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Abstract—Mobile notification systems have taken a major role
in driving and maintaining user engagement for online platforms.
They are interesting recommender systems to machine learning
practitioners with more sequential and long-term feedback con-
siderations. Most machine learning applications in notification
systems are built around response-prediction models, trying to
attribute both short-term impact and long-term impact to a
notification decision. However, a user’s experience depends on a
sequence of notifications and attributing impact to a single notifi-
cation is not always accurate, if not impossible. In this paper, we
argue that reinforcement learning is a better framework for noti-
fication systems in terms of performance and iteration speed. We
propose an offline reinforcement learning framework to optimize
sequential notification decisions for driving user engagement.
We describe a state-marginalized importance sampling policy
evaluation approach, which can be used to evaluate the policy
offline and tune learning hyperparameters. Through simulations
that approximate the notifications ecosystem, we demonstrate the
performance and benefits of the offline evaluation approach as a
part of the reinforcement learning modeling approach. Finally, we
collect data through online exploration in the production system,
train an offline Double Deep Q-Network and launch a successful
policy online. We also discuss the practical considerations and
results obtained by deploying these policies for a large-scale
recommendation system use-case.

Index Terms—Reinforcement learning, offline evaluation, Mo-
bile notifications

I. INTRODUCTION

As online services and applications provide more and
more content and functionality, communications with users
are increasingly crucial for them to keep users informed and
engaged. Mobile notifications are a major channel that services
use to highlight important and timely content to the users.
With the right content at the right time, notifications can
inform users of important activity and bring more value to
users. Since users have limited attention, notifications can help
remind users of important values that they would need to be
aware of to increase engagement with the platform. There are
mainly two categories of responses from sending a notifica-
tion: content engagement responses (e.g., clicks, dismisses)
and site engagement responses (e.g., user visits, notification

amuralidharan @linkedin.com

Preetam Nandy
LinkedIn Corporation
Mountain View, CA, USA
pnandy @linkedin.com

Miao Cheng
LinkedIn Corporation
Mountain View, CA, USA
miacheng @linkedin.com

disables). Typical recommender systems usually care more
about the content engagement responses, while for notification
systems, site engagement responses are as important if not
more. Unlike content engagement responses, user engagement
may not be attributed to a single notification, but rather a
sequence of notifications, presenting an attribution challenge
for modeling. Another challenge for modeling site engagement
responses is that the short-term (within a few hours) impact
and long-term (over a week or longer) impact may diverge.
Although intrusive and frequent notifications can bring users
back to site, they could create notification fatigue or cause
notification disablement, which hurts user engagement in the
long run [1], [2f]. These unique challenges give rise to an
interesting application area to machine learning practitioners
with more sequential and long-term considerations.

Most notification systems [3|]-[7] are built around response
prediction models. To overcome the attribution challenge of
the site engagement responses, a state-transition model is
proposed to predict the additional user visits attributed to a
single notification in [5]]. The volume optimization framework
proposed in [7]] attributes site engagement responses to a
weekly notification count rather than to a single notification.
These response predictions are then compared with optimal
thresholds from online or offline threshold search based on
multi-objective optimizations [8]. While such systems have
demonstrated good empirical performance over CTR-based
systems, they could be sub-optimal in decision making. First,
the attribution is still approximate and cannot fully capture
the sequential impact. For example, the volume optimization
framework in [7|] assumes the site engagement response only
depends on the volume sent to a user without considering
the spacing of notification deliveries under the same volume.
Secondly, the online or offline threshold tuning is often
heuristic, and may not achieve the optimality defined by the
multi-objective optimization. Practically, response prediction
model improvement (e.g., in terms of offline AUC) may not
necessarily lead to better online performance when couple with
the threshold tuning. While there are efforts to automate and



optimize this tuning [9]], it could slow down model iteration
by weeks from trained response models to a fully deployed
system. And the model iteration speed is a very important
consideration to real world systems that need to be improved
and updated constantly.

In comparison, reinforcement learning is a principled ap-
proach to optimize for a sequence of well-coordinated noti-
fication decisions with respect to the defined objective. The
attribution challenge comes down to the definition of the
rewards. If rewards from the environment are defined properly,
the aggregated rewards (the total return) will be consistent with
the business objective. We explain our reward definition in
Section Reinforcement learning is a superior framework
to emphasize long-term impact with the aggregated rewards
over a long or infinite horizon. Moreover, the offline reinforce-
ment learning framework we propose comes with efficient
offline policy evaluation, which provide consistency between
offline evaluation and online performance. It could also avoid
costly online tuning and speed up model iteration as described
in Section and Section [V]

Applying reinforcement learning to a large-scale online
system faces several challenges. Online reinforcement learning
training with online exploration may not be feasible due
to high infrastructure costs, unknown time to converge, and
unbounded risks of deteriorating user experience. The fact that
a large proportion of reinforcement learning algorithms and
research are more focused towards online learning paradigm
is also one of the biggest obstacles to their widespread
adoption [10]. Alternatively, offline reinforcement learning
[10]-[16] has started to draw more research attention in
recent years due to its well-controlled risk and a smoother
fit into existing machine learning infrastructure. There are
theoretical and practical challenges in efficient offline policy
learning, and accurate offline policy evaluation [17]-[20] due
to the notorious Deadly Triad problem (i.e., the problem of
instability and divergence arising when combining function
approximation, bootstrapping and offline training) [21]], [22].
Compared with classical control problems, the low signal-to-
noise ratio and potential non-linearity in user behavior re-
quire thoughtful Markov Decision Process (MDP) formulation,
adequate function approximation, and exploratory behavior
policy design to learn effective policies offline. Additionally,
it is important to have a reliable offline off-policy evaluation
algorithm to ensure safe and efficient policy iterations [20].

In this paper, we propose an offline reinforcement learn-
ing approach to optimize for site engagement in notification
systems. We summarize our contribution

o We formulate a MDP to model the notification system
and specify an offline learning approach based on the
(Double) Deep Q-Network.

« We propose a state-marginalized importance sampling al-
gorithm for offline evaluation to reduce the high variance
of the existing importance sampling based algorithms.

o We evaluate our approach using a simplified simulation
setup that helps mimic the online process we optimize.

We use this simulation environment to validate and
benchmark offline evaluation methods.

o« We present a real-world fully-deployed application to
demonstrate how such a reinforcement learning paradigm
can improve site user engagement and achieve better
performance than the supervised approach.

The rest of this paper is organized as follows. Section
reviews related work. In Section [[II, we introduce the problem
of notification delivery time optimization and its Markov
Decision Process formulation. Section [[V] introduces the un-
derlying methodology for offline training, offline evaluation
and how we build up a simulation environment to mimic the
real-world application. Section [V| carries out both simulated
and real-world experiments to demonstrate how the proposed
framework works. Finally, Section [V]| concludes this work and
discusses our future work.

II. RELATED WORK

Early work in [3]], [4] proposed a volume optimization
framework based on supervised model predictions. The frame-
work was originally designed for emails and was later ex-
tended to notification applications [6]], [7] with more consid-
erations on real-time relevance and machine learning infras-
tructures. Other related work [23]—-[25] focused on improving
the prediction with supervised learning. A survival-based state-
transition model [5] was proposed to drive user engagement
through mobile notifications with heuristic global trade-offs
between short-term and long-term. A bandit-based solution
[26] was proposed to improve long-term user engagement
in a recommender system. These approaches worked well
in practice but could be suboptimal in sequential decision
making. We argue in this paper that a reinforcement learning
framework is a better fit to notification systems.

In terms of notification fatigue and unnecessary interrup-
tions, several notification systems [27]—[30] have been pro-
posed for detecting opportune timings for delivery of notifica-
tions, leveraging various types of sensing and machine learning
technologies. Such an adaptive notification system was evalu-
ated in the product environment and showed impressive click-
through rate increase when powered by supervised machine
learning [2]], [31]. We introduce a similar production system
at LinkedIn in Section [III-Al which we call it “Notification
Spacing System”. A state-of-art survival model [5] is used
in this system as the supervised benchmark for our proposed
reinforcement learning. This survival model was the best
performing production model at LinkedIn before we introduce
this work. In this paper, we illustrate how reinforcement
learning can be applied to such large-scale production systems
and is compared against the supervised benchmark.

Recently, Chen et al. [13]] applied a Policy Gradient learning
in YouTube recommender system with Off-policy correction
for offline reinforcement learning. Ie et al. [14] proposed an
offline reinforcement learning for slate-based recommender
systems, where the large action space can become intractable
for many reinforcement learning algorithms. Zou et al. [32]]
designed an offline framework to learn a Q-network and a



separate S-network from a simulated environment to assist
the Q-network. In comparison, our simulated environment is
only used for validation with ground truth, and the deployed
policy takes no information from the simulated environment to
avoid unknown bias. While there are a lot of efforts to apply
reinforcement learning to real-world applications [33[]—[35],
driving long-term engagement through notification systems
presents its unique challenges and opportunities for reinforce-
ment learning due to its sequential planning and short-term
long-term trade-off.

Offline evaluation is another crucial research area for real-
world applications. Various importance sampling methods
[17]-[19]], [36] have been applied to correct the mismatch
in the distributions under the behavior policy and evaluated
policy. While these importance sampling based estimators are
either unbiased or have little bias, the variances of them tend
to be high for a long sequence. A marginalized importance
sampling [20] was recently proposed to reduce variances for
long-horizon MDP environments, with extensive theoretical
and empirical studies. We choose this method for the offline
evaluation and apply some practical modifications, namely a
novel dimension reduction technique and discretization.

III. NOTIFICATION DELIVERY TIME OPTIMIZATION

Online platforms use mobile notifications to communicate
timely, important, and actionable content to users. Some
notifications, due to their nature, user expectation, or product
constraints, need to be delivered in near real-time. Examples
of these include content notifications described in [6] and
notifications about messages sent to users. There are other
notifications, which are not time-sensitive, and they would
be relevant if they are delivered within a predefined time
window. Examples of these notifications include events from
your network, such as your colleague’s work anniversary and
birthday, or aggregate notifications about activities that you
may be interested in. Figure [I] gives such an example of work
anniversary notification. Such time-insensitive notifications
provide more opportunities for online platforms to optimize
for site engagement through delivery time optimization. In this
paper, we focus our discussions on applying reinforcement
learning to such time-insensitive notifications to determine
the best delivery times towards long-term engagement. We
describe such a notification interaction environment through
the notification spacing system at LinkedIn. This system
ensures that users do not receive all the notifications at the
same time but receive them over the course of multiple days
or weeks, providing users a holistic and engaging experience
over time.

A. Notification Spacing System

The notification spacing system in Figure [2] consists of
a queuing system (one for each user), into which time-
insensitive notification candidates for the user are queued. At
fixed time intervals, we choose whether to send the top-ranked
notification in the queue. Additionally, at each such time step,
there may be notifications that would expire after that time.
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Fig. 2: Illustration of the notification spacing system

We now briefly describe the baseline policy in this system,
which is based on the work presented in [5]] (Section 5.2).
This is the supervised approach that delivers the best empirical
performance against other supervised approaches at LinkedIn.
An Accelerated Failure Time survival model is trained using
the user interaction data. The model is then used to predict
1) the probability of a user’s visit within the next 7' time
after a notification delivery, denoted as Pr(visit/send); 2) the
probability of a user’s organic visit within the next 7' time
without a notification delivery, denoted as Pr(visit|not send).
This baseline model chooses to send the top ranked notification
if

Pp(visit|send) — Pr(visit/not send)

Pr(visitnot send) T M
where 7 is the threshold to heuristically control the trade-off
between short-term and long-term rewards. Pr(visit/send) —
Pp(visit|not send) is the uplift estimate of the short-term
impact on the user engagement by a notification delivery. The
extra denominator Pr(visit/not send) helps to normalize with
respect to a user’s activity level. The policy makes a send
decision when the short-term uplift exceeding the threshold



7. Note that 7 = 0 leads to a greedy action, that is, as
long as the short-term uplift is positive, a notification will be
delivered to a user, which will almost surely result in annoying
notification experience and hurt the long-term site engagement.
A policy with a larger 7 will withhold some notifications in the
hope that there will be more opportune moment in the future.
One drawback of this approach is that 7 is hyper-parameter
outside of the supervised learning, thus cannot be learned with
the model training. Instead, 7 is usually tuned through grid
search using online A/B test. This is the case for supervised
approaches for notification systems in general, since there is
often a gap between the model’s prediction and the optimal
notification decision.

B. Markov Decision Process for Notification Spacing

In this section, we formulate the notification delivery time
optimization in the notification spacing system as a Markov
Decision Process (MDP), represented by (S, A, P,R,7),
where S is the environment’s state space, A is the action space,
P:SxA— S is the state transition model, R : S x A — R
is the reward function and v is the discount factor of the
cumulative reward. Reinforcement learning systems learn the
optimal action given the state to maximize a objective defined
as a cumulative discounted reward over time. In a typical
setting, an agent receives the environment’s state and uses it to
choose an action based on its policy. In response, the system
makes a transition to a new state and provides the reward, and
the cycle is repeated. The problem is then to learn an optimal
policy for the agent to maximize the total reward over a finite
or infinite time horizon in the future.

The key concepts for the notification decision problem are
described below.

Actions. a denotes an action in the action space A. We
consider a discrete action space consisting of two actions -
SEND (send the notification candidate to the user) and NOT-
SEND (the notification candidate is put back in the notification
queue for further considerations). Note that every notification
candidate has its validity time window ranging from a few
hours to a few days. Once a notification candidate reaches
its expiry time, it will be either sent or dropped based on its
quality. Since this is controlled by an independent logic, it is
abstracted out as part of the environment.

States. s denotes a state in the state space S. A state
represents a situation in the environment and summarizes all
useful historical information. A state s; at time ¢, has the
Markov property, if and only if,

P(st+1]51, 82, -5 5t) = P(St41]5¢t)-

Since MDP is the foundation for reinforcement learning
algorithms, states must be defined properly to ensure and
Markovian system. In our problem setting, we use a plethora
of features, including
« user’s profile features such as locale and network size.
o dynamic state features such as badge count, number of
notifications in the queue, number of notifications sent in
the past 24 hours.

e user’s activity features such as user’s last visit time, the
number of site visits over the past week.

In this manner, we allow the users to be part of the environ-
ment and represent their interests and context using a rich state
representation.

Environment. In standard reinforcement learning, an agent
interacts with an environment over a number of discrete time
steps. At every time step ¢, the agent receives a state s; and
chooses an action a;. In return, the agent receives the next state
s¢+1 and a scalar reward r;. In our problem, the environment
is made up of all users’ interests and interactions. A single
episode corresponds to a sampled user and their interaction
sequence. It consists of all the time steps at which the agent
evaluates whether to send the top-ranked notification in the
queue over a finite time horizon.

Reward. r; denotes an immediate reward collected between
time ¢ and £+1. In this paper, we use a user visit to the platform
within the next time step as a reward. The total return R, =
S +*ry, represents the time-discounted total number of site
visits by a user. Here, vy € (0,1] is the discount factor, which
controls the trade-offs between the short-term and long-term
rewards. The goal of the agent is to maximize this total return
to encourage long-term site engagement. The reward can also
be defined as notification clicks, or notification disables as
negative rewards or a linear combination of them.

Policy. A policy 7 is a mapping from the state space to
the action space. In this setting, it makes SEND or NOT-
SEND decisions given the state features. A policy can be
either deterministic or stochastic. For every Markov decision
process, there exists an optimal deterministic policy 7*, which
maximizes the total return from any initial state.

IV. METHODOLOGY

We now introduce our offline training framework and offline
evaluation method. We also show how setting up a simulated
environment can help validate offline training and offline
evaluation.

A. Offline Training

One main challenge in applying reinforcement learning to
any real-world online recommender systems is the high cost
of exploration, which would harm the user experience. That is,
if we train a reinforcement learning agent in an online fashion
[37], our users can suffer from an exploratory yet bad policy,
which we try to avoid.

Offline Reinforcement Learning, also known as Batch Re-
inforcement Learning [11]] in literature, is a variant of rein-
forcement learning that the agent learns from a fixed batch of
data [[10]. This variant is suitable for large-scale user-platform
interactive applications due to its control over exploration
risks, and it naturally fits into existing machine learning
infrastructures compared to online reinforcement learning. Our
proposed offline solution is a combination of Offline Deep
Q-Network (DQN) and data collection with well-controlled
online exploration.



Q-learning algorithms are good candidates for offline re-
inforcement learning attributable to their off-policy nature,
that is, they can learn the value of the optimal policy inde-
pendently of the agent’s actions. On the contrary, on-policy
learner learns the value of the policy being carried out by the
agent, including the exploration steps. While most on-policy
algorithms can have their off-policy versions, they require
non-trivial importance sampling to adjust the off-policy bias.
Importance sampling based estimation can be of very high
variance, especially in an offline paradigm.

Among Q-learning algorithms, Deep Q-Network is using
Deep Neural Network that takes a state and approximates
Q-values for each action based on that state, which has
been proved to be successful in tackling high-dimensional
state space and gain wide popularity in the recent industry
and research advancements [37], [38]]. Therefore, we choose
Offline Deep Q-Network algorithms for our use-case to learn
from the data generated by the complex user behaviors that
happened in the real world.

The Q-value function which takes two inputs state (s) and
action (a) under policy 7 is defined as

Qﬂ(st,at) = ETF[Rt|St =S5,a¢ = a]

o0
= Ew[z ’Yth+k+1|St =s,a; = a, (2)
k=0
where v is the discount factor, at each time step ¢ the agent
with state s; selects an action a;, observes a reward 7;, and
R; is the cumulative long-term reward.
We define the optimal Q-value function

Qﬂ*(stﬂlt) = m?XEw(RHSt =S5,a¢ = CL)7 3)

as the maximum expected return achievable across all policies.
An optimal policy is easily derived from the optimal Q™ (s, a)
by selecting the highest-valued action in each state. This
optimal Q™ (s,a) obeys the Bellman equation:

Q" (s,a)=E (7‘ +ymax Q™ (s',d)|s, a) ) 4)

The Deep Q-Network (DQN) learns a parameterized action-
value function Q(s, a;0) as a neural network. From Equation
[ the Q-Network can be trained by minimizing the following
loss function:

L(Q) = E8z7at,,7"1,78t+1 B ((yr‘ - Q(S, a; 9))2) ,

5
Yt = 7“t+7maaXQ(St+1,a;9t)> ®)

where B is an offline data batch which contains transition
tuples of {s;, as, ¢, S¢41}. The function approximation 6 can
be designed according to characteristics of the application. In
this work, we use a fully-connected network, which proved
to be sufficient to capture the user interactions. Practically,
a few techniques can be employed to improve the learning
performance, such as setting up a separate target network [37]],
tuning hyper-parameters, using more advanced DQN variants
(for example, Double DQN [38]] and dueling DQN [39]]). Our
presented results are based on Double DQN, in which a second

network 6, is introduced to stabilize the target action-value
estimation and reduce the over-estimation well known for the
vanilla DQN. The Double DQN can be trained by minimizing
the following loss function:

L(a) = ESt,at,n,St+1 B ((yPoubleQ - Q(Sa a; 0))2> )

Yo = 1y +9Q (5011, argmax, Q (sp11,0;6;),6; ) .

These DQN variants were originally designed for online off-
policy learning [37]. If we only look at the training algorithm,
the offline version above is almost the same except that the
mini-batch is sampled from an offline data batch instead of an
experience buffer in [37]]. However, the fundamental difference
is that the offline training has no control over the behavior
policy. Nor can it explore unseen action trajectories in the
batch through interactions with the environment, which is
safe for our scenario (to protect user experience). Blending
with exploration is outside the scope of the algorithm we are
using, as it is both theoretically and practically challenging to
guarantee the performance of a learned policy.

Fortunately, we have the control over how the offline data
are collected to certain extent, that is, we need to ensure
enough exploration in the offline data. We deploy an e—greedy
exploration strategy [40] on the baseline policy described in
Section [[II-Al

€ _ 7T0(S)
m(s) = {a € Unif(A)

with probability 1 — €, ©)
with probability e,

where 7 is the baseline policy, Unif(A) is a uniform distri-
bution over all possible actions and e controls the exploration
rate.

Not only is the exploration in data collection important to
the error bound of offline learning, it is also critical to the
offline policy evaluation, that

1) Data used for offline policy evaluation has to be col-

lected from a stochastic policy with non-zero probability
coverage on the state-action space.

2) The action probabilities have to be correctly recorded.

We will elaborate the discussion in the next section.

B. Offline Evaluation

It is crucial to evaluate the performance of the learned
policy before risking deployment. Furthermore, we often have
more than one algorithm and corresponding hyper-parameter
settings, making the offline evaluation an indispensable com-
ponent of a reinforcement learning training pipeline. The
offline evaluation of a reinforcement learning agent requires
the estimation of a counterfactual metric of interest from the
data collected from an arbitrary but known policy. Model-
based approaches for evaluating a reinforcement learning agent
from such off-policy data can induce large bias, while the
classical importance weighting based non-parametric methods
tend to exhibit a high variance for long-term evaluations.



We propose a class of importance weighting based methods
that can be tuned to obtain a desirable bias-variance trade-off
depending on the environment. To this end, we first describe
the importance weighting strategy.

Given N i.i.d. trajectory observations from time 1 to 7',
{(Sl,i7 Q1,571,555 ST,iy AT i TTJ)}ZNZI based on a pOhCy s
from the joint distribution p,(-), we aim to estimate the total
expected reward 6(7*) = >, | Er«[r¢] corresponding to a
target policy 7*. A estimator of §(7*) is given by

R A
0(r*) = N Z ZTt,z‘ Wt 4
=1 t=1
where w, ; denotes the importance weights adjusted for the
mismatch in the distributions under policies 7 and 7*.

Now it is easy to show that é(w*) is an unbiased estimator

of O(x*) for

Dr* (St,z’, at,i)

Wy =~
Pr(Se6,a.4)

given that the data generating policy is a stochastic policy

m(a|s)>0foralla € Aand s €S.

In most cases, the functional form of the distributions
pr(-) and pr-(-) are unknown and hence w;; needs to
be computed/estimated from the data. There are two main
obstacles in constructing reliable estimates of 6(7*) based
on wy;: (i) the curse of dimensionality of the state space
and (ii) the curse of the horizon. While the former is a
well-known problem in supervised learning, the latter is tied
to reinforcement learning problems with a long time horizon
T.

)

Action Trajectory Based Weighting [17]: The following
estimator avoids the curse of dimensionality of the state space
by factorizing p.(-) and p,-(-) using the Markov property.
pee(s10) Tl m (i | s50)  TTimy 7 (aga | s50)
pr(s1a) Thoymlagi | s50)  Tloy mlagi | s5)

where the last equality follows from the fact that the dis-
tribution of S; does not depend on the underlying policy.
The corresponding estimator of 6(7*) assign weights to each
sample (s1,a1,...,8: a;) according to the probability of
observing the action trajectory (as,...,a;) under 7*. Thus,
we refer to this method as Action Trajectory Based Weighting.
Note that if 7* is a deterministic policy, i.e. 7*(s|a) € {0, 1},
then this method would assign zero weights to all trajectory
that are not feasible under 7*.

This strategy would suffer from the curse of the horizon,
i.e., the variance of the corresponding estimator of &(7*)
would increase exponentially with the time horizon 7.

Wt 4 )

State Marginalized Weighting [20]: Again using the
Markov property, an alternative way of factorizing w; ; in (7)
is as follows.

pﬂ'*(st,i) W*(at,i | St,i)
Pr(St,i) T(aei | st.0)

Wy, =

i

First, we consider the case when the state space is discrete
and finite. In this case, p.(s;) can be estimated as

A IS
Pr(st) = N Z 1{St,1:5t}'
1=1

Next, we estimate p,«(s; | s1) recursively as follows.

% Zﬂ:l 1{st,i:5t} ift=1;

1\ Prx(St—1,i) ™ (ar—1,i|St—1.1)
N Zi:l 1{5‘vi:st} Pr(st—1,4) m(at—1,i]5¢—1,4)

ift>1.

ﬁﬂ‘* (St) =

This strategy avoids the curse of the horizon by marginal-
izing over the state dimension. In fact, [20] showed that the
variance of the corresponding estimator of 6(7*) is O(T?).
However, the estimations of p(s;) and p.«(s;) suffers from
the curse of state dimensionality.

In the case of a large state space with multiple features
(some/all of which can be continuous), we apply two strategies
for dimension reduction:

1) We remove the state features from offline evaluation that
are not influenced by the action (e.g., static features).
More precisely, we can work with a reduced state space
h(st) as long as we have

Pre(5t) _ pr=(h(s1))
Pre(st)  pre(h(s1))”

It is to show that following is a sufficient condition for

having (8):

p(St | h(St), Aty ...

®)

aat) :p(St | h’(st))7

which states that all the features that are not in h(s;)
are conditionally independent of the actions given h(s;).
Note that these features (that are not in h(s;)) cannot
be removed from model training since they can have an
influence on the reward function.

2) We discretize each feature (that is left after the first
step) into a fixed number of bins, where the bin size
controls the bias-variance trade-off (a larger number of
bins would lead to a smaller bias but a larger variance).

One-Step Correction based Weighting [13]: An easy way
to construct a biased but low variance estimator is to use the
following weights.

W*(St,i \ at,i)

Wy =
MU w(sea | arg)

This strategy avoids both the curse of dimensionality of the
state space and the curse of the long horizon. The corre-
sponding estimator that only corrects for the one-step policy
mismatch is no longer unbiased. However, when the vari-
ances of both action trajectory based estimator and the state
marginalized estimator are too high, the one-step correction
might be the only reliable method.



C. Simulation Environment

In order to evaluate and benchmark offline evaluation meth-
ods and offline training algorithms with known ground truth,
we build a simplified simulation environment using Open Al
GYM [41], to mimic the online notification spacing system.
The reason we build such a simulation environment instead of
using existing ones in GYM is that learning algorithms and
offline evaluation methods that work well in one environment
may not work as well in another environment. The closer
we build a simulation environment to the real notification
environment, the more accurate and useful we get from
simulation studies. Section gives a simulated study using
this simulation environment.

The Markov decision process, which is implemented in the
simulator, is described below.

o Environment: The simulator mimics the notification
queue of a user along with the environment. The envi-
ronment generates notification candidates to be sent to
users. We simulate user visits based on two factors -
badge count (the number of unseen notifications awaiting
the user on the app) and their activeness on the app. We
assume that once a user visits the app, the notifications
previously sent to them are seen by the user, and hence
we reset the badge count for the user.

o Transition process: The time step for the simulator is
set to 4 hours. At each time step, the simulator generates
new notifications to arrive in the queue. This is done
by sampling a Poisson process, which is scaled by
the day and time of the week as well as the demand
patterns at that time. Each notification added to the
queue consists of a relevance score (used to indicate
the rank of the notification in the queue) as well as the
time of expiry. Since users also receive near-real-time
notifications outside of the queue, their visits and badge
counts are affected by those notifications. To get the
simulation environment closer to the real-world scenario,
we similarly simulate new notifications directly sent to
the user outside of the queue and update their badge count
as part of the environment. Finally, we check for any
expiring notifications available in the queue and remove
them from the queue by either sending them to the user
with a 50% probability or dropping them altogether.

« State: We use a simple four-dimensional state comprising
of badge count, number of candidate notifications in
the queue, time since the start of the week, and user
activeness.

o Actions: Consistent with the production system, there are
two actions, SEND and NOT-SEND.

e Reward: The numerical reward is 1 if a user visits in
the next four hours. We use a reward model, which is a
function of user activeness and badge count, which is fit
to qualitatively represent actual user performance that is
learned from our visit state transition models describe in
[S].

The simulator roughly captures the notification spacing

system, with a time-varying demand generation and user visits
to the app. The queuing and de-queuing logic is consistent with
the actual notification spacing system. For demand generation
and user visits, we qualitatively capture the characteristics of
our production models in the simulator.

Once the offline training algorithm and offline evaluation
method is chosen, the offline training of the real-world data
is independent and takes no information from this simulation
environment. Therefore, any simplification and bias of the
simulation environment from the real notification system is
not a concern. Such an environment setup can be a low-cost
alternative to simulation environments for hybrid learning [32],
[42]].

V. EXPERIMENTS

We present both a simulation study and a real-world online
experiment to demonstrate the contribution of the proposed
framework.

A. Offline Evaluation in Simulation Environment

First, we show why offline evaluation is crucial to the offline
reinforcement learning framework. Without true interaction
with the environment, offline training can be unstable in terms
of convergence and policy performance. We generated both
training and validation data using an exploration policy de-
scribe in Equation [6]in the notification simulation environment
described in Section We then trained 128 Double DQN
policies using the same training data under various hyper
parameters (batch size, learning rate, number of batches with
a fixed target network, network layer size, etc.). Figure [3]
shows the online evaluation distribution in the simulation
environment of the 128 policies, which can be regarded as
the ground truth of the policy performance. The red vertical
line is the performance of the behavior exploration policy.
Only 38 out of 128 policies delivered total rewards exceeding
that of the behavior policy. This demonstrates that in the
offline learning setting, the learned policy is not guaranteed
to perform better than the behavior policy and that hyper-
parameter tuning and offline evaluation is necessary. For
real-world applications, online evaluation can be risky and
expensive, and offline evaluation is desired.

Next, we show how the proposed state-marginalized im-
portance sample provides better bias-variance trade-offs com-
pared with trajectory matching and one-step matching de-
scribed in Section We evaluate the same 128 policies
above using the three offline evaluation methods, where we
used the self-normalized version of importance weights, i.e.
wm/(% vazl wy,;), which is known to be more stable in
practice.

Figure [4] shows the box plot of the error between offline and
online estimates of the cumulative reward across all learned
policies, obtained from one-step, action-trajectory and state-
marginalized importance weighting techniques. We observe
that action trajectory based importance weighting technique
provides the lowest biased estimate of the cumulative reward
but has the highest variance. One step importance weighting
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technique provides the highest biased estimate of the cumula-
tive reward but has the lowest variance. The state-marginalized
importance weighting estimate has a better balance between
bias and variance of the estimate. In this simulation, we chose
the number of bins to be 10 for discretizing the states. The
bias of the estimate from this technique can be lowered by
increasing the number of bins but at the expense of higher
variance. However, the variance can be easily estimated in the
production-setting, thereby allowing us to optimally choose
the number of bins to control bias-variance trade-offs in our
estimation.
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Fig. 4: Bias-variance comparison between three methods

B. Online Experiments in Notification Spacing

Figure [3] illustrates the system architecture of this applica-
tion. All policies, regardless of supervised or reinforcement
learning, are served in a nearline Samza service [43]. Vari-

ous notification providers send notification candidates to the
Samza service and are queued in its data store for future
evaluations. Every user’s notification queue is evaluated by
a policy every few hours for a send-or-not decision for its
top scored notification. A policy takes online features, makes
decisions, and then snapshots its decisions and features to
a Hadoop Distributed File System (HDFS) [44]. Additional
offline features can be used for offline training and pushed to
Samza data stores for nearline serving.

Under this architecture, we collected one-week snapshot
data from a small percentage of LinkedIn users using an
epsilon-greedy behavior policy 7€ on top of the baseline policy
described in The data was then joined with other log
data to construct the tuples (s¢, at, St4+1, r¢) for offline training.
The state features we use are the same as the features in
the baseline supervised model to allow a fair comparison.
Important state features include the app badge count, the
user’s last visit time, the number of notifications received
over the past week and other user profile features. We then
train the Double DQN models described in Section
using a fully-connected 3-layer neural network with different
hyper-parameters (number of inner nodes, learning rate, batch
size, number of batches between target network updates, etc.).
We apply the state marginalized weighting to estimate the
expected total return of the learned policies. Given the large
continuous state space, we apply the dimension reduction
and discretization strategies described in Section for the
state marginalized weighting to further reduce the estimation
variance. The top performer (or performers) selected by offline
evaluation was deployed in the Samza service on a certain
percentage of total users for an online A/B test compared with
the baseline policy. We are interested in user engagement and
notification interactions, which can be characterized by the
following metrics.

o Sessions: A session is a collection of full-page views
made by a single user on the same device type. Two
sessions are separated by 30 minutes of zero activity. This
is a widely used metric on user engagement across social
networks.

o Notification cards: the total number of notification cards
served to users after removing potential duplicates. This
is a metric capturing notification volume.

o Notification CTR: This metric measures the average click-
through-rate of notifications sent to a user in a day. This
is a metric capturing notification interactions.

e Notification unfollow total: the total number of notifi-
cation unfollow actions taken by users. This is negative
feedback from users.

TABLE I: Online A/B results for delivery time optimization

[ Metric [ vs. Baseline policy |
Sessions +0.30%
Notification cards -3.49%
Notification CTR +4.53%
Notification unfollow total -4.37%
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Table [ shows the full-week A/B test results, and the
numbers are all statistically significant (with p-value < 0.05).
Compared with the baseline policy, the new policy from offline
reinforcement learning increased the total sessions by 0.3%,
which is considered a moderate gain in a volume neutral
iteration, but very impressive given that the total notification
volume is reduced by 3.49%. The 4.53% increase in notifica-
tion CTR and 4.37% decrease in notification unfollow total are
mainly driven by the reduction in notification volume. These
numbers demonstrate the business impact of our proposed
framework and suggest that notifications were delivered at
better timing and lower frequency, suggesting more optimality
over the supervised approach.

In addition to business impact, we would like to point out
that the offline reinforcement learning training and evaluation
framework provides a significant increase in iteration speed in
our ecosystem. At LinkedIn, we constantly test new features
and new learning algorithms, which requires a modeling itera-
tion cycle consisting of offline training and evaluation, online
tuning (if needed) before we take it to the online A/B test to
conclude whether the new model is better than its baseline.
Therefore, we measure the iteration speed by the time it takes
for each steps. Although reinforcement learning algorithms in
general take more computation resources and longer time to
converge than most supervised learning models, the difference
in training and evaluation (in hours) is negligible when we take
the online tuning into consideration. As described in Section
I11-Al 7 has to be tuned online for a trade-off between short-
term and long-term engagement. In fact, many supervised
model-based frameworks typically resort to online tuning like
the approach used in [9]], as there is usually a gap between
the model predictions and the service decisions/actions. The
tuning typically takes 1-3 weeks for notifications as site
engagement responses takes days to show up. This leads to

tedious and time-consuming efforts for many practitioners. In
contrast, the offline evaluation system, deployed as a part of
the reinforcement learning model, does not require an online
tuning cycle after the policy selection done in the offline
evaluation. The selected policy can go directly to the online
A/B test to draw a conclusion on a modeling iteration.

VI. DISCUSSION

In this paper, we propose an offline reinforcement learning
framework covering data collection, offline learning, offline
evaluation, assisting simulation environment, and other prac-
tical considerations. We argue and demonstrate the benefits of
such a framework as a more principled paradigm to optimize
notification decisions over supervised learning approaches.
Practically, it shortens the modeling iteration cycle for real-
world systems that constantly improve with new features and
retraining.

One of the limitations of our presented results is that
we trained and tested this framework in a one-week frame.
It would be interesting to see whether the framework can
improve even longer-term engagement. This is limited by the
measurement cost of truly long-term engagement, say a one-
year scope.

Based on its positive impact and iteration speed gains, the
reinforcement learning application in Section was fully
deployed at LinkedIn. We hope our work could motivate
wider adoption of reinforcement learning for the mainstream
recommender systems. We will continue to work on how to
learn the optimal policy more efficiently offline and how to
evaluate more accurately offline.
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