
1

Position-enhanced and Time-aware Graph Convolutional

Network for Sequential Recommendations

Liwei Huang1,2, Yutao Ma3, Yanbo Liu2, Bohong (Danny) Du4, Shuliang Wang1, and

Deyi Li5

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081,

China

2. Beijing Institute of Remote Sensing, Beijing 100854, China

3. School of Computer Science, Wuhan University, Wuhan 430072, China

4. Department of Computer Science, Stanford University, Stanford, CA 94305, USA

5. Chinese Academy of Engineering, Beijing, 100088, China

E-mails: dr_huanglw@163.com, ytma@whu.edu.cn, liuyanbonudt@163.com,

dannydu@stanford.edu, slwang2011@bit.edu.cn, lidy@cae.cn

Abstract: The sequential recommendation (also known as the next-item recommendation), which aims

to predict the following item to recommend in a session according to users’ historical behavior, plays a

critical role in improving session-based recommender systems. Most of the existing deep learning-based

approaches utilize the recurrent neural network architecture or self-attention to model the sequential

patterns and temporal influence among a user’s historical behavior and learn the user’s preference at a

specific time. However, these methods have two main drawbacks. First, they focus on modeling users’

dynamic states from a user-centric perspective and always neglect the dynamics of items over time.

Second, most of them deal with only the first-order user-item interactions and do not consider the high-

order connectivity between users and items, which has recently been proved helpful for the sequential

recommendation. To address the above problems, in this article, we attempt to model user-item

interactions by a bipartite graph structure and propose a new recommendation approach based on a

Position-enhanced and Time-aware Graph Convolutional Network (PTGCN) for the sequential

recommendation. PTGCN models the sequential patterns and temporal dynamics between user-item

interactions by defining a position-enhanced and time-aware graph convolution operation and learning

the dynamic representations of users and items simultaneously on the bipartite graph with a self-attention

aggregator. Also, it realizes the high-order connectivity between users and items by stacking multi-layer

graph convolutions. To demonstrate the effectiveness of PTGCN, we carried out a comprehensive

evaluation of PTGCN on three real-world datasets of different sizes compared with a few competitive

baselines. Experimental results indicate that PTGCN outperforms several state-of-the-art sequential

recommendation models in terms of two commonly-used evaluation metrics for ranking. In particular, it

can make a better trade-off between recommendation performance and model training efficiency, which

holds great potential for online session-based recommendation scenarios in the future.

Keywords: Sequential recommendation; High-order connectivity; Graph convolution; Self-attention

aggregator; Dynamic item embedding

1 Introduction

1.1 Background

The purpose of recommender systems is to recommend relevant items to users. Until now, they

mailto:dr_huanglw@163.com
mailto:ytma@whu.edu.cn
mailto:liuyanbonudt@163.com
mailto:dannydu@stanford.edu
mailto:slwang2011@bit.edu.cn
mailto:lidy@cae.cn

2

have achieved great success in many web applications. Massive user behavior records collected from

web applications provide an unprecedented opportunity for recommender systems to achieve accurate

recommendations. The chronology of online user behavior is vital to capture sequential patterns for

developing better recommender systems. As an emerging recommendation scenario, the sequential

recommendation (or the next-item recommendation), which aims to predict users’ future behaviors based

on historical action sequences, has attracted increasing attention in academic and industrial fields.

Most of the previous sequential recommendation algorithms (or models) focus on the one-

directional chain structure of action sequences sorted by interaction time, including two approaches: the

Markov chain-based approach and the neural network-based approach. The Markov chain-based

approach [1], [2], [3] makes recommendations based on the recent 𝐿 actions using an 𝐿-order Markov

chain. By simplifying some assumptions, this approach can achieve good results in high-sparsity settings.

However, it often underperforms in long-term recommendation scenarios due to the limited ability to

model the intricate dynamics of user-item interactions [4], [5]. Compared with the Markov chain-based

approach, the recommendation approach based on neural networks, such as recurrent neural networks

(RNNs) [6], [7], convolutional neural networks (CNNs) [8], and Transformer [5], [9], has become very

popular to model sequential patterns in online user behavior. Recently, some neural network-based

methods [9], [10], [11] attempted to utilize the temporal dynamics of user behavior to improve

recommendation performance in specific domains.

1.2 Motivation

Although these RNN- and Transformer-based methods can obtain good results in the sequential

recommendation task, they still have two shortcomings. First, most of them [5], [6], [7], [8], [9], [12]

consider only the temporal dynamics of user behavior while neglecting the temporal dynamics of item

properties. As we know, items have static properties that do not change over time and time-evolving

properties. An item may show different temporal dynamics over time, such as growth in popularity and

social topic drift [13]. It is necessary to design a unified framework to simultaneously leverage the

dynamics of both user behavior and item properties. Second, most existing methods only consider direct

user-item interactions (i.e., the first-order connectivity) in defining the loss function for model training

and neglect important collaborative information embedded in user-user and item-item interactions. As a

result, the embeddings of users and items may be insufficient to capture the collaborative signal (or called

the high-order connectivity) [14], which represents the behavioral similarity between users (or items).

Fig. 1 illustrates the high-order connectivity in a bipartite graph derived from historical user-item

interactions. The bipartite graph in Fig. 1(a) includes three users (𝑢1, 𝑢2, 𝑢3), four items (𝑣1, 𝑣2, 𝑣3, 𝑣4),

and the interactions between them, each of which has the timestamp (𝑡) the interaction occurred. Fig.

1(b) shows two tree-like structures rooted in item 𝑣2, which denote the high-order connectivity of 𝑣2

at 𝑡5 and 𝑡4, respectively. Obviously, 𝑣2 has different connectivities at the two moments (𝑡5 and 𝑡4)

because 𝑣2 has a new interaction with user 𝑢1 at 𝑡5. Therefore, it is valuable to consider the temporal

dynamics of items in the sequential recommendation. Besides, the high-order connectivity contains rich

semantics that carries the collaborative signal. For example, there are two paths between 𝑣2 and 𝑣4 at

𝑡5 (i.e., 𝑣2 → 𝑢1 → 𝑣4 and 𝑣2 → 𝑢3 → 𝑣4), suggesting that there is a high similarity between 𝑣2 and

𝑣4 at 𝑡5. Considering that 𝑢2 interacted with 𝑣4 at 𝑡2, it is more likely to recommend 𝑣2 to 𝑢2 at

𝑡5. If we consider only the first-order connectivity, we cannot make an appropriate recommendation in

terms of the similarity between 𝑣2 and 𝑣4 at 𝑡5 . Hence, it is essential to model the high-order

connectivity on bipartite graphs to characterize user preference better.

3

(a) (b)

Fig. 1. An example of the high-order connectivity in a user-item interaction graph.

Due to the powerful modeling capability of graph neural networks (GNNs) on different graphs, they

have also been applied to general-purpose recommender systems in recent years. Subsection 2.1

summarizes the related work based on GNNs, especially on graph conventional networks (GCNs).

However, it is hard for these GCN-based recommendation models that failed to capture short- and long-

term sequential information to work well in the sequential recommendation scenario [15], [16]. Since

action sequences are not inherently graphs for GNN training [17], some recent researches attempted to

address such a problem with different sequence-to-graph solutions. One straightforward solution to

modeling user preference is applying the GNN architecture and attention mechanism to a graph built

from item sequences [16], [17], [18]. An alternative solution is encoding the high-order connectivity with

an attentive GCN in the sequential context [19], which can better represent the behavioral similarity

between users. However, none of these GCN-based sequential recommendation models can explicitly

encode the high-order connectivity between users and items in a user-item interaction graph by

simultaneously modeling the temporal dynamics of users and items in a unified manner. This challenging

problem is worthy of investigation for sequential recommender systems.

1.3 Contribution

To address the challenge mentioned above, we propose a Position-enhanced and Time-aware Graph

Convolutional Network (PTGCN) model for the sequential recommendation task. More specifically, we

construct a bipartite graph with the interactions between users and items and design a specific graph

convolution with time and order information to express user (or item) embedding by integrating the

hidden features of items (or users) with which the user (or item) has recently interacted. On the one hand,

we propose a self-attention aggregator in the graph convolution operation, which can simultaneously

model sequential patterns of users and items to learn the dynamic embeddings of users and items at each

moment. On the other hand, we perform multi-layer graph convolutions on the user-item bipartite graph

to learn the collaborative signal of each node and the relations between two consecutive orders of

connectivity (e.g., the first- and second-order user-item interactions). In this way, we can structure a more

expressive model to capture the high-order connectivity between users and items in the corresponding

user-item interaction graph. Besides, the experimental results on three publicly available datasets indicate

the advantages of PTGCN over some selected state-of-the-art (SOTA) methods in terms of two

commonly-used evaluation metrics for ranking. In brief, the technical contributions of this study are

𝑢1

𝑢2

𝑢3

𝑣1

𝑣2

𝑣3

𝑣4𝑡1
𝑡2

𝑡3

𝑡
𝑡1
𝑡5

𝑡4
𝑡3

𝑣2

𝑢1

𝑢3

𝑣4

𝑣4

𝑢3

𝑢2

𝑣2 𝑢3 𝑣4

 2,

 2,

4

summarized as follows.

 We propose a GCN-based model with self-attention for the sequential recommendation task.

It can explicitly encode the high-order connectivity in the user-item bipartite graph to learn

the dynamic representations of users and items via multi-layer graph convolutions in a unified

manner, which has never been reported in previous studies on the sequential recommendation.

 We design a self-attention aggregator to adaptively obtain the dynamic representation of each

user (or item) by integrating the hidden features of the items (or users) with which the user (or

item) interacted recently. The aggregator can simultaneously model sequential patterns and

temporal influence, which are of value for sequential recommendations.

 We conduct extensive experiments on three real-world datasets of different sizes. The

experimental results demonstrate the advantages of PTGCN over a few competitive baselines

regarding two commonly-used evaluation metrics. In particular, PTGCN can make a better

trade-off between recommendation performance and model training efficiency.

1.4 Organization

The remainder of this article is organized as follows. Section 2 reviews the work related to the

sequential recommendation in the field of recommender systems. The problem to resolve in this study is

formulated in Section 3. Section 4 presents the proposed PTGCN model in detail. Experiment setups and

results are presented in Section 5. Finally, Section 6 concludes this paper and provides an overview of

our future work.

2 Related Work

2.1 Recommender Systems based on Graph Convolutional Networks

Along with the popularity of GNNs, researchers recently proposed a series of models for

recommendation [14], [20], [21], [22], [23], [24], [25], [26] by combining GCNs with traditional

recommendation techniques to take advantage of rich structural information embodied in the interactions

between users and items. For example, Berg et al. [21] proposed a graph convolutional matrix completion

(GC-MC) framework from the perspective of link prediction on graphs. However, this framework only

models the direct ratings by users on items with one convolutional layer. Therefore, it cannot effectively

capture the high-order collaborative information between users and items. Ying et al. [20] developed a

GCN-based algorithm for Pinterest image recommendation (PinSage) that employs multiple graph

convolutional layers on the item-item interaction graph. However, it only models the collaborative signal

on the level of item relations. Zheng et al. [22] proposed a spectral collaborative filtering (SpectralCF)

method that uses a spectral convolution operation to predict all possible connections between users and

items to alleviate the cold-start problem. However, SpectralCF has high computational complexity and

is unsuitable for scaling up to large-scale recommender systems.

Wang et al. [14] then designed a neural graph collaborative filtering (NGCF) model by propagating

the embeddings of users and items on the user-item bipartite graph, which was proven to learn a more

expressive collaborative signal for the target user. Zhao et al. [23] proposed a framework named

IntentGC to leverage explicit preferences and heterogeneous relationships by a GCN. They also designed

a faster graph convolutional model called IntentNet to help apply IntentGC to web-scale applications.

Chen et al. [24] found that removing non-linearities in GCNs could improve recommendation

performance. They, therefore, proposed a residual network structure that can alleviate the over-

5

smoothing problem in the graph convolution aggregation operation with sparse user-item interactions.

Sun et al. [25] proposed a neighbor interaction aware framework based on GCNs, which can explicitly

model the relationships between neighbor nodes and exploit the heterogeneous nature of user-item

bipartite graphs. He et al. [26] empirically found that feature transformation and nonlinear activation in

GCNs contribute little to the recommendation performance of collaborative filtering. They then

simplified the design of GCN components and proposed a new model named LightGCN, which includes

only the neighborhood aggregation component in GCNs for collaborative filtering.

The methods mentioned above were initially designed for general-purpose recommendations, such

as the item and social recommendations. In other words, they did not consider the chronological order of

user behavior; also, they did not model the temporal information of the interactions between users and

items. Hence, these GCN-based recommendation methods cannot be directly applied to the sequential

recommendation task. Recently, a few researchers designed and implemented GCN-based models for

specific graphs constructed on item sequences in the sequential recommendation scenario [16], [17], [18].

For example, Chang et al. [18] proposed a graph neural network that leverages graph convolutional

propagation and graph pooling to extract implicit preference signals on an item-item interest graph.

Similarly, Ma et al. [17] built an item graph by extracting each item and its three following items from

an item sequence and adding edges between them; also, they modeled item-occurrence patterns. However,

these models cannot model the high-order connectivity between users and items over homogeneous

graphs; besides, they neglected the time-evolving properties of items. Unlike previous GCN-based

sequential recommendation models, this study aims to effectively utilize the high-order collaborative

signal in the user-item bipartite graph and model sequential patterns and the temporal dynamics of users

and items.

2.2 Sequential Recommendation

Unlike the general-purpose recommendation, the sequential recommendation organizes all

historical interactions in chronological order of events. It then predicts the items with which the target

user may interact soon. A typical solution to this problem is the Markov chain-based approach. For

example, Rendle et al. [1] modeled long-term user preferences and short-term transitions over items by

factorizing personalized Markov chains. In [2], a translation-based method was proposed for the

sequential recommendation to model three-order interactions between a user, the user’s previously-

visited item, and the following item to visit. Similarly, Pasricha et al. [27] proposed a hybrid approach

that combines transition-based methods for sequential recommendation and factorization machines. By

modeling pairwise user-item and item-item interactions, He et al. [3] integrated similarity-based models

with high-order Markov chains to realize personalized sequential recommendations. However, the

Markov chain-based approach and its improved versions often suffer from one of the apparent

disadvantages of Markov chains, i.e., the limited ability to perform mid-term and long-term forecasts

well.

Inspired by the tremendous progress of sequence learning in natural language processing (NLP),

deep learning has been widely used to learn long-term user preferences and sequential patterns in

recommender systems. For example, Hidasi et al. [6], [7] introduced the RNN architecture with novel

ranking loss functions to the session-based recommendation. A few RNN variants, such as long and

short-term memory (LSTM) [28] and gated recurrent unit (GRU), have also been proposed to enhance

recommendation performance by leveraging attention mechanisms [11], [29], memory networks [4], [30],

[31], the hierarchical structure [32], [33], and so on. For example, Wang et al. [31] proposed a

6

collaborative session-based recommendation machine (CSRM), including two memory modules. CSMR

utilizes a fusion gating mechanism to selectively integrate information from the two memory modules.

Besides, the CNN architecture recognized in computer vision was applied to capture short-term context

information in the sequential recommendation task [8]. The proposed method embeds an item sequence

into an “image” and learns sequential patterns as local features of the image by the convolution operation.

Huang et al. [34] then proposed a graph multi-scale pyramid network with convolutional-recurrent

encoders to extract the categorical-temporal pattern of user behavior at each time scale. Also, they

designed a resolution (scale)-wise recalibration gating mechanism that is essentially an MLP to weigh

representations from different scales adaptively.

Recently, self-attention [35] has shown promising performance in different NLP tasks. It is

therefore applied to the sequential recommendation. In [5], [9], [36], [37], [38], [39], [40], [41], [42],

researchers utilized only self-attention to model sequential patterns of user behavior rather than using the

RNN architecture. Instead, these methods achieved better performance and efficiency. For example,

Zhou et al. [42] introduced a self-supervised learning method with mutual information maximization to

the self-attentive network architecture to deal with insufficient training data. They also extended the

proposed method to other recommendation models to improve recommendation performance.

Due to the success of GNNs in recommender systems, a specific kind of item-item interaction graph,

hypergraph, was recently used to model many-to-many and high-order relations among items in the

sequential recommendation task [43], [44]. Each hyperedge in a hypergraph is set-like and contains two

or more nodes. Feng et al. [45] designed a hyperedge convolution operation, and Yadati et al. [46]

proposed a novel GCN for semi-supervised learning on attributed hypergraphs. According to the above

work, Wang et al. [44] attempted to model short-term user preference for next-item recommendation

using hypergraph, and Xia et al. [43] proposed a dual-channel hypergraph convolutional network (DHCN)

to improve session-based recommendation. Moreover, self-supervised learning was integrated into the

training process of the DHCN network to enhance hypergraph modeling [43]. In addition to hypergraphs,

researchers have proposed sequential recommendation models based on other types of graphs, such as

tripartite graphs [19] and heterogeneous interaction graphs [47], to capture the complex and rich

structural information of user-item interactions. However, these models built on the complex graph

structure always have relatively low model training efficiency.

Overall, our work is different from the above studies in two aspects. First, the above studies focus

on modeling user preference (or user behavior), while our work aims to model the temporal dynamics of

users and items simultaneously. Second, we attempt to effectively model the high-order collaborative

information between users and items using a new self-attentive GCN, which incorporates sequence

position information and temporal information into the designed graph convolution operation.

3 Problem Definition

This section presents primary notations used in this article (see Table 1) and formulates the research

problem in sequential recommendations.

Definition 1 (Interaction). Let 𝑈 and 𝑉 denote the user and item set, respectively. An interaction

𝑖𝑢,𝑣, is an action that occurs between user 𝑢 ∈ 𝑈 and item 𝑣 ∈ 𝑉 at time point 𝑡, represented with a

quaternion 𝑖𝑢,𝑣, = (𝑢, 𝑣, 𝑝, 𝑡), where 𝑝 is the position index in the ordered set of interactions (sorted in

chronological order).

Definition 2 (User-Item Interaction Graph). A user-item interaction graph is a bipartite graph 𝐺,

7

whose vertex set can be decomposed into two disjoint sets 𝑈 and 𝑉. Each edge in the graph 𝐺, which

links a vertex in 𝑈 to a vertex in 𝑉, represents an interaction.

Definition 3 (User Neighborhood). A user’s neighborhood is an ordered subset of interactions

performed by the user 𝑢, including the latest 𝑛 interactions before time point 𝑡𝑞, denoted as 𝑁𝑢, 𝑞
=

{𝑖𝑢,𝑣, 𝑚|𝑣 ∈ 𝑉, 𝑞 − 𝑛 < 𝑚 ≤ 𝑞}.

Definition 4 (Item Neighborhood). An item’s neighborhood is an ordered subset of interactions with

the item 𝑣, denoted as 𝑁𝑣, 𝑞 = {𝑖𝑢,𝑣, 𝑚|𝑢 ∈ 𝑈, 𝑞 − 𝑛 < 𝑚 ≤ 𝑞}, which contains the latest 𝑛 interactions

before 𝑡𝑞.

Many GCNs, such as GraphSAGE [48], obtain a fixed-size neighborhood through sampling. The

time-aware user neighborhood (or item neighborhood) defined in this work is an ordered set composed

of the 𝑛 latest interactions by the target user (or with the target item). If the number of historical

interactions before the current time does not reach 𝑛, we will use a padding operation.

Definition 5 (Node Flow). A node’s node flow is a tree-like structure rooted in the node. It consists

of the root node and 𝑀 (𝑀 ≥ 1) layers, each of which has a collection of nodes of the same type sampled

via the neighborhood. More specifically, the target node’s neighbors reached in different hops in a user-

item interaction graph are placed in different layers in the node flow.

In this study, we use the concept of node flow to characterize the high-order connectivity between

nodes in a bipartite graph. The high-order connectivity can be easily realized in practice by the breadth-

first search algorithm or other improved algorithms. Then, we define the research problem in the

sequential recommendation task as below.

Definition 6 (Sequential recommendation). Given a user-item interaction graph constructed from

historical interactions {𝑖𝑢,𝑣, } , for the target user 𝑢 at time point 𝑡𝑁 , the goal of the sequential

recommendation is to predict the most likely item 𝑣 with which user 𝑢 will interact at 𝑡𝑁+1.

Table 1. Primary notations.

Symbol Description

𝑈, 𝑉 the set of users and the set of items

𝑖𝑢,𝑣, = (𝑢, 𝑣, 𝑝, 𝑡) an interaction occurs between user 𝑢 and item 𝑣 at time point 𝑡

𝐺 =< (𝑈,𝑉), 𝐼 > a user-item interaction graph

 𝑁𝑢, 𝑞 the user neighborhood of user 𝑢 at time point 𝑡𝑞

 𝑁𝑣, 𝑞 the item neighborhood of item 𝑣 at 𝑡𝑞

 𝑁𝐹𝑢, the node flow of user 𝑢 at 𝑡

 𝑁𝐹𝑣, the node flow of item 𝑣 at 𝑡

𝐮𝑖, the dynamic embedding of user 𝑢𝑖 at 𝑡

 𝑗, the dynamic embedding of item 𝑣𝑗 at 𝑡

𝑑 the latent dimension of user embeddings and item embeddings

𝐭 the embedding of 𝑡

𝐩𝑖, , 𝐩𝑗, the position embeddings of 𝑢𝑖 and 𝑣𝑗 at 𝑡

4 Position-enhanced and Time-aware GCN

4.1 Overall Framework

PTGCN learns the dynamic embeddings of users and items at different moments to further predict

possible interactions between the target user and items at the next moment. The main challenges that

PTGCN has to face are two-fold: (1) model sequential patterns and temporal influence of interactions

simultaneously; (2) capture the high-order collaborative information between users and items and update

the user (or item) embedding timely. In this study, PTGCN defines a position-enhanced and time-aware

graph convolution operation to solve the above two challenges. More specifically, for the first challenge,

8

PTGCN defines a self-attention aggregator in the graph convolution operation to model sequential

patterns of user behavior and the temporal dynamics of interactions in a unified way. For the second

challenge, PTGCN generates the dynamic embeddings of users and items using the graph convolution

operation and then stacks multi-layer graph convolutions to model the high-order collaborative

information.

Fig. 2 illustrates the architecture of PTGCN, which is a model framework with three components:

(1) an embedding layer that generates four types of embeddings, namely user embedding, item

embedding, time embedding, and position embedding; (2) the convolutional layer that refines the

embeddings of users and items by modeling the high-order connectivity with the designed position-

enhanced and time-aware graph convolution; (3) a prediction layer that aggregates the refined user

embeddings and item embeddings and then outputs a score for each user-item pair. For more details of

the three PTGCN components, please refer to Subsections 4.2, 4.3, and 4.4.

Fig. 2. The overall framework of PTGCN.

4.2 Embedding Layer

The embedding layer’s goal is to map a given input to a low-dimensional vector representation. To

model sequential patterns and temporal influence of interactions effectively, we encode user index, item

index, interaction time, and the absolute position of each interaction in user neighborhood (or item

neighborhood) into a shared latent space. In particular, we use user neighborhood to update the user

embedding and item neighborhood to update the item embedding. Finally, we perform an add operation

on them to obtain the hidden representation of each interaction.

4.2.1 User embedding and item embedding

First of all, we assume that the embedding of each user (or item) will change only when the

interaction occurs. For all historical interactions, we create an embedding matrix 𝐔 ∈ ℝ|𝑈|×𝑑 for users

and an embedding matrix 𝐕 ∈ ℝ|𝑉|×𝑑 for items, where |𝑈| and |𝑉| are the number of users and items,

respectively, and 𝑑 is the latent dimension of embeddings. User embeddings and item embeddings are

generated by model training and initialized randomly. For each interaction 𝑖𝑢𝑖,𝑣𝑗,
, we perform a direct

lookup operation on user and item indexes and obtain the user embedding 𝐮𝑖, of user 𝑢𝑖 and the item

 𝑞

()
𝐭 𝑞

()
𝐩 𝑞

()

 𝑞

()

aggregate

 𝑞

()
 𝑞

()

 𝑁 𝑖, 𝑞
𝐮𝑖, 𝑞

()

Concatenate

 ()

 = 1

 =

 =

𝐮𝑖, 𝑞

(1)

 𝑞

()
𝐭 𝑞

()
𝐩 𝑞

()
 𝑞

()
𝐭 𝑞
()

𝐩 𝑞

()
𝐮 𝑞

()
𝐭 𝑞

()
𝐩 𝑞

()

 𝑞

()

aggregate

 𝑞

()
 𝑞

()

 𝑁 𝑗, 𝑞
 𝑗, 𝑞
()

Concatenate

 ()

 = 1

 =

 =

 𝑗, 𝑞
(1)

𝐮 𝑞

()
𝐭 𝑞

()
𝐩 𝑞

()
𝐮 𝑞

()
𝐭 𝑞
()

𝐩 𝑞

()

Embedding
Layer

Convolution
Layer

Prediction
Layer

𝐮𝑖, 𝑗, 𝐩

 𝑢𝑖 , 𝑣𝑗 , 𝑡𝑞

𝐭

𝐮𝑖, 𝑞

(3)
 𝑗, 𝑞
(3)

9

embedding 𝑗, of item 𝑣𝑗. Here, 𝐮𝑖, and 𝑗, denote the representation of 𝑢𝑖 and the representation

of 𝑣𝑗, respectively, at time point 𝑡. Note that the user (or item) identifier is set to the value we want to

look up.

4.2.2 Time embedding

Temporal information is essential to analyze individual interaction behaviors [9]. Because the

sequential recommendation task is timing-dependent, we need to learn a proper time representation from

the continuous-time nature of interactions. One of the most straightforward ways is to directly use the

original feature values or transformations without embedding [49]. However, this method’s performance

is often poor because of the low capacity of representations. Besides, there are two methods to embed

temporal information into low-dimensional vectors. The field embedding method learns a single field

embedding for each numerical field by defining a continuous functional ∅(∙) to map time intervals from

the time domain to a 𝑑-dimensional vector space [11], [50]. The discretization method [51] converts

numerical features into categorical ones using various heuristic discretization strategies and then assigns

embeddings with the categorization strategy. In [51], the elapsed time is sliced into intervals whose length

grows exponentially. For example, we can map the time in the range [0, 1), [1, 2), [2, 4), . . . , [2𝑘, 2𝑘 +

1) into a categorical feature of 0, 1, 2, . . . , 𝑘 + 1. Different groups of interactions may have different

granularities of time slicing. Then, we perform a direct lookup on the categorical time features to obtain

the time embedding 𝐭 of time point 𝑡.

After comparing the effects of two commonly-used methods [50], [51] in the pre-experiment, we

use the temporal encoding method proposed by Zhou et al. [51] in this study. For each interaction 𝑖𝑢𝑖,𝑣𝑗,

in 𝑁𝑢𝑖,
 or 𝑁𝑣𝑗,

, we can obtain the time embedding (𝐭) of time point 𝑡. Then, for each interaction

𝑖𝑢𝑖,𝑣𝑗,
, we utilize the user neighborhood (𝑁𝑢𝑖,

) of user 𝑢𝑖 at time point 𝑡 to obtain a new vector 𝐮𝑖,

and the item neighborhood (𝑁𝑣𝑗,
) of item 𝑣𝑗 to obtain a new vector 𝑗, at 𝑡. In particular, we leverage

the time interval between two consecutive interactions in 𝑁𝑢𝑖,
 and time point 𝑡 to model the influence

of historical interactions on the current state of 𝑢𝑖; also, this is similar to 𝑣𝑗.

4.2.3 Position embedding

To model sequential patterns effectively, we attempt to encode the position information (more

specifically, the relative position) of a user-item interaction in the user neighborhood or item

neighborhood according to the temporal information of each interaction. PTGCN employs the positional

encoding approach proposed by Vaswani et al. [35], which does not introduce additional parameters and

can extrapolate to sequence lengths longer than pre-defined fixed ones. The positional encodings have

the same dimension as the input embeddings. As mentioned above, we select the latest 𝑛 neighbors

before time point 𝑡 in a user-item interaction graph to constitute the user neighborhood and item

neighborhood. In this setting, position embeddings contain specific information different from time

embeddings. PTGCN then learns and updates the user and item embeddings at 𝑡 according to the user

neighborhood and item neighborhood. In this way, for each interaction 𝑖𝑢𝑖,𝑣𝑗,
, we can obtain the

corresponding position embedding 𝐩𝑖, ∈ ℝ𝑑 of 𝑢𝑖 (or 𝐩𝑗, ∈ ℝ𝑑 of 𝑣𝑗).

4.3 Convolutional Layer

The convolutional layer builds upon the GCN architecture to model the sequential and temporal

influence and capture high-order collaborative information in the bipartite graph structure. In addition,

this layer refines the dynamic embeddings of users and items. To this end, we design a position-enhanced

and time-aware graph convolution and the self-attention aggregator architecture and model the high-

order connectivity by stacking multi-layer convolutions.

10

4.3.1 Position-enhanced and time-aware graph convolution

We integrate and update user and item embeddings using the graph convolution operation. The

purpose of GCNs is to learn node representations by smoothing features over a graph [48]. A GCN

iteratively performs the graph convolution operation to update each node’s representation by aggregating

its neighbors’ features. Given the neighbor set of node 𝑢 (𝑁𝑢) that contains its immediate neighbors at

the -th iteration, a GCN updates the node’s embedding 𝑢
(𝑙)

 by concatenating its current representation

 𝑢
(𝑙−1)

 and the aggregation of its neighboring feature vectors 𝑁

(𝑙)
. Such a standard graph convolution

can be formalized as

 𝑁

(𝑙)
= AGGREGATE({

𝑢′
(𝑙−1)

|𝑢′ ∈ 𝑁𝑢}), (1)

 𝑢
(𝑙)

= (𝐖(𝑙) ⋅ CONCAT(𝑢
(𝑙−1)

, 𝑁

(𝑙)
)), (2)

where AGGREGATE(∙) is an aggregation function, CONCAT(∙) is the concatenation operation, 𝐖(𝑙)

is a weight matrix, and is a nonlinear activation function.

One fundamental limitation of most existing GCN models is that they failed to capture each node’s

position information in the neighborhood. In the scenario of sequential recommendations, we need to

model the time effects of different interactions to obtain the dynamic representations of users and items.

Therefore, we propose a position-enhanced and time-aware graph convolution by incorporating

sequential and temporal information from interactions.

Given the neighborhood of 𝑢𝑖 at time point 𝑡𝑞 (𝑁𝑢𝑖, 𝑞
= {𝑖𝑢𝑖,𝑣𝑗, 𝑚

|𝑣𝑗 ∈ 𝑉, 𝑞 − 𝑛 < 𝑚 ≤ 𝑞}),

containing the latest 𝑛 interactions of 𝑢𝑖 before 𝑡𝑞, we update the user’s embedding by aggregating the

𝑛 interactions in 𝑁𝑢𝑖, 𝑞
. Assume that we have learned the parameters of the aggregator function (i.e.,

AGGREGATE(∙)), which aggregates the information from 𝑁𝑢𝑖, 𝑞
. For all user-item interactions {𝑖𝑢𝑖,𝑣𝑗,

∈

 𝑁𝑢𝑖, 𝑞
}, we define the position-enhanced and time-aware graph convolution as

 𝑁 𝑖, 𝑞

(𝑙)
= AGGREGATE({(𝑗,

(𝑙−1)
, 𝐭, 𝐩𝑗,)|𝑖𝑢𝑖,𝑣𝑗,

∈ 𝑁𝑢𝑖, 𝑞
}), (3)

𝐮𝑖, 𝑞

(𝑙)
= 𝐖𝑈2

⋅ (𝐖𝑈
⋅ CONCAT(𝐮𝑖, 𝑞

(𝑙−1)
, 𝑁 𝑖, 𝑞

(𝑙)
)), (4)

where {(𝑗,
(𝑙−1), 𝐭, 𝐩𝑗,)} denotes the representations of the item nodes in 𝑁𝑢𝑖, 𝑞

 at the -th iteration.

Due to the heterogeneity of nodes, different types of nodes have different feature spaces. For user nodes

and item nodes in the bipartite graph, we design type-specific trainable transformation matrices

𝐖𝑈
,𝐖𝑉

∈ ℝ𝑑×𝑑 and 𝐖𝑈2
,𝐖𝑉2

∈ ℝ2𝑑×𝑑 to project the features of different types of nodes into the

same feature space. The two types of matrices are shared by all graph convolutional layers.

Similarly, we can obtain the dynamic representation of each item in the same way.

 𝑁 𝑗, 𝑞

(𝑙)
= AGGREGATE({(𝐮𝑖,

(𝑙−1)
, 𝐭, 𝐩𝑖,)|𝑖𝑢𝑖,𝑣𝑗,

∈ 𝑁𝑣𝑗, 𝑞
}, (5)

 𝑗, 𝑞
(𝑙)

= (𝐖𝑉2 ⋅ CONCAT (𝐖𝑉 ⋅ 𝑗, 𝑞
(𝑙−1), 𝑁 𝑗, 𝑞

(𝑙))). (6)

Compared with existing GCNs, PTGCN redefines the neighborhood of nodes and integrates

temporal and positional information into the graph convolution operation. As a result, the aggregation

of the latest interactions can be implemented by various aggregator architectures, discussed in the

following subsubsection.

11

4.3.2 Aggregator architecture

A few previous studies have specified the aggregator of GCNs, such as the weighted sum aggregator

in [52] and mean aggregator in [48]. However, most GCN models neglect the order of nodes in a node’s

neighborhood, but this feature is essential to modeling sequential patterns for the sequential

recommendation. As mentioned above, it is also necessary to simultaneously model the sequential

influence and temporal influence. Considering that the self-attention mechanism has been applied for

sequential recommendations and achieved remarkable results [5], [9], we design an aggregator using the

self-attention mechanism. The key idea of the self-attention aggregator is to enrich each user feature and

item feature with the corresponding time embedding and position embedding. The self-attention

aggregator has 𝐾 identical nonlinear layers, each of which contains a self-attention layer, a feed-forward

layer, and a vanilla attention layer. Next, we will introduce it with an example of the aggregation of user

representations in detail.

Self-attention layer. For each 𝑖𝑢𝑖,𝑣𝑗,
∈ 𝑁𝑢𝑖, 𝑞

, we can obtain an element 𝑗
(𝑙,𝑘)

 (or 𝑖
(𝑙,𝑘)

) in the 𝑘-

th self-attention layer for each 𝑣𝑗 (or 𝑢𝑖) at the -th iteration. Here, 𝑗
(𝑙,𝑘)

 is calculated as a weighted

sum of item embedding, time embedding, and position embedding.

 𝑗
(𝑙,𝑘)

= ∑ 𝛼𝑗𝑟
(𝑙,𝑘)

 𝑟
(𝑙,𝑘−1)𝑛

𝑟=1 , (7)

 𝑗
(𝑙,)

= 𝑗,
(𝑙)

+ 𝐭 + 𝐩𝑗, , (8)

In Eq. (7), the weight coefficient 𝛼𝑗𝑟
(𝑙,𝑘)

 is computed using a softmax function, defined as

𝛼𝑗𝑟
(𝑙,𝑘)

=
exp 𝑒𝑗𝑟

(𝑙,𝑘)

∑ exp 𝑒
𝑗𝑟
(𝑙,𝑘)

𝑟=

, (9)

where 𝑒𝑗𝑟
(𝑙,𝑘)

 is computed by an inner product operation that considers input, time, and position,

𝑒𝑗𝑟
(𝑙,𝑘)

=
 𝑗
(𝑙,𝑘)

⋅(𝑟
(𝑙,𝑘)

)𝑇

√𝑑
, (10)

and the scale factor √𝑑 is used to penalize a higher inner product value, especially when the dimension

is large.

Point-wise feed-forward layer. The self-attention layer models the sequential and temporal

influences using a linear combination with adaptive weights. After each self-attention layer, we apply

two linear transformations and a rectified linear unit (ReLU) activation between the two transformations,

introducing non-linearity to the convolutional layer. In addition, we adopt layer normalization, residual

connections, and dropout regularization techniques to avoid a few common problems caused by multi-

layer neural networks, such as overfitting and vanishing gradients.

𝐬𝑗
(𝑙,𝑘)

= 𝐹𝐹𝑁(𝑗
(𝑙,𝑘)

) = LayerNorm(Dropout(ReLU(𝐖1
(𝑘)

⋅ 𝑗
(𝑙,𝑘)

)𝐖2
(𝑘)

) + 𝑗
(𝑙,𝑘)

), (11)

where ReLU(∙) is the ReLU activation function, 𝐖1
(𝑘)

,𝐖2
(𝑘)

∈ ℝ𝑑×𝑑 denote two trainable parameter

matrices shared by all graph convolutional layers, Dropout(∙) is a dropout function, and LayerNorm(∙

) is the Layer normalization operation.

Vanilla attention layer. Given the user neighborhood at time point 𝑡𝑞, the output of interaction

representations generated by the last feed-forward layer is a set {𝐬𝑗
(𝑙,𝐾)

}, where 𝐾 is the number of

12

nonlinear layers. A vanilla attention layer and the softmax function compute the normalized attention

weight, similar to the self-attention layer.

𝛼𝑖𝑗
(𝑙)

=
exp𝑒𝑖𝑗

(𝑙)

∑ exp 𝑒
𝑖𝑗
(𝑙)

𝑗=

, (12)

𝑒𝑖𝑗
(𝑙)

=
𝐮𝑖, 𝑞

(𝑙)
⋅(𝐬𝑗

(𝑙,𝐾)
)𝑇

√𝑑
, (13)

where 𝛼𝑖𝑗
(𝑙)

 denotes the attention weight between 𝐮𝑖, 𝑞

(𝑙)
 and 𝐬𝑗

(𝑙,𝐾)
. After obtaining the attention weights

in the vanilla attention layer, the aggregation representation of 𝑁𝑢𝑖, 𝑞 is calculated using the following

equation:

 𝑁 𝑖, 𝑞

(𝑙)
= ∑ 𝛼𝑖𝑗

(𝑙)𝑛
𝑖=1 𝐬𝑗

(𝑙,𝐾)
. (14)

4.3.3 Stacking convolutions

The high-order connectivity used to model the collaborative signal is critical to evaluate users’ item

preferences. With the representations augmented by the first-order connectivity modeling, we can stack

more position-enhanced and time-aware graph convolutions to capture the high-order connectivity in the

bipartite graph. By stacking graph convolutions, a user (or an item) can receive the collaborative

information from its -hop neighbors.

Algorithm 1: Generating user embeddings

Input: Bipartite graph 𝐺, mini-batch set of users {𝑢}, time point 𝑡, each user’s set of recent interactions 𝑁𝑢, , enumeration of

node types 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒𝑠 = {𝑢𝑠𝑒𝑟: 0, 𝑖𝑡𝑒𝑚: 1} , depth 𝐿 , type-specific transformation matrices 𝐖𝑈
,𝐖𝑉 and 𝐖𝑈2

,𝐖𝑉2 ,

differentiable aggregator function AGGREGATE(∙) , neighborhood function 𝒩(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡, 𝑡 𝑝𝑒) that returns the user

neighborhood or item neighborhood according to the node type

Output: Vector representation 𝐳𝑢, for each user 𝑢 at time 𝑡

01. 𝐶𝑆(𝐿) ← ⋃ 𝑁𝑢, 𝑢 and 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 ← 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒𝑠[𝑢𝑠𝑒𝑟];
02. For = 𝐿… do

03. 𝐶𝑆(𝑙−1) ← 𝐶𝑆(𝑙);

04. For each 𝑖𝑢𝑖,𝑣𝑗,
′ in 𝐶𝑆(𝑙) do

05. 𝐶𝑆(𝑙−1) ← 𝐶𝑆(𝑙−1)⋃𝒩(𝑖𝑢𝑖,𝑣𝑗,
′ , 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒);

06. End for

07. 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 ← 1 − 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒;

08. End for

09. For = 1…𝐿 do

10. For each 𝑖𝑢𝑖,𝑣𝑗,
′ in 𝐶𝑆(𝑙) do

11. If 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 == 0 then
12. Aggregate the representations of the item nodes in the user neighborhood using Eq. (3);

13. Update the embedding of the target user 𝐮
𝑖, ′
(𝑙)

 using Eq. (4);

14. Else if 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 == 1 then
15. Aggregate the representations of the user nodes in the item neighborhood using Eq. (5);

16. Update the embedding of the target item
𝑗, ′
(𝑙)

 using Eq. (6);

17. End if

18. End for

19. 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 ← 1 − 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒;
20. End if

21. Return {𝒛𝑢, ← 𝐮𝑖,
(𝐿)

};

Here, we take user embedding as an example to illustrate how stacked convolutions generate user

dynamic embeddings. Algorithm 1 details the process of generating embeddings for a mini-batch set of

users at a given time point. In the -th iteration, we first compute the neighborhood of the target node

according to the node type (user or item) and then apply the graph convolution to generate the -th layer

representation of the target node. For example, if the target node is a user node, the neighborhood function

13

returns its item neighborhood in the bipartite graph. The output of the last convolutional layer is the final

output embedding 𝒛𝑢𝑖,
= 𝐮𝑖,

(𝐿)
. Similarly, we can use the same method to obtain dynamic item

embeddings 𝒛𝑣𝑗,
= 𝑗,

(𝐿)
.

4.4 Model Prediction

After performing stacked multi-layer convolutions, we obtain a user’s representation at each

historical interaction moment. We can utilize the representation for all historical interaction moments and

the user’s historical behavior sequence to predict future behavioral preferences. Therefore, for the target

user 𝑢𝑖 and given time point 𝑡𝑁 , we perform a forward multi-layer graph convolution operation to

obtain the user’s representation 𝒛𝑢𝑖, 𝑁
 and a target item’s representation 𝒛𝑣𝑗, 𝑁

. Finally, a simple inner

product operation is used to predict the user’s preference for the target item:

 (𝑢𝑖 , 𝑣𝑗 , 𝑡𝑁) = (𝒛𝑢𝑖, 𝑁
)𝑇 ⋅ 𝒛𝑣𝑗, 𝑁

. (15)

Because the PTGCN model is inductive, we use the user and item embeddings at historical moments

to update the user and item embeddings at new interaction moments and then predict possible future

interactions without retraining the model. However, we employ an inner product as the interaction

function to implement user sequence learning in this work. Other more complex functions, such as

neural-network-based interaction functions [53], are left to explore in our future work.

4.5 Optimization

Algorithm 2: Constructing training instances

Input: Bipartite graph 𝐺, enumeration of node types 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒𝑠 = {𝑢𝑠𝑒𝑟: 0, 𝑖𝑡𝑒𝑚: 1}, depth 𝐿, and neighborhood function

𝒩(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡, 𝑡 𝑝𝑒)

Output: a set of training instances 𝐷

01. 𝐷 ← ∅ and 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 ← 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒𝑠[𝑢𝑠𝑒𝑟];
02. For each 𝑖𝑢𝑖,𝑣𝑗,

 in 𝐺 do

03. Get a negative sample 𝑣𝑗
′ for 𝑣𝑗 at time 𝑡 by the negative sampling method;

04. 𝑁𝐹𝑢𝑖,
= 𝐶𝑆𝑢𝑖

(𝐿)
← 𝑁𝑢𝑖,

, 𝑁𝐹𝑣𝑗,
= 𝐶𝑆𝑣𝑗

(𝐿)
← 𝑁𝑣𝑗,

, and 𝑁𝐹𝑣𝑗
′, = 𝐶𝑆

𝑣𝑗
′

(𝐿)
← 𝑁𝑣𝑗

′, ;

05. For = 𝐿… do

06. For each 𝑖𝑢′,𝑣′, ′ in 𝐶𝑆𝑢𝑖

(𝑙)
 do

07. 𝐶𝑆𝑢𝑖

(𝑙−1)
← 𝐶𝑆𝑢𝑖

(𝑙)
⋃𝒩(𝑖𝑢′,𝑣′, ′ , 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒);

08. End for

09. Append 𝐶𝑆𝑢𝑖

(𝑙−1)
 to 𝑁𝐹𝑢𝑖,

;

10. For each 𝑖𝑢′,𝑣′, ′ in 𝐶𝑆𝑣𝑗

(𝑙)
 do

11. 𝐶𝑆𝑣𝑗

(𝑙−1)
← 𝐶𝑆𝑣𝑗

(𝑙)
⋃𝒩(𝑖𝑢′,𝑣′, ′ , 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒);

12. End for

13. Append 𝐶𝑆𝑣𝑗

(𝑙−1)
 to 𝑁𝐹𝑣𝑗,

;

14. For each 𝑖𝑢′,𝑣′, ′ in 𝐶𝑆
𝑣𝑗
′

(𝑙)
 do

15. 𝐶𝑆
𝑣𝑗
′

(𝑙−1)
← 𝐶𝑆

𝑣𝑗
′

(𝑙)
⋃𝒩(𝑖𝑢′,𝑣′, ′ , 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒);

16. End for

17. Append 𝐶𝑆
𝑣𝑗
′

(𝑙−1)
 to 𝑁𝐹𝑣𝑗

′, ;

18. 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒 ← 1 − 𝑛𝑜𝑑𝑒𝑡 𝑝𝑒;
19. End for

20. Add a training instance 𝑠𝑢𝑖,𝑣𝑗,
=< 𝑁𝐹𝑢𝑖,

, 𝑁𝐹𝑣𝑗,
, 𝑁𝐹𝑣𝑗

′, > to 𝐷;

21. End for

22. Return 𝐷;

The goal of our model is to provide a list of top-𝑘 ranked items for the target user. Considering that

user interactions are always implicit, the negative sampling technique used in [9] is adopted to optimize

14

the ranking of items. For a specific positive output (𝑢𝑖, 𝑣𝑗 , 𝑡), we sample one negative item 𝑣𝑗
′ at time

point 𝑡. Thus, we can build a training instance 𝑠𝑢𝑖,𝑣𝑗,
=< 𝑁𝐹𝑢𝑖,

, 𝑁𝐹𝑣𝑗,
, 𝑁𝐹𝑣𝑗

′, > for each interaction

𝑖𝑢𝑖,𝑣𝑗,
, including the user node flow 𝑁𝐹𝑢𝑖,

, the item node flow 𝑁𝐹𝑣𝑗,
, and the item node flow 𝑁𝐹𝑣𝑗

′,

of the negative (or called unobserved) item 𝑣𝑗
′ at 𝑡. Algorithm 2 presents the construction process of

training instances.

We train PTGCN in an unsupervised manner using a binary cross-entropy as the loss function.

Considering that our goal is to predict an item in which the target user is interested at a specific moment,

we define the loss function terms over the interactions based on the dynamic embeddings of users and

items. For all historical user interactions, the purpose of the training process is to optimize the PTGCN’s

parameters so that the output embeddings of 𝑢𝑖 and 𝑣𝑗 at time 𝑡 for each interaction are close together

and the difference between the embeddings of 𝑢𝑖 and 𝑣𝑗
′ is as large as possible. For the training set

𝐷 = {𝑠𝑢𝑖,𝑣𝑗,
}, we can define the loss function as

−∑ [log (((𝑢𝑖 , 𝑣𝑗 , 𝑡))) + log (1 − ((𝑢𝑖 , 𝑣𝑗
′, 𝑡)))]𝑠 , , ∈𝐷 + 𝜆‖𝑊‖, (16)

where (∙) is the sigmoid function, 𝑊 is the set of embedding matrices, || ∙ || denotes the Frobenius

norm, and 𝜆 is the regularization parameter.

Adam [54], the standard stochastic optimization method, is used to optimize the objective function

in this work. Since each training sample 𝑠𝑢𝑖,𝑣𝑗,
 can be constructed independently, we apply the mini-

batch stochastic gradient descent (SGD) method to speed up the training process. For the details of the

whole training process of PTGCN, please refer to Algorithm 3.

Algorithm 3: Training PTGCN

Input: training set 𝐷

Output: the parameter set of PTGCN Θ

01. Initialize Θ;
02. While (exceed(maximum number of iterations) == FALSE) do

03. Randomly select a batch of training instances 𝐷𝑏 from 𝐷;

04. For each 𝑖𝑢𝑖,𝑣𝑗,
 in 𝐷𝑏 do

05. Calculate the representations of 𝒛𝑢𝑖,
, 𝒛𝑣𝑗,

, 𝒛𝑣𝑗
′, ;

06. End for

07. Find Θ minimizing the objective function (Eq. (16)) with 𝐷𝑏;
08. End while

09. Return Θ

5 Experiment and Result Analysis

5.1 Research Questions

The experiments were conducted by answering the following four research questions:

RQ1: Can PTGCN outperform state-of-the-art baselines for sequential recommendation tasks?

RQ2: Is modeling temporal dynamics of items beneficial to the sequential recommendation?

RQ3: Does the high-order connectivity contribute to better recommendation performance?

5.2 Datasets

We compared our method with selected baselines on three widely used datasets from two real-world

platforms (i.e., MovieLens and Amazon). These datasets are publicly available on the Internet and have

different domains, sizes, and sparsity.

 MovieLens is a stable benchmark dataset widely used for recommendation algorithm

15

evaluation. The version of MovieLens-1M1 that includes 1 million movie ratings is used to

evaluate sequential recommendation algorithms in our experiment.

 Amazon 2 is a large-scale dataset obtained from Amazon review datasets [55], [56],

comprising large corpora of product reviews crawled from the Amazon website. We selected

two categories, CDs_and_Vinyl and Movies_and_TV, from the original dataset.

The three datasets contain user-item interactions, each of which records user ID, item ID, rating (or

review), and the corresponding interaction timestamp. Reviews or ratings are treated as implicit feedback,

i.e., the interactions between users and items. All the interactions are sorted in the chronological order of

timestamps. For the MovieLens dataset, we used the 5-core setting [8], [9] to filter out cold-start users

and items with fewer than five interactions. We adopted a different 10-core setting to ensure that each

user or item has at least ten interactions for the Amazon datasets, which are much sparser. As with [5],

[9], each user’s last interaction was selected for testing, and all previous interactions were used to build

the training set. Table 2 shows the statistics of the experimental datasets.

Table 2. Statistics of the experimental datasets.

Dataset #Users #Items #Interactions Avg. Interactions per user Avg. Interactions per item

MovieLens 6,040 3,416 999,611 165.5 292.6

Amazon CDs_and_Vinyl 17,965 14,253 444,285 24.7 31.2

Amazon Movies_and_TV 84,115 30,881 1,890,004 22.5 61.2

5.3 Experimental Setups

5.3.1 Evaluation Metrics

To evaluate the recommendation performance of PTGCN and baselines, we employ two commonly

used metrics: 𝑅𝑒𝑐𝑎 @𝑘 (𝑅@𝑘) and normalized discounted cumulative gain@𝑘 (𝑁𝐷𝐶𝐺@𝑘), where 𝑘

is set to five or ten. In the sequential recommendation task, 𝑅@𝑘 has a strong positive correlation with

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝑃@𝑘) and 𝐹1@𝑘 because there is only one positive item at a time of interaction.

Compared with 𝑃@𝑘 and 𝐹1@𝑘 , 𝑅@𝑘 can show the recommendation ability to find out more

candidate items. Therefore, we do not consider 𝑃@𝑘 and 𝐹1@𝑘 in this study.

𝑅@𝑘 evaluates how many candidate items in the top-𝑘 recommendation hit the actual items in the

test set.

𝑅@𝑘 =
1

𝑁
∑ 𝑅𝑢@𝑘 =𝑁

𝑢=1
1

𝑁
∑

|𝑆 (𝑘)∩𝑉 |

|𝑉 |

𝑁
𝑢=1 , (17)

where 𝑆𝑢(𝑘) is a set of candidate items in the top-𝑘 recommendation to user 𝑢 and 𝑉𝑢 denotes a set of

actual items with which the user interacts at a given time in the test set. Note that |𝑉𝑢| = 1.

𝑁𝐷𝐶𝐺@𝑘 measures the ranking performance of a recommendation algorithm by considering the

order of actually relevant items.

𝑁𝐷𝐶𝐺@𝑘 =
1

𝑁
∑

1

𝑍
∑

2𝐼(|{𝑠
𝑗
}∩𝑉 |)−1

𝑙𝑜𝑔2(𝑗+1)

𝑘
𝑗=1

𝑁
𝑢=1 , (18)

where 𝑠𝑢
𝑗
 is the 𝑗-th recommended item in 𝑆𝑢(𝑘), 𝐼(∙) denotes the indicator function, and 𝑍 is a

normalized constant, i.e., the maximum value of 𝐷𝐶𝐺@𝑘.

5.3.2 Baselines

To demonstrate the effectiveness of PTGCN, we compared it with a few competitive baseline

approaches providing source code available on the Internet. These baselines include one classic

1 https://grouplens.org/datasets/movielens/1m/
2 https://nijianmo.github.io/amazon/index.html

16

recommendation method without considering sequential patterns and eight sequential methods using

different recommendation techniques, listed as follows.

Non-sequential method:

 BPR (Rendle et al., 2009) [57]. This method is a classic method based on Bayesian

personalized ranking (BPR) for the top-𝑘 item recommendation. It models the order of

candidate items by a pairwise ranking loss without considering sequential patterns.

Sequential method - first-order Markov chain-based approach:

 FPMC (Rendle et al., 2010) [1]. This method is a classic method based on factorized

personalized Markov chains for next-basket recommendations. It utilizes matrix factorization

and first-order Markov Chains to capture long-term user preferences and dynamic transitions

of sequential behavior, respectively.

Sequential method - RNN-based approach:

 GRU4Rec+ (Hidasi and Karatzoglou, 2018) [6]. This method is an improved version of

GRU4Rec [58], an RNN-based approach for session-based recommendations. In particular,

GRU4Rec+ adopts a different ranking loss function and sampling strategy. As a result, it shows

significant improvement over GRU4Rec.

Sequential method - CNN-based approach:

 Caser (Tang and Wang, 2018) [8]. This method is a sequential recommendation method based

on convolutional sequence embedding. It embeds a sequence of recent items into an “image”

and models sequential influence as local features of the “image” with convolutional filters.

Sequential method - Self-attentive approaches:

 SASRec (Kang and McAuley, 2018) [5]. This method is proposed based on Transformer. It

only utilizes a self-attention mechanism without the RNN architecture to capture sequential

patterns and an attention mechanism to predict based on relatively few actions.

 BERT4Rec (Sun et al., 2019) [36]. This method is a sequential recommendation method based

on BERT [59]. Compared with SASRec and RNN-based methods using the left-to-right

unidirectional architecture, BERT4Rec leverages bidirectional self-attention to model users’

behavior sequences.

 TiSASRec (Li et al., 2020) [9]. This method is an improved version of SASRec. Compared

with SASRec, TiSASRec uses both the absolute positions of interactions and the time intervals

between different interactions to improve sequential recommendation performance.

Sequential method - GCN-based approaches:

 DGCF (Li et al., 2020) [60]. This method is a bipartite graph-based dynamic recommender

system that captures collaborative and sequential relations of items and users and updates user

and item embeddings simultaneously using three update mechanisms. It fuses the high-order

connectivity of users and items with a simple multi-layer perceptron (MLP) and does not

consider time and order information.

 DHCN (Xia et al., 2021) [43]. This method is a session-based recommendation method based

on the GCN architecture. It introduces self-supervised learning to train a hypergraph

convolutional network to improve next-item recommendation performance.

Although the proposed and baseline approaches aim to predict the probability of an item being

recommended to the target user, they differ in representing users and items. These approaches are

assumed to have the same dimension of hidden variables (denoted by 𝑑), the same length of sequences

(denoted by 𝑠), and the same size of samples (denoted by 𝑛). We approximate each approach’s time

17

complexity by calculating user and item representations for simplicity. Table 3 shows the time complexity

of PTGCN and the baselines. PTGCN has the same order of magnitude as SASRec, BERT4Rec, and

TiSASRec in time complexity because 𝑠 is usually smaller than 𝑑, and its time complexity is lower

than those of Caser, DHCN, and DGCF.

For each baseline approach, the hyper-parameters were configured according to the default settings

declared in the corresponding paper (see Subsection 5.3.3), and the trainable parameters were fine-tuned

using the validation set. If the performance on the validation set does not improve after 50 epochs, the

training process will be terminated.

5.3.3 Experiment Settings

All experiments were carried out on a Lenovo ThinkStation P910 workstation with dual processors

(Intel Core i9-7920X, 2.9 GHz) and one graphics processing unit (NVIDIA GeForce GTX 1080Ti,

12GB). The operating system of the workstation was Microsoft Windows 10 (64-bit). Our experiment’s

implementation programs were coded with Python 3.8, and the deep learning framework we employed

was PyTorch3 1.8.

The embedding dimension and batch size were set to 160 and 64, respectively, for PTGCN and all

the baselines. The learning and dropout rates were set to 1e-4 and 0.1, respectively, when training

PTGCN on the experimental datasets. Sample instances were randomly split into the training set,

validation set, and test set for the three datasets. More specifically, 80% of sample instances were used

for training, 10% for validation, and the remaining 10% for testing. As with most graph convolution

methods [61], the depth of PTGCN was set to two to model the high-order collaborative signal. The

maximum sequence lengths for the two convolutional layers were set to 50 and 20, respectively. For each

aggregator, the number of self-attention layers was set to one; the number of identical nonlinear layers

was set to six; the number of attention heads in the self-attention layer was set to eight. For more details

of our method, please refer to the implementation source code available at

https://github.com/drhuangliwei/PTGCN.

The seven deep learning-based baselines’ settings are introduced below. We report the best result of

each baseline under its optimal setting on the validation set.

 GRU4Rec+4: The number of hidden layers in the GRU4Rec+ model was set to 100. In the model

training process, we optimized the BPR loss function with a learning rate of 0.05 and a

momentum of 0.2, and the dropout rate was set to 0.2.

 Caser 5 : The Markov order 𝐿 and the target number 𝑇 were set to nine and three,

respectively. For each height ℎ, the number of horizontal filters was 16, and the number of

vertical filters was four. Besides, the number of latent dimensions, the sequence length, and the

number of negative samples were set to 50, 5, and 3, respectively. The Caser model was trained

using Adam with a learning rate of 1e-4 and a dropout rate of 0.5 for fully-connected layers.

 SASRec6: The SASRec model with two self-attention blocks was trained using Adam with a

learning rate of 1e-3. The dropout rate and the maximum sequence length were set to 0.2 and

200, respectively.

 BERT4Rec7: The BERT4Rec model was trained using Adam with a learning rate of 1e-4, 𝛽1

= 0.9, 𝛽2 = 0.999, ℓ2 regularization of 0.01, and linear decay of the learning rate. The gradient

was clipped after its ℓ2 norm reached a threshold of five. The layer number, the head number,

3 https://pytorch.org/
4 https://github.com/hidasib/GRU4Rec
5 https://github.com/graytowne/caser
6 https://github.com/kang205/SASRec
7 https://github.com/FeiSun/BERT4Rec

https://github.com/drhuangliwei/PTGCN

18

the maximum sequence length, the dimensionality of each head, and the mask proportion were

set to 2, 2, 200, 32, and 0.2, respectively.

 TiSASRec8: The TiSASRec model with two self-attention layers was trained using Adam with

a learning rate of 1e-3. The dropout rate and the maximum sequence length were set to 0.2 and

50, respectively. Besides, the max time intervals on the MovieLens and Amazon datasets were

2,048 and 512, respectively, and the ℓ2 regularizations for the three datasets were selected

from {0, 5e-5}.

 DGCF9: The DGCF model was trained using Adam with a learning rate of 1e-3 and an ℓ2

penalty of 1e-3. The smoothing coefficients 𝜆 and 𝛼 in loss function were set to one.

 DHCN10: The DHCN model was trained using Adam with an initial learning rate of 1e-3 and

an ℓ2 regularization of 1e-5. The number of layers was selected from {1, 2, 3} for the three

different datasets.

5.4 Results

5.4.1 Performance Comparison (RQ1)

5.4.1.1 Overall result

To answer RQ1, Table 4 shows the overall performance of the ten approaches on the three datasets.

The underlined numbers stand for the best result of the baselines, and the numbers shown in bold

represent the best result in each row. BPR utilizes only matrix factorization to model user preference,

which cannot capture sequential patterns in user behavior. As a result, it performed the worst among the

seven baselines. Although FPMC, a Markov chain-based method, can model the sequential influence,

they cannot model the long-term effect of user behavior well. Therefore, it obtained sub-optimal results

compared with the neural network-based approach. Among all the neural network-based baselines (i.e.,

GRU4Rec+, Caser, SASRec, BERT4Rec, DHCN, TiSASRec, and DGCF), DGCF, a SOTA approach,

achieved the best performance because it is a dynamic recommendation method that can update the

representations of users and items at any time and utilize the first- and second-order interactions to obtain

the representations of users and items.

PTGCN outperformed the best baseline, DGCF, on the three datasets in terms of the two metrics.

Moreover, the last column of Table 4 indicates a substantial performance improvement of PTGCN over

DGCF. The main reasons may include the following three aspects. First, although DGCF also utilizes the

second-order interactions to update the representations of users and items, it only uses the most recent

interaction to obtain the dynamic representations of users and items in each step of the updating process.

Second, DGCF does not update the node representations of the first-order neighborhood with the second-

order interaction information in the same way as GNNs. It is, therefore, hard to mine the relationship

between nodes in the first- and second-order neighborhoods. Third, DGCF does not take advantage of

the time and position information to model the sequential patterns of user behavior. Hence, PTGCN

achieved the best recommendation results on the three datasets.

5.4.1.2 Recommendation for cold-start users

The data sparsity problem is one of the critical issues that affect the performance of recommender

systems. It is challenging to capture the dynamic preferences of users with few interactions (or called

cold-start users). This study attempts to alleviate this problem by exploiting the high-order connectivity

and modeling temporal dynamics of items. To test the recommendation performance of PTGCN for cold-

8 https://github.com/JiachengLi1995/TiSASRec
9 https://github.com/CRIPAC-DIG/DGCF
10 https://github.com/xiaxin1998/DHCN

19

start users, we grouped such users in the test set according to the number of historical interactions of each

user. More specifically, the number of user groups was set to four for the three datasets. In the MovieLens

dataset, cold-start users were divided into four groups with interactions less than 20, 30, 40, and 50. Since

the average number of interactions per user in the other two Amazon datasets is about 20, we set four

groups of cold-start users whose interactions were less than 15, 20, 25, and 30. Note that 𝑘 was set to

ten in this experiment.

Fig. 3 presents the recommendation performance of the eight neural network-based methods for

different user groups. The X-axis denotes different user groups, and the left and right Y-axes represent

the number of users in a group and an evaluation metric, respectively. As shown in Fig. 3, PTGCN

achieves consistent advantages over the other seven baseline methods for all the user groups with

different sparsity levels. It is worth noting that the performance improvements in the first two groups are

more significant than those of the other ones in terms of 𝑁𝐷𝐶𝐺@10 and 𝑅@10 . For example,

compared with TiSASRec that does not consider the high-order collaborative information and temporal

dynamics of items, the 𝑁𝐷𝐶𝐺@10 values of PTGCN were increased by 40.79% and 28.54% for the

first and second groups, respectively, on the MovieLens dataset. This finding is also valid for the other

two Amazon datasets. Such a result indicates that modeling the high-order connectivity and temporal

dynamics of items is beneficial to improving sequential recommendations for cold-start users. Hence, it

is very promising for our method to solve the user-item interaction sparsity problem in the sequential

recommendation task.

(a) NDCG@10 on MovieLens (b) NDCG@10 on CDs_and_Vinyl (c) NDCG@10 on Movies_and_TV

(d) Recall@10 on MovieLens (e) Recall@10 on CDs_and_Vinyl (f) Recall@10 on Movies_and_TV

Fig. 3. Performance comparison over the sparsity distribution of user groups.

20

Table 3. Comparison among different methods in time complexity.

 FPMC GRU4Rec+ Caser SASRec BERT4Rec DHCN TiSASRec DGCF PTGCN

Markov chain

RNN

CNN

Self-attention

GCN

Time 𝑂(𝑛𝑑) 𝑂(𝑛𝑑2) 𝑂(𝑛𝑠ℎ𝑑2) 𝑂(𝑛𝑘𝑠2𝑑) 𝑂(𝑛𝑘𝑠2𝑑) 𝑂(𝑛𝑘𝑠2𝑑) 𝑂(𝑛𝑘𝑠2𝑑) 𝑂(𝑛𝑠𝑑2) 𝑂(𝑛𝑠𝑙𝑑)

Note: ℎ is the height of a horizontal filter in Caser, 𝑘 is the number of self-attention layers, and is the level of collaborative signals.

Table 4. Comparison among different methods in recommendation performance.

Dataset Metrics BPR FPMC GRU4Rec+ Caser SASRec BERT4Rec DHCN TiSASRec DGCF PTGCN Improvement

MovieLens R@5 0.4012 0.4431 0.5075 0.5758 0.5834 0.5946 0.6012 0.6246 0.6827 0.7651 12.07%

NDGG@5 0.2901 0.3332 0.3913 0.4436 0.4562 0.4658 0.4731 0.4887 0.5269 0.5994 13.86%

R@10 0.5432 0.5763 0.6345 0.7064 0.7124 0.7215 0.7348 0.7591 0.7912 0.8746 10.54%

NDGG@10 0.3342 0.3741 0.4252 0.4813 0.4871 0.4974 0.5012 0.5235 0.5673 0.6351 11.95%

Amazon CDs_and_Vinyl R@5 0.3674 0.4034 0.4661 0.5128 0.5125 0.5235 0.5346 0.5537 0.5824 0.6421 10.25%

NDGG@5 0.2683 0.2854 0.3245 0.3762 0.3716 0.3912 0.3812 0.4034 0.4389 0.4946 12.69%

R@10 0.5218 0.5514 0.6012 0.6348 0.6438 0.6542 0.6645 0.6824 0.6917 0.7686 11.12%

NDGG@10 0.3248 0.3552 0.3762 0.4189 0.4127 0.4238 0.4213 0.4486 0.4923 0.5342 8.51%

Amazon Movies_and_TV R@5 0.3654 0.3879 0.4426 0.4782 0.4882 0.4986 0.5083 0.5293 0.6127 0.6784 10.72%

NDGG@5 0.2458 0.2762 0.3012 0.3389 0.3528 0.3636 0.3619 0.3881 0.4764 0.5341 12.11%

R@10 0.5042 0.5423 0.5829 0.6281 0.6139 0.6239 0.6349 0.6482 0.7347 0.8012 9.05%

NDGG@10 0.2979 0.3349 0.3689 0.3992 0.4071 0.4213 0.4118 0.4267 0.5236 0.5722 9.28%

21

5.4.2 Impact of Temporal Dynamics of Items (RQ2)

RQ2’s goal is to analyze the impact of modeling the temporal dynamics of items on the accuracy

of sequential recommendations. In this experiment, the item embedding was designated as a static value

to learn from input data. Considering that an item’s state does not change over time, we model only the

first-order collaborative information of users. Such a model, similar to TiSASRec, is denoted as PTGCN-

1-user. To compare with PTGCN-1-user, we designed a simplified version of PTGCN, PTGCN-1 (depth

𝐿 = 1), which simultaneously models the temporal dynamics of users and items by utilizing only the

first-order connectivity between users and items.

As shown in Table 5, PTGCN-1 performs better than PTGCN-1-user in terms of the two evaluation

metrics. Specifically, compared with PTGCN-1-user, the 𝑅@5, 𝑁𝐷𝐺𝐺@5, 𝑅@10, and 𝑁𝐷𝐺𝐺@10

values of PTGCN-1 on the three datasets were increased, on average, by 8.99%, 11.50%, 6.52%, and

8.92%, respectively. This result further demonstrates the superiority of introducing the temporal

dynamics of items to the sequential recommendation, which is one of the leading technical contributions

of this study, over existing approaches that only consider user dynamics (or preference).

 Table 5. Impact of temporal dynamics of items on recommendation performance.

Dataset Model R@5 NDGG@5 R@10 NDGG@10

MovieLens PTGCN-1 0.6873 0.5128 0.7984 0.6432

PTGCN-1-user 0.6345 0.4674 0.7643 0.5876

Amazon CDs_and_Vinyl PTGCN-1 0.5876 0.4336 0.7125 0.4764

PTGCN-1-user 0.5332 0.3876 0.6774 0.4432

Amazon Movies_and_TV PTGCN-1 0.6017 0.4659 0.7342 0.4976

PTGCN-1-user 0.5547 0.4126 0.6679 0.4532

5.4.3 Impact of High-order Connectivity (RQ3)

RQ3’s goal is to analyze the impact of high-order connectivity on the performance of sequential

recommendations. To this end, we tested the performance of PTGCN with three different levels of

collaborative signals (or different values of depth 𝐿), namely PTGCN-1, PTGCN-2, and PTGCN-3.

Table 6 presents the comparison results on the three datasets. The numbers shown in bold represent the

best result. PTGCN-0 denotes a PTGCN model without graph convolutions, similar to a matrix

factorization-based model. According to Table 6, we have the following observations:

 Generally speaking, increasing the depth of PTGCN can improve the recommendation

performance. Because PTGCN-0 does not consider sequential patterns of users and items, it

degenerates into a neural network-based collaborative filtering model [53]. Therefore, its

recommendation performance was the worst among the four models. Compared with PTGCN-

1, which only considers the first-order neighborhood in the bipartite graph, PTGCN-2

achieved consistent performance improvements over PTGCN-1 across all the datasets.

 When stacking more graph convolutional layers on the top of PTGCN-2, we find that the

overfitting problem for PTGCN-3 occurred on the three datasets. Although PTGCN-3

performed slightly worse than PTGCN-2, it still outperformed PTGCN-1. This problem

happened because a deep architecture of graph convolutional layers may bring noise data to

the representation learning of user features and item features. This result is also consistent

with previous studies that stacking multiple GCN layers will result in over-smoothing [61];

that is to say, all vertices on the bipartite graph will converge to the same value. Therefore,

setting two GCN layers for PTGCN is sufficient to capture the high-order connectivity.

22

Table 6. Impact of high-order connectivity on recommendation performance.

Dataset Model R@5 NDGG@5 R@10 NDGG@10

MovieLens PTGCN-0 0.4634 0.4014 0.6548 0.4235

PTGCN-1 0.5557 0.4301 0.7012 0.4573

PTGCN-2 0.7651 0.5994 0.8746 0.6351

PTGCN-3 0.7458 0.5834 0.8623 0.6237

Amazon CDs_and_Vinyl PTGCN-0 0.4437 0.3326 0.5537 0.3546

PTGCN-1 0.5126 0.3756 0.6342 0.4326

PTGCN-2 0.6421 0.4946 0.7686 0.5342

PTGCN-3 0.6348 0.4865 0.7534 0.5215

Amazon Movies_and_TV PTGCN-0 0.4537 0.3352 0.5876 0.3657

PTGCN-1 0.5432 0.3875 0.6457 0.4368

PTGCN-2 0.6784 0.5341 0.8012 0.5722

PTGCN-3 0.6654 0.5213 0.7895 0.5576

5.5 Discussion

5.5.1 Impact of Data Partitioning

In machine learning, the amount of training data may affect a model’s representation ability, and a

small-size dataset may cause an overfitting problem. We first analyzed the impact of data partitioning on

model performance to test the expression ability of the PTGCN model on training sets of different sizes.

More specifically, we defined four commonly-used split ratios for the training, validation, and test sets,

i.e., 50/25/25, 60/20/20, 70/15/15, and 80/10/10, and carried out the corresponding experiments on the

three datasets. Fig. 4 shows the change in model performance with different data split ratios. The X-axis

denotes four different split ratios, and the Y-axis represents the value of an evaluation metric. We can

find from Fig. 4 that all the four metrics for model performance increase, with a growing proportion of

10% for the training set, suggesting that increasing the amount of training data can improve PTGCN’s

recommendation performance.

(a) MovieLens (b) CDs_and_Vinyl (c) Movies_and_TV

Fig. 4. Model performance change with different training/validation/test split ratios.

5.5.2 Sensitive Analysis of Parameters

5.5.2.1 Embedding size

The embedding dimension impacts the recommendation performance of PTGCN. Generally

speaking, the higher the dimension of embeddings processed by a model, the stronger the model’s

representation ability [62]. However, at the same time, excessively high embedding dimensions often

cause the overfitting problem. Fig. 5 presents the impact of this parameter on the recommendation

performance of PTGCN on the three datasets. When the dimension of embeddings processed by PTGCN

is smaller than 160, the 𝑅@10 and 𝑁𝐷𝐶𝐺@10 values increase with the dimension of embeddings,

indicating that the expressive ability of PTGCN is improved gradually. However, when the embedding

dimension exceeds 160, the 𝑅@10 and 𝑁𝐷𝐶𝐺@10 values start to decrease, implying that the model

23

may encounter overfitting. Therefore, the number of embedding dimensions of PTGCN was set to 160

in our experiments.

Fig. 5. Performance tuning with different embedding dimensions.

5.5.2.2 Number of self-attention layers

Generally speaking, if the PTGCN aggregator has more self-attention layers, the model will have a

powerful expressive ability and thus obtain better recommendation performance. However, at the same

time, stacking more self-attention layers will increase the computation load of the model. We need to

make a trade-off between expressive ability and computation load in our experiment. Due to the

limitation of hardware resources, the maximum number of self-attention layers was set to eight. Fig. 6

shows the impact of this parameter on the recommendation performance of PTGCN on the three datasets.

As shown in Fig. 6, the model obtains the best recommendation result when the aggregator has only

one self-attention layer. As the number of self-attention layers increases, the model’s performance

remains nearly unchanged. In particular, with the increase of self-attention layers, there is a decline in

recommendation performance on the MovieLens dataset. The reasons for this unexpected result may

include two aspects. First, stacking multiple graph convolutional layers is, in essence, equivalent to

deeply modeling the correlation between interactions. If each convolutional layer in PTGCN contains

many self-attention layers, the model will become more complex, possibly leading to overfitting. Second,

experimental data is insufficient for training complex models with more self-attention layers. The

overfitting problem may also occur in this case.

Fig. 6. Performance tuning with different self-attention layers.

24

5.5.3 Model Training Efficiency

5.5.3.1 Training time per batch

We also analyzed the training efficiency of eight methods based on neural networks, i.e., GRU4Rec+,

Caser, SASRec, BERT4Rec, DHCN, TiSASRec, DGCF, and PTGCN. For the eight methods, the batch

size and the embedding dimension were set to 64 and 160, respectively, to make a fair comparison under

the same setting. The sequence lengths of the baseline methods were set according to the default values

in the corresponding papers. In addition to the number of model parameters (denoted as #Params), we

calculated the time of training one batch under the same experimental environment for each of the three

datasets. Table 7 presents a detailed comparison among the eight methods regarding training time per

batch on the three datasets. The numbers shown in bold represent the best result in each row, and the

underlined numbers stand for the second-best result in the corresponding row.

DGCF has the maximum number of model parameters, while DHCN has the minimum number of

model parameters. The number of PTGCN’s parameters is 2.5 times that of DHCN; in other words,

PTGCN is more complex than DHCN. Therefore, it needs more GPU memory to store deep learning

models than SASRec, BERT4Rec, DHCN, and TiSASRec in the training process. It is worth noting that

one standard GPU card with 3GB memory is sufficient to train the PTGCN models. Even then, our

method has the third-fastest training speed regarding training time per batch. Because GRU4Rec+ utilizes

GRU to update the embeddings of items, the sequence length in each batch was set to one during the

model training process. As a result, it achieved the best training efficiency. However, its recommendation

performance was the worst among the eight methods. DGCF can obtain suboptimal recommendation

performance and training efficiency on the three datasets. Compared with DGCF, our method achieved

better model performance while spending just a bit more training time per batch (the reasons refer to

Subsubsubsection 5.4.1.1). Therefore, this experimental result indicates that PTGCN can better balance

recommendation performance and training efficiency than the other seven methods.

5.5.3.2 Convergence analysis

As mentioned above, PTGCN uses Adam [54] to optimize the objective function. After calculating

the training time per batch, we further analyzed the convergence of PTGCN when it was trained on the

three datasets. The maximum epoch of model training and the learning rate were set to 50 and 1e-4,

respectively. The patience parameter specifies the number of iterations where the loss on the training set

is greater than or equal to the previously lowest loss before the model training process ends. In this

experiment, this parameter was set to 25. Since TiSASRec, DGCF, and DHCN are three SOTA methods

that performed well on the three datasets in our experiment, we also compared PTGCN with the three

baselines in the convergence rate.

(a) MovieLens (b) CDs_and_Vinyl (c) Movies_and_TV

Fig. 7. Convergence analysis.

25

Table 7. Comparison among different methods in training efficiency.

Dataset Metric GRU4Rec+ Caser SASRec BERT4Rec DHCN TiSASRec DGCF PTGCN

 #Params 2,762,426 6,105,060 911,840 1,724,861 727,680 950,560 39,147,668 1,842,880

MovieLens Time(ms)/batch 13.9 143.1 25.4 31.6 706.3 34.4 16.5 22.1

R@10 0.6345 0.7064 0.7124 0.7215 0.7348 0.7591 0.7912 0.8746

NDGG@10 0.4252 0.4813 0.4871 0.4974 0.5012 0.5235 0.5673 0.6351

Amazon CDs_and_Vinyl Time(ms)/batch 11.6 125.7 23.6 29.3 689.5 32.8 15.4 21.5

R@10 0.6012 0.6348 0.6438 0.6542 0.6645 0.6824 0.6917 0.7686

NDGG@10 0.3762 0.4189 0.4127 0.4238 0.4213 0.4486 0.4923 0.5342

Amazon Movies_and_TV Time(ms)/batch 12.3 133.6 24.7 31.5 678.4 33.2 15.9 21.7

R@10 0.5829 0.6281 0.6139 0.6239 0.6349 0.6482 0.7347 0.8012

 NDGG@10 0.3689 0.3992 0.4071 0.4213 0.4118 0.4267 0.5236 0.5722

26

Fig. 7 presents the convergence trends of PTGCN, TiSASRec, DGCF, and DHCN concerning the

average loss on the three datasets. In each plot of Fig. 7, the X-axis denotes the epoch number, and the

Y-axis represents the average loss. It is evident from Fig. 7 that the training losses of the four approaches

continue to decline, but they are not substantially increased after 20 epochs and tend to be stable. During

the training process of PTGCN, the loss value generated in the later stage (> 20 epochs) was much smaller

than that generated in the early stage, which results in good convergence of evaluation metrics. In

particular, the PTGCN model quickly converged to a stable state on the MoiveLens and Amazon

Movies_and_TV datasets.

5.5.4 Impacts of Temporal and Positional Encodings

It has been recognized that time information and position information are two critical factors

affecting the performance of sequential recommendation models. To further analyze the impacts of these

two types of information on the recommendation performance of our method, we designed three variants

of PTGCN, namely Non-GCN, PGCN, and TGCN. Non-GCN denotes that the PTGCN model does not

consider any temporal and positional information, PGCN removes the time information fed to the

PTGCN model, and TGCN only considers time information while disregarding the position information

of interactions. More specifically, the time embedding and position embedding can be easily removed or

added in the embedding layer of PTGCN. We then conducted an ablation study to analyze the difference

between time embedding and position embedding through a detailed comparison among PTGCN, PGCN,

and TGCN. Table 8 shows the recommendation performance of PTGCN and the three variants on the

three datasets.

Table 8. Impacts of temporal and positional encodings on recommendation performance.

Dataset Model R@5 NDGG@5 R@10 NDGG@10

MovieLens Non-GCN 0.7053 0.5351 0.8317 0.5763

PGCN 0.7398 0.5721 0.8553 0.6098

TGCN 0.7332 0.5612 0.8524 0.6001

PTGCN 0.7651 0.5994 0.8746 0.6351

Amazon CDs_and_Vinyl Non-GCN 0.5984 0.4436 0.7187 0.4517

PGCN 0.6243 0.4678 0.7452 0.4786

TGCN 0.6214 0.4637 0.7413 0.5102

PTGCN 0.6421 0.4946 0.7686 0.5342

Amazon Movies_and_TV Non-GCN 0. 6145 0.4878 0.7435 0.5129

PGCN 0.6467 0.5154 0.7789 0.5478

TGCN 0.6437 0.5125 0.7756 0.5436

PTGCN 0.6784 0.5341 0.8012 0.5722

From Table 8, we have the following main findings:

 After leveraging time information or position information solely, our model’s performance

was consistently improved on the three datasets. Compared with Non-GCN, the four metrics

of PGCN were, on average, increased by 4.82%, 6.01%, 3.76%, and 6.19%, respectively.

Compared with Non-GCN, the four metrics of TGCN were, on average, increased by 4.18%,

4.82%, 3.32%, and 7.69%, respectively. Such results indicate that the time and position

embeddings are helpful to improve the recommendation performance of our model.

 The performance of our model was also consistently improved on the three datasets when

considering time information and position information simultaneously. Compared with PGCN,

the four metrics of PTGCN were, on average, increased by 3.72%, 4.71%, 2.75%, and 6.74%,

respectively. Compared with TGCN, PTGCN’s metrics were, on average, increased by 4.36%,

5.90%, 3.20%, and 5.27%. Such results suggest that the position embedding does not overlap

27

the time embedding in enhancing model performance. In other words, the impacts of these

two types of information on our method are not equivalent, and they can be used together.

5.5.5 Limitations

As mentioned in Subsection 5.2, we filtered out a few inactive users and items in the three datasets

to alleviate the cold-start problem, one of the most common problems in the field of recommender

systems. Recently, Qian et al. [63] proposed a strict cold-start scenario, where some users/items do not

appear in the training set and, at the same time, they do not have any user-item interactions during testing.

The objective of this study is not to address the cold-start problem of new users or items. Considering

the challenge of the sequential recommendation task, we did not test the recommendation performance

of PTGCN in this extreme scenario. We need to improve PTGCN further to work in the strict cold-start

recommendation scenario. Besides, PTGCN does not consider whether the recommended item is new

for the target user. In other words, the recommended item is a new one with which the target user has

never interacted. Although the next new item recommendation is helpful in some specific application

scenarios [64], it is more challenging, and we will investigate it systematically.

The likely bias in user ratings or reviews exists in most publicly available datasets used for

recommender systems, affecting recommendation approaches’ performance to some extent. Unlike some

recent studies [65], [66], we did not denoise such biased ratings or reviews to improve recommendation

performance in this study. Besides, we have demonstrated the effectiveness of PTGCN on three real-

world datasets of different sizes. In the three datasets, users vary from six thousand to 84 thousand.

However, the scalability of PTGCN up to large-scale datasets containing millions of users remains

unexplored. Therefore, one of our future works is to improve PTGCN from the above two aspects.

Performance evaluation using sampled metrics is a common practice for item recommendation.

However, a recent work [67] shows that a few commonly-used sampled metrics, such as NDCG, Recall,

and Average Precision, are high-bias and low-variance estimators to measure the performance of

recommender systems, although they can speed up calculating metric values in research papers. In [67],

Krichene and Rendle also proposed corrected metrics to improve the quality of the rank estimate,

however, at the cost of increased variance. Considering that such corrected metrics have not been widely

recognized in the academy and industry, we did not evaluate the recommendation performance of the

proposed and baseline approaches by the corrected metrics in this work. However, we acknowledge that

the results may become inconsistent with the exact metrics if we do not use the corrected metrics.

6 Conclusion

The sequential recommendation task is challenging for recommender systems to recommend the

next item accurately. Although existing methods based on Markov chains and the RNN architecture can

obtain good results, they have different shortcomings. We propose a new sequential recommendation

model by introducing the GCN architecture in this article. In particular, the proposed model can

simultaneously model the temporal dynamics of both users and items. Also, it can capture high-level

interaction information (i.e., the higher-order connectivity) between users and items to generate more

expressive representations for users and items. Empirical studies on three real-world datasets

demonstrate the advantages of our model over competitive baselines in the trade-off between

recommendation performance and training efficiency. Moreover, an ablation study validates the

effectiveness and rationale of modeling the temporal dynamics of items and the high-order connectivity.

Our future work focuses on the following three aspects. First, self-supervised learning has great

28

potential to enhance sequential recommendation quality [42], [43]. We plan to integrate self-supervised

learning, such as SimCLR [68] and MoCo [69], into PTGCN and leverage more auxiliary information

sources, such as knowledge graphs and social networks [70], in addition to time and position information.

Second, the online session-based recommendation is challenging for recommender systems developed

offline. We will explore more efficient solutions enabling PTGCN to work in online session-based

scenarios for massive users. Third, since the strict cold-start recommendation is an interesting problem,

we intend to improve PTGCN further so that it can work in such a scenario.

Acknowledgment

This work was partially supported by the National Key Research and Development Program of

China (No. 2020AAA0107705) and the National Science Foundation of China (Nos. 61972292 and

62006023). Yutao Ma is the corresponding author of this article.

Reference

[1] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized

Markov chains for next-basket recommendation. In Proceedings of the 19th International

Conference on World Wide Web. ACM, 811–820.

[2] Ruining He, Wang-Cheng Kang, and Julian J. McAuley. 2017. Translation-based recommendation.

In Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 161–169.

[3] Ruining He and Julian J. McAuley. 2016. Fusing similarity models with Markov chains for sparse

sequential recommendation. In Proceedings of the 16th IEEE International Conference on Data

Mining. IEEE Computer Society, 191–200.

[4] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang. 2018. Improving

sequential recommendation with knowledge-enhanced memory networks. In Proceedings of the

41st International ACM SIGIR Conference on Research & Development in Information Retrieval.

ACM, 505–514.

[5] Wang-Cheng Kang and Julian J. McAuley. 2018. Self-attentive sequential recommendation. In

Proceedings of the 18th IEEE International Conference on Data Mining. IEEE Computer Society,

197–206.

[6] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for

session-based recommendations. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management. ACM, 843–852.

[7] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-based

recommendations with recurrent neural networks. arXiv:1511.06939. Retrieved from

https://arxiv.org/abs/1511.06939.

[8] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional

sequence embedding. In Proceedings of the 11th ACM International Conference on Web Search and

Data Mining. ACM, 565–573.

[9] Jiacheng Li, Yujie Wang, and Julian J. McAuley. 2020. Time interval aware self-attention for

sequential recommendation. In Proceedings of the 13th ACM International Conference on Web

Search and Data Mining. ACM, 322–330.

[10] Liwei Huang, Yutao Ma, Yanbo Liu, and Arun Kumar Sangaiah. 2020. Multi-modal Bayesian

https://arxiv.org/abs/1511.06939

29

embedding for point-of-interest recommendation on location-based cyber-physical-social networks.

Future Gener. Comput. Syst. 108, (2020), 1119–1128.

[11] Liwei Huang, Yutao Ma, Shibo Wang, and Yanbo Liu. 2019. An attention-based spatiotemporal

LSTM network for next POI recommendation. IEEE Trans. Serv. Comput., (2019). Retrieved from

https://doi.org/10.1109/TSC.2019.2918310.

[12] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-aware sequential

recommendation. In Proceedings of the 16th IEEE International Conference on Data Mining. IEEE

Computer Society, 1053–1058.

[13] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic embedding trajectory in

temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. ACM, 1269–1278.

[14] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph

collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM, 165–174.

[15] Shoujin Wang, Liang Hu, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Longbing Cao. 2020.

Intention nets: psychology-inspired user choice behavior modeling for next-basket prediction. In

Proceedings of the 34th AAAI Conference on Artificial Intelligence. AAAI Press, 6259–6266.

[16] Lei Guo, Li Tang, Tong Chen, Lei Zhu, Quoc Viet Hung Nguyen, and Hongzhi Yin. 2021. DA-

GCN: a domain-aware attentive graph convolution network for shared-account cross-domain

sequential recommendation. In Proceedings of the 30th International Joint Conference on Artificial

Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2483–2489.

[17] Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates. 2020. Memory

augmented graph neural networks for sequential recommendation. In Proceedings of the 34th AAAI

Conference on Artificial Intelligence. AAAI Press, 5045–5052.

[18] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li.

2021. Sequential recommendation with graph neural networks. In Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information Retrieval.

ACM, 378–387.

[19] Cheng Hsu and Cheng-Te Li. 2021. RetaGNN: relational temporal attentive graph neural networks

for holistic sequential recommendation. In Proceedings of the Web Conference 2021. ACM, 2968–

2979.

[20] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure

Leskovec. 2018. Graph convolutional neural networks for web-scale recommender systems. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. ACM, 974–983.

[21] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph convolutional matrix

completion. arXiv:1706.02263. Retrieved from https://arxiv.org/abs/1706.02263.

[22] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S. Yu. 2018. Spectral collaborative

filtering. In Proceedings of the 12th ACM Conference on Recommender Systems. ACM, 311–319.

[23] Jun Zhao, Zhou Zhou, Ziyu Guan, Wei Zhao, Wei Ning, Guang Qiu, and Xiaofei He. 2019. Intentgc:

a scalable graph convolution framework fusing heterogeneous information for recommendation. In

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. ACM, 2347–2357.

[24] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting graph based

https://doi.org/10.1109/TSC.2019.2918310
https://arxiv.org/abs/1706.02263

30

collaborative filtering: A linear residual graph convolutional network approach. In Proceedings of

the 34th AAAI Conference on Artificial Intelligence. AAAI Press, 27–34.

[25] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He, Chen Ma, and

Mark Coates. 2020. Neighbor interaction aware graph convolution networks for recommendation.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 1289–1298.

[26] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020.

LightGCN: Simplifying and powering graph convolution network for recommendation. In

Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 639–648.

[27] Rajiv Pasricha and Julian J. McAuley. 2018. Translation-based factorization machines for

sequential recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems.

ACM, 63–71.

[28] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, (8)

1997, 1735–1780.

[29] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive

session-based recommendation. In Proceedings of the 26th ACM Conference on Information and

Knowledge Management. ACM, 1419–1428.

[30] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha.

2018. Sequential recommendation with user memory networks. In Proceedings of the 11th ACM

International Conference on Web Search and Data Mining. ACM, 108–116.

[31] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, Maarten de Rijke. 2019. A

collaborative session-based recommendation approach with parallel memory modules. In

Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 345–354.

[32] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. 2017.

Personalizing session-based recommendations with hierarchical recurrent neural networks. In

Proceedings of the 11th ACM Conference on Recommender Systems. ACM, 130–137.

[33] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for sequential

recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. ACM, 825–833.

[34] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin, Nitesh V. Chawla.

2019. Online purchase prediction via multi-scale modeling of behavior dynamics. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

ACM, 2613–2622.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st

Annual Conference on Neural Information Processing Systems. 5998–6008.

[36] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec:

Sequential recommendation with bidirectional encoder representations from Transformer. In

Proceedings of the 28th ACM International Conference on Information and Knowledge

Management. ACM, 1441–1450.

[37] Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, and Guihai Chen. 2019. Dual sequential

prediction models linking sequential recommendation and information dissemination. In

31

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. ACM, 447–457.

[38] Xiaowen Huang, Shengsheng Qian, Quan Fang, Jitao Sang, and Changsheng Xu. 2018. CSAN:

Contextual self-attention network for user sequential recommendation. In Proceedings of the 26th

ACM International Conference on Multimedia. ACM, 447–455.

[39] Jiarui Qin, Kan Ren, Yuchen Fang, Weinan Zhang, and Yong Yu. 2020. Sequential recommendation

with dual side neighbor-based collaborative relation modeling. In Proceedings of the 13th ACM

International Conference on Web Search and Data Mining. ACM, 465–473.

[40] Liwei Huang, Yutao Ma, Yanbo Liu, and Keqing He. 2021. DAN-SNR: A deep attentive network

for social-aware next point-of-interest recommendation. ACM Trans. Internet Techn. 21, (1) 2021,

2:1–2:27.

[41] Ruiyang Ren, Zhaoyang Liu, Yaliang Li, Wayne Xin Zhao, Hui Wang, Bolin Ding, and Ji-Rong

Wen. 2020. Sequential recommendation with self-attentive multi-adversarial network. In

Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 89–98.

[42] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang,

and Ji-Rong Wen. 2020. S3-Rec: Self-supervised learning for sequential recommendation with

mutual information maximization. In Proceedings of the 29th ACM International Conference on

Information & Knowledge Management. ACM, 1893–1902.

[43] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang. 2021. Self-

supervised hypergraph convolutional networks for session-based recommendation. In Proceedings

of the 35th AAAI Conference on Artificial Intelligence. AAAI Press, 4503–4511.

[44] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. 2020. Next-item

recommendation with sequential hypergraphs. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval. ACM, 1101–1110.

[45] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hypergraph neural

networks. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence. AAAI Press,

3558–3565.

[46] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha P.

Talukdar. 2019. HyperGCN: A new method for training graph convolutional networks on

hypergraphs. In Proceedings of the 32nd Annual Conference on Neural Information Processing

Systems. 1509–1520.

[47] Yugang Ji, Mingyang Yin, Yuan Fang, Hongxia Yang, Xiangwei Wang, Tianrui Jia, Chuan Shi.

2020. Temporal heterogeneous interaction graph embedding for next-item recommendation. In

Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, Part III, 314–329.

[48] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on

large graphs. In Proceedings of the 30th Annual Conference on Neural Information Processing

Systems. 1024–1034.

[49] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,

Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,

Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & deep learning for recommender systems.

In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[50] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. 2020. Inductive

32

representation learning on temporal graphs. In Proceedings of the 8th International Conference on

Learning Representations. Retrieved from https://openreview.net/forum?id=rJeW1yHYwH.

[51] Chang Zhou, Jinze Bai, Junshuai Song, Xiaofei Liu, Zhengchao Zhao, Xiusi Chen, and Jun Gao.

2018. ATRank: An attention-based user behavior modeling framework for recommendation. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 4564–4571.

[52] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful are graph neural

networks? In Proceedings of the 7th International Conference on Learning Representations.

Retrieved from https://openreview.net/forum?id=ryGs6iA5Km.

[53] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural

collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web.

ACM, 173–182.

[54] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv:1412.6980. Retrieved from https://arxiv.org/abs/1412.6980.

[55] Ruining He and Julian J. McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering. In Proceedings of the 25th International Conference

on World Wide Web. ACM, 507–517.

[56] Jianmo Ni, Jiacheng Li, and Julian J. McAuley. 2019. Justifying recommendations using distantly-

labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing. Association for Computational Linguistics, 188–197.

[57] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR:

Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th Conference on

Uncertainty in Artificial Intelligence. AUAI Press, 452–461.

[58] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, Domonkos Tikk. 2015. Session-based

recommendations with recurrent neural networks. arXiv:1511.06939. Retrieved from

https://arxiv.org/abs/1511.06939.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2019. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies. Association for Computational Linguistics 4171–4186.

[60] Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, Philip S. Yu. 2020. Dynamic graph

collaborative filtering. In Proceedings of the 20th IEEE International Conference on Data Mining.

IEEE Computer Society, 322–331.

[61] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,

Changcheng Li, and Maosong Sun. 2020. Graph neural networks: A review of methods and

applications. AI Open 1, (2020), 57–81.

[62] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction by learning an

invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. IEEE Computer Society, Volume 2, 1735–1742.

[63] Tieyun Qian, Yile Liang, Qing Li, and Hui Xiong. 2020. Attribute graph neural networks for strict

cold start recommendation. IEEE Trans. Knowl. Data Eng., (2020). Retrieved from

https://doi.org/10.1109/TKDE.2020.3038234.

[64] Xin Li, Dongcheng Han, Jing He, Lejian Liao, and Mingzhong Wang. 2019. Next and next new

POI recommendation via latent behavior pattern inference. ACM Trans. Inf. Syst. 37, 4 (2019),

https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=ryGs6iA5Km
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1511.06939
https://doi.org/10.1109/TKDE.2020.3038234

33

46:1–46:28.

[65] Jiao Dai, Mingming Li, Songlin Hu, and Jizhong Han. 2018. A hybrid model based on the rating

bias and textual bias for recommender Systems. In Proceedings of the 25th International

Conference on Neural Information Processing. Springer, Part II, 203–214.

[66] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2021. Combating selection biases in

recommender systems with a few unbiased ratings. In Proceedings of the 14th ACM International

Conference on Web Search and Data Mining. ACM, 427–435.

[67] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

ACM, 1748–1757.

[68] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020. A simple

framework for contrastive learning of visual representations. In Proceedings of the 37th

International Conference on Machine Learning. PMLR, 1597–1607.

[69] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020. Momentum contrast

for unsupervised visual representation learning. In Proceedings of the 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition. IEEE Computer Society, 9726–9735.

[70] Hanhua Chen, Hai Jin, and Shaoliang Wu. 2016. Minimizing inter-server communications by

exploiting self-similarity in online social networks. IEEE Trans. Parallel Distrib. Syst. 27, 4 (2016),

1116–1130.

