
38 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

practice

I
M

A
G

E
 B

Y
 C

K
A

/S
H

U
T

T
E

R
S

T
O

C
K

I T WA S A warm, late summer afternoon when a long-
time client called. They needed someone to help them
out of a jam—and fast. This client builds embedded
devices found in offices around the world. Their
latest creation had all the right security features,
the best possible given their hardware constraints.
These devices are driven by firmware running on
a microcontroller that delivers robust wireless
communications; I knew this was my kind of job.

The client’s engineers had attempted to build the
right security features into their firmware: a bootloader
that normally can’t be updated, a static root of trust

contained therein, and cryptographi-
cally signed binary firmware updates.
They had even hardened their boot-
loader to defend against anyone at-
tacking the firmware update protocol
directly—countermeasures against
people like me. The client was proud
of how secure the design was; after all,
most consumer products at the time
had barely figured out firmware read-
out protections.

An unlucky fat-fingering precipi-
tated the current crisis: The client had
accidentally deleted the private key
needed to sign new firmware updates.
They had some exciting new features
to ship, along with the usual host of
reliability improvements. Their cus-
tomers were growing impatient, but
my client had to stall when asked for
a release date. How could they come
up with a meaningful date? They had
lost the ability to sign a new firmware
release.

Given the sheer number of these
devices in the field, as well as the cost
per unit, a replacement program was
the option of absolute last resort. The
financial loss would be huge, and or-
chestrating such a program would be
incredibly daunting. A reverse-engi-
neering attempt was the final “Hail
Mary” effort before a recall would be
necessary.

The task seemed straightforward:
Find a way to patch a new static root
of trust into the bootloader (a philo-
sophical question: Is it that static?),
thereby enabling the client to sign
firmware updates with a new key.
Since the bootloader was hardened
(so my client claimed), direct attacks
on the firmware updater were out of
the question.

The device in question has mul-
tiple serial ports that expose a variety
of complex protocols once the client’s
application starts. The main micro-
controller in the design included an
off-the-shelf Arm Cortex-M3 core, with
built-in flash and on-board RAM. This
microcontroller had no hardware root
of trust, so the bootloader provided all
of the firmware security features. No-

DOI:10.1145/3511664

	� Article development led by
queue.acm.org

A deleted private key, a looming deadline,
and a last chance to patch a new
static root of trust into the bootloader.

BY PHIL VACHON

The Keys
to the
Kingdom

http://dx.doi.org/10.1145/3511664
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511664&domain=pdf&date_stamp=2022-06-21

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 39

40 COMMUNICATIONS OF THE ACM | JULY 2022 | VOL. 65 | NO. 7

practice

	˲ The protocol handler thread
popped the new work item from its
queue and copied the received bytes
into a 1,024-byte work buffer. The
number of bytes to copy was also not
checked against the work buffer size.

There were a couple of interest-
ing flaws. First, the interrupt handler
code did not have logic to check that
bytes were not being written past the
end of its active buffer. Second, the
protocol handler thread blindly ac-
cepted a payload length from the in-
put buffer, copying whatever it was
told, without checking. This bug
could be used to copy a malicious
message over other data adjacent to
the work buffer.

The next step was to load the re-
leased firmware image onto the stan-
dard development kit sold by the mi-
crocontroller’s vendor. I needed to
figure out a way to load my own code.
Some quick experimentation showed
that sending an excessively long mes-
sage—10 KB of the value 0x4f—
caused the device to seize up. Success!
But why did it crash?

The Jump Off 0x4f4f4f4f
Having some version of the source
code in hand and another similar
version of the firmware running on a
development kit meant I could start
debugging. A quick check showed the
device threw a bus fault when it failed.
This happens on a Cortex-M CPU when
trying to read, write, or attempt to ex-
ecute instructions from an invalid ad-
dress. The device’s status registers
indicated an invalid instruction fetch
occurred at 0x4f4f4f4f. This was
good news for me, as I could now take
control of the program counter.

The Cortex-M family of microcon-
trollers is designed to be easy to target
with ordinary C code, requiring mini-
mal assembly-language glue. Inter-
rupt service routines (ISRs) are normal
C functions that are called directly by
hardware. When handling an inter-
rupt request, logic built into the CPU
core prepares a stack frame on the
running process’s stack. That frame
stores the interrupted process’s regis-
ters, as well as information about the
CPU state and the instruction pointer
value at the time of the interrupt. The
CPU then switches to a separate inter-
rupt mode stack pointer, and invokes

tably, there was nothing to ensure the
bootloader wasn’t modified.

The client did not have the exact
source code for the firmware shipped
on the device, since the entire release
was lost during the fat-fingering.
Worse, I could not easily use a pro-
duction device to test this (it could be
done, but would have added a lot of
time to the engagement—time the cli-
ent could not afford), and the client
went to great lengths to protect the
device against firmware read-out, even
disabling the Joint Test Action Group
(JTAG) debug port. To make things
even more challenging, release firm-
ware images would not emit debug-
ging log messages. One fact worked
in my favor, however: The firmware
was built on top of open source com-
ponents. Both the bootloader and the
realtime operating system were used
by many such projects.

Since time was of the essence, and
static analysis of the production bi-
nary would take a lot of time, I needed
to find a quick path to code execution.
All I had was the compiled release ver-
sion of the firmware and a new version
of the source code the client wanted to
install on the deployed devices in the
field. The new code was a point from
which to hunt for flaws in the com-
munications protocol handling code;
the client claimed this code had not
changed substantially. I was used to
working with less.

UARTs Know No Bounds
One universal asynchronous receiver/
transmitter (UART), or serial port, ex-
posed a framed command protocol.
The handling logic worked as follows:

	˲ As bytes arrive, the interrupt han-
dler read out of a FIFO (first-in, first-
out) hardware queue into a buffer un-
til a FRAME END byte was received. An
array of eight of these buffers was al-
located as one contiguous array. There
was no check to make sure the input
message did not exceed the length of
one of these buffers.

	˲ After receiving a FRAME END
byte, the interrupt handler pushed a
pointer to the filled buffer, as well as
the length of the payload (as an un-
signed 32-bit integer) into the protocol
handler thread’s work queue. This sig-
naled to the thread that data was ready
to process.

To make things even
more challenging,
release firmware
images would not
emit debugging log
messages.

JULY 2022 | VOL. 65 | NO. 7 | COMMUNICATIONS OF THE ACM 41

practice

the ISR. If you can overwrite the con-
tents of the saved process context—
especially the instruction pointer that
was saved on interrupt entry—then
you can tell the CPU to return to some
different code later.

Now, all I needed to do was replace
my buffer full of 0x4f bytes with the
address of some code I wanted to run.
The next time the process woke up, the
CPU would jump right to the address it
read from this saved context.

Bootloader Controls are Essential
Controlling code execution is one
problem, but I also needed to store
the code that rewrites the root of trust
somewhere. Many microcontrollers
offer up to 1MB of flash memory, a
luxurious amount of storage if you’re
an embedded systems developer. RAM
is a more precious commodity—a few
tens of KB in many cases. All code on
this device can be run straight from
flash, leaving RAM for CPU state and
data structures. This means, however,
that there is not enough memory to
hold a complete program image when
performing a firmware update.

Flash memory was split into two
partitions on this device: bootloader

memory and application image mem-
ory. Figure 1 depicts the use of flash
memory. (Note that the firmware up-
dater is built into the bootloader and
cannot update itself.) Figure 2 shows
the application image structure from
a legitimate application image update.
Figure 3 shows the application image’s
security features, plus some added
code and data.

The updater built into the boot-
loader erases the entire application
image memory and writes a new im-
age in its place. Once the full image is
ready in flash, the bootloader checks
the signature of the application image,
including the contents of the header,
verifying its authenticity. If the signa-
ture check were to fail, the bootloader
would immediately erase the data just
downloaded. Modifying the firmware
image was out of the question, be-
cause the signature check would fail.
What else could I do?

The updater was simple. As long as
you kept feeding it data, it would write
the incoming data to flash.

Reviewing the code of the open
source bootloader that the client had
used showed a bug that could be of use:
The signature check was performed
only on the code region specified in
the header. As long as the original
header, code, and signature were un-
modified, the bootloader would boot
the image. A quick test proved this to
be the case. An image with extra data
appended booted successfully, with
the extra data being ignored. Since all
flash memory on this device is execut-
able, I could simply jump to extra code
appended to a valid update image.

So much for all that bootloader
hardening ...

Rewriting the Bootloader
The last step was to write a payload
that would “enhance” the bootloader
to validate application image signa-
tures using a new public key from the
client. My payload was simple: Erase
the original public key from flash and
write the new key in its place. On sub-
sequent reboots, the bootloader would
accept new firmware images signed
with the new key—one the client now
keeps in a couple of safe places.

Victory!
My client’s “Hail Mary” effort paid off.
They soon shipped a firmware release
with new features and fixes. Their cli-
ents were none the wiser that the origi-
nal signing keys had been lost and that
the new firmware image had been in-
stalled by taking advantage of bugs I
found while reverse-engineering the
device. The new firmware release also
included fixes for these bugs.

Would you believe me if I told you
this job was not unique? I have had
this very situation play out for at least
three different clients, all of whom
were in the same jam. After delivering
my “fix,” I always follow up by advising
my clients how to store and manage
firmware signing keys. Since these are
the keys to their devices, they deserve
to be treated with respect—both for
device lifecycle and security reasons.

Many commodity microcontrollers
today offer a static root of trust, built
into a boot ROM in silicon. In this
case, pulling off such a hack would
be a lot more difficult, making it even
more important to protect the keys.
Also, had the client’s design used the
memory-protection features offered
by the Cortex-M series, this job would
have been even more challenging.

Fortunately, while I have helped
many clients with this problem, none
has asked for this type of work more
than once. Lesson learned?	

Phil Vachon is a security architecture and engineering
manager with Bloomberg’s Office of the CTO, where
he and his team work on projects related to identity,
authentication, and the application of data science to
operational security challenges. Previously, he co-founded
a startup focused on high-speed packet capture and
analysis. He has also developed high-frequency trading
systems, designed and implemented firmware for identity
and security infrastructure devices, built synthetic
aperture radar data-processing tools, and worked on data-
plane traffic engineering for carrier routers.

Copyright held by author/owner.
Publication rights licensed to ACM.

Figure 1. The use of Flash memory in the
device.

Bootloader

Application
Image

Free Space

Bootloader Memory
(Not Upadated)

Application
Image Memory

(Can Be Updated)

Figure 2. Application image
structure.

Header

Code

Signature

Figure 3. The application image’s
security features.

Header

Code

Signature

Extra Code + Data

Region
Covered

By
Signature

Contains
length of
code region,
address of
entry point
for code,
and so forth

