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ABSTRACT
E-commerce stores face the challenge of missing and inconsistent
attribute values in the product detail pages and have to impute
them on behalf of their vendors. Traditional approaches formu-
late the problem of attribute extraction (AE) from product profiles
as natural language tasks such as information extraction or text
classification. Such models typically operate at high precision but
may yield low recall especially on attributes with an open vocabu-
lary due to 1) missing or incorrect information in product profiles,
2) generalization errors due to lack of contextual understanding,
and 3) confidence thresholding to operate at high precision. In
this work, we present PAVE: Product Attribute Value Ensemble, a
novel reinforcement learning model that uses Lazy-MDP formalism
to solve for low recall by aggregating information from a sequence
of product neighbors. We train a policy network using Proximal
Policy Optimization that learns to choose the correct value from the
sequence. We observe consistent improvement in recall across all
open attributes compared to traditional AE models with an average
lift of 10.3% with no drop in precision. Our method surpasses sim-
ple aggregation methods like nearest neighbor, majority vote and
binary classifier ensembles and even outperforms AE models for
closed attributes. Our approach is scalable, robust to noisy product
neighbors and generalizes well on unseen attributes.

CCS CONCEPTS
• Theory of computation → Reinforcement learning; • In-
formation systems→ Information extraction; • Computing
methodologies→ Ensemble methods; Policy iteration.
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1 INTRODUCTION
E-commerce stores often have millions of products in their catalog.
A large share of these products are listed by third-party vendors.
Due to the scale of these third-party listings, manual inspection
on every product detail provided by the vendor is infeasible. These
details are thus shown directly on the product detail pages. Poor
linguistic proficiency of vendors, lack of holistic understanding of
global customers and disparity between vendor and e-commerce
interpretations of some fields in the listing template lead to er-
rors in the listed information [20]. In particular, this results in low
quality of product attribute information that leads to customer
dissatisfaction. However, this problem can be solved when the
information is present in free-text fields like title, bullet or even
images from where it can be extracted (see a hypothetical example
in Figure 1). Developing models for attribute extraction (AE) are
critical to improve catalog quality at scale. These models can be
used to backfill millions of products and even correct erroneous
products by inspecting catalog values that are inconsistent with
model predictions. Improved catalog quality increases customer
satisfaction while elevating other systems such as search systems
for queries with attribute value mentions, systems like product
recommendation that consume these attributes, product widgets
for easy discoverability of attributes, among others.

Product attribute extraction is a long studied problem in liter-
ature covering various aspects like emerging entities, scalability
and accuracy. Most of the work on AE pose the problem as natural
language processing (NLP) tasks using the product’s profiles, such
as text classification [13, 20, 39], semantic matching [26, 27, 31],
information extraction (IE) using Named Entity Recognition (NER)

Title Garnier Skin Naturals, Charcoal, Face Serum Sheet
Mask (Black), 28g & Garnier Skin Naturals

Bullet
 Garnier Skin Naturals, Charcoal, Face Serum Sheet
Mask (Black), 28gGarnier introduces a new 
generation of face masks for women that infuses skin
with 1 week of serum with 1 mask. Garnier black
serum mask is a breakthrough  black tissue mask
technology that offers double purifying  and hydrating
efficacy. Use Garnier black serum mask if you have
dull skin with clogged and enlarged pores.

Scent Blank

Figure 1: An example face sheet mask product where the
vendor did not provide the scent attribute value during prod-
uct listing. However, ground truth for scent (in green) is
present in the product’s profile and can be extracted.
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like sequence labeling [21, 29, 44] and question answering [2, 35].
These are competent approaches that are easy to actuate as they
can operate at a high precision. However, they may suffer from low
recall when deployed, more so for open attributes that have large
and often evolving vocabulary, due to following reasons.

Firstly, the product data can be noisy and uninformative for an
attribute that gets exacerbated on tail products. Traditional NLP
formulations fail to address this problem from a recall perspective.
Secondly, open attribute models may select out-of-context answers
for both seen and unseen attribute values leading to recall loss.
Flavor attribute (bolded) generally occurs as a prefix to the prod-
uct name (underlined), for example - "Bengal bay spiced orange
& basil tonic water with organic ingredients". Open attribute mod-
els exploit such semi-structures for generalizability but are error
prone on products that don’t follow them, for example "Creamix
pan cake premix rose 4000g". Similarly, these models also tend to
select common training values that are out-of-context in test data.
Consider a white toothbrush with description "The CleanMaximiser
technology turns green bristles yellow and indicates the time to
change for best cleaning", a color attribute model may select "green"
or "yellow" as the product color from this description. Thirdly, con-
fidence thresholding to achieve high precision leads to low recall by
dropping correct low confident predictions. Moreover, AE models
typically do not consume all product profiles (such as manufacturer
notes, product videos, customer reviews, etc.) to ensure low model
complexity and truncate noise as these profiles are often lengthy
and vague. Human annotators, however, use them when tagging
ground truth labels as they can effectively filter out noise. This
may also contribute to low recall of open AE models. Even closed
attribute models can operate at low recall for minority classes [25]
and due to shifts in class distributions on test products [2].

Low recall of the AE models reduces its coverage when backfill-
ing omitting a large number of products with missing or incorrect
attribute values. Hence, it becomes an important problem to solve
and usually the adopted solution is iterative to tune existing models
or train afresh using training data from products omitted by previ-
ous models and if it fails, enhance the model architecture to learn
better representations from more data ([9, 15]). These solutions
evolve slowly and depend on the specific attribute requiring man-
ual inputs (for example, annotation for active learning, choosing
modality or multi-tasks for an attribute). Moreover, they seldom
build on top of existing models and still suffer from low recall due to
data quality issues. We intend to solve these challenges by devising
a simple yet effective algorithm that is agnostic of attribute type,
builds on top of existing AE models and easy to scale to hundreds
of attributes. To begin, we train baseline AE models by fine-tuning
pre-trained BERT model [10] using publicly available products in a
locale within amazon.com (see Section 5.2.1).

We analyze recall misses on test sets that were created through
manual audits (see Section 5.1). We find that 37% test products did
not even contain ground truth in the input text. However, when we
looked at product neighbors (see Section 4.1.1) of these test products,
we found that the ground truthwas present as a catalog valuewithin
top 20 neighbors for 77% of them (see Figure 2). Hence, the recall can
be significantly improved by accurately ensembling values from
neighbors. However, even the nearest neighbor value was only
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Figure 2: Ground truth coverage in neighbor catalog values
where product neighbors are ranked from1-50 basis their co-
sine similarity of the product embeddings. For Self, we con-
sider both catalog value and baseline AE model prediction.

54% accurate for the given product, thus a sub-optimal ensemble
would have a low precision. To solve this challenge, we propose
PAVE: ProductAttribute Value Ensemble, a novel ensemble model
using reinforcement learning (RL), taking inspiration from Liu et. al.
work [18] and Lazy-MDP formalism [14]. Our RL agent scans lazily
through each product neighbor to decide whether the neighbor
attribute value is relevant or not and emits the best value at the end
of the episode. Our approach not only handles noise to preserve
precision, but also allows dynamic neighbor length (see Section 3.1).
To the best of our knowledge, we are first to apply RL in the domain
of product attribute extraction and propose several novel techniques
to handle the aforementioned challenges with traditional solutions.
Concretely, we make the following contributions:
• We propose the attribute value ensembling task as a novel
RL based Lazy-MDP that improves recall of traditional AE
models without dropping precision.
• We introduce novel intermediate rewards for training, and
emit confidence scores to control precision-recall tradeoff.
• We evaluate our models on real world e-commerce datasets
and compare against strong baselines like BERT based AE
models and multiple ensemble methods.
• Our proposed approach is scalable, easy to adopt in an e-
commerce setting, robust to noisy product neighbors and
generalizes well on unseen attributes.

2 RELATEDWORK
Product attribute extraction is a widely studied domain and most
of the recent work can be classified into following categories:

(1) Multi-task learning: Clark et. al. [6] propose cross-view
training using multiple auxiliary predictors on unlabeled
data, Karamanolakis et. al. [15] add taxonomy prediction
task andWang et. al. [35] add language modeling task. Other
work use multi-task learning to train a single model that
work well on multiple attributes [21, 41].

(2) Multi-modal learning: Logan et. al. [19] released Multi-
modal Attribute Extraction (MAE) dataset in 2017 and pro-
posed a simple multimodal model with gated fusion layer,
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Zhu et. al. [46] used transformer and ResNet encoders and
used self-attention to fuse information while Zhang et. al.
[43] proposed Multimodal Graph Fusion model and used
Graph Neural Networks to fuse different modalities.

(3) Few shot learning: Li et. al. [17] proposed MetaNER and
use MAML ([12]) to train a meta learner that quickly adapts
to unseen attributes, Yang et. al. [42] proposed a nearest
neighbor based few shot model, Wang et. al. [38] proposed
self-training model with a meta objective to handle noisy
pseudo labels from teacher while Cui et. al. [8] ranked entity
templates on different answer spans using pre-trained BART.

(4) Noise-robust learners: Chen et. al. [4] proposed masked
adversarial model that uses adversarial perturbations on
embeddings with an adversarial loss, Zhou et. al. [45] exploit
learning properties on noisy labels and use multiple NER
models with different initializations while Meng et. al. [22]
use generalized cross entropy loss to reduce gradient update
on false negatives combined with self-training for stability.

These approaches are noteworthy improvements over vanilla
IE models and can lift AE performance on products with attribute
information in their profiles. However, they fail to address miss-
ing and noisy attribute information from recall perspective. Other
works that improve vanilla IE technique particularly on recall ei-
ther predict entire label distribution [16], or use inferred entity
dictionaries or augment 𝑘NN based label distribution to sequence
tagging [36]. They too fail to address missing information and are
not extendible to an e-commerce scale due to human-in-the-loop.
Use of reinforcement learning is not new to information extrac-
tion domain. Wang et. al. [37] use RL to automatically concatenate
different embeddings and is the SOTA on CoNLL 2003 task [33].
Narasimhan et. al. [24] and Liu et. al. [18] use RL for emerging
entities by acquiring external evidences using search results. While
the latter showed that their formulation work well with emerging
entities, it still does not apply directly to an e-commerce setting as
1) long tail products do not have good search results, 2) value edit
distances are less insightful and even counter-intuitive (see Section
4.2), and 3) DQN models are unstable [1] and have large number of
hyper-parameters making them hard to tune for all attributes.

3 PROBLEM FORMULATION
An attribute is a relation between a product and a value that de-
scribes some product characteristic. For example, in Figure 1, the
product and the value charcoal are linked by an attribute - scent.
It is essential to categorize these attributes to choose the right AE
problem formulation. Open attributes have large value spaces (more
than 20 − 30 or even 100) that can evolve with time, for example
flavor, material, etc., whereas closed attributes have a well defined
and fixed value space, for example target gender has a fixed value
space - {male, female and unisex}. AE task is defined differently for
both attribute types as follows.

Definition 3.1. Open Attribute Extraction (OAE): Given a product
𝑃 with textual data 𝑥1, 𝑥2, 𝑥3, ... from product profiles 𝑝1, 𝑝2, 𝑝3, ...
and a target attribute 𝑎, extract all attribute values by predicting
the tag sequence {𝑡𝑖1 , 𝑡𝑖2 , 𝑡𝑖3 , ...𝑡𝑖𝑛𝑖 } for each token sequence of the
textual data (𝑥𝑖 = {𝑤𝑖1 ,𝑤𝑖2 ,𝑤𝑖3 , ...𝑤𝑖𝑛𝑖

}), where 𝑡𝜃 ∈ {𝐵𝑎, 𝐼𝑎,𝑂𝑎}.

Definition 3.2. Closed Attribute Extraction (CAE): Given a product
𝑃 with textual data 𝑥1, 𝑥2, 𝑥3, ... from product profiles 𝑝1, 𝑝2, 𝑝3, ...
and a target attribute 𝑎, classify text 𝑥𝑃 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑥1, 𝑥2, 𝑥3, ...) into
a fixed set of attribute classes 𝐶 , where 𝐶 is the value space of 𝑎.

In Definition 3.1, OAE is a NER task to predict B,I,O tokens for
each attribute (see section 2.2 in [44]). OAE can also be defined as a
QA task to predict answer spans in the token sequence [2]. CAE is
a text classification task where the classes are the set of normalized
values for the attribute. These formulations do not address missing
and noisy attribute information that may result in low model recall.
One way to solve for low recall is by ensembling attribute values
from product neighbors as defined below.

Definition 3.3. Attribute Value Ensembling from Neighbors: Given
a product 𝑃 , target attribute 𝑎, a list of𝑀 neighbor attribute values
𝐶𝑃 = [𝑣1, 𝑣2, 𝑣3 ...𝑣𝑀 ] from 𝑃 and its 𝐿 nearest product neighbors
{𝑃, 𝑃1, 𝑃2, 𝑃3, ...𝑃𝐿} 𝑤𝑖𝑡ℎ 𝐿 + 1 <= 𝑀1 and associated catalog data,
choose the correct attribute value from 𝐶𝑃 for the product 𝑃 .

3.1 Limitations with non-sequential ensembles
There are numerous ensembling techniques to solve for Definition
3.3. It can be formulated as a ranking problem [3] to find the best
ranked neighbor, or as a matching problem [34] using an attribute
support set, or as a link prediction problem [32] on an incomplete
bipartite graph of products and attribute values, among others. We
foresee certain limitations with such non-sequential ensembles:
• Noisy neighbors: Product neighbors are noisy and not al-
ways relevant to the given product. Non-sequential ensemble
model needs to learn from all the neighbors jointly making
it hard to locate the correct answer.
• Product variants: Variants of a given product [11] are very
similar products with incorrect values. Non-sequential learn-
ers may give more importance to such products due to likely
positive correlation of correct answer with similarity score.
• Fixed number of neighbors: Fixing neighbor length (𝐿)
for all products is sub-optimal as each product has different
number of good quality neighbors.
• Complexity: Non-sequential ensembles that learn dense
representations of products using all associated data are
complex, reduce interpretability and may fail to segregate
neighbors with very similar associated data.

Sequential learners are better suited as they exploit ranking
among the neighbors and can stop early. This reduces processing
noisy neighbors that may occur later in the sequence while allowing
dynamic neighbor length for each product. Moreover, conventional
RL is more suitable compared to contextual bandits as the problem
can be setup with a correlated sequence of states (see Section 4.1.2).
With RL-based Lazy-MDP formulation it is possible to promote the
top neighbor value and change only if there is a strong signal. This
handles product variants and also noisy neighbors while increasing
interpretability. We therefore, formulate the problem of attribute
value ensemble as the following sequential learning task.

1For any particular product neighbor, attribute values can be extracted from multiple
sources like values extracted from traditional AE models, value in the catalog provided
by vendor, value present on other e-commerce websites, etc.
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Definition 3.4. Sequential Attribute Value Ensembling from Neigh-
bors: Given a product 𝑃 , target attribute 𝑎, an ordered sequence of
neighbor attribute values 𝐶𝑃 and associated catalog data, learn an
optimal policy 𝜋∗ that maximizes the sum of expected rewards by
choosing the correct neighbor value from 𝐶𝑃 .

4 PAVE: LAZY-MDP BASED ENSEMBLE
We propose PAVE model that solves Definition 3.4 using Lazy
Markov Decision Process (Lazy-MDP) formulation [14]. A Lazy-MDP
is a tuple 𝑀+ = (𝑀,𝑎, 𝜋, 𝜂), where 𝑀 is the standard MDP tuple
(𝑆,𝐴, 𝑅,𝑇 ,𝛾, ℎ) of state, actions, reward, transition probability, dis-
count factor and horizon, 𝑎 is the lazy action that defers control
to the default policy 𝜋 and 𝜂 is the cost of a non-lazy action ∈ 𝐴
[14]. Similar to previous works [18, 24], we adopt model-free RL
approach, but explore beyond deep Q-learning [23] due to large
variance in optimality of deep Q-networks [1] and multiple hyper-
parameters that need to be tuned for each attribute individually.
PAVE is a policy network model trained using Proximal Policy Op-
timization (PPO). PPO trains a stochastic policy using a surrogate
objective based on advantage estimates to efficiently apply gradient
updates within policy trust regions [30]. PPO is easy to tune, uses
stochastic exploration and has low variance in its optimal solution
due to trust regions. Although we propose PAVE for open attributes
where low recall problem generally occurs, we also test on closed at-
tributes for completeness. We describe the training dataset creation,
components of our Lazy-MDP and the overall algorithm below.

4.1 Training Dataset Creation
See Figure 3 for the high level training process for the PAVE model,
given a product 𝑃 .

4.1.1 Product Embeddings Space. We use pre-trained Google BERT
base model (bert_uncased_L-12_H-768_A-12) and train it further
on MLM and NSP tasks [10] on sampled product titles. Titles are
used since they are least noisy. This BERT model is used to gen-
erate title embeddings. We collect 100 nearest neighbors based
on cosine 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 of these title embeddings for each train and
test product. For every neighbor (or a candidate) product, we run
baseline AE models (see Section 5.2.1) to obtain predictions along
with 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 scores. We also obtain catalog values and assign a
constant 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 score. These neighbors are ranked (see section
4.1.2) to create the product embeddings space.

4.1.2 Value Ranking. A natural way to rank the product embed-
dings space is using similarities between embeddings. However,
this results in candidate values being shuffled in the sequence. Since
the state is derived from the value (see Section 4.2) the decision
process would not satisfy the 1𝑠𝑡 order Markovian assumption:

𝑝 (𝑆𝑛+1 |𝑆𝑛) = 𝑝 (𝑆𝑛+1 |𝑆𝑛, 𝑆𝑛−1, ...𝑆1) (1)

where 𝑆𝑖 is the state at 𝑖𝑡ℎ decision step. This is because the prob-
ability of occurrence of 𝑆𝑡+1 or value 𝑣𝑡+1 depends not only on
𝑣𝑡 but also on when it occurred first. For example, a correct first
candidate value has high probability of re-occurrence than an in-
correct value appearing late in the sequence. Hence, knowing the
entire history of states becomes important to learn an optimal pol-
icy. Showing historical states to the model adds to the complexity

while reducing interpretability. We define 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒
as 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 and sort the product embeddings space
by (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑣𝑎𝑙𝑢𝑒 , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒) tuple to preserve the
1𝑠𝑡 order Markovian assumption. AE model prediction is always
the first candidate value to impart structure to the sequence.

4.1.3 Reference Values. Reference values are used to provide in-
formation to the agent about the product category. These are used
while creating the state to learn relevance of a candidate value in
the category. We create a stratified sample of 50 with same value dis-
tribution as 𝑃 ’s category as references. Random sampling is avoided
so that PAVE observes the same state for repeated inference runs.

4.1.4 Noise Filtering and Augmentation. We apply frequency fil-
tering on candidate and reference values to remove less common
values that could be incorrect. We create attribute support set using
confident predictions of AE models and remove values that have
large minimum distance from the support set. Since AE models
predict the correct value for a majority of products, RL agent learns
a sub-optimal policy to predict the first value. Hence, we replace
some training values by noise ("noise-1", "noise-2", etc.) to ensure
uniform distribution of the correct value at different positions in
the sequence for the first time while preserving the value ranking.

4.2 State
The state is created at each decision step using various features
related to the candidate values. We found that edit distance is less
meaningful and sometimes even counter-intuitive for e-commerce
attributes. For example, edit distance of alloy from acid is less than
from alloy crystal emerald, however alloy is more similar to latter.
Pre-trained word embeddings like GloVe also do not solve the prob-
lem. For example white and black have closer GloVe representations
than white and white gown. The attribute values are mostly cate-
gorical in nature, i.e. distance between say black and blue should
be same as distance between black and white. Therefore, we use
token similarity to compare any two attribute values 𝑣1 and 𝑣2, with
token sequence 𝑡𝑖 of length 𝑛𝑖 for value 𝑣𝑖 , 𝑡𝑖 = {𝑤𝑖1 ,𝑤𝑖2 , ...𝑤𝑖𝑛𝑖

}:

𝑆𝑖𝑚(𝑣1, 𝑣2) =
{

1, ∃ 𝑤 :𝑤 ∈ 𝑡1 ∩ 𝑡2 &𝑤 ∉ 𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠.
0, otherwise.

(2)

Given a product 𝑃 and a candidate value 𝑣 from candidate product
𝑄 , we define following features that are relevant to our task.

(1) Confidence Scores - 𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑣,𝑄):
• AE model confidence or fixed catalog score for 𝑣
• Cosine similarity between embeddings of 𝑄 and 𝑃
• TF-IDF similarity between profiles of 𝑄 and 𝑃

(2) Frequency scores (using 𝑆𝑖𝑚) - 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑣):
• Frequency of 𝑣 in 𝑃 ’s candidate values
• Frequency of 𝑣 in 𝑃 ’s reference values

(3) Indicator scores - 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (𝑣):
• Is 𝑣 blank
• Is 𝑣 obtained from AE model prediction or catalog
• Is 𝑣 the last candidate
• Is 𝑣 mentioned in 𝑃 ’s profile

Each feature value is normalized between 0−1 and then rounded
to a nearest decimal to create buckets. Given a product 𝑃 , the PAVE
model sees following values at each decision step 𝑛 -
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Product Embeddings Space -    (P)

Product Catalog
 Title     Ear Plugs for Sleeping
 Bullet   Multiple occassions: Perfect for
             reducing, muffling and blocking
             sound at concerts, construction
             sites, and other loud events

Product Catalog
 Material     [Candidate Value]

Material?

Transform
er-based

A
E

 M
odel

State


P

Fetch Next Candidate Neighbor of P

Given product - P
Next Candidate Neighbor


Lazy-MDP

RL Agent

OUTPUT
VALUE

[Candidate Value]

 Confidence Scores
 Frequency Scores
 Indicator Scores
 Similarity Scores

Product Encoder

Default Policy


Defers Control


NON-TERMINAL 

ACTION

Cost - η

TERMINAL 

ACTION

End of Episode

Cost - η

Reference Values

ε

Figure 3: High level overview for training PAVE model. Given a product 𝑃 , attribute - material, catalog value and AE model
prediction are used as candidate values. PAVE model learns to choose the best value by either deferring to the default policy
or taking an action with a cost of 𝜂. Next candidate neighbor of 𝑃 is fetched to generate new candidate values and the decision
process is repeated. At the end of the episode, the best candidate value associated to the last action is taken as the output value.

• 𝑎𝑣 (AE model value) - AE model prediction on 𝑃 ’s profiles
• 𝑣𝑣 (vendor value) - vendor provided value in 𝑃 ’s catalog
• 𝑏𝑣 (best value) - best value so far from neighbor - 𝑃𝑛∗
• 𝑐𝑣 (current value) - value from current neighbor - 𝑃𝑛

Note that any of these candidate values could be empty. Also, 𝑏𝑣 is
initialized with 𝑎𝑣 to promote AE model prediction. We define the
marginal state (𝑠𝑚) for value 𝑣 from product 𝑄 as follows,

𝑠𝑚𝑣 = [𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑣,𝑄), 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑣), 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 (𝑣)] (3)

State at decision step 𝑛 (𝑠𝑛) is defined by subtracting marginal
state of all values from 𝑠𝑚

𝑏𝑣
to assist the PAVE model to choose the

candidate value that should replace 𝑏𝑣 . We also add similarity scores
to the state to let the PAVE model know if a value is same as 𝑏𝑣 .

𝑠𝑛 = [𝑠𝑚
𝑏𝑣
, (𝑠𝑚𝑐𝑣 − 𝑠𝑚𝑏𝑣), (𝑠

𝑚
𝑎𝑣 − 𝑠𝑚𝑏𝑣), (𝑠

𝑚
𝑣𝑣 − 𝑠𝑚𝑏𝑣), 𝑆𝑖𝑚(𝑏𝑣, 𝑐𝑣),

𝑆𝑖𝑚(𝑏𝑣, 𝑎𝑣), 𝑆𝑖𝑚(𝑏𝑣, 𝑣𝑣)] (4)

4.3 Actions
Default policy 𝜋 simply retains 𝑏𝑣 throughout the episode. This is
a reasonable default policy to consider given the initial 𝑏𝑣 comes
from an existing AE model. At each decision step, the PAVE model
either defers control to 𝜋 by taking action 0 (lazy action) or incurs
a cost of 𝜂 (see Section 4.4) and takes a non-lazy action as follows.
The last 𝑏𝑣 is taken as the output at the end of episode.
• Non-terminal actions-
– 1 (𝑎𝑣) - replace 𝑏𝑣 with 𝑎𝑣 , fetch next neighbor
– 2 (𝑣𝑣) - replace 𝑏𝑣 with 𝑣𝑣 , fetch next neighbor
– 3 (𝑐𝑣) - replace 𝑏𝑣 with 𝑐𝑣 , fetch next neighbor
• Terminal actions-
– 4 (𝑠𝑡𝑜𝑝) - end episode
– 5 (𝑏𝑙𝑎𝑛𝑘) - replace 𝑏𝑣 with 𝑏𝑙𝑎𝑛𝑘 and end episode

4.4 Rewards
Let the predicted value from the PAVE model be 𝑝 with ground
truth as 𝑔. Then, the reward at the end of episode is.

𝑅𝑒𝑤𝑎𝑟𝑑 (𝑝,𝑔) =
{
−𝛼, 𝑝 = 𝑏𝑙𝑎𝑛𝑘.

2 ∗ 𝑆𝑖𝑚(𝑝,𝑔) − 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

We penalize 𝑏𝑙𝑎𝑛𝑘 prediction less to encourage PAVE to not predict
when there are no good candidate values.We set 𝛼 to 0.4 empirically
as it depends on the number of 𝑏𝑙𝑎𝑛𝑘 answers in the training data.
We introduce intermediate reward to tip PAVE to an optimal policy.
Given state 𝑠𝑛 and action 𝑎𝑛 , it is defined as follows:

𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 (𝑠𝑛, 𝑎𝑛) =



𝑊 · (𝑠𝑚𝑎𝑣 − 𝑠𝑚𝑏𝑣), 𝑎𝑛 = 1
𝑊 · (𝑠𝑚𝑎𝑣 − 𝑠𝑚𝑣𝑣), 𝑎𝑛 = 2
𝑊 · (𝑠𝑚𝑎𝑣 − 𝑠𝑚𝑐𝑣), 𝑎𝑛 = 3
𝛽, 𝑎𝑛 = 4
𝜖, 𝑎𝑛 = 5.

(6)

For actions 1 (𝑎𝑣), 2 (𝑣𝑣) and 3 (𝑐𝑣), marginal state difference is
normalized by taking a dot product with their feature weights𝑊
to compute intermediate rewards.𝑊 is set as inverse of average
change of the state dimensions in the dataset and scaled down to
ensure that the final reward is greater than the highest intermediate
reward. To encourage early stopping, which helps in handling noise
by processing less neighbors, we set a small positive 𝛽 . Setting a
small discount factor𝛾 did not lead to early stopping, hence we set it
to 1 in our experiments. For action 5 (𝑏𝑙𝑎𝑛𝑘), a small positive reward
𝜖 is given if the ground truth is not present in the candidate sequence
else 0. At the end of episode, the total reward is𝑅𝑒𝑤𝑎𝑟𝑑+𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 .
Cost of the non-lazy actions, 𝜂 is subtracted from 𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 . There
is no intermediate reward for the lazy action 𝑎 as the default policy
skips the decision step. We add a penalty −𝜈 if PAVE switches to
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the same value. Hyperparameters 𝛽, 𝜂, 𝜖 & 𝜈 are selected using grid
search on [0, 0.1, 0.2, 0.3, 0.4, 1] and can vary across attributes.

4.5 Algorithm
See Algorithm 1 for the pseudo code to train our PAVE model using
PPO. We set discount factor 𝛾 to 1 since a correct value is equally
important regardless of its position in the candidate sequence. For
our experiments, we set horizon ℎ as 20 that was the elbow point
for the oracle score on most of the attributes.

Algorithm 1 Pseudo code to train our PAVE model using PPO.
1: For an attribute, create training data 𝑋 with product, catalog

data (title, bullet, taxonomy) and ground truth < 𝑃𝑖 ,𝐶𝑎𝑡𝑖 , 𝑔𝑖 >

2: Initialize actor network 𝜋𝜃 (𝑎 |𝑠) and critic network 𝑄𝑤 (𝑎, 𝑠)
3: for 𝑥𝑖 ∈ 𝑋 do
4: Collect 100 nearest neighbors for 𝑃𝑖 based on product em-

bedding 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 and create embeddings space E(𝑃𝑖 )
5: Run existing AE model on each product in E(𝑃𝑖 )
6: Obtain vendor value for each product in E(𝑃𝑖 )
7: Rank & process E(𝑃𝑖 ) according to Section 4.1
8: Sample reference values from 𝑃𝑖 ’s taxonomy
9: end for
10: for epoch = 1, . . . ,E do
11: for 𝑖 = 1, . . . , |𝑋 | do
12: Pop candidate from E(𝑃𝑖 ) and set value as 𝑎𝑣 and 𝑏𝑣
13: Pop candidate from E(𝑃𝑖 ) and set value as 𝑣𝑣 and 𝑐𝑣
14: Form the state 𝑠1 using Equation (4)
15: for 𝑛 = 1, . . . , 𝑁 (parallel actors) do
16: 𝑑𝑜𝑛𝑒 ← 𝐹𝐴𝐿𝑆𝐸

17: for 𝑡 = 1, . . . ,h (horizon) do
18: Sample 𝑎𝑡 ∼ 𝜋𝜃 (𝑎 |𝑠𝑡 ) (∈ [0, 5])
19: 𝑟𝑡 ← 0
20: if 𝑎𝑡 ≠ 0 then
21: 𝑟𝑡 ← 𝜂 + 𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑 (𝑠𝑡 , 𝑎𝑡 )
22: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 ← [𝑎𝑣, 𝑣𝑣, 𝑐𝑣, 𝑏𝑣, 𝑏𝑙𝑎𝑛𝑘]
23: 𝑏𝑣 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑣𝑎𝑙𝑢𝑒𝑠 [𝑎𝑡 − 1]
24: if 𝑎𝑡 is a terminal action then
25: 𝑑𝑜𝑛𝑒 ← 𝑇𝑅𝑈𝐸

26: 𝑟𝑡 ← 𝑟𝑡 + 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑏𝑣, 𝑔𝑖 )
27: end if
28: end if
29: if (𝑑𝑜𝑛𝑒 == False) & (𝑡 ≤ ℎ) & (E(𝑃𝑖 ) ≠ 𝑒𝑚𝑝𝑡𝑦) then
30: 𝑐𝑣 ← pop candidate from E(𝑃𝑖 )
31: else
32: break
33: end if
34: Form the state 𝑠𝑡+1 using newly obtained 𝑏𝑣 & 𝑐𝑣

35: 𝛿 ← 𝑟𝑡 + 𝛾 max𝑎𝑡+1 𝑄𝑤 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄𝑤 (𝑠𝑡 , 𝑎𝑡 )
36: Update𝑤 ←𝑤 + 𝛼𝛾𝑡𝛿∇𝑤𝑄𝑤 (𝑠𝑡 , 𝑎𝑡 )
37: end for
38: Compute advantage estimates 𝐴𝑛

𝑖
(𝑠1, 𝑎1), 𝐴𝑛

𝑖
(𝑠2, 𝑎2), ...

39: end for
40: end for
41: Update 𝜃 based on PPO’s surrogate objective on a minibatch
42: end for

5 EXPERIMENTS
We test our models on attributes that can typically be inferred from
textual product profiles (title, bullet, OCR text from product images,
etc.). However, our algorithm can be extended to attributes that
require both image and text information. We also perform ablation
studies on different components we introduce as part of the PAVE
model. We propose confidence thresholds for PAVE model outputs
and also test PAVE’s scalability and generalizability.

5.1 Dataset
To demonstrate performance on open attributes, we handpicked
color, flavor, scent, material and container as these were some of the
top attributes that customers care about in certain product cate-
gories. Similarly for closed attributes we picked age range and target
gender. We collect samples for each attribute (titles, bullets, descrip-
tion, catalog attribute values) from publicly available product pages
in a locale within amazon.com. We leverage manual annotators to
label around 50 products per product category in each attribute to
create our test set. This way we obtain around 12𝑘 products to test
our models (see Table 1). Training dataset is obtained by concate-
nating textual profiles to create a fixed context token vector of size
128 and is used to train baseline AE models. Taxonomy dataset is
sampled from the catalog such that there is no overlap with the
training dataset. We also fetch upto 100 nearest neighbors and pro-
cess these datasets (see section 4.1) to create product embeddings
space and reference values for each train and test product.

5.2 Baselines
5.2.1 BERT AE models. Existing AE models are first baselines to
our PAVE models. Since PAVE models consume neighbor informa-
tion, they are likely have better recall, but the comparison is helpful
on precision and F1 score for making deployment decisions. Based
on the attribute type, we train these baseline AE models using
weakly supervised labels provided by vendors. To ensure high qual-
ity of the training labels, we use Snorkel weak supervision pipeline
[28] that learns a generative model over the labeling functions (LFs)
(that are created from acceptable attribute values provided by cata-
log teams) followed by a discriminative model for generalization
beyond LFs. For open attributes, we fine-tune HuggingFace pre-
trained BertForTokenClassification model [40] to predict {B,I,O} tags
to choose the correct attribute tokens through sequence labeling,
while for closed attributes, we fine-tune HuggingFace pre-trained

Table 1: Dataset sizes across attributes (in thousands)

Attribute Attribute Type Train Taxonomy Test
Color Open 143 145 1.1
Flavor Open 102 63 2.1
Scent Open 165 35 1.8

Material Open 106 79 1.6
Container Open 40 15 1.5
Joint (open) Open 556 337 8.1
Age Range Closed 41 95 1.7

Target Gender Closed 30 118 1.5
Joint (closed) Closed 71 159 3.2
Joint (all) Mixed 627 496 12.3
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Color Flavor Scent Material Container All (macro)

Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1% Pr% Re% F1%
Baseline AE model.

BERT AE 75.7 39.0 51.5 50.9 56.3 53.5 70.7 41.8 52.5 74.3 43.4 54.8 64.1 13.8 22.7 67.1 38.9 47.0
Baseline ensemble models.

First ensemble 54.6 56.3 55.4 41.8 58.0 48.6 28.5 59.6 38.6 43.8 66.9 52.9 45.4 47.8 46.6 42.8 57.7 48.4
Confidence ensemble 50.3 51.9 55.1 42.0 58.7 49.0 27.3 56.7 36.9 41.3 63.2 50.0 40.9 43.0 41.9 40.4 54.7 45.8
Majority ensemble 55.0 56.2 55.6 42.4 58.1 49.0 29.9 59.4 39.8 44.1 66.6 53.1 46.1 46.4 43.9 43.5 57.3 48.7
Model ensemble 70.0 39.0 50.1 55.0 40.7 46.8 48.2 29.7 36.8 64.9 43.8 52.3 52.1 43.4 47.4 58.0 39.3 46.7

PAVE model and its variants.
PAVE 67.8 50.5 57.9 51.8 59.8 55.5 51.6 61.9 56.3 69.7 69.4 69.5 57.1 42.1 48.5 59.8 56.7 57.5

BERT AE + PAVE ensemble 67.4 50.2 57.5 49.4 58.9 53.7 51.4 61.3 55.9 69.1 65.0 67.0 56.7 39.6 46.6 58.8 55.0 56.1
PAVE-DQN 52.1 44.2 47.8 53.9 50.3 52.0 51.5 40.5 45.3 61.4 60.4 60.9 56.0 26.4 35.9 55.0 44.4 48.4

BERT AE + PAVE-DQN ensemble 54.8 53.8 54.3 48.6 58.8 53.2 54.4 54.0 54.2 61.5 61.6 61.5 54.1 28.4 37.2 54.7 51.3 52.1
Confidence thresholding on PAVE models.

PAVE-maxF1 67.8 50.5 57.9 51.8 59.8 55.5 64.4 52.9 58.1 72.7 67.4 69.9 61.9 40.3 48.8 63.7 54.2 58.1
PAVE-maxPr 76.7 38.4 51.2 66.7 0.9 1.8 71.6 41.0 52.1 78.1 52.5 62.8 73.2 26.8 39.2 73.3 31.9 41.4
PAVE-samePr 75.8 39.9 52.3 51.8 59.8 55.5 70.5 42.8 53.3 74.3 65.2 69.5 63.8 38.5 39.4 67.2 49.2 55.7

Ablation studies.
PAVE ∖ {actions 1, 2} 67.5 49.7 57.2 50.2 59.6 54.5 56.3 58.2 57.2 59.8 67.5 63.4 54.9 41.9 47.5 57.7 55.4 56.0
PAVE ∖ {action 4} 77.9 22.0 34.3 51.5 56.7 54.0 81.0 2.0 3.9 75.1 48.8 59.2 63.8 33.4 43.8 69.9 32.6 39.0
PAVE ∖ {action 5} 67.4 46.4 55.0 47.9 60.2 53.4 51.6 59.5 55.3 68.9 65.7 67.3 63.6 34.9 45.1 59.9 53.3 55.2

PAVE ∖ {value ranking} 71.7 45.8 55.9 52.9 57.0 54.8 54.0 59.4 56.6 73.4 61.3 66.8 65.9 29.2 40.5 63.6 50.5 54.9
PAVE ∖ {Lazy-MDP} 72.2 40.6 52.0 50.3 58.9 54.3 50.1 44.5 47.2 71.3 36.8 48.6 53.3 43.5 47.9 59.4 44.9 50.0
PAVE ∖ {reference} 68.6 46.8 55.6 51.1 58.0 54.3 50.5 57.3 53.7 71.8 62.1 66.6 66.3 22.3 33.4 61.7 49.3 52.7
PAVE ∖ {𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑} 70.9 42.4 53.1 51.2 58.0 54.4 23.8 41.2 30.2 71.4 53.8 61.4 54.0 40.9 46.5 54.3 47.3 49.1

PAVE ∖ {reference, 𝐼𝑛𝑡𝑅𝑒𝑤𝑎𝑟𝑑} 51.9 11.6 19.0 52.2 55.9 54.0 25.6 47.2 33.2 70.9 53.4 60.9 66.0 28.7 40.0 53.3 39.4 41.4

Table 2: PAVEmodel performance comparison with different baselines for 5 open attributes. Performancemetrics with best F1
score for each attribute are boldfaced, while metrics where both precision and recall are better than baseline BERT AEmodels
are highlighted in teal. For ablation studies, metrics that are better compared to PAVE model are underlined.

BertForSequenceClassification model to predict the correct attribute
class through text classification.

5.2.2 Rule-based ensembles. Given a product 𝑃 , we also compare
PAVE model against rule-based ensemble models described below.

• First neighbor (First ensemble): We use the AE model pre-
diction if present else 𝑃 ’s catalog value if present else the
nearest neighbor with a candidate value.
• Most confident (Confidence ensemble): We use the AE model
prediction if present else 𝑃 ’s catalog value if present else the
candidate value with maximum 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 in𝐶𝑃

• Majority vote (Majority ensemble): We use the AE model
prediction if present else 𝑃 ’s catalog value if present else the
candidate value that occurs most frequently in 𝐶𝑃

5.2.3 Model-based ensemble. We also compare PAVE model’s per-
formance against a simple binary classifier based attribute ensemble
model (Model ensemble). This model uses a 2 layer fully connected
neural network with ReLU activation followed by a sigmoid output
layer that is trained for following problem definition.

Definition 5.1. Attribute Value Ensembling Using a Binary Clas-
sifier: Given a product 𝑃 , a target attribute 𝑎, a list of 𝐿 candidate
attribute values 𝐶𝑃 , predict for each candidate the probability of
being the correct value based on the state used to train PAVE model.
For inference predict the probabilities for all 𝐿 candidates and emit
the candidate value with the highest predicted probability.

5.3 Results
Intermediate rewards depend on state that can be noisy, hence,
higher reward does not always imply better accuracy. Therefore,
we do not compare our models using rewards (as done previously
[18]), instead use precision, recall and F1 score. See Table 2 for the
results on open attributes (due to limited space), results on closed
attributes are discussed in the following paragraph. Metrics for the
final column are macro-averaged.

5.3.1 Comparison with baselines. BERT AE models achieve an av-
erage precision of 67.1% at 38.9% recall on open attributes without
confidence thresholding. Among the rule based ensemble models,
First and Majority ensembles outperform BERT AE models in over-
all F1 score, but lead to 24% drop in precision. Model ensemble has
better precision than rule based ensembles and even improve F1
score on container attribute while reaching similar overall F1 score
as BERT AE models. PAVE model consistently outperforms both
BERT AE and baseline ensemble models for all attributes in terms
of the F1 score. Overall, compared to BERT AE models, PAVE im-
proves recall by 17.8% with 7.3% drop in precision resulting in 10.5%
increase in macro-averaged F1 score. On closed attributes, BERT AE
models operate at 60.5% precision and 75.7% recall. PAVE models
outperform BERT AE models for closed attributes also, with 7.8%
lift in precision and 1.5% lift in recall (see Table 4). Compared to
First andMajority ensembles, PAVE achieve 1% lower recall at 16.7%
better precision. PAVE models not only predict values when BERT

3239



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Kushal Kumar and Anoop Saladi

AE models do not, but also correct wrong predictions. To demon-
strate this, we create BERT AE + PAVE ensemble model where
PAVE is run only on products with missing BERT AE prediction.
This ensemble model falls behind PAVE on all 3 metrics.

We break up PAVE recall of 56.7% with respect to the position
of the selected correct value in the candidate sequence of length
20 (see Figure 4). 66% of the predicted correct values of PAVE come
from BERT AE model or 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 1. Next majority of 19% comes
from the nearest product neighbor or 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 3. While the rest
is uniformly selected from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 4 to 20. Rule based ensemble
give low precision as they are not complex enough to identify where
the correct value is present in this sequence. Notably, vendor values
do not contribute much as vendors also mention the attribute value
in the profile that gets predicted by BERT AEmodel. We still discuss
action 2 as it may be useful in other datasets.

66%

19%
14%

Figure 4: Breaking up recall lift from PAVE model by the
position of the selected value in the candidate sequence. To
plot the graph, we aggregate results for all open attributes.

5.3.2 DQN vs Policy Networks. We compare previously used DQN
with policy networks optimized using PPO. We train PAVE-DQN
model with the same Lazy-MDP formulation but using DQN ini-
tialized same as [18]. PAVE-DQN outperforms BERT AE models
on 2 out of 5 open attributes and also overall F1 score. However, it
achieves 9.1% less overall F1 score compared to PAVE. BERT AE +
PAVE-DQN ensemble consistently outperforms PAVE-DQN model
in F1 score implying that PAVE-DQN can be inaccurate even when
BERT AE model was correct. We also compare the two algorithms
on the Chinese dataset provided by Liu et. al. [18]. We train a model
in the same environment and change to RLlib PPO implementation
instead of DQN. PPO model consistently achieves higher overall
rewards for all 3 extraction models on their dataset (see Table 3).

5.3.3 Confidence Thresholding. Confidence scores are important
to control the precision-recall tradeoff, especially when operating at
a high precision is a must. Like any deep RL model, PAVE does not
emit confidence scores on its predictions. There is some work on
obtaining the confidence scores by measuring model uncertainty,
for example measuring variance in Q-values on similar states and
by using auxiliary networks [5, 7]. However, well calibrated inter-
mediate rewards can be used as confidence scores for the entire
episode. This is feasible because of the Lazy-MDP formulation that

Evaluating Dataset
GPU Games Movie Phone All

BiDAF with DQN & PPO methods and Oracle strategy.
DQN (BiDAF) 0.786 0.692 0.686 0.739 0.726
PPO (BiDAF) 0.765 0.739 0.669 0.769 0.736
Oracle (BiDAF) 0.902 0.793 0.846 0.812 0.838

QANet with DQN & PPO methods and Oracle strategy.
DQN (QANet) 0.786 0.687 0.731 0.790 0.749
PPO (QANet) 0.806 781 0.691 0.821 0.775
Oracle (QANet) 0.932 0.840 0.878 0.868 0.880

BERT with DQN & PPO methods and Oracle strategy.
DQN (BERT) 0.817 0.637 0.777 0.837 0.767
PPO (BERT) 0.819 0.781 0.727 0.872 0.800
Oracle (BERT) 0.925 0.857 0.887 0.909 0.895

Table 3: Performance comparison between PPO and DQN
models on the dataset provided by Liu et. al. [18]. Higher
rewards are boldfaced.

makes the RL agent take an action only on important states [14].
We found that the PAVE model changes the BERT AE value (or
the initial 𝑏𝑣) only once in the entire episode. Hence, we use the
intermediate rewards obtained on the latest action when 𝑏𝑣 was
changed as the confidence score of the model. In case there is no
change of value, we consider model confidence to be 1. Using these
confidence scores, we apply thresholding to control precision-recall
tradeoff. Thresholds can be tuned to optimize for F1 score (PAVE-
maxF1) or precision (PAVE-maxPr). PAVE-maxF1 model achieves
0.6% better F1 score than PAVE and PAVE-maxPr achieves 13.5%
better precision than PAVE but suffers recall loss. We were able
to tune confidence thresholds to match BERT AE model precision
(PAVE-samePr). PAVE-samePr model reaches same precision on all
attributes and improves overall recall and F1 score by 10.3% and
8.7% respectively compared to BERT AE models (see Table 2). We
find that the metrics change smoothly as the confidence thresholds
are increased for most attributes (shown for scent in Figure 5). How-
ever, for flavor the metrics change abruptly after a threshold due to
poor features of product neighbors that yield the correct value.

Figure 5: Impact of confidence thresholding on performance
metrics for scent and flavor attributes.
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5.3.4 Ablation Studies. We perform several ablation studies to test
the various components we use in our PAVE models (see Table 2).
In principal, PAVE model can emit 𝑎𝑣 or 𝑣𝑣 without actions 1(𝑎𝑣) or
2(𝑣𝑣). However, removing these actions lead to some drop in perfor-
mance. With actions 1, 2 the agent switches back to a correct value
if it makes a wrong choice in its initial learning stage, that expands
the policy search space by not ending in a bad reward when the
correct value does not re-occur later in the sequence. We also train
without actions 4 (𝑠𝑡𝑜𝑝) and actions 5 (𝑏𝑙𝑎𝑛𝑘). Removing action 4
results in much lower F1 score and recall as the model predicts more
𝑏𝑙𝑎𝑛𝑘 values. Without action 5, model precision drops on 4 out of
5 attributes since it makes a prediction even if the the correct value
is absent from the candidate sequence. We also test the usefulness
of value ranking by using only the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 to rank.
Due to unpredictable value sequences, the model learns unintuitive
policies like takes action 3 on last candidate or takes action 3 on
first non-blank candidate and then takes action 4. It takes more
steps and still identifies good candidates and hence better precision
than PAVE but fails on other metrics.

PAVE model trained without Lazy-MDP dimensions result in
lower performance on all 3 metrics. The model learns a policy that
maximizes intermediate rewards by selecting a good value repeat-
edly (taking actions 1 and 3 alternatively), sometimes at the cost
of the final reward. This also reduces interpretability and the same
confidence scores cannot be used now. Removing reference val-
ues result in lower recall as the model fails to identify common
values in the product category that seldom occur in the candidate
sequence. Removing intermediate rewards result in both low pre-
cision and recall as it fails to correlate final reward with the state
dimensions. Removing both reference and intermediate rewards
drop performance of all metrics even further.

5.3.5 Scaling PAVE Model. We train joint PAVE models by combin-
ing different types of attributes together. We found that single PAVE
models trained on all open attributes (PAVE-open) still outperforms
individual BERT AE models by 7.6% in F1 score. PAVE-open is more
conservative in choosing new values thereby having a better preci-
sion at a lower recall than PAVE models. Upon running inference
on unseen closed attributes, PAVE-open outperforms both BERT AE
and generalizes better than PAVE models (see Table 4). Similarly,
we train a PAVE-closed model on all closed attributes. This model
performs at par on unseen open attributes compared to individual
BERT AE models while surpassing on closed attributes. These mod-
els too fall short compared to PAVE models. We also train PAVE-all
model combining all the dataset together. We find that this model

All (open) All (closed)

Pr% Re% F1% Pr% Re% F1%
BERT AE 67.1 38.9 47.0 60.5 75.7 67.2
PAVE 59.8 56.7 57.5 68.3 77.2 72.5

PAVE-open 60.7 51.8 54.6 71.5 77.3 73.9
PAVE-closed 67.5 38.9 47.1 62.2 75.3 67.9
PAVE-all 51.4 56.7 53.0 62.8 78.6 70.0

Table 4: Joint PAVE models performance compared to base-
line BERT AE models and individual PAVE models.

also outperforms BERT AE models in terms of F1 score for both
type of attributes. We also train PAVE-open3 model on color, flavor
and scent and test on material and container attributes. This model
surpasses BERT AE models by 14% in average F1 score but has 6.1%
less F1 score compared to PAVE models. These joint models demon-
strate the scalability and generalizability of our approach where
a single model can work on unseen attributes as well, bringing
down the operational burden of maintaining multiple ML models
in production. However, such models come at the cost of slightly
lower F1 score compared to individual PAVE models that can fit
well on a particular attribute.

6 CONCLUSION AND FUTUREWORK
We presented PAVE - a Lazy-MDP based ensemble model to improve
recall of existing AE models in an e-commerce setting. Our model
is robust to noisy product neighbors and allows dynamic neighbor
length for ensembling. We report 10.3% improvement in recall on
open attributes compared to BERT-basedAEmodels with no drop in
precision. Our method outperforms simple ensembling techniques
and also performs well on closed attributes. We propose novel
intermediate rewards that coupled with Lazy-MDP formulation
increases PAVE’s performance and interpretability as it identifies
the important states to take an action. We also propose confidence
thresholds to control precision-recall tradeoff that makes our model
easy to adopt. Our model is scalable at an e-commerce scale and
generalizes well, where a single PAVE model can be deployed on
several attributes to obtain recall lift even on unseen attributes com-
pared to BERT-based AE models. In future, we wish to experiment
with offline RL methods that may offer better generalization by
stitching good parts to suboptimal parts in trajectories of online
PAVE model while operating at a lower latency.
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