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ABSTRACT

Learning individual level treatment effects from observational data

is a problem of growing interest. For instance, inferring the effect

of delivery promises on purchase of products on an e-commerce

site or selecting the most effective treatment for a specific patient.

Although the scenarios where we want to estimate the treatment

effects in presence of multiple treatments is quite common in real

life, most existing works related to individual treatment effect (ITE)

are focused primarily on binary treatments and do not have a nat-

ural extension to the multi-treatment scenarios. In this paper we

present MEMENTO – a methodology and a framework to estimate

individual treatment effect for multi-treatment scenarios, where the

treatments are discrete and finite. Our approach is based on obtain-

ing matching representations of the confounders for the various

treatment types. This is achieved through minimization of an upper

bound on the sum of factual and counterfactual losses. Experiments

on real and semi-synthetic datasets show that MEMENTO is able

to outperform known techniques for multi-treatment scenarios by

close to 10% in certain use-cases. The proposed framework has been

deployed for the problem of identifying minimum order quantity

of a product in Amazon in an emerging marketplace and has re-

sulted in a 4.7% reduction in shipping costs as proved from an A/B

experiment.
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• Computing methodologies→ Causal reasoning and diag-

nostics; Learning latent representations; Neural networks; •
Mathematics of computing→ Causal networks.

KEYWORDS

Individual Treatment Effect, Multiple Treatment, Neural Networks,

Causal Inference, Confounders

ACM Reference Format:

Abhirup Mondal, Anirban Majumder, and Vineet Chaoji. 2022. MEMENTO:

Neural Model for Estimating Individual Treatment Effects for Multiple

Treatments. In Proceedings of the 31st ACM International Conference on
Information and Knowledge Management (CIKM ’22), October 17–21, 2022,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557125

Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3511808.3557125

1 INTRODUCTION

Within the causal inference literature, estimating the outcome (e.g.,

revenue lift) of a binary intervention (e.g., ad campaign) from his-

torical observational data has been well studied. However, these

studies [8] have primarily focused on estimating the average effect

of the intervention on the outcome. The intervention (aka. treat-
ment) can have heterogeneous effects on different individuals or

cohorts within the population, which might not be captured in

the estimation of the average treatment effect (ATE). As a result,

it is imperative to estimate the treatment effect at an individual’s

granularity. Multiple scenarios within health care (e.g., impact of a

medicine on a specific patient), public policy (e.g., impact of policies

on specific cohorts), education, etc. augur for estimating the treat-

ment effect at an individual’s granularity. Additionally, estimating

individual treatment effect (ITE) has the benefit of deriving other

treatment effects [9].

Most techniques for causal estimation have focused on the sce-

nario where the treatments are binary. As an extension, making

predictions about causal effects with multiple mutually exclusive

treatments, is an important problem in many domains. For instance,

1) a doctor deciding which medication results in a better outcome

for a patient, 2) an e-commerce platform trying to decide on dis-

counts, deals or offers to show to a particular customer, or 3) a

teacher deciding which study program would most benefit a spe-

cific student.

Broadly, in this paper, we focus on the problem of making causal

predictions based on observational data. Observational data consists

of past treatments, their outcomes, and possibly more context, but

without direct access to the mechanism which gave rise to the

treatments. In particular, we are interested in making predictions

about the outcome for the scenarios where the set of treatments

are discrete and finite but take more than two unique values. A

crucial aspect of inferring causal impacts from observational data

is confounding. A variable which affects both the treatment and the

outcome is known as a confounder of the effect of the treatment on

the outcome. If such a confounder can be measured, the standard

way to account for its effect is by “controlling” for it.

Existing literature on estimating effects of treatments is primar-

ily focused on binary treatments and does not naturally extend

to the multi-treatment scenario [12]. We present a methodology

to estimate effect of treatments at an individual level where the

treatments are discrete and finite. Our methodology is based on

obtaining matching representations of the confounders for the var-

ious treatment types through minimization of an upper bound on
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the sum of factual and counterfactual losses. We make the following

contributions in this paper:

(1) We extend the methodology proposed by Shalit et. al [12]

to multi treatment scenario by providing generalized defini-

tions for errors of predictions of factuals and counterfactuals

in the presence of multiple treatments and derive an upper

bound to the sum of factual and counterfactual losses. The

upper bound has similarities to the upper bound derived

in [13] and reduces to the exact same expression in the case

of binary treatments.

(2) We propose a neural model to optimize for the above loss.

We call the proposed algorithm and the associated system

MEMENTO
1
, since it captures the treatments (or events)

by creating representations for them. MEMENTO is a frame-

work that provides a loss function along with a model that

optimizes for the loss function. As a result, it is amenable to

any underlying modeling technique that can optimization

for the loss.

(3) MEMENTO is deployed in Amazon for identifying the Min-

imum Order Quantity (MOQ) for a product. We provide

overview of the deployed production system and A/B ex-

periments that were conducted to quantify the impact of

our proposed framework over existing methodology. Addi-

tionally, to ensure reproducibility, we show and compare

performances with competing algorithms on public and syn-

thetic datasets.

(4) We propose a methodology based on uncertainty estimation

to provide robust and stable estimates of the effect of each

treatment in real-world scenarios.

There are a broad set of applications within Amazon where we

encounter the multi-treatment setting, with the opportunity of

applying MEMENTO.

(1) Fulfillment Channel Selection: There aremultiple channels within

Amazon, involving sellers and delivery carrier, to fulfill cus-

tomer orders. The channels differ in terms of the fulfilling mer-

chant, delivery speed and cost. The choice of the channel (the

treatment), impacts customers’ likelihood of purchasing prod-

ucts, which in turn impacts the revenue and the costs (the

outcome).

(2) Minimum Order Quantity for a product: Certain products can

only be purchased with a minimum order quantity (e.g., three

units) constraint, due to the associated fixed costs. The treat-

ments in this scenario are the possible values for the minimum

quantity, whereas the outcome is a combination of revenue

improvement and the cost savings.

(3) Delivery Speed Optimization: Within e-commerce, the delivery

speed and its perception to customers impacts purchase de-

cisions. The delivery date promised to the customer (taking

values {1, 2, 3...}) are the mutually exclusive treatments. Corre-

spondingly, the outcome is the purchase event or the revenue

generated thereof.

MEMENTO has been launched in production from March’ 21 and

has been applied to the Minimum Order Quantity problem . Based

on an A/B experiment conducted on an emerging marketplace,

1
Anagram of the letters in the title NeuralModel for Estimating Individual Treatment

Effects forMultiple Treatments.

MEMENTO has an impact of 4.7% reduction in shipping costs when

applied to the problem of MOQ.

2 RELATEDWORK

Much recent work in estimating causal effects revolves around the

scenario where the treatment variable is a binary random variable.

The two groups of populations corresponding to the two treat-

ment types are commonly referred to as the Treatment and Control

groups. Most of the methods developed for binary treatments don’t

have a natural extension to the scenario where the treatment is

either a nominal or ordinal random variable taking more than two

values [12]. For example, the popular technique of sub-classification

for binary treatment has no natural extension to themulti-treatment

scenario, as grouping together data points based on quantiles of the

propensity score cannot be extended beyond two treatments groups.

Also, the assumptions used by the techniques for binary treatment

require modifications or generalizations when applied to the multi-

treatment scenario. While there has been theoretical work [6, 7] to

develop causal models (e.g., Generalized Propensity Score) to re-

move bias in scenarios with multiple treatments, practical guidance

on estimating propensity scores in the multi-treatment scenario

has been limited. Moreover, these are typically for estimating the

ATE.

One of the most widely used approaches to estimating ATE is

covariate adjustment, also known as back-door adjustment or the

G-computation formula [15, 16]. In its basic version, for binary treat-

ment, covariate adjustment amounts to estimating the functions

𝑚1 (𝑥),𝑚0 (𝑥) (𝑚𝑖 (𝑥) is the conditional expectation of the outcome

given input 𝑥 under treatment 𝑖). Therefore, covariate adjustment

methods are the most natural candidates for estimating Individual

Treatment Effects as well as Average Treatment Effects, using the

estimates of𝑚𝑡 (𝑥). This class of methods also has a natural exten-

sion to the multi-treatment scenario, where we estimate the set of

conditional mean functions𝑚𝑖 (𝑥), 𝑖 ∈ {1, 2, ..., 𝐾} where 𝐾 is the

number of treatments.

Another widely used family of statistical methods used in causal

effect inference are weighting methods. Methods such as propensity

score weighting [1] for binary treatments, perform re-weighting

of the units in the observational data so as to make the treated

and control populations more comparable. These methods are nat-

urally designed to obtain population level estimates such as ATE.

Nonetheless they can be modified to estimate an individual level

effect. While the individual level estimate obtained from methods

such as propensity score weighting provide unbiased and consistent

estimate of Individual Treatment Effect, they have quite high vari-

ance. Doubly robust methods combine re-weighting the samples

and covariate adjustment in clever ways to reduce model bias [2],

but suffer from the problem of even higher variance for individual

level estimates at the benefit of providing lower bias. Multiple ef-

forts exist for propensity score estimation and weighting [10, 11, 14]

within the multi-treatment setup.

Finally, our paper builds on work by Shalit et al. [20], where they

provide two algorithms called Counterfactual Regression (CFR) and

Treatment Agnostic Representation Network (TARNet) to obtain

individual level treatment effect estimates for binary treatment. In

this work the authors provide an upper bound to the estimate of

3382



MEMENTO: Neural Model for Estimating Individual Treatment Effects for Multiple Treatments CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

the Precision in Estimation of Heterogeneous Effect (PEHE) and

minimize this upper bound to obtain matching representations for

the two treatment groups. The distance between the Treatment

and Control populations is captured through a proper Integral

Probability Metric (IPM) [21]. There have been other efforts [19]

to propose matching algorithms (e.g., vector matching) within the

multi-treatment realm.

Recently, there have been multiple papers [17, 18] that apply

deep generative models for causal inference. In [17], authors utilize

task specific embeddings to scale to multiple treatments, even in the

scenario when a treatment is a subset of treatments. [23] proposes a

similarity preserved individual treatment effect estimation method

(SITE) based on deep representation learning. The paper proposes

an approach to balancing the distribution, keeping in mind the local

similarity between units in the observational data. Yoon et al. [24]

propose an approach (GANITE) based on Generative Adversarial

Network (GAN) to estimate the ITE in themulti-treatment scenario.

3 ESTIMATING ITE FOR MULTIPLE

TREATMENTS

We present an algorithm to estimate individual treatment effect

(ITE) on a problem domain with multiple treatments. We provide

a bound on the expected error in estimating ITE in terms of (a)

generalization error in learning factual outcome and (b) an Integral

Probability Metric (IPM) defined over the distribution of pairs of

treated units.

3.1 Background and Notations

We denote the set of potential treatments or interventions by T.

Note that in our setting, |T | = 𝐾 ≥ 2. Let X ⊂ R𝑑 be the set

of feature vectors (referred to as confounders) used to represent

individual datapoints andY ⊂ R be the set of potential outcomes.

Given a datapoint 𝑥 ∈ X, let 𝑦𝑡 (𝑥) ∈Y be the potential outcome

of applying the treatment 𝑡 ∈ T.

Suppose we have access to 𝑛 independent and identically dis-

tributed observations 𝑖 = 1, 2, · · ·𝑛 where each observation is of the

form (𝑥 (𝑖) , 𝑦 (𝑖) , 𝑡 (𝑖) ) representing feature vector 𝑥 (𝑖) ∈ X, treat-

ment 𝑡 (𝑖) ∈ T and potential outcomes 𝑦 (𝑖) = (𝑦 (𝑖)
1
, 𝑦
(𝑖)
2
, · · ·𝑦 (𝑖)

𝐾
) ∈

Y𝐾
. Note that only the outcome 𝑦

(𝑖)
𝑡𝑖

, corresponding to the treat-

ment being applied, is observed whereas all other outcomes are

counterfactual. Given this setup, the Individual Treatment Effect

(ITE) of sample 𝑥 with respect to treatments 𝑡, 𝑡 ′ ∈ T is defined as

the following quantity:

𝜏𝑡,𝑡 ′ (𝑥) = E [𝑦𝑡 − 𝑦𝑡 ′ | 𝑥] (1)

The fundamental problem in causal estimation is that we can

observe only one of the outcomes𝑦1, 𝑦2, · · ·𝑦𝐾 depending on which

treatment is applied and the others are never observed. Therefore

unlike supervised learning set-up, we can not train a machine learn-

ing model to estimate 𝜏𝑡,𝑡 ′ directly. To make estimation feasible, we

need certain assumptions on the data generating process. The joint

distribution of the outcome, confounders and treatment random

variables is governed by the graphical model shown in Figure 1. Let

𝑝 (𝑥,𝑦1· · ·𝐾 , 𝑡) be the joint distribution. The standard practice is to

assume that the potential outcomes 𝑦1· · ·𝐾 are independent of the

Figure 1: The Graphical Model representing the joint dis-

tribution of confounders (𝑋 ), treatment(𝑇 ) and potential

outcomes(𝑌 ).

treatment variable 𝑡 conditioned on the confounders 𝑥 , i.e.,

𝑦1· · ·𝐾 ⊥⊥ 𝑡 | 𝑥

This is known as strong ignorability [16] which implies that all

confounding variables are accounted for our definition of the feature

spaceX. Under strong ignorability, we can treat nearby datapoints

in X-space as having come from a fully randomized experiment.

Given an estimate 𝜏𝑡,𝑡 ′ (𝑥) of the ITE, the Expected Precision in
Estimation of Heterogeneous Effect (PEHE [5]) loss is defined as

𝑃𝐸𝐻𝐸𝑡,𝑡 ′ =

∫
X

(
𝜏𝑡,𝑡 ′ (𝑥) − 𝜏𝑡,𝑡 ′ (𝑥)

)
2

𝑝 (𝑥) 𝑑𝑥 (2)

For binary treatment settings, Hill et al. [5] have posed causal

inference estimation as a machine learning problem of minimizing

the PEHE loss. However, there is no natural extension of PEHE to

the multi-treatment setup. We circumvent this difficulty by using

a result from Shalit et al. [20] which provides an upper bound to

PEHE using a sum of factual and counterfactual losses under certain

assumptions. The sum of factual and counterfactual losses have a

natural extension to the multi-treatment scenario. We derive an

algorithm to minimize this sum, which provides us with estimates

of the treatment effects.

3.2 Multi-Treatment Loss Functions

We assume predictions are performed using a representation map-
ping of the form 𝜙 : X → Z where Z is a latent representation

space for each observation. Further assume that 𝜙 is twice differ-

entiable and one-to-one function [20] for reasons to be explained

later.

Let ℎ : Z ×T →Y be a hypothesis that takes the pair (𝑥, 𝑡) as
input and estimates the potential outcome 𝑦𝑡 (𝑥). Associated with

this prediction tasks is a pre-determined loss function (e.g., squared

error loss as used in PEHE)L(𝑦,ℎ(𝜙 (𝑥), 𝑡)) and hence an expected

loss for the input (𝑥, 𝑡):

𝑙 (𝑥, 𝑡) =
∫
Y

L(𝑦𝑡 , ℎ(𝜙 (𝑥), 𝑡)) 𝑝 (𝑦𝑡 |𝑥) 𝑑𝑦𝑡 (3)
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Figure 2: Multi-headed network for minimizing the upper

bound. The pairwise distance between the distributions of

the treatment groups is calculated as the MMD of the output

vectors in the representation network. The factual loss is

calculated using the corresponding heads in the outcome

network.

Finally, the expected loss incurred by our hypothesis ℎ is given

by

L(ℎ) =
∫
X

∫
T
𝑙 (𝑥, 𝑡)𝑝 (𝑡) 𝑝 (𝑥 | 𝑡) 𝑑𝑥 𝑑𝑡 (4)

Given a dataset D = {(𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 )}1· · ·𝑛 of observations, causal

estimation of treatment effects involves two prediction tasks:

• Factual predictions: For the observed treatment 𝑡 , we pre-

dict 𝑦𝑡 (𝑥). This leads to factual loss as defined below. Note

that this task is same as standard supervised ML models.

L𝐹 (ℎ) =
∑︁
𝑡

𝑝 (𝑡)
∫
X
𝑙 (𝑥, 𝑡) 𝑝 (𝑥 |𝑡) 𝑑𝑥

• Counterfactual predictions: For each unobserved treat-

ment 𝑡 ′, we predict potential outcome 𝑦𝑡 ′ (𝑥). This gives rise
to counterfactual loss which is specific to causal estimation

tasks:

L𝐶𝐹 (ℎ) =
∑︁
𝑡

∑︁
𝑡 ′≠𝑡

𝑝 (𝑡)
∫
X
𝑙 (𝑥, 𝑡 ′) 𝑝 (𝑥 |𝑡) 𝑑𝑥

Note that we cannot directly estimateL𝐶𝐹 (ℎ) using only the ob-
served data. Instead we derive an upper bound onL𝐹 (ℎ) +L𝐶𝐹 (ℎ)
i.e., the sum of the factual and counterfactual losses. We show that

this upper bound can be estimated efficiently using training data at

hand and we present an algorithm to minimize it.

3.3 Upper Bounding the Loss Function

The following theorem provides an upper bound to the sum of

factual loss and counterfactual loss:

Theorem 3.1. Let Φ : X →Z is a twice differentiable and one-
to-one function. Let ℎ : Z ×T be a hypothesis andG be a family of

loss functions. Further define 𝑢𝑡 = 𝑝 (𝑡). There exist a constant 𝐶 > 0

such that the total loss is bounded as,

L𝐹 (ℎ) +L𝐶𝐹 (ℎ) ≤
∑︁
𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 | 𝑡) 𝑑𝑥

+𝐶 ·
∑︁
𝑡

∑︁
𝑡 ′
(𝑢𝑡 + 𝑢𝑡 ′) 𝐼𝑃𝑀G (𝑝 (𝑥 | 𝑡), 𝑝 (𝑥 | 𝑡 ′))

(5)

Proof. Define 𝑢𝑡 = 𝑝 (𝑡) , the marginal probability of observing

the treatment 𝑡 . For two treatment 𝑡 and 𝑡 ′, consider

𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡)𝑑𝑥 − 𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡 ′)𝑝 (𝑥 |𝑡 ′)𝑑𝑥

=

∫
X
𝑢𝑡 𝑙 (𝑥, 𝑡) (𝑝 (𝑥 |𝑡) − 𝑝 (𝑥 |𝑡 ′))𝑑𝑥

≤ 𝑢𝑡 .𝐶.𝐼𝑃𝑀 ((𝑝 (𝑥 |𝑡), 𝑝 (𝑥 |𝑡 ′))

(6)

, where where IPM [8] is the Integral Probability Metric. Integral

Probability Metric (IPM) is a class of metrics over probability dis-

tributions [4, 21, 22]. For two probability distributions 𝑝, 𝑞 defined

over S ⊆ R𝑑 and a family of functions 𝐺 : S→ R, IPM is defined

as

𝐼𝑃𝑀𝐺 (𝑝, 𝑞) = 𝑠𝑢𝑝
𝑔∈𝐺

����∫
S
𝑔(𝑠) (𝑝 (𝑠) − 𝑞(𝑠)) 𝑑𝑠

���� (7)

IPM is a true distance metric for probability distributions as

it satisfies all the three properties: (a) 𝐼𝑃𝑀𝐺 (𝑝, 𝑞) ≥ 0 and the

equality is achieved only when 𝑝 = 𝑞, (b) symmetric and (c) satisfies

triangle inequality i.e., 𝐼𝑃𝑀𝐺 (𝑝, 𝑞) ≤ 𝐼𝑃𝑀𝐺 (𝑝, 𝑟 ) + 𝐼𝑃𝑀𝐺 (𝑟, 𝑞). 𝐶
is a positive constant dependent on the class of witness functions

corresponding to the IPM.

Summing both sides over

∑
𝑡

∑
𝑡 ′≠𝑡 , we see that the LHS reduces

as follows:∑︁
𝑡

∑︁
𝑡 ′≠𝑡

𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡) 𝑑𝑥 −

∑︁
𝑡

∑︁
𝑡 ′≠𝑡

𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡 ′) 𝑑𝑥

(8)

We identify the first term as counter-factual loss L𝐶𝐹 (ℎ).
For the second term, we see that interchanging the order of sum-

mation leads to a weighted version of the factual loss:∑︁
𝑡

∑︁
𝑡 ′≠𝑡

𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡 ′)𝑑𝑥

=
∑︁
𝑡 ′

∑︁
𝑡 ′≠𝑡

𝑢𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡 ′)𝑑𝑥

=
∑︁
𝑡 ′

{∑︁
𝑡≠𝑡 ′

𝑢𝑡

} ∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡 ′)𝑑𝑥

=
∑︁
𝑡 ′
{1 − 𝑢𝑡 ′}

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡 ′)𝑑𝑥

=
∑︁
𝑡 ′

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 |𝑡) 𝑑𝑥 −L𝐹 (ℎ)

(9)
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Algorithm 1 Algorithm for minimizing upper bound and estimat-

ing outcomes for each treatment type

1: Input: Observed data points

{(𝑦1, 𝑥1, 𝑡1), (𝑦2, 𝑥2, 𝑡2), ...(𝑦𝑛, 𝑥𝑛, 𝑡𝑛)}, Loss function

𝒍 (𝒚(𝒕), 𝒙, 𝒕), Representation network architecture with

initial weights𝑾 , Outcome network architecture with initial

weights 𝑽 , Kernel for calculating sample estimate of Maximum

Mean Discrepancy 𝑲 (., .), Imbalance penalty hyperparameter

𝜶 , Learning rate [ for SGD.

2: Compute marginal probabilities for each treatment type 𝑢𝑖 =

𝑃 (𝑡𝑖 = 1) for 𝑖 ∈ {1, 2, ..., 𝐾}
3: while not converged do

4: Sample minibatch {𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑚} ⊂ 1, 2, 3, ..., 𝑛

5: Calculate weighted factual loss for the sample using the

expression in first term in Equation 5.

6: For 𝑖 ≠ 𝑗 , calculate the sample estimator of MMD following

Equation 10 for all the pairwise distributions 𝑀𝑀𝐷 (𝑃𝑖 , 𝑃 𝑗 )
and calculate the weighted sum of the pairwise MMD esti-

mates where the weights are given by (𝑢𝑖 + 𝑢 𝑗 ).
7: Calculate gradient of weighted factual loss obtained in step

5. w.r.t.𝑾 and 𝑽 , say 𝒈1 and 𝒈2.
8: Calculate gradient of the weighted sum of sample estimates

of MMD obtained in step 6. w.r.t.𝑾 , say 𝒈3
9: [𝑾, 𝑽 ]← [𝑾 − [ (𝑔1 + 𝛼𝑔3), 𝑽 − [𝑔2]
10: check convergence criteria

11: end while

Rearranging the terms, we obtain,

L𝐹 (ℎ) +L𝐶𝐹 (ℎ) ≤
∑︁
𝑡

∫
X
𝑙 (𝑥, 𝑡)𝑝 (𝑥 | 𝑡) 𝑑𝑥

+𝐶 ·
∑︁
𝑡

∑︁
𝑡 ′
(𝑢𝑡 + 𝑢𝑡 ′) 𝐼𝑃𝑀 (𝑝 (𝑥 | 𝑡), 𝑝 (𝑥 | 𝑡 ′))

□

The first term in the RHS of Equation 5 is weighted factual loss,

where the weights are 1/𝑢𝑡 . the second term in the RHS attempts to

match the distribution of the confounding variables under different

treatments. Note that frequent treatment pairs are given higher

importance in the matching criteria through the multiplier 𝑢𝑡 +𝑢𝑡 ′ .
The second term can be estimated depending on the class of

functionsG used in the calculation of IPM. If the loss function be-

longs to the unit ball in a reproducing kernel Hilbert space (RKHS),

then the IPM reduces to Maximum Mean Discrepancy (MMD [4])

measure between two distributions. The following lemma from

Gretton et al. [4] provides an efficient estimate of MMD from a

sample

Lemma 3.2. Let 𝑥1, 𝑥2, ..., 𝑥𝑚 and 𝑥 ′
1
, 𝑥 ′

2
, ..., 𝑥 ′𝑛 are the two sets of

samples from the distributions 𝑝 and 𝑞 respectively. Given kernel 𝐾 ,

the following is a consistent and unbiased estimator of MMD [4]:�𝑀𝑀𝐷 (𝑝, 𝑞) = 1

𝑚(𝑚 − 1)
∑︁

1≤𝑖≠𝑗≤𝑚
𝐾 (𝑥𝑖 , 𝑥 𝑗 )

+ 1

𝑛(𝑛 − 1)
∑︁

1≤𝑖≠𝑗≤𝑛
𝐾 (𝑥 ′𝑖 , 𝑥

′
𝑗 )

− 2

𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐾 (𝑥𝑖 , 𝑥 ′𝑗 ) (10)

Although this estimator requires𝑂 (𝑛2) in the number of samples,

Gretton et al [4] outlines how one can obtain a linear time estima-

tor albeit higher variance. The upper bound on the loss function

(Equation 5) can be minimized using any optimization technique.

3.4 The MEMENTO Algorithm

In this section, we present MEMENTO, a neural network to estimate

the causal impact for multiple treatments. MEMENTO employs an

end-to-end minimization procedure that simultaneously meets two

goals: (a) learn latent representation of datapoints to minimize

imbalance between the treatment groups (b) minimize prediction

error on factual outcomes.

MEMENTO achieves these objectives in two stages. In the first

stage, it learns a representation 𝜙 : X →Z to transform an input

feature vector 𝑥 ∈ X to a latent representation 𝜙 (𝑥) ∈ Z. Since

the treatment groups are generally imbalanced in the X-space,

the goal is to improve covariate balance in the Z space through

the mapping 𝜙 . In MEMENTO we use three-layer fully connected

networks with tanh non-linearity to represent 𝜙 . The parameters

are learned by minimizing𝑀𝑀𝐷 (𝑝 (𝜙 (𝑥) | 𝑡), 𝑝 (𝜙 (𝑥) | 𝑡 ′)) for all
pair of treatments (𝑡, 𝑡 ′).

In the second stage, MEMENTO uses learned representations

𝜙 (𝑥) to predict the outcome variable 𝑦. We use separate heads to
parameterize each treatment outcome. More specifically, we use a

parametric function ℎ𝑡 (𝜙 (𝑥)) to estimate the effect of treatment 𝑡

on input 𝑥 . The function ℎ𝑡 is represented as a deep neural network

with parameter set \𝑡 . With this approach, we gain statistical power

through a common representation framework (𝜙) while retaining

treatment-specific variation through the output networks {ℎ𝑡 |𝑡 ∈
T}.

It is important to note that both the representation and out-

put layers are trained jointly. As mentioned in Theorem 3.1 and

Lemma 3.2, the network is trained by minimizing the following

upper bound on the loss function,

1

𝑁

𝑁∑︁
𝑖=1

1

𝑢𝑡
L(𝑦𝑖 , ℎ𝑡𝑖 (𝜙 (𝑥𝑖 ))) + 𝑅(𝜙,ℎ1· · ·𝑇 )

𝛼 ·
∑︁
𝑡≠𝑡 ′

𝑀𝑀𝐷 (𝑝 (𝜙 (𝑥) | 𝑡), 𝑝 (𝜙 (𝑥) | 𝑡 ′)) (11)

Here 𝑅(·) is a regularizer term to control the model complexity.

The model is trained using stochastic gradient descent and the

prediction error is backpropagated through both the representation

and outcome networks to update their respective set of parameters.

The exact form of the constant 𝛼 in Equation 11, for a given loss
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function is generally unknown and we treat it as a hyper-parameter

for MEMENTO.

3.5 Uncertainty Estimates

The neural model proposed in the previous section provides us

with point estimates of the outcome variable given the set of Con-

founders and the Treatment variable. Specifically, the model pro-

duces the counterfactual point estimates of 𝐸 (𝑦 |𝑥,𝑇 = 𝑡 ′) but does
not provide any information about the uncertainty of this estimate.

However, in real life scenarios, it is prudent that we have some

sense of the reliability of this estimate before we select and apply

the best treatment as suggested by the neural model. To address this

problem, we provide a methodology to obtain uncertainty estimates

in the form of 𝑉𝑎𝑟 (𝑦 |𝑥,𝑇 = 𝑡 ′) in addition to the already existing

point estimates of 𝐸 (𝑦 |𝑥,𝑇 = 𝑡 ′). Using the uncertainty estimate in

the form of 𝑉𝑎𝑟 (𝑦 |𝑥,𝑇 = 𝑡 ′), we can prune the treatments which

have high uncertainty (e.g., 𝑉𝑎𝑟 (𝑦 |𝑥,𝑇 = 𝑡 ′) ≥ 𝜏) and use only the

rest of the point estimates for downstream tasks.

To obtain the uncertainty estimates, we adopt the methodology

in [3]. We introduce dropout layers in both the representation net-

work and outcome network. Since, the loss function minimization is

agnostic to the structure of the network, the introduction of dropout

layers does not cause any issues with the minimization of the upper

bound. Having trained the network in the presence of dropout lay-

ers, in the estimation period we freeze the network parameters and

perform multiple forward passes. During the forward passes, we

let the dropout layers to be active. Thus, for the 𝑖𝑡ℎ forward pass,

we obtain 𝑦𝑖 (𝑥,𝑇 = 𝑡 ′) for every treatment 𝑡 ′. Finally, to obtain the

epistemic uncertainty estimates, we calculate for every treatment

𝑡 ′, the following estimate of the variance:

𝑉𝑎𝑟 (𝑦 |𝑥,𝑇 = 𝑡 ′) = 1

𝑛

𝑖=𝑛∑︁
𝑖=1

( ˆ𝑦𝑖 (𝑥,𝑇 = 𝑡 ′) − 𝑦 (𝑥,𝑇 = 𝑡 ′))2

We can use this variance estimate to prune the treatments which

have high uncertainty ({𝑡 ′ : 𝑉𝑎𝑟 (𝑦 |𝑥,𝑇 = 𝑡 ′) ≥ 𝜏} for a pre-specified
𝜏) around their point estimates. We demonstrate in the Minimum

Order Quantity problem, how the uncertainty estimates are used

to recommend robust treatments.

4 EXPERIMENTS AND RESULTS

We present results on synthetic datasets and real-world datasets.

A challenge w.r.t. evaluating counterfactual prediction tasks is the

lack of ground truth data except for Randomized Control Trials

(RCT). But most real life observational data is not akin to RCTs and

mostly are observational data. Due to lack of proper ground truth

data, we either simulate the outcome variable (semi-synthetic data)

or use appropriate heuristics to get approximate ground truth data.

We use cross-entropy and RMSE as the choice of loss functions

for categorical and continuous outcome types, respectively. The

choice of the kernel for estimating MMD is the Squared Exponential

Kernel.We compare ourmethodologywith four baseline techniques:

NN1: using a single DNN model and treatment as a feature, NN2:

using separate DNN models for each treatment type, IPW: Inverse

propensity estimate, DR: Doubly robust estimate, TARNet: We just

use our network architecture but don’t optimize using the loss in

Equation 11.

4.1 Minimum Order Quantity

To sustainably fulfill shipments of very low priced products, many

e-commerce platforms set a lower bound viz. MinimumOrder Quan-

tity (MOQ) on the number of units of the product that can be pur-

chased at a time. For example, a MOQ of 3 on a soap would mean

that the customer has to purchase at least three units of that soap.

While MOQ reduces shipping cost via shipping multiple units to-

gether, it may negatively impact purchase decisions if placed on

incorrect products. For example, setting MOQ of 3 on a mobile

charger would lead to poor customer experience and subsequently

would lead to drop in sales of the product. Thus, we would need to

optimally select the products on which MOQ can be applied and

also select the value of MOQ for the product. In this context, we

apply MEMENTO to determine the impact of MOQ (considered

as Treatment) on the purchase decisions (considered as outcome

variable). The Treatment variable takes values 1, 2, 3, ..., 𝑘 and the

outcome variable(conversion) is a 0 − 1 indicator random variable

corresponding to whether a purchase happens for a product page

view or not. To formulate the MOQ selection as an optimization

problem, we introduce the following notations and definitions:

(1) Define 𝑆𝑖 (𝑘) as the shipping cost of shipping 𝑘 units of the

𝑖𝑡ℎ product together. We assume that 𝑆𝑖 (𝑘) ≤ 𝑘 ∗ 𝑆𝑖 (1) for
every product, since shipping multiple units together is less

costlier than shipping each unit individually,

(2) 𝑓𝑖𝑘 as 0, 1 valued indicator variable indicating whether the

𝑖𝑡ℎ product has been applied the MOQ of 𝑘 ,

(3) 𝑐𝑖𝑘 is the estimate of conversion for the 𝑖𝑡ℎ product when

applied the Treatment (MOQ) of 𝑘 . The conversion estimates

for different MOQ values are obtained using MEMENTO,

(4) 𝑝𝑖 is the price of the 𝑖
𝑡ℎ

product.

We can pose the MOQ selection problem as trying to find the MOQ

values which leads to maximum reduction in shipping cost but does

not reduce revenue beyond a pre-specified threshold (𝑅).

𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑖𝑘

∑︁
𝑖

𝑆𝑖 (𝑘) · 𝑐𝑖𝑘 · 𝑓𝑖𝑘

𝑠 .𝑡 .
∑︁
𝑖

𝑘 · 𝑓𝑖𝑘 · 𝑐𝑖𝑘 · 𝑝𝑖 ≥ 𝑅 (12)

To solve the the above, we would plug in the estimates of 𝑐𝑖𝑘 ob-

tained using MEMENTO. and use any LP solver to obtain the MOQ

recommendations for each product.

To obtain the estimates of Conversion for each product page

view as a function of MOQ, we train the model using historical data

on MOQs offered and conversion. Historically MOQ was applied

if the product had a high repeat purchase rate. For example, if the

product was observed to be purchased by customers repeatedly

over a fixed period of time (say 3-4 months), then those products

were put up for MOQ. A higher proportion of repeat purchases

would lead to the MOQ being set to a higher value. Along with the

repeat purchase signal, other features like product price, product

category etc. were used to devise a rule based system to assign

MOQ on products. This mechanism of setting MOQ on products

led to the presence of selection bias in the training data. As such

training supervised Machine Learning Models on such a dataset

would lead to incorrect inferences about the Treatment Effect. We

use MEMENTOto train the neural model on this dataset. Thus, we
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(a) Treatment Allocation with selection

bias.

(b) Natural Outcome for each datapoint.

Figure 3: Treatment allocation and outcome distribution for the synthetic dataset.

Figure 4: Balance during pre-experiment period

estimate 𝑐𝑖𝑘 as: 𝑃 (𝑦𝑖 |𝑥𝑖 ,𝑇 = 𝑘), where𝑇 is the MOQ for the product

and 𝑦 is the conversion indicator and 𝑥 consists of the context

features. The context features comprise of the product features (like

price, category, repeat purchase rate etc.), seller features (like tenure,

fulfillment channel etc.), customer features (like Prime Membership,

tenure etc.) and product page level features (like promised delivery

speed, deals/discounts etc.).

4.1.1 Online A/B Experiment. To test the improvement obtained

using MEMENTO,we performed an A/B experiment for 3 months

in 2021 in an emerging marketplace in Amazon. In the A/B exper-

iment, we compared the MOQ recommendations obtained from

MEMENTOwith the recommendations generated by the incumbent

mechanism.

To initiate the A/B experiment, we divided the set of products

into two homogenous groups of Control and Treatment such that

the key factors like shipping cost, revenue, price, category etc. of

the products in the Control and Treatment were very similar over a

baseline period of 26 weeks. Refer to Figure 4 to see the balance in

the key factors in the pre-experiment period. During the experiment,

the Control group of products had their MOQ set according to the

incumbent mechanism and the Treatment group of products had

their MOQ set according to the solution of equation 12 with the

conversion estimates being obtained from MEMENTO. To measure

the success of the A/B experiment, we measured ’shipping cost

per product per week’ and ’revenue per product per week’ for all

the products in both Control and Treatment. At the conclusion of

the A/B experiment we saw a 4.7% reduction in shipping cost in

Treatment as compared with Control. To check for the statistical

significance of the observed impact, we performed the following

hypothesis test :

𝐻0 : `0 ≤ `1 (13)

𝐻1 : `0 > `1 (14)

where `0 and `1 are the means of the Control and Treatment popu-

lation. The null hypothesis corresponds to the case where the MOQ

recommendations does not lead to a reduction in the shipping cost,

whereas the alternate hypothesis corresponds to the case where

the MOQ recommendations lead to a reduction in the shipping cost.

When we performed the test with the metric of shipping cost per

product per week, we were able to reject the null-hypothesis (p-

value ≤ 0.01). To understand the impact on revenue, we performed

a hypothesis test on the equality of means of the revenue of the

Control and Treatment groups. For revenue, we used the metric of

revenue per product per week and the null hypothesis was accepted

(p-value = 0.8904) in this case. Thus, through the experiment, we

were able to conclude that using our framework, we were able to

obtain statistically signification reduction in shipping cost while

not causing any significant reduction in revenue.

4.1.2 Production System. MEMENTO was launched in produc-

tion since 2021 and has been used to recommend Minimum Order

Quantity of products in an emerging marketplace. Figure 6 shows

the high-level architecture diagram of the production system. The

customer, seller, product and view level attributes are pulled from

backend data sources (s3/Redshift cluster) to generate features using

Apache Spark and scored through the Model on a cloud instance.

After the model scoring, an optimization routine is run to com-

pute the recommended value of MOQ for every product. The MOQ

recommendations from the system are then consumed by the down-

stream systems for surfacing them to the customers at the time of

product page view. The MOQ value shown and conversion data is

fed back to the database for model retraining.
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(a) Proportion of products in each category put up for MOQ recom-

mendations.

(b) Drop in conversion due to MOQ across different categories

of products.

Figure 5: Minimum order quantity data-set.

Figure 6: High Level Production System Architecture

To understand the qualitative aspect of the recommendations, we

also look into the way Conversion changes for different categories

due to setting different MOQ values. We see from Figure 5(b) that

for certain categories (like Luggage) the drop in conversion is very

sharp while for other categories (like Grocery, Beauty etc.) the drop

in conversion is more steady. This observation is in accordance

with our intuition that categories consisting of consumables like

Grocery, Beauty etc. are more suited for being put up for MOQ.

4.1.3 Robustness and Stability of MOQ Recommendations. To add

robustness to the recommendations and to protect customer ex-

perience, we also use the uncertainty estimates obtained from the

MEMENTO to prune estimates with high variance. If 𝑉𝑎𝑟 (𝑐𝑖𝑘 ) is
higher than a specified threshold 𝜏 , then for that product those

treatments are not included in the optimization routine. Specifi-

cally, we set 𝑓𝑖𝑘 = 0 if 𝑉𝑎𝑟 (𝑐𝑖𝑘 ) ≥ 𝜏 . To find out an optimal value

of 𝜏 , we measure the churn of MOQ recommendations over time.

Intuitively, if there is a frequent change in the MOQ recommenda-

tions of a product (due to unreliable estimates from MEMENTO),

then it would lead to a confusing and poor experience for the cus-

tomers. We define churn rate as the proportion of products in the

current time period which different MOQ recommendation that

was present in the previous time period. We observe from offline

Figure 7: Churn Rate (scaled) reduction using uncertainty

estimates

analysis that the pruning using threshold on variance significantly

reduces churn in the MOQ recommendations of the products. We

compare two strategies for this purpose, one where we prune the

recommendations using the variance estimates and the other where

we don’t use any pruning. We generate the offline recommenda-

tions for a period of 8 months and observe the churn rate on a

month-over-month basis. We observe from Figure 7, that the prun-

ing using uncertainty estimates leads to significant reduction in

churn of the recommendations.

4.2 Synthetic Data

We develop further intuition into the workings of our methodol-

ogy by studying its behavior on synthetic data. We simulate data

according to the following generative process:

(1) Confounders (𝑋 ): We generate a set of continuous random

variables using Scipy’s make_blobs
2
function. We create

three blobs corresponding to three treatment types. The

standard deviation of the blobs are chosen such that they

don’t have much overlap with each other.

(2) Treatments (𝑡 ): Three treatments (called 0, 1, 2) are assigned

to the three blobs with some noise added to the assignment

process. We demarcate the blobs as 𝑏𝑙𝑜𝑏0, 𝑏𝑙𝑜𝑏1, 𝑏𝑙𝑜𝑏2 and

2
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
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associate the treatments 0, 1, 2 with them respectively. A dat-

apoint in𝑏𝑙𝑜𝑏𝑖 is assigned to treatment 𝑖 with a probability of

0.95 and to treatment 𝑗 (where 𝑗 ≠ 𝑖) with probability 0.025.

The allocation can be visualized in Figure 3(a). This assign-

ment process ensures that the type of treatment a datapoint

receives is a direct function of the Confounders (𝑋 ).

(3) Outcome (𝑦): The outcome variable depends on the con-

founders and treatment according to the following functions:

(𝑦 |𝑥, 𝑡 = 0) ∼ (0.1 · 𝑓 (𝑋 ) − 0.5 ·𝑔(𝑋 ))⊺ · 1+𝜖0 , where 𝑓 and

𝑔 are polynomials of order 2 and 3

(𝑦 |𝑥, 𝑡 = 1) ∼ 𝑐𝑜𝑠 (2 ∗ (𝑡) ∗ 𝑋 )⊺ · 1 + 𝜖1

(𝑦 |𝑥, 𝑡 = 2) ∼ 𝑠𝑖𝑛(𝑡 ∗ (𝑋 · 𝑅))⊺ · 1 + 𝜖2, where 𝑅 is a random

square matrix

, where 𝜖0, 𝜖1, 𝜖2 correspond to homoscedastic errors. Finally

we apply the transform 𝑦 = 0, whenever 𝑦 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ, else
𝑦 = 1 to convert 𝑦 to a binary random variable. The distribu-

tion of the output variable can be visualized in Figure 3(b).

Method ROC-AUC Improvement(in %)

NN1 0.8134 10.499%

NN2 0.832 8.029%

IPW 0.8193 9.703%

DR 0.8014 12.154%

TARNET 0.8701 3.298%

MEMENTO 0.8988 NA

Table 1: ROC-AUC of counterfactual prediction on the syn-

thetic dataset.

The natural outcome for every treatment type and the selection

bisa present in the generated data can be observed in Figure 3. We

train our model using the generated data as training data and try

to predict the counterfactuals for every possible treatment value

for every datapoint. We observe from Figure 8 that we are able to

predict the counterfactual for each treatment type well and are able

to handle the selection bias present in the training data. To quanti-

tatively evaluate the performance of the counterfactual predictions,

we predict for each datapoint, the counterfactual outcomes corre-

sponding to all the three treatment types. We also have access to the

ground truth value of the outcome for each of the three treatment

types using data generative process described above. Since, the

outcome is 0-1 valued, we used ROC-AUC as the choice of metric

to evaluate the performance of the counterfactual predictions. In

Table 1, we show the performance of our algorithm in comparison

with several baselines in predicting the counterfactual outcome. As

can be seen, MEMENTO achieves significant improvement over

supervised baselines (NN1, NN2) as well as improves over the IPW

and DR estimates. Finally MEMENTO achieves better results than

just using the TARNET architecture showing the importance of our

proposed loss based on the upper bound for factual and counter-

factual losses.

(a) Predictions when all points forced through treatment 𝑡 = 0

(b) Predictions when all points forced through treatment 𝑡 = 1

(c) Predictions when all points forced through treatment 𝑡 = 2

Figure 8: Comparison between factual (left plots) and coun-

terfactual (right plots) predictions on the synthetic dataset.

For all the treatment types we are able to predict both the

factual and counterfactual patterns of the outcome variable.

5 CONCLUSION

In this paper we presented a methodology to get individual level

counterfactual estimates in the presence of multiple treatments.

We demonstrated through extensive experiments on Amazon and

Public data the superiority of our proposed method over existing

popular techniques. This methodology would have an extremely

wide applicability for various businesses across Amazon and exter-

nally as well.

Some of the future research aspects could be directed towards

providing robust estimates even in the presence of missing con-

founders and extending to continuous treatments.
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