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ABSTRACT
With the recent prevalence of reinforcement learning (RL), there
have been tremendous interests in utilizing RL for ads allocation in
recommendation platforms (e.g., e-commerce and news feed sites).
To achieve better allocation, the input of recent RL-based ads allo-
cation methods is upgraded from point-wise single item to list-wise
item arrangement. However, this also results in a high-dimensional
space of state-action pairs, making it difficult to learn list-wise rep-
resentations with good generalization ability. This further hinders
the exploration of RL agents and causes poor sample efficiency.
To address this problem, we propose a novel RL-based approach
for ads allocation which learns better list-wise representations by
leveraging task-specific signals on Meituan food delivery platform.
Specifically, we propose three different auxiliary tasks based on
reconstruction, prediction, and contrastive learning respectively
according to prior domain knowledge on ads allocation.We conduct
extensive experiments on Meituan food delivery platform to evalu-
ate the effectiveness of the proposed auxiliary tasks. Both offline
and online experimental results show that the proposed method can
learn better list-wise representations and achieve higher revenue
for the platform compared to the state-of-the-art baselines.

CCS CONCEPTS
• Information systems→Computational advertising;Online
advertising; Electronic commerce.

KEYWORDS
Ads Allocation, Reinforcement Learning, Representation Learning,
Auxiliary Task

1 INTRODUCTION
Ads and organic items are mixed together and displayed to users
in e-commerce feed nowadays [9]. E-commerce platforms gain the
∗Equal contribution. Listing order is random.
†Corresponding author.
‡This work was done when Chuheng Zhang was an intern in Meituan.

platform service fee (hereinafter referred to as fee) according to
orders and charge advertisers based on exposures or clicks. The
increase number of displayed ads brings higher ads revenue, but
worse user experience, which results in a decrease in order quantify
and fee [43]. Therefore, how to allocate limited ad slots effectively
to maximize the overall revenue (i.e., fee and ads revenue) has
been considered a meaningful and challenging problem [24, 37, 42].
Unlike the practice of allocating ads to pre-determined slots [3, 6,
19, 29, 39], recent dynamic ads allocation strategies usually model
the ads allocation problem as an Markov Decision Process (MDP)
[33] and solve it using reinforcement learning (RL) [5, 21, 42, 44,
45]. For instance, Xie et al. [40] propose a hierarchical RL-based
framework which first decides on the type of the item to present and
then determines the specific item for each slot. However, this work
make decisions based on the point-wise representation of candidate
items, without considering the crucial arrangement signal [21]
hidden in item arrangement. Zhao et al. [44] and Liao et al. [21]
propose different DQN architectures to achieve better performance,
which both take the list-wise representation of item arrangement as
input and allocate the slots in one screen at a time. However, these
algorithms encounter one major challenge: The rarity of the list-
wise item arrangement results in a high-dimensional state-action
space. For example, the number of candidate items in each slot on
Meituan food delivery platform is more than millions, which leads
to the curse of dimensionality for item arrangements in multiple
slots of one screen. The high-dimensional state-action space makes
it difficult to learn a generalizable list-wise representation, which
further causes poor sample efficiency and suboptimal performance.

Utilizing auxiliary task is one common solution for representa-
tion learning in RL [10, 12, 13, 22, 23]. For instance, Finn et al. [7]
present an auxiliary task for learning state representation using
deep spatial autoencoders. Jaderberg et al. [15] propose an auxiliary
task to predict the onset of immediate reward given some historical
context. Liu et al. [22] leverage return to construct a contrastive
auxiliary task for speeding up the main RL task. However, domain
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knowledge is very helpful information that has not been fully ex-
plored. Most existing auxiliary tasks for representation learning
lack the utilization of domain knowledge in e-commerce scenario,
which makes them unable to achieve good performance on ads
allocation.

To this end, we propose an auxiliary-task based RL method,
which aims to learn an efficient representation by leveraging task-
specific signals in e-commerce scenario. Specifically, we propose
three different types of auxiliary tasks based on reconstruction, pre-
diction, and contrastive learning respectively. The reconstruction-
based auxiliary task learns a list-wise representation that can be
used to reconstruct key information in the original input. The
prediction-based auxiliary task predicts the reward calculated based
on user’s feedback (e.g., click or pull-down). The contrastive-learning
based auxiliary task aggregates representations of similar state-
action pairs and distinguishes representations of different state-
action pairs.

We evaluatemethod using real-world dataset provided byMeituan
food delivery platform. Both offline experimental results and online
A/B test show that the proposed auxiliary tasks for ads allocation
could effectively accelerate the list-wise representation learning of
the agent and achieve significant improvement in terms of platform
revenue.

The contributions of this paper are summarized as follows:

• We introduce a unified RL framework to learn the list-wise rep-
resentation for ads allocation. This solution enables us to handle
list-wise representation learning efficiently in high-dimensional
space.
• We design three novel auxiliary tasks, which effectively utilize
the side information in ads allocation scenario to aid the learning
of agent.
• We conduct extensive experiments on real-world dataset col-
lected from Meituan food delivery platform. The results verify
that our method achieves better performance.

2 RELATEDWORKS

2.1 Ads Allocation

As shown in Figure 1, the ads allocation system takes ranked ads
list and ranked organic items list as input, and outputs a mixed
list of the two [21, 41]. Traditional strategy for ads allocation is
to display ads at fixed slots [19, 29]. However, allocating ads to
pre-determined slots may lead to suboptimal overall performance.
Recently, dynamic ads allocation strategies [21, 40, 41, 45], which
adjust the number and slots of ads according to the interest of
users, have received growing attention. According to whether RL
is used, existing dynamic ads allocation strategies can be roughly
categorized into two categories [21]: non RL-based and RL-based.

Non RL-based dynamic ads allocation strategies usually use clas-
sical algorithms (e.g., Bellman-Ford algorithm, unified ranking score
function and so on) to allocate ad slots. For instance, Koutsopoulos
[17] define ads allocation as a shortest-path problem on a weighted
directed acyclic graph where nodes represent ads or slots and edges
represent expected revenue and use Bellman-Ford algorithm to find
the shortest path as result. Meanwhile, Yan et al. [41] propose a
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Figure 1: Structure of an ads allocation system. In ads allo-
cation system, it takes the ranked ads and ranked organic
items as input and outputs the allocated result.

unified ranking score function which uses the interval between
adjacent ads as an important factor. But these methods cannot ef-
fectively utilize rich features hidden in items, resulting in poor
scalability and iteration.

Since the feed continuously displays items to the user page by
page, RL-based dynamic ads allocation strategies model the prob-
lem in feed as an MDP and solved it with different RL techniques.
According to whether the input of the agent for ads allocation is
an ad or an entire screen at a time, we divide these methods into
point-wise allocation methods and list-wise allocation methods.
For instance, Xie et al. [40] propose a representative point-wise
allocation method using hierarchical RL, where the low-level agent
generates a personalized channel list (e.g., ad channel or organic
item channel) and the high-level agent recommends specific items
from heterogeneous channels under the channel constraints. As for
list-wise allocation methods, Zhao et al. [44] propose a DQN archi-
tecture to determine the optimal ads and ads position jointly. Liao
et al. [21] propose a novel architecture named CrossDQN, which
constructs the list-wise representation to model the arrangement
signal hidden in the item arrangement.

Compared with point-wise allocating, list-wise allocation meth-
ods [20, 21] allocate multiple slots at a time, which not only intro-
duces the list-wise representation capabilities, but also induces sev-
eral challenges including: larger state-action space, harder-to-learn
representation and lower sampling efficiency. To tackle these chal-
lenges, we focus on improving performance of RL-based dynamic
ads allocation strategies by learning an efficient and generalizable
list-wise representation. Although there has been efforts to apply
representation learning in e-commerce scenarios such as CTR pre-
diction [27, 28, 47], to the best of our knowledge, our approach is
the first attempt to use representation learning in ads allocation.

2.2 Representation Learning

Auxiliary tasks are almost the benchmark for representation learn-
ing in RL nowadays [10, 11, 22]. Specifically, the auxiliary task can
be used for both the model-based setting and the model-free set-
ting [22]. In the model-based settings, world models can be used
as auxiliary tasks to achieve better performance [8, 12, 13]. Since
there are complex components e.g., the latent transition or reward
module in the world model, these methods are empirically un-
stable to train and relies on different regularizations to converge
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[22]. In the model-free settings, various auxiliary tasks are con-
structed to improve performance [10, 22, 23, 31]. According to the
different objectives of auxiliary tasks, existing auxiliary tasks in
model-free RL frameworks can be roughly categorized into three
types, reconstruction-based [7, 11], prediction-based [10, 15, 34]
and contrastive-learning based [1, 18, 22].

As for reconstruction-based auxiliary tasks, the learning of rep-
resentation is assisted by an encoder-decoder structure with the
goal of minimizing the reconstruction error. For instance, Finn et al.
[7] present an auxiliary task for learning state representation us-
ing deep spatial autoencoders and Ha and Schmidhuber [11] use
variational autoencoder to accelerate the learning of representation
layer. In many interesting environments reward is encountered
very sparsely, making it difficult for the agent to learn. So the
prediction-based auxiliary tasks are proposed to remove the percep-
tual sparsity of rewards and rewarding states and used to aid the
training of an agent. For example, Jaderberg et al. [15] propose an
auxiliary task to predict the onset of immediate reward given some
historical context. Van den Oord et al. [34] propose a universal
unsupervised learning approach to extract useful representation
and hope the learned representation can predict the representation
of the state of the subsequent steps respectively. Contrastive learn-
ing has seen dramatic progress recently, and been introduced to
learn state representation. For instance, Laskin et al. [18] adopt a
contrastive auxiliary task to accelerate representation learning by
leveraging the image augmentation. Liu et al. [22] leverage return
to construct a contrastive auxiliary task for speeding up the main
RL task.

In this paper, we propose three different types of auxiliary tasks
for ads allocation based on prior domain knowledge and combine
them in a single framework, which can be easily applied to the
existing RL-based ads allocation strategies and improve the perfor-
mance.

3 PROBLEM FORMULATION

We adopt a great paradigm for problem formulation, also used in
recent related works such as CrossDQN [21]. When a user browses
in feed, the platform displays items to the user page by page in
one request. Each page contains 𝐾 slots and the task is to allocate
ad slots for each page in the request sequentially. Mathematically,
the ads allocation problem is formulated as an MDP, which can be
denoted by a tuple (S, A, 𝑟 , 𝑃 , 𝛾 ), as follows:

• State space S. A state 𝑠 ∈ S consists of the information of
candidate items, the user and the context. The candidate items
consist of the ads list and the organic items list which are available
in current page 𝑡 . Each item has 𝐻𝑖 sparse features (e.g., whether
it is free of delivery fee, whether it is in promotion, whether it is a
brand merchant and so on). Each user has𝐻𝑢 sparse features (e.g.,
age, gender and so on) and 𝑁𝑏 historical behaviors. The context
contains 𝐻𝑐 sparse features (e.g., order time, order location and
so on). With embedding, these large-scale sparse features are
transformed into low-dimensional dense vectors. Seemore details
in Section 4.1.

• Action space A. An action 𝑎 ∈ A is the decision whether to
display an ad on each slot in current page, which is formulated
as follows:

𝑎 = (𝑥1, 𝑥2, . . . , 𝑥𝐾 ), ∀𝑥𝑘 ∈ {0, 1}, (1)

where 𝑥𝑘 = 1 means to display an ad on the 𝑘-th slot and 𝑥𝑘 = 0
means to display an organic item on the 𝑘-th slot. In our scenario,
we do not change the sequence of the items within ads list and
organic items list when allocating slots.
• Reward 𝑟 . After the system takes an action in one state and
generates a page, a user browses this page of the mixed list and
gives a feedback. The reward includes platform revenue and user
experience, as follows:

𝑟 (𝑠, 𝑎) = 𝑟ad + 𝑟 fee + 𝜂𝑟 ex (2)

where 𝑟ad, 𝑟 fee and 𝑟 ex denote the ads revenue, service fee and
user experience score of this page respectively. 𝑟 ex is set to 2, 1, 0
when the user places an order, clicks, leaves, respectively. 𝜂 is the
coefficient used to balance platform revenue and user experience.
• Transition probability 𝑃 . 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) defines the state transi-
tion probability from 𝑠𝑡 to 𝑠𝑡+1 after taking the action 𝑎𝑡 , where
𝑡 is the index for the page in a request. When the user pulls
down to the first item in the next page, the state 𝑠𝑡 transits to the
state of next page 𝑠𝑡+1. Since seeing the same items in the same
request causes awful user experience, the items selected by 𝑎𝑡
are removed from the next state 𝑠𝑡+1. When the user no longer
pulls down, the transition terminates.
• Discount factor 𝛾 . The discount factor 𝛾 ∈ [0, 1] balances the
short-term and long-term rewards.

Given the MDP formulated as above, the objective is to find an
ads allocation policy 𝜋 : S → A to maximize the total reward. In
this paper, we mainly focus on how to design auxiliary tasks to
accelerate representation learning and improve the performance.

4 METHODOLOGY

As shown in Figure 2, our method consists of a base agent and three
different types of auxiliary tasks. The base agent first takes a state
and an action as input to generate the list-wise representation and
uses the representation to predict the correspondingQ-value. Specif-
ically, these three different auxiliary tasks are designed to accelerate
the learning of list-wise representation: i) The Reconstruction-based
Auxiliary Task (RAT) adopts the encoder-decoder structure to re-
construct key information in the list-wise representation. ii) The
Prediction-based Auxiliary Task (PAT) utilizes user behaviors to
alleviate the sparse reward problem and guide the learning of the
list-wise representation. iii) The Contrastive-Learning based Auxil-
iary Task (CLAT) is a method that constructs positive sample pairs
for ads allocation and optimizes a contrastive loss to help the learn-
ing of list-wise representation. We describe the above components
in detail in the following subsections.
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Figure 2: Our method consists of a base agent and three different types of auxiliary tasks. The base agent takes a state infor-
mation and an action as input and outputs the Q-value. Three different types of auxiliary tasks are designed to accelerate the
base agent training. Best view in color.

4.1 Base Agent

The base agent takes a state and an action as input to generate a
list-wise representation and outputs the corresponding Q-value as
depicted in. Notice that, the base agent is mainly used to illustrate
the general practice of RL-based ads allocation rather than the main
focus of this paper. Therefore, some complex but effective modules
(e.g., Dueling DQN [21, 38], multi-channel attention unit [21], multi-
channel interaction module [20]) are not mentioned. But they can
be easily added to the base agent to further improve the overall
performance in experiment. See more details in Section 5.1.

Here we first employ an embedding layer to extract the em-
beddings from raw inputs. Mathematically, sparse features can be
represented by E ∈ R𝐻×𝑑𝑒 , where 𝐻 is the number of sparse fea-
tures (i.e., 𝐻𝑖 , 𝐻𝑢 , 𝐻𝑐 for item, user and context, respectively) and
𝑑𝑒 is the dimension of embedding. Then we flatten each matrix E
and represent it as e. We denote the embeddings for ads, organic
items, historical behaviors of the user, the user profile, the context
as {ead

𝑖
}𝑁ad
𝑖=1 , {e

oi
𝑖
}𝑁oi
𝑖=1, {e

b
𝑖
}𝑁b
𝑖=1, e

u, and ec respectively, where the
subscript 𝑖 denotes the index within the list and 𝑁ad, 𝑁oi, and 𝑁b
are the number of ads, organic items, and historical behaviors.

After embedding, we adopt a target attention network [36, 46]
followed by a Multi-Layer Perception (MLP) to generate the repre-
sentation of each item:

ead𝑗 ← MLP1
(
Att

(
ead𝑗 , {e

b
𝑖 }
𝑁b
𝑖=1

)
| |ead𝑗 | |e

u | |ec
)
,∀𝑗 ∈ [𝑁ad];

eoi𝑗 ← MLP1
(
Att

(
eoi𝑗 , {e

b
𝑖 }
𝑁b
𝑖=1

)
| |eoi𝑗 | |e

u | |ec
)
,∀𝑗 ∈ [𝑁oi],

(3)

where | | denotes concatenation, Att
(
ead
𝑗
, {eb

𝑖
}𝑁b
𝑖=1

)
is the target at-

tention unit which calculates the attention weight of each historical
behavior and generates a weighted behavior representation. The
embeddings of item, user profile and the context are concatenated
with the behavior representation generated from target attention
unit to generate the representation of each item (i.e., each ad and
each organic item).

Afterwards, the representations of ads and organic items are
selected and concatenated according to the action. For example,
when action 𝑎 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1)1, the first three of ranked
ads list and the first seven of ranked organic items list are selected
and concatenated as follows:

elist = eoi1 | |e
oi
2 | |e

ad
1 | |e

oi
3 | |e

ad
2 | |e

oi
4 | |e

oi
5 | |e

oi
6 | |e

oi
7 | |e

ad
3 , (4)

1𝐾 in this example is 10.
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Finally, the base agent feeds the list-wise representation into an
MLP and outputs the Q-value:

𝑄 (𝑠, 𝑎) = MLP2
(
elist

)
. (5)

4.2 Reconstruction-based Auxiliary Task

Reconstruction can prevent key information from being lost in the
representation [14, 18, 25, 35]. In Meituan food delivery platform,
users care about some aspects when they browses and place orders,
e.g., the delivery fee, promotion, brand and so on. The above aspects
greatly influence the user experience thus are of high correlation
with the behaviors of users.

There is a strong correlation between these key information
and behavior of users. Preventing them from being lost in the list-
wise representation can effectively improve the performance of the
agent. To this end, we select the top𝑀 most concerned factors as
labels2 to build the reconstruction-based auxiliary task.

Specifically, RAT takes the list-wise representation as input and
𝑀 types of binary features as labels. The decoder network outputs
the predicted values for each slot, as follows:

𝑦𝑘 ;𝑚 = MLP3
(
elist

)
, ∀𝑘 ∈ [𝐾],∀𝑚 ∈ [𝑀], (6)

where 𝑦𝑘 ;𝑚 is the𝑚-th predicted value for the item on the 𝑘-th slot.

The reconstruction-based auxiliary loss is:

𝐿RAT =

𝑀∑︁
𝑚=1

𝛽𝑚 ·
( 𝐾∑︁
𝑘=1

CE(𝑦𝑘 ;𝑚, 𝑦𝑘 ;𝑚)
)
. (7)

where 𝛽𝑚 is the weight of the𝑚-th key information, 𝑦𝑘 ;𝑚 is the
label for the𝑚-th key information of the item on the 𝑘-th slot, and
the cross entropy CE(𝑦,𝑦) is defined as:

CE(𝑦,𝑦) = −𝑦 log(𝑦) − (1 − 𝑦) log(1 − 𝑦) (8)

4.3 Prediction-based Auxiliary Task

In practice, the base agent may suffer from sample inefficiency
due to the natural sparsity of reward compared to the tremendous
search space. Therefore, we incorporate supervised signals based
on user behaviors to jointly guide the agent in training. There are
two main types of user behaviors: click and pull-down. The former
can be used to predict the reward of the current request and the
latter determines whether the trajectory terminates.

Specifically, the click-based prediction task takes the list-wise
representation as input and outputs the predicted click-through
rates (CTR) for each slot:

𝑧𝑘 = MLP4
(
elist

)
, ∀𝑘 ∈ [𝐾] . (9)

In our scenario, since the transition of adjacent requests is re-
flected in the probability of pull-down, designing an auxiliary task
to predict whether there is an pull-down or not can help the list-
wise representation to embed the impact of the current request on
subsequent requests. Analogously, the pull-down based prediction
2The ranking score 𝛽 of different factors is determined based on the prior survey on
user preferences.

task takes the list-wise representation as input and outputs the
probability of the user’s pull-down as follows:

𝑝 = MLP5
(
elist

)
. (10)

The prediction-based auxiliary loss is:

𝐿PAT =

𝐾∑︁
𝑘=1

CE(𝑧𝑘 , 𝑧𝑘 ) + CE(𝑝, 𝑝) (11)

where 𝑧𝑘 indicates the item in the 𝑘-th slot is clicked or not by
the user 𝑢 and 𝑝 indicates whether there is a pull-down or not.
The prediction-based auxiliary loss directly optimizes the list-wise
representation through the supervision information based on user
behaviors, which can make training more robust and accelerate
model convergence in training.

4.4 Contrastive-Learning based Auxiliary Task

The main idea of most contrastive-learning based auxiliary tasks is
to hope that the representation of anchor sample is closer to the
representation of positive samples and farther from the representa-
tion of negative samples in the latent vector space [1, 2, 4, 22, 30].
Here we introduce a contrastive learning based auxiliary task to
improve the differentiation of the representation between different
types of state-action pairs. Taking one sample as an anchor sample,
we define a sample with similar representation in state-action space
as a positive sample and a sample with different representation in
state-action space as a negative sample. The following is the detail
of constructing positive and negative samples.

Firstly, we construct positive sample based on user behavior.
For instance, as shown in Figure 3, if the user scrolls to the 7th
slot in current page and gives a feedback, it reflects that the items
other than the first seven have little influence on user since the user
may have not seen them when making the decision. Therefore, we
replace the rest of the items in current page to generate a positive
sample whose representation in the state-action space should be
close to the anchor sample. For negative samples, we randomly
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Algorithm 1 Offline training of our method

1: Offline data 𝐷 = {(𝑠, 𝑎, 𝑟, 𝑠 ′)}
2: Extract labels for reconstruction and prediction
3: Construct positive example and sample negative samples set

for each sample (𝑠, 𝑎, 𝑟, 𝑠 ′)
4: Initialize a value function 𝑄 with random weights
5: repeat
6: Sample a batch 𝐵 of (𝑠, 𝑎, 𝑟, 𝑠 ′) from 𝐷

7: Update network parameters by minimizing 𝐿(𝐵) in (14)
8: until Convergence

sample from other requests. Finally, the contrastive-learning based
auxiliary loss [32] is calculated as:

𝐿CLAT = − log
( exp

(
𝑠 (elist, elist+ )

)
exp

(
𝑠 (elist, elist+ )

)
+∑𝐿−1𝑗=1 exp

(
𝑠 (elist, elist

𝑗
)
) ),
(12)

where elist+ is the representation of positive sample, 𝐿 − 1 is the
number of negative samples, and the consine similarity of two
representations is calculated as follows:

𝑠 (elist𝑖 , elist𝑗 ) =
elist
𝑖
· elist
𝑗

|elist
𝑖
| · |elist

𝑗
|
. (13)

4.5 Offline Training
We follows the offline RL paradigm, and the process of offline train-
ing is shown in Algorithm 1. We train our agent based on an offline
dataset𝐷 generated by an online random exploratory policy 𝜋𝑏 . For
each iteration, we sample a batch of transitions 𝐵 from the offline
dataset and update the agent using gradient back-propagation w.r.t.
the loss:

𝐿(𝐵) = 1
|𝐵 |

∑︁
(𝑠,𝑎,𝑟,𝑠′) ∈𝐵

(
𝐿DQN+𝛼1·𝐿RAT+𝛼2·𝐿PAT+𝛼3·𝐿CLAT

)
, (14)

where 𝐿DQN is the same loss function as the loss in DQN [26], and
𝛼1, 𝛼2, 𝛼3 are the coefficients to balance the four losses. Specifically,

𝐿DQN =

(
𝑟 + 𝛾 max

𝑎′∈A
𝑄 (𝑠 ′, 𝑎′) −𝑄 (𝑠, 𝑎)

)2
. (15)

4.6 Online Serving
We illustrate the process of online serving in Algorithm 2. In the
online serving system, the agent selects the action with the highest
reward based on current state and converts the action to ad slots
set for the output. When the user pulls down, the agent receives
the state for the next page, and then makes a decision based on the
information of next state.

5 EXPERIMENTS
In this section, we evaluate the proposed method3 on real-world
dataset, with the aim of answering the following two questions:
i) How does our method perform compared with the baselines?
ii) How do different auxiliary tasks and hyperparameter settings
affect the performance of our method?
3The code and data example are publicly accessible at https://github.com/princewen/
listwise_representation

Algorithm 2 Online inference of our method
1: Initial state 𝑠0
2: repeat
3: Generate 𝑎∗𝑡 = argmax𝑎∈A 𝑄 (𝑠𝑡 , 𝑎)
4: Allocate ad slots following 𝑎∗𝑡
5: User pulls down
6: Observe the next state 𝑠𝑡+1
7: until User leaves

5.1 Experimental Settings

5.1.1 Dataset. Since there are no public datasets for ads allocation
problem, we collect a real-world dataset by running a random
exploratory policy on the Meituan platform during March 2021.
As presented in Table 2, the dataset contains 12, 729, 509 requests,
2, 000, 420 users, 385, 383 ads and 726, 587 organic items. Notice that
each request contains several transitions.

5.1.2 Evaluation Metrics. Since both user experience and platform
revenue are important for ads allocation, similar to [21], we evaluate
the performance of methods with both revenue indicators and
experience indicators. As for revenue indicators, we use ads revenue
and service fee in a period to measure platform revenue, which
is calculated as 𝑅ad =

∑
𝑟ad/𝑁request and 𝑅fee =

∑
𝑟 fee/𝑁request

(𝑁request is the number of requests). As for experience indicators,
we use the the global ratio of the number of orders to the number of
requests and the average user experience score (defined in Section
3) to measure the degree of satisfaction of the user demand, which
is calculated as 𝑅cxr = 𝑁order/𝑁request and 𝑅ex =

∑
𝑟 ex/𝑁request

(𝑁order is the number of orders).

5.1.3 Hyperparameters. We implement our method with Tensor-
Flow and apply a gird search for the hyperparameters. 𝜂 is 0.054,
𝛼1 is 0.01, 𝛼2 is 0.05, 𝛼3 is 0.05, 𝐾 is 10, 𝐿 is 10,𝑀 is 3, the hidden
layer sizes of all MLPs are (128, 64, 32), the learning rate is 10−3,
the optimizer is Adam [16] and the batch size is 8,192.

5.2 Offline Experiment

In this section, we train our method with offline data and evaluate
the performance using an offline estimator. We use Cross DQN [21]
as the base agent in this subsection to achieve further improvement.
Through extended engineering, the offline estimator models the
user preference and aligns well with the online service.

5.2.1 Baselines. We compare our method with the following three
representative RL-based dynamic ads allocation methods and three
representative RL representation learning methods using different
types of auxiliary tasks:

• HRL-Rec [40]. HRL-Rec is a typical RL-based ads allocation
method, which divides the integrated recommendation into two
levels of tasks and solves using hierarchical reinforcement learn-
ing. Specifically, the model first decides the channel (i.e., select
an organic item or an ad) and then determine the specific item
for each slot.

4Follow the experiment result in [21].

https://github.com/princewen/listwise_representation
https://github.com/princewen/listwise_representation
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Table 1: The performance of different models. The results are presented in the form of mean (± standard deviation). The
improvement indicates the improvement of our method over the best baselines.

Method
Revenue Indicators Experience Indicators

𝑅ad 𝑅fee 𝑅cxr 𝑅ex

HRL-Rec 0.2390 (±0.0035) 0.2662 (±0.0053) 0.2441 (±0.0013) 0.9530 (±0.0038)
DEAR 0.2402 (±0.0029) 0.2679 (±0.0067) 0.2487 (±0.0007) 0.9621 (±0.0024)
CrossDQN 0.2465 (±0.0006) 0.2740 (±0.0009) 0.2508 (±0.0008) 0.9667 (±0.0036)
DSAE 0.2466 (±0.0018) 0.2741 (±0.0052) 0.2508 (±0.0011) 0.9635 (±0.0047)
UNREAL 0.2471 (±0.0012) 0.2744 (±0.0038) 0.2511 (±0.0006) 0.9645 (±0.0022)
RCRL 0.2482 (±0.0007) 0.2765 (±0.0022) 0.2521 (±0.0006) 0.9648 (±0.0023)
Our Method 0.2541 (±0.0006) 0.2815 (±0.0024) 0.2554 (±0.0008) 0.9718 (±0.0031)
- w/o RAT 0.2491 (±0.0003) 0.2761 (±0.0009) 0.2538 (±0.0004) 0.9701 (±0.0015)
- w/o PAT 0.2487 (±0.0011) 0.2756 (±0.0028) 0.2535 (±0.0009) 0.9694 (±0.0042)
- w/o CLAT 0.2483 (±0.0010) 0.2768 (±0.0013) 0.2531 (±0.0010) 0.9688 (±0.0044)
- w/o all AT 0.2464 (±0.0051) 0.2739 (±0.0007) 0.2506 (±0.0008) 0.9665 (±0.0036)

Improvement 2.38% 1.81% 1.31% 0.73%

Table 2: Statistics of the dataset.

#requests #users #ads #organic items

12,729,509 2,000,420 385,383 726,587

• DEAR [44]. DEAR is an advanced RL-based ads allocationmethod,
which designs a deep Q-network architecture to determine three
related tasks jointly, i.e., i) whether to insert an ad to the recom-
mendation list, and if yes, ii) the optimal ad and iii) the optimal
location to insert.
• Cross DQN [21]. Cross DQN is a state-of-the-art RL-based ads
allocation method, which takes the crossed state-action pairs as
input and allocates slots in one screen at a time. It designs some
units (e.g., MCAU) to optimize the combinatorial impact of the
items on user behavior.
• DSAE [7]. DSAE presents a reconstruction-based auxiliary task
for representation learning in RL, which uses deep spatial au-
toencoders to learn the spatial feature representation. Here we
take Cross DQN as agent and use the deep spatial autoencoders
to build an auxiliary task, with the aim of helping the learning
of list-wise representation.
• UNREAL [15]. UNREAL contains a prediction-based auxiliary
task for representation learning in RL, which predicts the onset
of immediate reward with some historical context. Here we take
Cross DQN as agent and use the prediction-based auxiliary task
in UNREAL to aid the training of an agent.
• RCRL [22]. RCRL proposes a return-based contrastive repre-
sentation learning method for RL, which leverages return to
construct a contrastive auxiliary task for speeding up the main
RL task. Here we also take Cross DQN as agent for equality and
use the return-based contrastive loss to accelerate representation
learning.

5.2.2 Performance Comparison. We keep the percentage of ads
exposed at the same level for all methods to ensure comparability
[21]. The offline experimental results are shown in Table 1 and we
have the following observations: Intuitively, our method has made
great improvements over state-of-the-art baselines in both revenue
indicators and experience indicators. And we have the following
detailed observations from the experimental results: i) Compared
with all RL-based ads allocation baselines, our method achieves
strongly competitive performance on both the platform revenue
and the user experience. Specifically, our method improves over
the best baseline w.r.t. 𝑅ad, 𝑅fee, 𝑅cxr and 𝑅ex by 2.38%, 1.81%, 1.31%
and 0.73% separately. ii) Compared with different types of auxiliary
task methods, our results are substantially better than correspond-
ing types of baseline separately. The superior performance of our
method justifies that the agent learned more effectively with the
help of our designed auxiliary tasks, which can more effectively
utilize the side information on ads allocation scenario.

5.2.3 Ablation Study. To verify the impact of three auxiliary tasks,
we study four ablated variants of our method (i.e., w/o RAT, w/o
PAT, w/o CLAT, w/o all AT) and have the following findings: i)
The performance gap between w/ and w/o the first auxiliary task
verifies the effectiveness of reconstruction-based auxiliary task,
since the key information is embedded in the representation. ii)
The performance gap between w/ and w/o the second auxiliary
task verifies the effectiveness of prediction-based auxiliary task,
which brings in supervised information based on users behaviors
to jointly guide the agent in training. iii) The performance gap be-
tween w/ and w/o the third auxiliary task verifies the effectiveness
of contrastive-learning based auxiliary task, which makes the dis-
tinction between different types of state-action pair representations
more reasonable. iv) The performance gap between w/ and w/o all
auxiliary tasks verifies the fact that the three auxiliary tasks can
greatly improve the performance of an agent for ads allocation.
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(a) The reward curve of 𝛼1 .
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(b) The reward curve of 𝛼2 .
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(c) The reward curve of 𝛼3 .

Figure 4: The experimental results on the sensitivity of 𝛼1, 𝛼2 and 𝛼3.
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(a) The reward curve of𝑀 .
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(b) The reward curve of 𝐿.
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(c) The reward curve of 𝐾 .

Figure 5: The experimental results on the sensitivity of𝑀 , 𝐿 and 𝐾 .

5.2.4 Hyperparameter Analysis. We analyze the sensitivity of these
four types of hyperparameters:

• Coefficients 𝛼1, 𝛼2, 𝛼3. We perform a detailed analysis of 𝛼1, 𝛼2,
𝛼3 and have the following findings: i) The sensitivity of 𝛼1, 𝛼2,
𝛼3 is shown in Figure 4. Increasing 𝛼1, 𝛼2 and 𝛼3 within a certain
range can improve the performance of the agent in auxiliary
tasks, which further helps the performance in main task. But if
𝛼1, 𝛼2 and 𝛼3 are too large, it would cause the performance of
main task to degrade. Therefore, if the appropriate 𝛼1, 𝛼2 and
𝛼3 are chosen, the auxiliary tasks would greatly improve the
performance of the agent in main task. ii) Table 3 illustrates the
performance when different weights of auxiliary tasks are used
simultaneously. The best performance is obtained when 𝛼1 is
0.01, 𝛼2 is 0.05 and 𝛼3 is 0.05. One possible explanation is that
different auxiliary tasks can effectively guide the representation
to learn in a target direction within a certain range. But if one
weight of an auxiliary task is too large, it may cause the learning
direction to be dominated by this task, resulting in a decrease in
the performance.
• The amount of information used for reconstruction𝑀 . In
reconstruction-based auxiliary task, we select top𝑀 most con-
cerned factors to build the reconstruction-based auxiliary task.
We experiment with𝑀 from 1 to 10. The experimental result is
a typical convex curve and the optimal result is obtained when
𝑀 is 3. One reasonable explanation is that key information is

helpful to the learning of the representation to a certain extent.
But if there is too much information, it will also lead to learning
difficulties for the agent.
• The size of contrastive sample set 𝐿. In contrastive-learning
based auxiliary task, we construct a comparative sample set for
each sample, which consists of 1 positive sample of the same
type and 𝐿 − 1 randomly sampled negative samples. As shown
in figure 5(b), increasing 𝐿 within a certain range can effectively
improve the performance, but the performance will not increase
if 𝐿 is larger than a threshold. From the result it is clear that
maintaining a reasonable size 𝐿 can effectively save computing
resources while keeping the performance.
• The number of allocated slots in each request 𝐾 . As shown
in Figure 5(c), increase 𝐾 can boost the performance. The best
performance is obtained when the number of allocated slots in
each request is taken as 10. One reasonable explanation is that
the list-wise information increases as 𝐾 increases. But the action
space grows exponentially with 𝐾 . If 𝐾 is too large, the huge
action space would make decision-making more difficult.

5.3 Online Results

We compare our method with Cross DQN and both strategies are
deployed on theMeituan platform through online A/B test. We keep
total percentage of ads exposed the same for two methods for a fair
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Table 3: Compared to 𝛼2, 𝛼3 are 0, the average improvement
for four indicators when 𝛼2 and 𝛼3 change simultaneously.

(a) The results of improvement when 𝛼1 is 0.0

𝛼2 𝛼3 0.0 0.005 0.01 0.05 0.1
0.0 -0.76% -0.74% -0.25% -0.02% 0.03%
0.005 -0.64% -0.72% 0.05% -0.04% -0.20%
0.01 -0.43% -0.43% -0.09% 0.05% -0.13%
0.05 -0.51% -0.57% -0.09% 0.13% -0.25%
0.1 -0.25% -0.13% -0.25% -0.46% -0.72%

(b) The results of improvement when 𝛼1 is 0.005

𝛼2 𝛼3 0.0 0.005 0.01 0.05 0.1
0.0 -0.32% -0.02% 0.87% 1.18% 0.85%
0.005 -0.09% 0.20% 1.04% 0.80% 0.76%
0.01 0.05% 0.62% 1.13% 1.56% 0.52%
0.05 0.15% 1.49% 1.58% 1.74% 0.19%
0.1 -0.53% 0.25% 0.83% 0.19% -0.44%

(c) The results of improvement when 𝛼1 is 0.01

𝛼2 𝛼3 0.0 0.005 0.01 0.05 0.1
0.0 -0.44% -0.13% -0.08% -0.04% -0.15%
0.005 -0.16% 0.22% 0.85% 1.23% 0.57%
0.01 -0.04% 0.64% 1.08% 1.53% 1.09%
0.05 0.10% 0.95% 1.30% 1.95% 1.81%
0.1 -0.01% 0.55% 1.02% 1.76% 1.25%

(d) The results of improvement when 𝛼1 is 0.05

𝛼2 𝛼3 0.0 0.005 0.01 0.05 0.1
0.0 -0.23% 0.03% 1.02% 0.97% 0.92%
0.005 0.03% 0.25% 1.18% 0.94% 0.87%
0.01 0.25% 1.30% 1.16% 1.69% 0.62%
0.05 0.62% 1.65% 1.74% 1.91% 0.22%
0.1 -0.46% 0.31% 0.94% 0.34% -0.27%

(e) The results of improvement when 𝛼1 is 0.1

𝛼2 𝛼3 0.0 0.005 0.01 0.05 0.1
0.0 -0.34% -0.36% 0.57% 0.95% 0.74%
0.005 -0.06% -0.15% 0.90% 0.78% 0.50%
0.01 0.10% 0.99% 0.73% 1.34% 0.25%
0.05 1.39% 1.09% 1.58% 1.35% -0.02%
0.1 -0.84% 0.25% 0.55% -0.06% -0.48%

comparison. The two experimental groups use the same number of
users and are observed for two consecutive weeks. As a result, we
find that 𝑅ad, 𝑅fee, 𝑅cxr and 𝑅ex increase by 2.92%, 1.91%, 2.21% and
1.13%, which demonstrates that our method can effectively improve
both platform revenue and user experience.

6 CONCLUSION AND FUTUREWORK

In this paper, we propose three different types of auxiliary tasks
to learn an efficient and generalizable representation in the high-
dimensional state-action space in the ads allocation scenario. Specif-
ically, the three different types of auxiliary tasks are based on re-
construction, prediction, and contrastive learning respectively. The
reconstruction based auxiliary task helps to learn a representation
that embeds the key factors that affect the users. The prediction
based auxiliary task extracts labels based on the behavior of the
users and learns a representation that is predictive of the behavior-
based rewards. The contrastive learning based auxiliary task helps
to aggregate semantically similar representations and differentiate
different representations. Practically, both offline experiments and
online A/B test have demonstrated the superior performance and
efficiency of the proposed method.

However, adding multiple auxiliary tasks at the same time in-
evitably introduces the challenge that how to balance multiple
auxiliary tasks. So, how to automatically balance between multiple
auxiliary tasks to maximize the platform revenue is one of our pri-
orities in the future. In addition, it is worth noting that our method
follows the offline reinforcement learning paradigm. Compared
with online reinforcement learning, offline reinforcement learning
faces additional challenges (such as the distribution shift problem).
The impact of these challenges to the ads allocation problem is also
a potential research direction in the future.
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