware read-
out protections.

An unlucky fat-fingering precipi-
tated the current crisis: The client had 
accidentally deleted the private key 
needed to sign new firmware updates. 
They had some exciting new features 
to ship, along with the usual host of 
reliability improvements. Their cus-
tomers were growing impatient, but 
my client had to stall when asked for 
a release date. How could they come 
up with a meaningful date? They had 
lost the ability to sign a new firmware 
release.

Given the sheer number of these 
devices in the field, as well as the cost 
per unit, a replacement program was 
the option of absolute last resort. The 
financial loss would be huge, and or-
chestrating such a program would be 
incredibly daunting. A reverse-engi-
neering attempt was the final “Hail 
Mary” effort before a recall would be 
necessary.

The task seemed straightforward: 
Find a way to patch a new static root 
of trust into the bootloader (a philo-
sophical question: Is it that static?), 
thereby enabling the client to sign 
firmware updates with a new key. 
Since the bootloader was hardened 
(so my client claimed), direct attacks 
on the firmware updater were out of 
the question.

The device in question has mul-
tiple serial ports that expose a variety 
of complex protocols once the client’s 
application starts. The main micro-
controller in the design included an 
off-the-shelf Arm Cortex-M3 core, with 
built-in flash and on-board RAM. This 
microcontroller had no hardware root 
of trust, so the bootloader provided all 
of the firmware security features. No-
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	˲ The protocol handler thread 
popped the new work item from its 
queue and copied the received bytes 
into a 1,024-byte work buffer. The 
number of bytes to copy was also not 
checked against the work buffer size.

There were a couple of interest-
ing flaws. First, the interrupt handler 
code did not have logic to check that 
bytes were not being written past the 
end of its active buffer. Second, the 
protocol handler thread blindly ac-
cepted a payload length from the in-
put buffer, copying whatever it was 
told, without checking. This bug 
could be used to copy a malicious 
message over other data adjacent to 
the work buffer.

The next step was to load the re-
leased firmware image onto the stan-
dard development kit sold by the mi-
crocontroller’s vendor. I needed to 
figure out a way to load my own code. 
Some quick experimentation showed 
that sending an excessively long mes-
sage—10 KB of the value 0x4f—
caused the device to seize up. Success! 
But why did it crash?

The Jump Off 0x4f4f4f4f
Having some version of the source 
code in hand and another similar 
version of the firmware running on a 
development kit meant I could start 
debugging. A quick check showed the 
device threw a bus fault when it failed. 
This happens on a Cortex-M CPU when 
trying to read, write, or attempt to ex-
ecute instructions from an invalid ad-
dress. The device’s status registers 
indicated an invalid instruction fetch 
occurred at 0x4f4f4f4f. This was 
good news for me, as I could now take 
control of the program counter.

The Cortex-M family of microcon-
trollers is designed to be easy to target 
with ordinary C code, requiring mini-
mal assembly-language glue. Inter-
rupt service routines (ISRs) are normal 
C functions that are called directly by 
hardware. When handling an inter-
rupt request, logic built into the CPU 
core prepares a stack frame on the 
running process’s stack. That frame 
stores the interrupted process’s regis-
ters, as well as information about the 
CPU state and the instruction pointer 
value at the time of the interrupt. The 
CPU then switches to a separate inter-
rupt mode stack pointer, and invokes 

tably, there was nothing to ensure the 
bootloader wasn’t modified.

The client did not have the exact 
source code for the firmware shipped 
on the device, since the entire release 
was lost during the fat-fingering. 
Worse, I could not easily use a pro-
duction device to test this (it could be 
done, but would have added a lot of 
time to the engagement—time the cli-
ent could not afford), and the client 
went to great lengths to protect the 
device against firmware read-out, even 
disabling the Joint Test Action Group 
(JTAG) debug port. To make things 
even more challenging, release firm-
ware images would not emit debug-
ging log messages. One fact worked 
in my favor, however: The firmware 
was built on top of open source com-
ponents. Both the bootloader and the 
realtime operating system were used 
by many such projects.

Since time was of the essence, and 
static analysis of the production bi-
nary would take a lot of time, I needed 
to find a quick path to code execution. 
All I had was the compiled release ver-
sion of the firmware and a new version 
of the source code the client wanted to 
install on the deployed devices in the 
field. The new code was a point from 
which to hunt for flaws in the com-
munications protocol handling code; 
the client claimed this code had not 
changed substantially. I was used to 
working with less.

UARTs Know No Bounds
One universal asynchronous receiver/
transmitter (UART), or serial port, ex-
posed a framed command protocol. 
The handling logic worked as follows:

	˲ As bytes arrive, the interrupt han-
dler read out of a FIFO (first-in, first-
out) hardware queue into a buffer un-
til a FRAME END byte was received. An 
array of eight of these buffers was al-
located as one contiguous array. There 
was no check to make sure the input 
message did not exceed the length of 
one of these buffers.

	˲ After receiving a FRAME END 
byte, the interrupt handler pushed a 
pointer to the filled buffer, as well as 
the length of the payload (as an un-
signed 32-bit integer) into the protocol 
handler thread’s work queue. This sig-
naled to the thread that data was ready 
to process.

To make things even 
more challenging, 
release firmware 
images would not 
emit debugging log 
messages.
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the ISR. If you can overwrite the con-
tents of the saved process context—
especially the instruction pointer that 
was saved on interrupt entry—then 
you can tell the CPU to return to some 
different code later.

Now, all I needed to do was replace 
my buffer full of 0x4f bytes with the 
address of some code I wanted to run. 
The next time the process woke up, the 
CPU would jump right to the address it 
read from this saved context.

Bootloader Controls are Essential
Controlling code execution is one 
problem, but I also needed to store 
the code that rewrites the root of trust 
somewhere. Many microcontrollers 
offer up to 1MB of flash memory, a 
luxurious amount of storage if you’re 
an embedded systems developer. RAM 
is a more precious commodity—a few 
tens of KB in many cases. All code on 
this device can be run straight from 
flash, leaving RAM for CPU state and 
data structures. This means, however, 
that there is not enough memory to 
hold a complete program image when 
performing a firmware update.

Flash memory was split into two 
partitions on this device: bootloader 

memory and application image mem-
ory. Figure 1 depicts the use of flash 
memory. (Note that the firmware up-
dater is built into the bootloader and 
cannot update itself.) Figure 2 shows 
the application image structure from 
a legitimate application image update. 
Figure 3 shows the application image’s 
security features, plus some added 
code and data.

The updater built into the boot-
loader erases the entire application 
image memory and writes a new im-
age in its place. Once the full image is 
ready in flash, the bootloader checks 
the signature of the application image, 
including the contents of the header, 
verifying its authenticity. If the signa-
ture check were to fail, the bootloader 
would immediately erase the data just 
downloaded. Modifying the firmware 
image was out of the question, be-
cause the signature check would fail. 
What else could I do?

The updater was simple. As long as 
you kept feeding it data, it would write 
the incoming data to flash.

Reviewing the code of the open 
source bootloader that the client had 
used showed a bug that could be of use: 
The signature check was performed 
only on the code region specified in 
the header. As long as the original 
header, code, and signature were un-
modified, the bootloader would boot 
the image. A quick test proved this to 
be the case. An image with extra data 
appended booted successfully, with 
the extra data being ignored. Since all 
flash memory on this device is execut-
able, I could simply jump to extra code 
appended to a valid update image.

So much for all that bootloader 
hardening ...

Rewriting the Bootloader
The last step was to write a payload 
that would “enhance” the bootloader 
to validate application image signa-
tures using a new public key from the 
client. My payload was simple: Erase 
the original public key from flash and 
write the new key in its place. On sub-
sequent reboots, the bootloader would 
accept new firmware images signed 
with the new key—one the client now 
keeps in a couple of safe places.

Victory!
My client’s “Hail Mary” effort paid off. 
They soon shipped a firmware release 
with new features and fixes. Their cli-
ents were none the wiser that the origi-
nal signing keys had been lost and that 
the new firmware image had been in-
stalled by taking advantage of bugs I 
found while reverse-engineering the 
device. The new firmware release also 
included fixes for these bugs.

Would you believe me if I told you 
this job was not unique? I have had 
this very situation play out for at least 
three different clients, all of whom 
were in the same jam. After delivering 
my “fix,” I always follow up by advising 
my clients how to store and manage 
firmware signing keys. Since these are 
the keys to their devices, they deserve 
to be treated with respect—both for 
device lifecycle and security reasons.

Many commodity microcontrollers 
today offer a static root of trust, built 
into a boot ROM in silicon. In this 
case, pulling off such a hack would 
be a lot more difficult, making it even 
more important to protect the keys. 
Also, had the client’s design used the 
memory-protection features offered 
by the Cortex-M series, this job would 
have been even more challenging.

Fortunately, while I have helped 
many clients with this problem, none 
has asked for this type of work more 
than once. Lesson learned?	
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Figure 1. The use of Flash memory in the 
device.
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