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ABSTRACT
Recent years have witnessed remarkable progress on knowledge
graph embedding (KGE) methods to learn the representations of
entities and relations in static knowledge graphs (SKGs). However,
knowledge changes over time. In order to represent the facts hap-
pening in a specific time, temporal knowledge graph (TKG) embed-
ding approaches are put forward.Whilemost existingmodels ignore
the independence of semantic and temporal information. We em-
pirically find that current models have difficulty distinguishing rep-
resentations of the same entity or relation at different timestamps.
In this regard, we propose a TimeLine-Traced Knowledge Graph
Embedding method (TLT-KGE) for temporal knowledge graph com-
pletion. TLT-KGE aims to embed the entities and relations with
timestamps as a complex vector or a quaternion vector. Specifically,
TLT-KGE models semantic information and temporal information
as different axes of complex number space or quaternion space.
Meanwhile, two specific components carving the relationship be-
tween semantic and temporal information are devised to buoy the
modeling. In this way, the proposed method can not only distin-
guish the independence of the semantic and temporal information,
but also establish a connection between them. Experimental results
on the link prediction task demonstrate that TLT-KGE achieves sub-
stantial improvements over state-of-the-art competitors. The source
code will be available on https://github.com/zhangfw123/TLT-KGE.
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1 INTRODUCTION
A lot of large-scale knowledge graphs (KGs), including DBPedia [2],
Freebase [4], and etc., have been widely used in many downstream
tasks, e.g., recommender systems [7, 15, 35], information retrieval [24,
32, 36] and question answering [38] due to their expressive power
and structured knowledge. Generally, a fact in static KGs is rep-
resented as a triplet (𝑠, 𝑝, 𝑜), where 𝑠 is subject, 𝑝 is predicate and
𝑜 is object. Subject and object are composed of entities (e.g., Peo-
ple:Barack Obama, City:New York, Company:Microsoft, Movie:Titanic
etc.), while the predicate is made up of relations (e.g., capitalOf,
belongTo, presidentOf, etc.). For instance, (Paris, capitalOf, France)
means Paris is the capital of France. Paris and France are two entities,
capitalOf is the relation between them.

However, some events are valid only in certain moments or in
a range of time. For example, the fact (Barack Obama, presidentOf,
USA) is true from 2008 to 2016 (a range of time), and the fact (Barack
Obama, Make a visit, South Korea) is valid on April 18, 2014 (a cer-
tain day). The inclusion of time information makes the facts in
KGs more specific and accurate. To meet this demand, temporal
knowledge graphs (TKGs), including ICEWS [6], GDELT [21] and
Wikidata [30], are proposed for representing the temporarily valid
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Figure 1: An example of link prediction in a temporal knowl-
edge graph extracted from ICEWS14. The dotted black line
with a right arrow at the bottom denotes the timeline (𝜏1 <

𝜏2 < 𝜏3). The solid black lines represent the relationships
between two entities (e.g., Barack Obama, India and etc).

events. Specifically, triples in TKGs are annotated with their corre-
sponding timestamps at the same time. It thus derives a quadruple
of a time-sensitive fact in TKGs as (𝑠 , 𝑝 , 𝑜 , 𝜏), where 𝜏 is the time
annotation, e.g., 2022-01-01.

Despite there exist plenty of large-scale SKGs and TKGs1, they
remain remarkably incomplete. Link prediction, one of the subtasks
in knowledge graph completion, is a significant task that predicts
missing entities for incomplete queries in the form of (𝑠 , 𝑝 , ?, 𝜏) or
(?, 𝑝 , 𝑜 , 𝜏 ) in TKGs. Figure 1 gives an example for the link prediction
task in a TKG extracted from ICEWS14. In this example, the link
prediction task is to predict the object of (Barack Obama, Provide
military aid / Praise or endorse / Criticize or denounce, ?, 𝜏3).

In SKGs, various knowledge graph embedding (KGE) models en-
code the entities and relations in a low-dimensional space and use
some translation-based functions [5, 23, 27, 31], semantic match-
ing functions [28, 34] or even graph neural networks [39] to learn
the representations of entities and relations. Following these tech-
nologies, some methods have been proposed to tackle the problem
of temporal knowledge graph completion [10, 13, 18, 20]. These
temporal KGE models also embed the time information into low-
dimensional vectors and are shown to perform better than static
ones. However, most existing temporal KGE models simply concate-
nate or multiply the semantic and temporal information together,
neglecting the independence of the two kinds of information. Under
current settings, the time information can be viewed as temporal dis-
turbances for the representations of entities or relations, as shown
in the left part of Figure 2. Therefore, current models may have dif-
ficulty distinguishing representations of the same entity or relation
at different timestamps and hardly model their changes over time.

To this end, we propose a TimeLine-Traced Knowledge Graph
Embedding (TLT-KGE) model for temporal knowledge graph com-
pletion, which aims to embed the temporal entities (relations) with a
semantic part related to entity (relation) information and a temporal
part related to time information. Specifically, TLT-KGE embeds the
entity and relation with timestamp as a complex vector or a quater-
nion vector. And the semantic information and temporal informa-
tion are modeled as different axes of the complex number space or
1We use SKG and TKG to static knowledge graph and temporal knowledge graph,
respectively, for description convenience hereafter.

Figure 2: Left: The distribution of entity (relation) embed-
dings in baseline models when evolving over time. Right:
The distribution of entity (relation) embeddings in TLT-KGE
when evolving over time. Different colors denote different
timestamps. The circle, triangle and diamond represent dif-
ferent entities (relations).

quaternion space. For instance, in the complex number space, the
real part represents semantics, and the imaginary part represents
time. The right part of Figure 2 shows an illustrative example of the
embedding distribution of the proposed model TLT-KGE. TLT-KGE
is able to well distinguish not only different entities (relations) in
the same timestamp, but also the same entity (relation) in differ-
ent timestamps. TLT-KGE fully considers the independence and
connection between semantic information and time information,
which is beneficial to achieve better performance.

Besides, TLT-KGE is equipped with two extra components that
can improve the representations of timestamps for TKGs: a Shared
Time Window (STW) module and a Relation-Timestamp Compo-
sition (RTC) module. The shared time window module employs a
shared embedding for adjacent timestamps to embolden the con-
nection of events in a range of time. To enhance the expression of a
relation at specific time, the relation-timestamp composition mod-
ule further polishes the embeddings for relations with timestamp.

In a summary, we highlight our contributions as follows.

• We propose a novel TimeLine-Traced Knowledge Graph Embed-
ding (TLT-KGE) method for temporal knowledge graph comple-
tion, which aims to embed the temporal entities and relations
considering both the independence and the connection of the
semantic and temporal information.

• TLT-KGE is equipped with two extra components: a Shared Time
Window (STW) module and a Relation-Timestamp Composi-
tion (RTC) module to strengthen the representations of entities
and relations along the time.

• We verify the effectiveness of the proposed TLT-KGE on three
widely used benchmarks, and the results exhibit our model can
achieve substantial improvements over state-of-the-art baselines.

2 RELATEDWORK
2.1 Static Knowledge Graph Embedding
Recently, various approaches have been put forward for knowledge
graph completion in static KGs. The majority of these approaches
embed entities and relations to low-dimensional vectors. These
proposed methods can be divided into two groups: (i) translation-
based models and (ii) semantic matching models.
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Translation-based models assume the relation embedding as a
translation or rotation from the subject to the object. One of the
representative works of translation-basedmethods is TransE [5]. Be-
cause of the weakness to learning N-N, 1-N and N-1 relations, some
models extend TransE to tackle this problem, such as TransH [31]
and TransR [23]. To further improve the capacity of representation
learning, RotatE [27] defines a rotation operation parameterized by
the relation from subject to object.

Semantic matching models compute the plausibility of a given
fact via matching the semantic information of entities and relations.
DistMult [34] uses a bilinear function to calculate the score. Com-
plEx [28] and QuatE [37] extend DistMult to complex space and
quaternion elliptic space, respectively. DualE [8] extends QuatE to
dual vector space. With the development of deep neural networks,
ConvE [11] and ConvKB [26] utilize convolution neural networks to
model the sophisticated interaction between entities and relations.
Tucker [3] is a tucker-decomposition-based method for KGE.

2.2 Temporal Knowledge Graph Embedding
In the past several years, some works aim to deal with the problem
of link prediction in TKGs. Most of them extend conventional KGE
models by considering time information as embeddings.

One of the major differences among these models is how to ef-
ficiently model the embeddings of timestamps. By using a long
short-term memory (LSTM) network to extract the time series
features, TA-TransE [13] and TA-DistMult [13] incorporate the em-
beddings of time information to TransE and DistMult, respectively.
HyTE [10] extends TransH [31] by projecting the entities and rela-
tions to a time-specific hyperplane. DE-SimplE [14] introduces a
diachronic part for entities and relations. Inspired by RotatE [27],
TeRo [33] utilizes a rotation operation on both subject and object
to evaluate the semantic scores of a given fact. T(NT)ComplEx [18]
incorporates the time embedding into a three-order tensor and uses
a novel regularization method to improve link prediction perfor-
mance. RotateQVS [9] aims to model the temporal changes with
rotation operation in quaternion vector space and uses a score func-
tion that is similar to TransE. BoxTE [25] is a box embedding model
for temporal knowledge graph completion, which is based on the
static KGE model BoxE [1].

Illuminated by the expressive power of graph neural network
(GNN), some temporal KGE approaches utilize different variants of
GNN. RE-NET [17] and RE-GCN [22] learn the evolutional repre-
sentations of entities and relations at each timestamp by modeling
the KG sequence recurrently.

In our work, we regard the time information as a timeline and
utilize a novel method that embeds the entities and relations at
specific time with a semantic part and a temporal part, keeping the
independence of the semantic and temporal information.

3 PRELIMINARIES ON HAMILTON’S
QUATERNIONS

In this section, wewill introduce the definition of Hamilton’s quater-
nions and some operations used in the methodology section. Hamil-
ton’s Quaternions [16] is a representative hypercomplex number
that extends the traditional complex number to four-dimension
space. And quaternions have been used in static KGE [8, 37].

A quaternion 𝑞 is consist of one real component and three imag-
inary components 𝑖, 𝑗, 𝑘 , which is defines as 𝑞 = 𝑎 + 𝑏i + 𝑐j + 𝑑k,
where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers and i, j, k are imaginary units. It
can also be viewed as a quadruple (𝑎, 𝑏, 𝑐, 𝑑). Here we will provide
some operations for quaternions:
• Conjugate. The conjugate of a quaternion is similar to that of a
complex number. The real component keeps the same while three
imaginary components are opposite to the original quaternion:

𝑞 = 𝑎 − 𝑏i − 𝑐j − 𝑑k. (1)

• Norm. The norm of a quaternion is defined as:

∥𝑞∥ =
√︁
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 . (2)

• Inner Product. The quaternion inter product between 𝑞1 =

𝑎1 + 𝑏1i + 𝑐1j + 𝑑1k and 𝑞2 = 𝑎2 + 𝑏2i + 𝑐2j + 𝑑2k is calculated by
taking the sum of products of each corresponding components:

𝑞1 · 𝑞2 = ⟨𝑎1, 𝑎2⟩ + ⟨𝑏1, 𝑏2⟩ + ⟨𝑐1, 𝑐2⟩ + ⟨𝑑1, 𝑑2⟩. (3)

• Hamilton Product. The hamilton product of two quaternions
𝑞1 and 𝑞2 is composed of the multiplications of every factor and
follows the distribution law in quaternion, which is defined as:

𝑞1 ⊗ 𝑞2 = (𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2)
+ (𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 − 𝑑1𝑐2)i
+ (𝑎1𝑐2 − 𝑏1𝑑2 + 𝑐1𝑎2 + 𝑑1𝑏2)j
+ (𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2)k.

(4)

4 METHODOLOGY
In this section, we first introduce the overview of our model, includ-
ing the task of knowledge graph completions and some notations.
Then the detailed descriptions of TLT-KGE will be given. Finally,
we will introduce regularization terms and loss functions used in
our training process.

4.1 Overview
A TKG is viewed as a graph G = {(𝑠, 𝑝, 𝑜, 𝜏)} ⊆ E × R × E × T ,
where E, R and T are the set of entities, relations and timestamps,
respectively. Given a graph G and a quadruple with the missing
term (𝑠, 𝑝, ?, 𝜏), we can infer the missing entities by finding the
answers from the entity set E. For example, given two events (India,
Make a visit, Barack Obama, 2014/09/30) and (India, Engage in nego-
tiation, Barack Obama, 2014/09/30), if we want to predict the most
possible missing entity of a query (Barack Obama, Praise or endorse,
?, 2014/10/01) from the set of entities {Syria, Armed Rebel (Syria),
India} based on the given facts, we can easily infer the most possible
answer is India because the existing facts indicate the interaction
between India and Barack Obama. This is an simple example of
knowledge graph completion.

The proposed method TLT-KGE has a crucial point: we divide
the embedding of entities or relations into two independent parts.
One is the semantic meaning of entities or relations (semantic part),
and the other is the timestamps (temporal part). Under this setting,
we can regard the time embeddings as a timeline acted on the
entities or relations. Then we incorporate the semantic part and
the temporal part to a complex vector or a quaternion vector. In
order to strengthen the expression of timestamps and relations,
TLT-KGE is equipped with two additional components: (i) Shared
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time window module, which utilizes shared embeddings for time
windows to strengthen the connection of events that happen within
a time scope; (ii) Relation-timestamp composition module, which
is able to enhance the expression of a relation at specific time.

4.2 Proposed Method: TLT-KGE
4.2.1 Timeline-traced Embedding. The timeline-traced embedding
consists of two individual components: the semantic part and the
temporal part. The semantic part represents the meaning of entities
or relations and it can be regarded as the static part of timeline-
traced embedding. And temporal part is designed for expressing the
time information. For a given TKGG = {(𝑠, 𝑝, 𝑜, 𝜏)} ⊆ E×R×E×T ,
the semantic embedding matrix of all entities and relations is de-
noted asW𝐸 ∈ R | E |×𝑑 andW𝑅 ∈ R | R |×𝑑 , where |E | and |R | is the
size of entity set E and relation set R, and the dimension of embed-
dings is 𝑑 . Each row ofW𝐸 orW𝑅 is the semantic embedding of an
entity or relation in G. For the sake of providing comprehensive
representations of entities and relations in current timestamp. We
design temporal embeddings for entities and relations, respectively.
The temporal embedding matrix of all timestamps is viewed as
W𝑒

𝑇
∈ R | T |×𝑑 and W𝑟

𝑇
∈ R | T |×𝑑 , where |T | is the size of times-

tamp set T and each row of W𝑒
𝑇
or W𝑟

𝑇
is one of the timestamp

embeddings representing an exact time.
Semantic Part. For a given fact (𝑠, 𝑟, 𝑜, 𝜏) ∈ G in temporal

knowledge graph, the semantic embeddings of entity 𝑠 and 𝑜 is
defined as e𝑠 ∈ R𝑑 and e𝑜 ∈ R𝑑 . The semantic embeddings of
relation 𝑝 is defined as r𝑝 ∈ R𝑑 . Note that e𝑠 , e𝑜 and r𝑝 are rows in
matrix W𝐸 ,W𝐸 and W𝑅 , respectively.

Temporal Part. The temporal embeddings of timestamp 𝜏 for
entities and relations is defined as t𝑒𝜏 ∈ R𝑑 and t𝑟𝜏 ∈ R𝑑 , respectively.
And t𝑒𝜏 , t𝑟𝜏 are rows in matrix W𝑒

𝑇
and W𝑟

𝑇
, respectively.

4.2.2 Combine to a Uniform Embedding. In the proposed model,
we aim to combine the semantic and temporal information to rep-
resent entities and relations in KG. Inspired by the powerful ability
of the complex vector space and hypercomplex vector space, we de-
sign two ways to combine the semantic and temporal embeddings
together. One is combining them in complex vector space, and the
other is combining them in quaternion vector space.

Complex Vector Space. The first way is to regard the entire
embedding as a complex vector. The semantic embedding is the
real part and the temporal embedding is the imaginary part of the
complex vector. Both of them make up a full vector in complex
vector space, and the entire embedding of entities 𝑠, 𝑜 and relations
𝑝 at the current timestamp 𝜏 ∈ {1, 2, . . . , |T |} can be represented
as Equation 5,

e𝑐𝑠,𝜏 = e𝑠 + t𝑒𝜏 i, e𝑐𝑜,𝜏 = e𝑜 + t𝑒𝜏 i, r𝑐𝑝,𝜏 = r𝑝 + t𝑟𝜏 i, (5)

where e𝑐𝑠,𝜏 , e𝑐𝑜,𝜏 ∈ C𝑑 and r𝑐𝑝,𝜏 ∈ C𝑑 denote the embeddings of
subject, object and predicate at current timestamp 𝜏 . C denotes
the algebra of complex number. 𝑖 is the complex unit. The former
embeddings (i.e., e𝑠 , e𝑜 and r𝑝 )) are the real part and the latter
embeddings (i.e., t𝑒𝜏 , t𝑒𝜏 and t𝑟𝜏 ) are the imaginary part.

Quaternion Vector Space. The powerful representation ability
of the hypercomplex number system has been proved in several
works before [8, 37]. Thus, we extend the complex vector to the

quaternion vector. In order to do so, we first divide both the se-
mantic embedding and the temporal embedding into two parts.
The embeddings e𝑠 , e𝑜 , r𝑝 , t𝑒𝜏 , t𝑟𝜏 are equally divided into (e𝑠,𝑎, e𝑠,𝑏 ),
(e𝑜,𝑎, e𝑜,𝑏 ), (r𝑝,𝑎, r𝑝,𝑏 ), (t𝑒𝜏,𝑐 , t𝑒𝜏,𝑑 ), (t

𝑟
𝜏,𝑐 , t𝑟𝜏,𝑑 ), respectively. Note that

the embedding size of divided embeddings is 𝑑
2 . Then, the processed

embeddings are combined as follow,

e𝑞𝑠,𝜏 = e𝑠,𝑎 + e𝑠,𝑏 i + t𝑒𝜏,𝑐 j + t𝑒
𝜏,𝑑

k

e𝑞𝑜,𝜏 = e𝑜,𝑎 + e𝑜,𝑏 i + t𝑒𝜏,𝑐 j + t𝑒
𝜏,𝑑

k

r𝑞𝑝,𝜏 = r𝑝,𝑎 + r𝑝,𝑏 i + t𝑟𝜏,𝑐 j + t𝑟
𝜏,𝑑

k,

(6)

where e𝑞𝑠,𝜏 , e
𝑞
𝑜,𝜏 ∈ H

𝑑
2 and r𝑞𝑝,𝜏 ∈ H

𝑑
2 denote the embeddings of

subject, object and predicate in current timestamp 𝜏 . H denotes
the algebra of quaternions. i, j, k are the unit vectors representing
the three Cartesian axes. The first embedding in the right-side of
Equation 6 is the real part and the other three embeddings are the
imaginary parts in quaternion number space.

Figure 3 shows an illustration of two method that combines
the semantic part and temporal part. For the TLT-KGE (Complex),
the entities and relations are along the real axis, and timestamps
are along the imaginary axis. For the TLT-KGE (Quaternion), we
simplify the illustration via setting the imaginary part k of time
information to zero so that we can describe our method in a 3D
figure. The X-axis represents the real part of the quaternion, i.e., se-
mantic information. The Y-axis and Z-axis represent the imaginary
parts i and j, i.e., temporal information.

From Figure 3, we can see that different from most existing
models, which simply concatenate or multiply the semantic and
temporal information together, TLT-KGE models the semantic in-
formation and temporal information as different axes of complex
number space or quaternion space. This setting can not only dis-
tinguish the independence of the two kind of information, but also
establish a connection between them.

4.2.3 Score Functions. Because there are two ways to combine
the embeddings above, we utilize two different score functions to
calculate the probability of a given quadruple (𝑠, 𝑝, 𝑜, 𝜏). The first
score function is based on the Hamilton product of two complex
numbers and the second one uses the Hamilton product between
two quaternions.

Score Function of TLT-KGE (Complex). We first use the
Hamilton product between two complex vector e𝑐𝑠,𝜏 and r𝑐𝑝,𝜏 . The
operation is shown as Equation 7.

C(𝑠, 𝑝, 𝜏) = e𝑐𝑠,𝜏 ⊙ r𝑐𝑝,𝜏 = (e𝑠 ◦ r𝑝 − t𝑒𝜏 ◦ t𝑟𝜏 ) + (e𝑠 ◦ t𝑟𝜏 + t𝑒𝜏 ◦ r𝑝 )i
= c0 + c1i,

(7)
where ⊙ denotes the Hamilton product of two complex numbers
and ◦ represents the element-wise multiplication. C(𝑠, 𝑝, 𝜏) ∈ C𝑑
represents the combination of 𝑠 and 𝑝 at timestamp 𝜏 . c0 and c1 is
the real and imaginary part of C(𝑠, 𝑝, 𝜏).

For providing more interactions between entities, relations and
timestamps, we introduce another complex vector C′ (𝑠, 𝑝, 𝜏) =

c1 + c0i, which exchanges the real and imaginary part of C(𝑠, 𝑝, 𝜏).
Then we utilize inner products of (C(𝑠, 𝑝, 𝜏), e𝑐𝑜,𝜏 ) and (C′ (𝑠, 𝑝, 𝜏),
e𝑐𝑜,𝜏 ) to calculate the score for TLT-KGE (Complex),
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Figure 3: Illustration of the full representation combining semantic information and temporal information in TLT-
KGE(Complex) and TLT-KGE(Quaternion). 𝑒 and 𝑟 are the semantic parts of entity and relation, respectively. 𝜏1 and 𝜏2 are two
timestamps. Left: In TLT-KGE(Complex), the semantic information is modeled as the real part and the temporal information is
regarded as the imaginary part of a complex vector. Right: The X-axis and Y-axis constitute a plane for the semantic information.
The Z-axis represents the temporal information.

𝜙𝑐 (𝑠, 𝑝, 𝑜, 𝜏) = ⟨C(𝑠, 𝑝, 𝜏), e𝑐𝑜,𝜏 ⟩ + ⟨C′ (𝑠, 𝑝, 𝜏), e𝑐𝑜,𝜏 ⟩
= ⟨c0, e𝑜 ⟩ + ⟨c1, t𝑒𝜏 ⟩ + ⟨c0, t𝑒𝜏 ⟩ + ⟨c1, e𝑜 ⟩,

(8)

where ⟨·, ·⟩ denotes the sum of the element-wise product between
two vector.

Score Function of TLT-KGE (Quaternion). We use Hamilton
product between two quaternion vectors e𝑞𝑠,𝜏 and r𝑞𝑝,𝜏 to obtain the

middle embedding 𝑄 (𝑠, 𝑝, 𝜏) ∈ H
𝑑
2 as follow,

𝑄 (𝑠, 𝑝, 𝜏) = e𝑞𝑠,𝜏 ⊗ r𝑞𝑝,𝜏
= (e𝑠,𝑎 ◦ r𝑝,𝑎 − e𝑠,𝑏 ◦ r𝑝,𝑏 − t𝑒𝜏,𝑐 ◦ t𝑟𝜏,𝑐 − t𝑒

𝜏,𝑑
◦ t𝑟

𝜏,𝑑
)

+ (e𝑠,𝑎 ◦ r𝑝,𝑏 + e𝑠,𝑏 ◦ r𝑝,𝑎 + t𝑒𝜏,𝑐 ◦ t𝑟𝜏,𝑑 − t𝑒
𝜏,𝑑

◦ t𝑟𝜏,𝑐 )i
+ (e𝑠,𝑎 ◦ t𝑟𝜏,𝑐 − e𝑠,𝑏 ◦ t𝑟

𝜏,𝑑
+ t𝑒𝜏,𝑐 ◦ r𝑝,𝑎 + t𝑒

𝜏,𝑑
◦ r𝑝,𝑏 )j

+ (e𝑠,𝑎 ◦ t𝑟
𝜏,𝑑

+ e𝑠,𝑏 ◦ t𝑟𝜏,𝑐 − t𝑒𝜏,𝑐 ◦ r𝑝,𝑏 + t𝑒
𝜏,𝑑

◦ r𝑝,𝑎)k
= q0 + q1i + q2j + q3k,

(9)
where q0 is the real part of the quaternion vector Q(𝑠, 𝑝, 𝜏). q1, q2
and q3 are the imaginary parts.

Similar to TLT-KGE (Complex), we introduce another quaternion
vector that exchanges the q0, q1 and q2, q3, which is represented
as Q′ (𝑠, 𝑝, 𝜏) = q2 + q3i + q0j + q1k. The score is calculated by the
quaternion inner products of (Q(𝑠, 𝑝, 𝜏), e𝑞𝑜,𝜏 ) and (Q′ (𝑠, 𝑝, 𝜏), e𝑞𝑜,𝜏 ),

𝜙𝑞 (𝑠, 𝑝, 𝑜, 𝜏) = ⟨Q(𝑠, 𝑝, 𝜏), e𝑞𝑜,𝜏 ⟩ + ⟨Q′ (𝑠, 𝑝, 𝜏), e𝑞𝑜,𝜏 ⟩
= ⟨q0, e𝑜,𝑎⟩ + ⟨q1, e𝑜,𝑏⟩ + ⟨q2, t𝑒𝜏,𝑐 ⟩ + ⟨q3, t𝑒𝜏,𝑑 ⟩
+ ⟨q0, t𝑒𝜏,𝑐 ⟩ + ⟨q1, t𝑒𝜏,𝑑 ⟩ + ⟨q2, e𝑜,𝑎⟩ + ⟨q3, e𝑜,𝑏⟩.

(10)

4.2.4 Additional Modules. In this section, we introduce two addi-
tional modules to learn better representations.

Shared Time Window (STW). Existing TKGE models ignore
the connections between the adjacent timestamps while embed-
ding the entities or relations in the ccurrent time. Indeed, events
that happened within a time scope are often full of connections.
E.g. for the two facts (COVID-19, infects, Alice, 2021/11/01), (Alice,

meets, Bob, 2021/11/03), most existing temporal KGE models cannot
take advantage of the correlations between them. To this end, we
propose the Shared Time Window (STW) module to strengthen the
connections of events within a range of time.

Specifically, we define the size of time windows𝑊 , which is a
hyper-parameter. In each time window, we utilize a shared embed-
ding as an indicator to learn the interactions of events. Formally, for
each timestamp 𝜏 , the embeddings with STW of entities t𝑒

′
𝜏 ∈ R𝑑

and relations t𝑟
′

𝜏 ∈ R𝑑 is composed of two parts, and they are
calculated as follows,

t𝑒
′

𝜏 = t𝑒𝜏 + t𝑒𝑠,𝜏 ′ , t𝑟
′

𝜏 = t𝑟𝜏 + t𝑟𝑠,𝜏 ′ , (11)

where t𝑒/𝑟𝜏 ∈ R𝑑 is the temporal embedding that represents the
special characteristics of each timestamps. t𝑒/𝑟

𝑠,𝜏 ′ ∈ R
𝑑 is the shared

embedding that encodes the rich correlations within a time window.
Here we take the temporal embeddings of entities as an example to
explain how to calculate the number of shared time windows. For
|T | timestamps, the temporal embedding set of individual times-
tamps is {t𝑒1, t

𝑒
2, . . . , t

𝑒
| T | } and the embedding set of shared times-

tamps is {t𝑒
𝑠,1, t

𝑒
𝑠,2, . . . , t

𝑒
𝑠,𝑚}, where 𝑚 = ⌈ | T |

𝑊
⌉ is the number of

shared embeddings and𝑊 is the window size. Thus, the index 𝜏 ′ is
calculated as ⌊ 𝜏

𝑊
⌋, where 𝜏 is the current timestamp.

In order to apply STW module to TLT-KGE, we can replace t𝑒𝜏 ,
t𝑟𝜏 in Equation 5 or Equation 6 with t𝑒

′
𝜏 , t𝑟

′
𝜏 , respectively.

Relation-Timestamp Composition (RTC). The relation em-
beddings are crucial in temporal knowledge graph completion since
each relation is related to multiple facts in KG. To enhance the
expression of a relation at specific time, we introduce an relation-
timestamp composition operation, which combines both the se-
mantic information and temporal information with element-wise
product. We empirically find this setting is beneficial to learn better
relation representations and achieve better performance.

The operation are shown as below,

r′𝑝 = r𝑝 + r𝑐𝑜𝑚𝑝𝜏

r𝑐𝑜𝑚𝑝𝜏 = r𝑝 ◦ t𝑐𝑜𝑚𝑝𝜏 ,
(12)
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where r𝑐𝑜𝑚𝑝𝜏 ∈ R𝑑 is a relation-timestamp composition embedding
and t𝑐𝑜𝑚𝑝𝜏 ∈ R𝑑 is a learnable parameter related to timestamps. We
can replace r𝑝 in Equation 5 or Equation 6 with r′𝑝 to utilize RTC
for TLT-KGE (Complex) or TLT-KGE (Quaternion), respectively.

4.3 Regularization
The regularization term is set to prevent the model from overfitting
and improve the generalization performance. In this subsection, we
detail the regularization terms that we use.

In our experiments, the training parameters of TLT-KGE can be
divided into two parts: (i) the semantic embeddings of entities and
relations; (ii) the temporal embeddings of timestamps. Therefore,
we utilize the same regularization terms as [18] for the semantic em-
beddings. The first regularization term Ω for entities and relations
is shown as Equal (13).

Ω =
∑︁

(𝑠,𝑝,𝑜,𝜏 ) ∈G
(∥e𝑠 ∥3

3 + ∥e𝑜 ∥3
3 + ∥r𝑝 ∥3

3), (13)

where ∥ · ∥3 denotes the 3-norm operation for vectors.
In addition, the temporal embeddings of timestamps are sup-

posed to gradually change over time for learning better represen-
tations, i.e., the embeddings from adjacent timestamps should be
close. To achieve this, we add the following regularization term Λ,

Λ =
1

|T | − 1

| T |−1∑︁
𝑖=1

(∥t𝑒𝑖+1 − t𝑒𝑖 ∥
4
4 + ∥t𝑟𝑖+1 − t𝑟𝑖 ∥

4
4

+ ∥t𝑐𝑜𝑚𝑝𝑖+1 − t𝑐𝑜𝑚𝑝𝑖 ∥4
4) +

1

⌈ | T |
𝑊

⌉ − 1

⌈ |T |
𝑊

⌉−1∑︁
𝑖=1

(∥t𝑒𝑠,𝑖+1 − t𝑒𝑠,𝑖 ∥
4
4

+ ∥t𝑟𝑠,𝑖+1 − t𝑟𝑠,𝑖 ∥
4
4),

(14)
where the subscript 𝑖 represents the 𝑖-th timestamp in T .

4.4 Loss function
The loss function contains two parts: one is the multi-class log-loss
[18, 19] used to evaluate the positive or negative facts, and the other
is the regularization terms Ω and Λ. The loss function is

L(G;Θ) =
∑︁

(𝑠,𝑝,𝑜,𝜏 ) ∈G

[
− log

( exp(𝜙 { ·} (𝑠, 𝑝, 𝑜, 𝜏))∑
𝑜 ′
exp(𝜙 { ·} (𝑠, 𝑝, 𝑜′, 𝜏))

)
− log

( exp(𝜙 { ·} (𝑠, 𝑝, 𝑜, 𝜏))∑
𝑠′
exp(𝜙 { ·} (𝑠′, 𝑝, 𝑜, 𝜏))

) ]
+ 𝜆1Ω + 𝜆2Λ,

(15)

where {·} can be 𝑐 or 𝑞 and Θ represents all the model parameters.
𝑜′ and 𝑠′ is the object of the negative quadruple (𝑠, 𝑝, 𝑜′, 𝜏) and the
subject of the negative quadruple (𝑠′, 𝑝, 𝑜, 𝜏), respectively. 𝜆1 and
𝜆2 are the hyper-parameters.

5 EXPERIMENT
In this section, we first introduce the experimental setup, including
datasets, baselines, evaluation metrics and implementation details.
Then, in the main experiment and parameter-bounded experiment,
we analyze the performance on different benchmarks. Besides, the
ablation study of different modules and the parameter study of the

size of shared time window are given. Finally, we will analyze the
distribution of the embeddings of TLT-KGE and other models.

5.1 Experimental Setup
5.1.1 Datasets. In order to prove the adaptive ability of TLT-KGE
in modeling sparse and dense TKGs, we evaluate our model on
three popular benchmarks for TKG completion, including ICEWS14,
ICEWS05-15 and GDELT. The first two datasets are sparse TKGs, in-
troduced by [13]. ICEWS14 and ICEWS05-15 are two sub-sampling
datasets from the Integrated Conflict EarlyWarning System (ICEWS).
The latter GDELT is a dense KG, which is a subset of a larger knowl-
edge graph named Global Database of Events, Language, and Tone
(GDELT). And the dataset contains the facts about human behaviors
with timestamps from April 1, 2015 to March 31, 2016. What’s more,
GDELT contains more than three million quadruples but only has
500 entities and 20 relations, making it a very dense dataset.

Table 1: Statistics for ICEWS14, ICEWS05-15 and GDELT.
|G𝑡𝑟𝑎𝑖𝑛 |, |G𝑣𝑎𝑙𝑖𝑑 |, |G𝑡𝑒𝑠𝑡 | and |G| represent the number of facts
in training sets, validation sets, test sets and KG, respectively.

ICEWS14 ICEWS05-15 GDELT
|E | 7,128 10,488 500
|R | 230 251 20
|T | 365 4,017 366
|G𝑡𝑟𝑎𝑖𝑛 | 72,826 386,962 2,735,685
|G𝑣𝑎𝑙𝑖𝑑 | 8,963 46,092 341,961
|G𝑡𝑒𝑠𝑡 | 8,941 46,275 341,961
|G| 90,730 479,329 3,419,607
Time span 2014 2005-2015 2015-2016
Granularity Daily Daily Daily

5.1.2 Baselines. Our experiments compare TLT-KGE with several
static KGE models and state-of-the-art temporal KGE models. For
the static KGE models, we compare our model with TransE [5],
DistMult [34]. For the temporal KGE models, we use TTransE [20],
HyTE [10], TA-DistMult [13], DE-SimplE [14], TeRo [33], T(NT)
ComplEx [18] and BoxTE [25] as the baselines.

5.1.3 Evaluation Metrics. We evaluate our model on link predic-
tion task. In the text phase, we first replace the 𝑠 and 𝑜 with all the
entities from E in turn for each quadruple in the test set. Then we
compute the scores of all the corrupted quadruples (i.e. (𝑠, 𝑝, ?, 𝜏 ) or
(?, 𝑝, 𝑜, 𝜏)) and rank all the candidate entities according to the scores
under the time-wise filtered settings [14]. Positive candidates are
supposed to precede negative ones. we use the following metrics
for comparison: (i) Mean Rank (MR, the mean of all the predicted
ranks); (ii) Mean Reciprocal Rank (MRR, the mean of all the recip-
rocals of predicted ranks); (iii) Hits@𝑛 (the proportion of ranks
not larger than 𝑛). Lower MR and larger MRR and Hits@𝑛 indicate
better performance.

5.1.4 Implementation Details. We conduct two experiments to eval-
uate the performance of TLT-KGE:
• Main Experiment. In this experiment, we do the temporal
knowledge graph completion on three datasets. The dimension
size of embeddings 𝑑 is set as 1200, 1200 and 1500 for ICEWS14,
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Table 2: Experimental results on ICEWS14, ICEWS05-15 and GDELT. Results with [▲] and [3] are taken from [9] and [25],
respectively. For T(NT)ComplEx, we use the official implementation to re-implement the results to obtain MR metric.

Model
ICEWS14 ICEWS05-15 GDELT

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE [▲] - 28.0 9.4 - 63.7 - 29.4 9.0 - 66.3 - 11.3 0.0 15.8 31.2
DistMult [▲] - 43.9 32.3 - 67.2 - 45.6 33.7 - 69.1 - 19.6 11.7 20.8 34.8

TTransE [▲] - 25.5 7.4 - 60.1 - 27.1 8.4 - 61.6 - 11.5 0.0 16.0 31.8
HyTE [▲] - 29.7 10.8 41.6 65.5 - 31.6 11.6 44.5 68.1 - 11.8 0.0 16.5 32.6
TA-DistMult [▲] - 47.7 36.3 - 68.6 - 47.4 34.6 - 72.8 - 20.6 12.4 21.9 36.5
DE-SimplE [▲] - 52.6 41.8 59.2 72.5 - 51.3 39.2 57.8 74.8 - 23.0 14.1 24.8 40.3
TeRo [▲] - 56.2 46.8 62.1 73.2 - 58.6 46.9 66.8 79.5 - 24.5 15.4 26.4 42.0
RotateQVS [▲] - 59.1 50.7 64.2 75.4 - 63.3 52.9 70.9 81.3 - 27.0 17.5 29.3 45.8
TComplEx 217 61.9 54.2 66.1 76.7 113 66.5 58.3 71.6 81.1 48 34.6 25.9 37.2 51.5
TNTComplEx 239 60.7 51.9 65.9 77.2 111 66.6 58.3 71.8 81.7 47 34.1 25.2 36.8 51.5
BoxTE (k=2) [3] 161 61.5 53.2 66.7 76.7 98 66.4 57.6 72.0 82.2 48 33.9 25.1 36.6 50.7
BoxTE (k=3) [3] 162 61.4 53.0 66.8 76.5 101 66.6 58.2 71.9 82.0 49 34.4 25.9 36.9 50.7
BoxTE (k=5) [3] 160 61.3 52.8 66.4 76.3 96 66.7 58.2 71.9 82.0 50 35.2 26.9 37.7 51.1

TLT-KGE(Complex) 161 63.0 54.9 67.8 77.7 94 68.6 60.7 73.5 83.1 45 35.6 26.7 38.5 53.2
TLT-KGE(Quaternion) 144 63.4 55.1 68.4 78.6 89 69.0 60.9 74.1 83.5 43 35.8 26.5 38.8 54.3

Table 3: Experimental Results on ICEWS14, ICEWS05-15 and GDELT in the bounded-parameter setting. For T(NT)ComplEx, we
use the official implementation to re-implement the results on three datasets. Other results are taken from [25].

Model
ICEWS14 ICEWS05-15 GDELT

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
DE-SimplE - 52.6 41.8 59.2 72.5 - 51.3 39.2 57.8 74.8 - 23.0 14.1 24.8 40.3
TComplEx 246 57.0 48.5 61.9 72.4 134 58.7 49.4 64.0 76.0 61 24.5 16.3 26.2 40.3
TNTComplEx 257 56.9 47.7 62.3 74.1 122 60.0 50.5 65.0 76.9 61 24.4 16.2 26.1 40.2
BoxTE(k=1) 183 57.6 47.8 63.9 75.3 122 56.4 45.2 63.5 77.0 62 25.0 16.7 27.0 41.1
BoxTE(k=2) 177 58.0 48.3 64.2 75.5 110 56.7 45.8 63.1 77.5 63 24.6 16.4 26.5 40.4
BoxTE(k=3) 182 58.2 49.1 64.0 74.8 125 57.0 46.5 63.6 76.3 64 24.2 16.1 26.0 39.8
BoxTE(k=5) 183 58.1 49.3 63.2 74.2 134 56.7 46.9 62.3 74.6 66 23.6 15.6 25.3 39.0

TLT-KGE(Complex) 192 59.7 51.8 64.5 74.4 116 60.8 51.6 66.2 78.3 61 24.7 16.4 26.5 40.6
TLT-KGE(Quaternion) 175 59.9 51.3 64.9 75.6 108 61.0 51.9 66.4 78.6 61 24.8 16.5 26.8 40.7

ICEWS05-15 and GDELT, respectively. All the dimension sizes
are smaller than that in T(NT)ComplEx and BoxTE. Then we
optimize our model with Adagrad [12] and the learning rate is
0.1. The max training epoch is 200. For the parameters of regu-
larization terms in TLT-KGE (Complex), 𝜆1 is set to 0.001 and 𝜆2
is set to 0.1 on all datasets. In TLT-KGE(Quaternion), 𝜆1 is set to
0.003, 0.001 and 0.0005 on ICEWS14, ICEWS05-15 and GDELT,
respectively. 𝜆2 is set to 0.03, 0.1 and 0.03 on ICEWS14, ICEWS05-
15 and GDELT, respectively. The size of shared time window𝑊

is 120 days (4 months) on both ICEWS14 and GDELT, and 1440
days (4 years) on ICEWS05-15.

• Parameter-bounded Experiment. To investigate the robust-
ness of TLT-KGE with a restricted computational budget, we
keep the same number of parameters as the 100-dimensional DE-
SimplE to conduct the parameter-bounded experiment. Table 4
gives the number of parameters of different competitors. The size
of shared time window𝑊 is set to 122 for ICEWS14 and GDELT,
and 1440 for ICEWS05-15. According to these settings, we can

calculate that the dimension of TLT-KGE (Complex / Quaternion)
is 152, 104 and 65 on ICEWS14, ICEWS05-15 and GDELT, respec-
tively. Finally, other hyper-parameters keep the same as the main
experiment above.

5.2 Main Experimental Results
Experimental results are shown in Table 2. Bold font represents the
best results, and underlined font denotes the second-best results.
From Table 2, we have the following findings.

(i) Generally, TLT-KGE (Quaternion) and TLT-KGE (Complex)
outperform all the state-of-the-art competitors, demonstrating the
effectiveness of our model. It is also worth noting that the pro-
posed method achieves better results than baselines on all the three
dataset, indicating that our model is suitable for datasets with dif-
ferent sparsity.

(ii) We find TLT-KGE (Quaternion) performs better than TLT-
KGE (ComplEx). Paricularly, TLT-KGE (Quaternion) achieves better
MR score than TLT-KGE (ComplEx) on ICEWS14 by 17. The results
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indicate that the interactions in the quaternion vector space is more
powerful for representing entities and relations with timestamps.

(iii) We find that our model achieves greater performance gains
on the two sparser datasets ICEWS14 and ICEWS05-15. Specifically,
TLT-KGE (Quaternion) outperforms the best baseline by 1.5%, 2.3%
and 0.6% on the three datasets, respectively. The results show that our
way of modeling semantic information and temporal information
can overcome the problem of data sparseness to a certain extent.

In a nutshell, TLT-KGE makes a remarkable performance on
three widely used datasets. The method that regards the time in-
formation as a timeline is adequate for temporal knowledge graph
completion task.

Table 4: Model parameter count for TLT-KGE and other com-
peting models. 𝑑 is the dimension size. For TLT-KGE, 𝑚 is
the number of shared time windows, which is calculated by
⌈ | T |
𝑊

⌉). For DE-SimplE, 𝛾 denotes the shared rate of temporal
embedding features. For BoxTE, 𝑘 donates the number of
embeddings for every timestamp.

Model Number of Parameters
DE-SimplE 2𝑑 ((3𝛾 + (1 − 𝛾)) |E | + |R|)
TNTComplEx 2𝑑 ( |E | + |T | + 4|R |)
BoxTE 𝑑 (2|E | + 𝑘 |T | + 2|R |) + 𝑘 |R |
TLT-KGE(Complex) 2𝑑 ( |E | + 2|R | + 3|T | +𝑚)
TLT-KGE(Quaternion) 2𝑑 ( |E | + 2|R | + 3|T | +𝑚)

5.3 Parameter-bounded Experimental Results
Table 3 shows the results of parameter-bounded experiment.We can
see that TLT-KGE has an outstanding improvement on ICEWS14
and ICEWS05-15, indicating that our model has strong robustness
compared with other baselines. Again, the results demonstrate
that TLT-KGE is capable of modeling the time evolution on sparse
datasets. For GDELT, TLT-KGE (Quaternion) achieves the second-
best result. We infer the reason is that the small dimension size (65
in ours vs. 128 in BoxTE(k=1)) might limit the expression ability
for such a large dataset.

To further analyze the reason, we remove the STW and RTC
modules in both TLT-KGE(Complex) and TLT-KGE(Quaternion)
and conduct the experiment on GDELT. Under this setting, the
dimension size of embedding changes to 92. The results are shown
as Table 5. From the results, both TLT-KGE(Complex) and TLT-
KGE(Quaternion) perform better than BoxTE(k=1), which supports
our inference. Therefore, when the number of parameters is small,
increasing the embedding size is substantially beneficial in the
parameter-bounded setting for GDELT.

5.4 Ablation Study of Additional Modules
In this section, we compare different variants of TLT-KGE (Complex
/ Quaternion), removing the additional modules in Section 4.2.4 to
investigate their influence on the model. Table 6 shows the results
of ablation studies. Bold fonts represent the best result in each
group. From Table 6, we have following findings.

Table 5: Experimental Results of TLT-KGE without RTC and
STW on GDELT in the bounded-parameter setting. C and Q
denote Complex and Quaternion, respectively.

Model MR MRR Hits@1 Hits@3 Hits@10

BoxTE(k=1) 62 25.0 16.7 27.0 41.1
TLT-KGE(C)-RTC-STW 60 25.1 16.8 26.8 41.0
TLT-KGE(Q)-RTC-STW 59 25.3 16.9 27.1 41.2

(i) Generally, the proposed model outperforms the variants with-
out RTC and STW modules, which shows that both two mod-
ules have a significant impact on TLT-KGE(Complex) and TLT-
KGE(Quaternion), and demonstrates that the additional designed
modules have a positive influence on temporal knowledge graph
completion task.

(ii) We find that the RTC module plays a more important role on
the dense GDELT dataset. We conjecture the reason lies as follow.
The RTC model aims to strengthen the representations of temporal
relations. In the dense dataset GDELT, each relation is associated
with more facts, thus the representations of the relations becomes
more important. Therefore, the RTC module can play a better role
in improving the performance.

(iii) We observe that STW module is more effective on the two
sparse datasets ICEWS14 and ICEWS05-15.We conjecture the reason
lies as follows. The module enables information sharing between ad-
jacent timestamps. In this way, low-frequency entities and relations
in a certain timestamp can be enriched with more information from
adjacent timestamps, which is beneficial for better performance.

Moreover, TLT-KGE without both two additional modules also
achieves state-of-the-art results on ICEWS14 and ICEWS05-15, and
comparable results on GDELT. The phenomenon again verifies the
effectiveness of our way in modeling temporal entities and relations.

Figure 4: The change of MR and MRR with the size of shared
time window (STW)𝑊 increasing on ICEWS05-15.

5.5 Parameter Study
We also carry out the parameter study to test the effects of the
window size𝑊 of STW module on ICEWS05-15. Figure 4 presents
the change of MRR and MR with𝑊 increasing on ICEWS05-15.
TLT-KGE(Quaternion) keeps achieving better results as we raise𝑊
from 7 to the optimal value. Then, after𝑊 exceeds the optimal point,
the performance starts falling down. The reason lies as: When𝑊 is
small, an event cannot take full advantage of all the information from
related events. In this way, the model cannot achieve the optimal
results. When𝑊 is large, some weakly related or even unrelated
events may join the same window, leading to unsatisfactory results.
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Table 6: Experimental Results of two additional modules in Section 4.2.4. STW represents shared time window. RTC denotes
relation-timestamp composition module.

Model
ICEWS14 ICEWS05-15 GDELT

MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TLT-KGE(Complex) 161 63.0 54.9 67.8 77.7 94 68.6 60.7 73.6 83.1 45 35.6 26.7 38.5 53.2
TLT-KGE(Complex)-RTC 153 62.9 54.3 68.1 78.1 90 68.4 60.1 73.6 83.4 47 34.9 25.3 38.0 52.9
TLT-KGE(Complex)-STW 178 62.5 54.4 67.6 77.1 110 68.1 60.2 73.1 82.5 46 35.5 26.5 38.3 53.0
TLT-KGE(Complex)-RTC-STW 173 62.5 54.3 67.8 77.9 105 68.1 60.0 73.3 82.7 47 34.8 25.3 37.9 52.7

TLT-KGE(Quaternion) 144 63.3 55.0 68.3 78.6 89 68.9 60.9 74.0 83.5 43 35.8 26.5 38.8 54.3
TLT-KGE(Quaternion)-RTC 147 63.0 54.4 68.2 78.4 91 68.5 60.3 73.8 83.2 43 35.5 26.2 38.5 53.9
TLT-KGE(Quaternion)-STW 158 62.9 54.8 67.7 77.7 102 68.7 60.8 73.6 82.9 44 35.5 26.2 38.5 53.8
TLT-KGE(Quaternion)-RTC-STW 163 62.6 54.2 67.7 77.8 109 68.1 60.0 73.2 82.7 44 35.4 26.1 38.5 53.8

(a) Embeddings (Entities) in DE-SimplE (b) Embeddings (Entities) in TLT-
KGE(Quaternion)

(c) Embeddings (Relations) in TNTCom-
plEx

(d) Embeddings (Relations) in TLT-
KGE(Quaternion)

Figure 5: t-SNE visualization. The color from pale red to dark
red represents the timestamps from 2014.01.01 (the first day)
to 2014.11.28 (the last day). Each point corresponds to a tem-
poral entity or relation.

5.6 Capacity of Distinguishing the Entities /
Relations with Temporal Information

We discuss the ability of TLT-KGE in distinguishing entities or
relations with time information in this section.

For all models, We randomly choose the same 100 entities, 50
relations and 8 timestamps (2014.1.1-2014.1.5, 2014.4.11, 2014.7.20
and 2014.11.28) for visualization on ICEWS14. We compare the
embeddings of entities with DE-SimplE [14] and the embeddings
of relations with TNTComplEx [18] because DE-SimplE utilizes
diachronic embeddings only for entities while TNTComplEx applies
a dynamic module on relations.

Figure 5 shows the 2D visualization of trained embeddings with
the help of t-SNE [29]. We find the baseline models tend to embed
the same entity (relation) with different timestamps into a cluster.
Such a result makes it difficult for the baseline models to distinguish
the representations of entities (relations) at different timestamps.

While our model can easily do so, which again validates the effi-
ciency of our methodology.

Table 7: Average distance of embeddings on three models. (·,
·) represents the distance is between two dates in 2014.

Model
Entity Distance Relation Distance

(1.1, 1.1) (1.1, 11.28) (1.1,1.1) (1.1,11.28)

DE-SimplE 36.5 40.4 - -
TNTComplEx - - 46.1 56.4
TLT-KGE(Quaternion) 46.9 139.8 48.5 256.8

Besides, We also test the model’s ability to discriminate between
different entities (relations) at the same timestamp. Table 7 shows
the results. We can observe that on Jan 1st, the average entity
(relation) distance in TLT-KGE(Quaternion) is larger than that in
baseline models, which demonstrates our model can also better
distinguish entities (relations) at the same timestamp.

6 CONCLUSION
In this paper, we presented a novel model TLT-KGE for temporal
knowledge graph completion, which regards the time information
as a timeline. TLT-KGE embeds both entities and relations at differ-
ent times with a semantic part from the static knowledge graph and
a temporal part from the time information. TLT-KGE is qualified
to model temporal evolution over the timeline with two indepen-
dent parts. Additionally, the proposed method also introduced the
shared time window module and the relation-timestamp compo-
sition module to enhance the ability of representation learning.
Extensive experiments on benchmark datasets clearly validated the
superiority of TLT-KGE against various state-of-the-art baselines.
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