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ABSTRACT

As an important factor governing opinion dynamics, stubbornness
strongly affects various aspects of opinion formation. However, a
systematically theoretical study about the influences of heteroge-
neous stubbornness on opinion dynamics is still lacking. In this
paper, we study a popular opinion model in the presence of in-
homogeneous stubbornness. We show analytically that heteroge-
neous stubbornness has a great impact on convergence time, ex-
pressed opinion of every node, and the overall expressed opinion.
We provide an explanation of the expressed opinion in terms of
stubbornness-dependent spanning diverging forests. We propose
quantitative indicators to quantify some social concepts, including
conflict, disagreement, and polarization by incorporating hetero-
geneous stubbornness, and develop a nearly linear time algorithm
to approximate these quantities, which has a proved theoretical
guarantee for the error of each quantity. To demonstrate the per-
formance of our algorithm, we perform extensive experiments on a
large set of real networks, which indicate that our algorithm is both
efficient and effective, scalable to large networks with millions of
nodes.

CCS CONCEPTS

• Human-centered computing → Social network analysis; •
Networks → Network dynamics; • Information systems →
Social networks.

KEYWORDS

Opinion dynamics, social network, multi-agent system, polariza-
tion, disagreement, conflict, Laplacian solver

1 INTRODUCTION

As a research subject of computational social science [27], opin-
ion dynamics has received considerable attention from the scien-
tific community [7], especially in recent years due to the explosive
growth of social media and online social networks [32]. An impor-
tant factor affecting opinion dynamics is the attributes of individ-
uals, for example, stubbornness that measures the extent to which
an individual sticks to his own initial opinion/belief or is willing
to change his opinion in reaction to its neighbors’ opinions. Thus,
stubbornness indicates people’s susceptibility to persuasion [1, 2].
In social psychology, a rich body of empirical work [6, 17, 20, 47,
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48] focused on this key element, unveiling some far-reaching impli-
cations of stubbornness in diverse aspects, including product mar-
keting, public health campaigns, and political candidates. Some re-
cent work studied persuasive technologies to change an individ-
ual’s attitude or stubbornness [21, 28, 29], showing that individ-
ual’s stubbornness are heterogeneous.

Perhaps the most important step for opinion dynamics study is
to establish a mathematical model by capturing various fundamen-
tal factors affecting opinion formation. During the past decades, a
large body of literature has been devoted to the modeling of opin-
ion dynamics [41], and several classic models have been developed,
providing a deep understanding of opinion diffusion and formula-
tion. Among these models, Friedkin-Johnsen (FJ) model [23] is one
of the most popular models. As a significant extension of the De-
groot model [16], the FJ model grasps some intricate social behav-
iors by considering French’s “theory of social power” [22]. Very
recently, by modifying the FJ model a study was initiated in [1, 2]
to explore how to change individuals’ stubbornness to optimize the
overall opinion. However, there is still no theoretical studies that
systematically uncover the influences of heterogeneous stubborn-
ness on opinion dynamics, including convergence speed, overall
opinion, and some resulting social phenomena such as polariza-
tion, disagreement, and conflict.

In order to fill the aforementioned gap, in this paper, we study
the FJmodel for opinion dynamics on an undirectedweighted graph,
aiming at unveiling the role played by heterogeneous stubbornness
in opinion dynamics. Themain contributions of this paper are sum-
marized below.

• We give an explanation of the expressed opinion in terms of
spanning diverging forests of a corresponding defined directed
graph.

• We show that heterogeneous stubbornness has a strong effect
on various aspects of opinion dynamics, including convergence
velocity, expressed opinion of every node, and the overall ex-
pressed opinion.

• We make an extension of some relevant quantities for the FJ
modelwith uniform stubbornness to the casewith heterogeneous
stubbornness, including conflict, disagreement, and polarization
by incorporating heterogeneous stubbornness. We then develop
an approximation algorithm to evaluate these quantities, which
has a nearly linear time complexity and a theoretically guaran-
teed error.

http://arxiv.org/abs/2208.04160v1
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• Weperformextensive experiments on large datasets, which demon-
strate that our algorithm achieves both good efficiency and effec-
tiveness, being scalable to large networks withmillions of nodes.

2 PRELIMINARIES

In this section, we briefly introduce some concepts about directed
and undirected graphs, their related matrices, as well as some use-
ful notations.

2.1 Digraph and Related Concepts

Let Γ = (+ (Γ), � (Γ), F) denote a weighted directed graph (net-
work) abbreviated as digraph with node set + (Γ), arc (edge) set
� (Γ) and edge weight function F : � (Γ) → R+. Suppose = =

|+ (Γ) | and + (Γ) = {E1, E2, ..., E=}. In what follows, E8 and 8 are
used interchangeably to denote node E8 in the case without induc-
ing any confusion. Let 8 → 9 denote an arc in � (Γ) pointing to 9

from 8 . In Γ, a loop is an arc having identical end nodes, and an
isolated node is a node having no arcs pointing to or coming from
it. For two nodes E1 and E: in digraph Γ, a path from E1 to E: is
an alternating sequence of nodes and arcs E1, 41, E2, ..., 4:−1, E: , in
which nodes are distinct and every arc 48 is E8 → E8+1. A circuit is
a path plus an arc from the ending node to the starting node. Di-
graph Γ is called (strongly) connected if there exists at least a path
for any pair of nodes. Γ is calledweakly connected if it is connected
when one replaces any arc 8 → 9 by two arcs 8 → 9 and 9 → 8 in
opposite directions. A directed tree is a weakly connected digraph
with no loops and cycles. An isolated node is considered as a tree.
A directed forest is a particular digraph that is a disjoint union of
directed trees.

For a weighted digraph Γ, many connection properties are en-
coded in its weighted adjacency matrixA = (F8 9 )=×= , whose entry
F8 9 at row 8 and column 9 represents the weight of arc 8 → 9 . For
each arc 8 → 9 ∈ � in Γ, its weight F8 9 is strictly nonnegative,
representing the influence of 9 on 8 . If there is no arcs from 8 to 9 ,
F8 9 = 0. For a node 8 , its weighted in-degree 3+8 is defined by 3+8 =
∑=

9=1F 98 , and its weighted out-degree 3−8 is 3−8 =
∑=

9=1F8 9 . Let Θ8

be the set of nodes to which node 8 points. Then, 3−8 is also equal
to

∑

9 ∈Θ8
F8 9 . In the sequel, we use 38 to represent the out-degree

3−8 . The diagonal degree matrix of Γ is D = diag(31, 32, . . . , 3=),
with the 8-th diagonal entry being 38 . The Laplacian matrix of Γ is
L = (;8 9 )=×= = D−A. Let 1 and 0 be the two=-dimensional vectors
with all entries being ones and zeros, respectively. Let O represent
the zero matrix of appropriate dimension. By definition, the sum
of all entries in each row of L equals 0, implying L1 = 0. Let I be
the identity matrix. Then matrix I +L is invertible, with each entry
of matrix (I + L)−1 being positive [11, 12].

2.2 Undirected Graph and Its Laplacian Matrix

In a weighted digraph Γ, if for any arc 8 → 9 with weight F8 9 , the
arc 9 → 8 exists and has weight F 98 equal to F8 9 , then Γ is called
an undirected weighted graph, denoted by G = (+ (G), � (G),F).
Arcs 9 → 8 and 8 → 9 together form an undirected edge in G. Let
Fmax and Fmin denote, respectively, the maximum and minimum
weight among all edges in � (G) of graph G. By definition, for an
undirected graph G, F8 9 = F 98 holds for any pair of nodes 8 and
9 , and 3+8 = 3−8 holds for any node 8 . Moreover, both the weighted

adjacency matrix A and Laplacian matrix L of G are symmetric,
with the latter obeying L1 = 0.

For an undirected weighted graph G = (+ (G), � (G),F) with
= nodes and < edges, there is an alternative construction for its
Laplacian matrix L. Let B ∈ R |� (G) |× |+ (G) | represent the signed
edge-node incidence matrix of G. It is an<×=matrix, whose entry
14E with 4 ∈ � (G) and E ∈ + (G) is defined as follows:14E = 1 (resp.
14E = −1) if node E is the head (resp. tail) of edge 4 , and 14E = 0
otherwise. Let e8 denote the 8-th standard basis vector. In matrix
B, the row vector b4 corresponding to 4 linking two nodes 8 and 9

can be written as b4 = e8 −e9 . We useW to denote the<×< diag-
onal weight matrix diag(F1,F2, . . . ,F< ), the 4-th diagonal entry
of which is equal to the weight of edgeF4 . Then the Laplacian ma-
trix L of G can also be written as L = B⊤WB =

∑

4∈� (G) F4b4b
⊤
4 ,

implying that L is symmetric and positive semidefinite.
The positive semidefiniteness of Laplacian matrix L for graph G

means that all eigenvalues of L are non-negative. Moreover, when
graph G is connected, its Laplacian matrix L has a unique zero
eigenvalue. Let _1 ≥ _2 ≥ . . . ≥ _=−1 ≥ _= = 0 be the = eigen-
values of L for connected G. Then, _max = _1 ≤ =Fmax [45],
and _min = _=−1 ≥ Fmin/=2 [34]. Moreover, it has been shown
that for any diagonal matrix K = diag(:1, :2, . . . , :=) with :8 > 0
(8 = 1, 2, . . . , =), matrixK+L is invertible, and every entry of matrix
(K + L)−1 is positive [33].

2.3 Some Useful Notations

In this subsection, we introduce some notations and their proper-
ties, which are useful for our description and proofs. For two non-
negative scalars 0 ≥ 0 and 1 ≥ 0, 0 is called an n-approximation
of 1 and denoted by 0 ≈n 1, if (1 − n)0 ≤ 1 ≤ (1 + n)0 for
0 ≤ n ≤ 1/2. The n-approximation has the following basic prop-
erties. For nonnegative scalars 0, 1, 2 , and 3 , if 0 ≈n 1 and 2 ≈n 3 ,
then 0 + 2 ≈n 1 + 3 . For two matrices X and Y , if Y − X is posi-
tive semidefinite we write X � Y . In other words, for every real
vector x, the relation x⊤Xx ≤ x⊤Yx holds. For a diagonal matrix
K = diag(:1, :2, . . . , :=), we use :max and :min to denote, respec-
tively, the maximum and minimum values of its diagonal entries.
Then, for the Laplacian matrix L of a connected undirected graph
G, the following expressions hold true: K � L + K , L � L + K ,
L + K � (:max + =Fmax)I , and 1

:max+= Fmax
L � I .

3 FJ MODEL WITH HETEROGENEOUS
STUBBORNNESS

In this section, we study the FJ model [23] of opinion dynamics on
an undirected weighted graph G = (+ (G), � (G)) with heteroge-
neous stubborn agents. We first introduce the FJ model on a con-
nected digraph Γ with homogeneous stubbornness.

3.1 FJ Model on a Digraph with Unit
Stubbornness

The FJ model is a classic model for opinion formulation [23]. For
the FJ model on a digraph Γ = (+ (Γ), � (Γ), F), each node 8 ∈ +

has two different opinions, internal (or innate) opinion B8 and ex-
pressed opinion I8 . Moreover, every individual displays some stub-
bornness :8 against changing its opinion. The internal opinion B8
is assumed to remain constant in the interval [−1, 1], while the
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expressed opinion I8 (C + 1) at time C + 1 evolves as a weighted av-
erage of its internal opinion B8 and the expressed opinions of its
neighbors at time C as

I8 (C + 1) =
B8 +

∑

9 ∈Θ8
F8 9I 9 (C)

1 + ∑

9 ∈Θ8
F8 9

. (1)

Note that during the above updating process of expressed opin-
ions, the stubbornness :8 of every node 8 is 1, which is a common
assumption in the literature. After evolution of enough time, the
expressed opinions of nodes converge. Let z = (I1, I2, . . . , I=)⊤ be
the vector of expressed opinions, where I8 is the expressed opinion
of node 8 at equilibrium. It was shown [8] that the unique equilib-
rium opinion vector z is

z = (I + L)−1s . (2)

In [36], Ω = (I + L)−1 = (l8 9 )=×= is called the fundamental
matrix of the FJ opinion dynamics model. It has been proved that
matrix Ω is row stochastic satisfying Ω1 = 1 [11, 12]. Then, (2)
indicates that for any node 8 ∈ + , its expressed opinion I8 at equi-
librium is I8 =

∑=
9=1 l8 9B 9 , which is a convex combination of the

internal opinions of all nodes including 8 itself. Since for 8 ≠ 9 ,
l88 > l8 9 holds [11, 12], I8 has a bias towards the internal opinion
B8 . That is, at equilibrium any node is inclined to keep its internal
opinion of its own rather than others.

3.2 FJ Model on a Graph with Heterogeneous
Stubbornness

Many research works [21, 28, 29] show that the stubbornness of
individuals are heterogeneous. Here we study FJ model on an undi-
rected weighted graph G = (+ (G), � (G),F) with inhomogeneous
stubbornness, with an aim to explore the influences of inhomoge-
neous stubbornness on various aspects of opinion dynamics.

3.2.1 Evolution Rule. Different from the (1), for the FJ model on
graph G, each node 8 has different inclination to his initial opin-
ion. At time C + 1, the expressed opinion of node 8 updates in the
following way:

I8 (C + 1) =
:8B8 +

∑

9 ∈Θ8
F8 9I 9 (C)

:8 +
∑

9 ∈Θ8
F8 9

, (3)

where the stubbornness coefficient :8 ≥ 0 measures the stubborn-
ness of node 8 to his initial opinion. We consider the case that the
stubbornness coefficients of all nodes are greater than 0 obeying
:1:2 . . . := ≠ 0. In what follows, we call K = diag(:1, :2, . . . , :=)
the stubbornness matrix of G.

3.2.2 Existence and Expression of Equilibrium Opinions. We now
determine the expressed opinions at equilibrium.Wefirst express (3)
in matrix form as

z(C + 1) = QAz(C) + QKs, (4)

where Q = diag(@1, @2, . . . , @<) is an = × = diagonal matrix with
the 8-th diagonal entry @8 being @8 = 1/(:8 +

∑

9 ∈Θ8
F8 9 ).

By iterating (4), the expressed opinion vector z(C) at time C is
obtained to be

z(C) = (QA)C z(0) +
C−1
∑

B=0

(QA)BQKz(0). (5)

Note that the sum of the 8-th row for matrixQA is
∑

9∈Θ8 F8 9

:8+
∑

9∈Θ8 F8 9
< 1

for any 8 ∈ + , implying that matrix QA is row sub-stochastic.
According to Perron-Forbenius theorem [35], the absolute values
of all eigenvalues of matrix QA are less than 1. Thus, we have
limC→∞ (QA)C = O. Then, we can conclude the existence of vector
z for equilibrium expressed opinions, which reads

z = lim
C→∞

z(C) = (L + K)−1Kz(0) = (L + K )−1Ks . (6)

Let Φ = (q8 9 )=×= , (L + K)−1K be the fundamental matrix of
this opinion model. Due to L1 = 0, relation (L + K)1 = K1 holds.
On the other hand, matrix L+K is invertible, then (L+K )−1K1 =

1, implying that Φ = (L + K)−1K is row-stochastic. Equation (6)
shows that, for each node 8 ∈ + its expressed opinion I8 is I8 =
∑=

9=1 q8 9B 9 , which is a convex combination of the internal opinions
for all nodes in+ . SinceΦ is determined by network structure, edge
weighs, and the levels of stubbornness of nodes, its is the same
with the equilibrium expressed opinion for every node when the
internal opinions are fixed.

3.2.3 Properties of Opinions. Using the properties of the funda-
mental matrix (L + K)−1K , we give some relations between inter-
nal opinion vector s and expressed opinion vector z.

Property 1. For a graph G = (+ (G), � (G), F), if the weighted
sum of internal opinions 1⊤Ks is 0, then the weighted sum of ex-

pressed opinions 1⊤Kz in equilibrium is also 0.

Property 2. For opinion dynamics on a graphG = (+ (G), � (G),F),
if the internal opinion vector s is changed to s′ = s + 21 with 2 be-

ing a constant, then the corresponding equilibrium opinion vector is

changed from z to z′ = z + 21.

Thus, without loss of generality, in the sequel we assume that
the internal opinions obey 1⊤Ks = 0, whichmeans 1⊤Kz = 0. Oth-

erwise, if 1⊤Ks ≠ 0, we change s to s′ = s− 1⊤Ks
= 1. By Property 2,

the expressed opinion vector z is changed to z′ = z − 1⊤Ks
= 1.

3.3 Interpretation in Terms of Spanning
Diverging Forests

Here we provide an explanation for the expressed opinions z =

(L+K )−1Ks. For this purpose, we map G = (+ (G), � (G),F) with
stubbornness matrix K into a weighted digraph G′. The node set
+ ′ of digraph G′ is the same as the node set+ of graph G. For each
edge 4 with weight F8 9 = F 98 in G linking two end nodes 8 and 9 ,
we create two arcs 8 → 9 and 9 → 8 in G′, the weights of which
are F8 9/:8 and F 98/: 9 , respectively. Recall that the fundamental
matrix Φ for opinion dynamics on graph G = (+ (G), � (G),F)
with stubbornness matrix K can be written as Φ = (L + K)−1K =

(I + K−1L)−1. Since K−1L is the Laplacian matrix of digraph G′,
according to (2), it is easy to verify that Φ is in fact the fundamen-
tal matrix of opinion dynamics on G′, when the stubbornness of
all nodes is 1. Below, we give an interpretation of expressed opin-
ions z = (L + K)−1Ks in terms of spanning converging forests of
digraph G′.

For a digraph G′with node set+ ′ and arc set �′, a subdigraph of
G′ is a digraph, whose node set and arc set are subsets of+ ′ and �′,
respectively, but the node set + ′ must comprise the head and tail
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of each arc in set �′. A spanning subdigraph of G′ is a subdigraph
with node set + ′. A spanning diverging tree or an out-tree is a
weakly connected digraph in which one node, called the root, has
in-degree 0 and the remaining nodes have in-degree 1. An isolated
node is considered as a diverging tree with the root being itself. A
spanning diverging forest of G′ is a spanning subdigraph of G′,
where every weakly connected component is a diverging tree. A
spanning diverging forest is also called a spanning out-forest [3,
10].

For a subdigraph Ḡ of digraph G′, its weight Y (Ḡ) is defined as
the product of theweights of all arcs in Ḡ. If Ḡ has no arc, itsweight
Y (Ḡ) is set to be 1. For a nonempty set ( of subdigraphs, define its
weight Y (() as Y (() = ∑

Ḡ ∈( Y (Ḡ). If ( is empty, Y (() is defined to be
zero [11, 12]. For a digraph G′, let Υ be the set of all its out-forests,
and Υ8 9 the set of out-forests with nodes 8 and 9 in the same out-
tree rooted at node 8 . In [11, 12], the diverging forest matrix of a di-

graph G′ is proposed and defined asΦ = (q8 9 )=×= =
(

I + K−1L
)−1

,
where the 8 9-th entry q8 9 is q8 9 = Y (Υ8 9 )/Y (Υ). Obviously, the di-
verging forest matrix Φ is exactly the fundamental matrix of opin-
ion dynamics on G′, when the stubbornness matrix is an identity
matrix.

In this way, we have provided an interpretation of the equi-
librium expressed opinion vector z given in (6) for a undirected
graph G, in terms of the diverging forest matrix of a correspond-
ing digraph G′, where edge weights contain the information of
node stubbornness. The perspective of our interpretation is novel,
which is different from previous ones, such as absorbing random
walks [26], game theory [8], and electrical networks [25].

4 EFFECTS OF HETEROGENEOUS
STUBBORNNESS ON OPINION DYNAMICS

In this section, we give insight on how the stubbornness affects
the convergence velocity to equilibrium opinions, overall opinion,
and the expressed opinion of every node.

4.1 Convergence Time

Equation (6) characterizes the equilibrium expressed opinions. This
equilibriumbehavior is relevant only if it converges in a reasonable
time [19]. Below study the impact of the level of stubbornness on
the convergence time. We first give a definition of error vector for
expressed opinion vector z(C) at time C . For brevity, in the sequel,
we use G = (+ , �,F) to represent G = (+ (G), � (G),F).

Definition 4.1. For opinion dynamics on a graph G = (+ , �,F),
the error vector e(C) of expressed opinion vector z(C) at time C is the

difference of z(C) and the equilibrium opinion vector z: e(C) = z(C) −
z.

Based on (5), e(C) can be expressed as

e(C) = (QA)C
(

z(0) −
∞
∑

B=0

(QA)BQKz(0)
)

,

which leads to the following recursive relation governing e(C) and
e(C + 1):

e(C + 1) = QAe(C). (7)

In order to give a better analysis of the convergence time, we intro-

duce a new error vector f (C) defined as f (C) = Q− 1
2 e(C), the 8-th

entry of which is 58 (C) = e8 (C)√
38+:8

. Using (7), we obtain

f (C + 1) = Q
1
2AQ

1
2 f (C). (8)

We now define the convergence time of opinion dynamics on
graph G = (+ , �,F) and give an upper bound for it.

Definition 4.2. For opinion dynamics on a graph G = (+ , �,F),
its convergence time C (Y) is defined as

C (Y) = inf {C ≥ 0, |f (C) | ≤ Y}. (9)

Let dmax be the spectral radius of matrix QA. Since QA is sub-
stochastic, dmax is always less than 1.

Proposition 4.3. For opinion dynamics on a graphG = (+, �,F),
its convergence time C (Y) is not greater than logdmax

Y−logdmax
|f (0) |.

Proof. Since Q
1
2AQ

1
2 = Q− 1

2 (QA)Q 1
2 , Q

1
2AQ

1
2 and QA has

the same set of eigenvalues. Let 1 > dmax = |d1 | ≥ |d2 | ≥ . . . ≥
|d= | be the eigenvalues of the symmetric matrix Q

1
2AQ

1
2 , and let

/ 1, / 2,. . .,/= be their corresponding orthogonal eigenvectors. Then
f (C) can be recast as

f (C) =
=

∑

8=1

/⊤8 f (C)
/⊤8 / 8

/ 8 . (10)

Based on (8) and (10), we obtain the recursive relation between
f (C + 1) and f (C) as

f (C + 1) = Q
1
2AQ

1
2 f (C) =

=
∑

8=1

/⊤8 f (C)
/⊤8 / 8

d8/ 8 . (11)

Then, we have

|f (C + 1) |2 =
=

∑

8=1

(

/⊤8 f (C)
/⊤8 / 8

)2

d28 /
2
8 ≤ d2max

=
∑

8=1

(

/⊤8 f (C)
/⊤8 / 8

)2

/ 28

= d2max |f (C) |2.
Thus, |f (C+1) | ≤ dmax |f (C) | and |f (C) | ≤ dCmax |f (0) |, whichmeans
that |f (C) | decreases exponentially with |f (C) |. When |f (C) | drops
below Y with 0 ≤ Y ≤ |f (0) |, the convergence time is not great
than logdmax

Y − logdmax
|f (0) |. �

Proposition 4.3 indicates that the convergence time of opinion
dynamics on graph G = (+ , �,F) is related to the leading eigen-
value dmax ofmatrixQA, with smaller dmax corresponding to faster
convergence.

The next theorem shows the change of the largest eigenvalue
dmax for matrix QA with respect to the stubbornness :8 of node 8 .

Theorem 4.4. For opinion dynamics on an undirected graph G
with stubbornness matrix K , the largest eigenvalue dmax of matrix

QA is a decreasing function of stubbornness :8 of node 8 , if the stub-

bornness of all other nodes is fixed.

Proof. Let u be the unit eigenvector of matrixQA correspond-
ing to the largest eigenvalue dmax. If we increase the stubborn-
ness :8 of node 8 to : ′8 , while fixing the values of the stubbornness
of other nodes, we use d ′max and v to represent, respectively, the
largest eigenvalue and its corresponding unit eigenvector for the
resulting matrix Q′A. By Perron-Frobenius theorem [35], all ele-
ments in u and v are positive. Then, we have

dmax = u⊤QAu ≥ v⊤QAv > v⊤Q′Av = d ′max,
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which finishes the proof. �

Thus, increasing the stubbornness value of a node can accelerate
the convergence of opinion dynamics. On the contrary, reducing
the level of stubbornness of a node may deteriorate the conver-
gence speed.

4.2 Overall Expressed Opinion

We continue to study the influence of inhomogeneous stubborn-
ness on the overall opinion, that is, the sum of expressed opin-
ions of all nodes, which has received considerable recent atten-
tion [2, 26, 53].

It was shown in [26] that for the FJ model of opinion dynamics
on an undirected graphwith each node having a unit stubbornness,
the overall opinion is equal to the total internal opinion, that is
∑=
8=1 B8 =

∑=
8=1 I8 , although the equilibrium expressed opinion for

an individual node may differ from its internal opinion. Moreover,
this conservation law does not rely on the network structure and
the distribution of edge weights. This conservation law can also be
understood as follows. Equation (6) shows when K = I , the funda-
mental matrix is reduced toΦ = (I +L)−1, which is symmetric and
doubly stochastic [37] obeying

∑=
9=1 q8 9 = 1 for 8 = 1, 2, . . . , =, and

∑=
8=1q8 9 = 1 for 9 = 1, 2, . . . , =. Then,

∑=
8=1 I8 =

∑=
8=1

∑=
9=1 q8 9B 9 =

∑=
9=1

∑=
8=1q8 9B 9 =

∑=
8=1 B8 . Actually, for any K = :I with : being

a positive constant,
∑=
8=1 B8 =

∑=
8=1 I8 always holds.

In the case that the stubbornness matrix K is not a scalar ma-
trix, the opinion dynamics on undirected graph G is equivalent
to opinion dynamics on a digraph G′ with stubbornness matrix
being I . Note that for any pair of arcs 8 → 9 and 9 → 8 in di-
graph G′, their weights are usually unequal, with the exception
of :8 = : 9 . Thus, the Laplacian matrix K−1L of digraph G′ is
asymmetric, it is the same with the diverging forest matrix Ω =

(K−1L+I )−1. This asymmetry is stemmed from the heterogeneous
stubbornness, which is ubiquitous in social systems. Then matrix
Ω = (K−1L + I )−1 might not be column stochastic, although it is
always row stochastic. This reciprocity may lead to the disappear-
ance of conservation of total opinions, namely,

∑=
8=1 I8 ≠

∑=
8=1 B8 .

It is not difficult to verify that heterogeneous stubbornness can not
only increase but also decrease the overall opinion, exerting a sub-
stantial influence on the overall opinion.

4.3 Equilibrium Expressed Opinions of Nodes

As shown in (6), the expressed opinion I8 of a node 8 ∈ + is I8 =
∑=

9=1 q8 9B 9 , where q8 9 is the 8 9-entry of the fundamental matrix Φ.
Since Φ depends on the stubbornness matrix, it is expected that
q8 9 is related to the level of stubbornness of every node. Next we
study the influence of node stubbornness on the entries of matrix
Φ.

Theorem 4.5. For opinion dynamics on an undirected graph G =

(+ , �,F) with Laplacian matrix L and stubbornness matrixK , if the

stubbornness :E of node E ∈ + is decreased while the stubbornness

of all other nodes in + is fixed, then for matrix Φ = (L + K)−1K ,

the elements in column E decrease, while elements not in E column

increase.

Proof. Let EE,E be the=×=matrix,which has only one nonzero
entry 1 at row E and column E , while other entries are zeros. Forma-
trix K = diag(:1, :2, . . . , :=), if :E is decreased while other :8 (8 ≠
E) keeps unchanged, then H , K−1

= diag(1/:1, 1/:2, . . . , 1/:=)
is changed to H ′

= H + 3EE,E with 3 > 0.
Define X = Φ = (HL + I )−1 and Y = (H ′L + I )−1, and ΔX =

Y −X . Then, we have X (HL+ I ) = (X +ΔX)((H−1 +3EE,E)L+ I ).
Expanding the above equation gives −ΔX (H ′L + I ) = 3XEE,EL,
which means ΔX = −3XEE,ELY . Considering Y = X + ΔX , we
further have

ΔX = −3 (3XEE,EL + I)−1XEE,ELX .

Define vector x = XeE and vector y = LeE . According to Sherman-
Morrison formula [38], we have

(3XEE,EL + I)−1 = (I + 3xy⊤)−1 = I − 3xy⊤

1 + 3y⊤x .

Then, the 8-th element of vector ΔXeE at the E-th column of matrix
ΔX is

e⊤8 ΔXeE = −
3e⊤8 xy

⊤x

1 + 3y⊤x .

Since the elements in X = Φ are positive, e⊤8 x > 0 always holds.
For y⊤x, we have

y⊤x = e⊤E LXeE =

=
∑

9=1

;E 9q 9E >

=
∑

9=1

;E 9qEE = 0. (12)

Thus the elements in the E-th column of ΔX are less than 0, imply-
ing that the elements in the E-th column of Φ will decrease if the
stubbornness :E is reduced.

For the 9-th column of the matrix Φ, 9 ≠ E , using a similar ap-
proach one can obtain

e⊤8 ΔXe9 = −
3e⊤8 XeEe

⊤
E LXe 9

1 + 3y⊤x . (13)

It is clear that y⊤x > 0 and e⊤8 XeE > 0. Then we only need to
evaluate the elements in LX that can be recast as

LX = L(L + K)−1K = K − K (L + K)−1K . (14)

Since K is a diagonal matrix and (L + K)−1 is a positive matrix,
all the non-diagonal elements of matrix LX are less than 0, which
means e⊤E LXe9 < 0 for any 9 ≠ E . Thus, for every 9 ≠ E , all the
elements in the 9-th column of matrix ΔX are greater than 0, im-
plying that all the elements in the 9-th column of matrix Φ will
increase if we reduce the stubbornness :E . �

Therefore, for opinion dynamics on an undirected graph G =

(+ , �,F), if we increase the stubbornness :E of node E ∈ + , while
fixing the stubbornness of all other nodes, all nodes (including
node E) will place more weight on the initial opinion of node E

to form their equilibrium expressed opinions.

5 METRICS FOR RELATED PHENOMENA

Under the influence of stubbornness for individuals, equilibrium
opinions in the FJ model do not reach consensus, leading to some
social phenomena, such as conflict, disagreement, polarization. For
the case that nodes have unit stubbornness, These phenomena have
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been quantified and studied in prior works [13, 14, 39, 50, 51]. How-
ever, for the case that node stubbornness is heterogeneous, related
measures and algorithms for these quantities are still less studied.

In this section, we extend previous quantitative measures for
social phenomena to the FJ opinion model on undirected graphs
described in (3), which incorporates heterogeneous stubbornness
of nodes. Moreover, we express these quantities in terms of qua-
dratic forms and provide a conservation law governing them.

5.1 Definitions for Metrics

In the FJ model, the internal opinions and expressed opinions for
individuals are often different, the extent of which is measured by
internal conflict defined below.

Definition 5.1. For opinion dynamics on an undirected graph

G = (+ , �,F) with stubborn matrix K , its internal conflict � (G) is
the weighted sum of squares of the differences between internal and

expressed opinions over all nodes in + , with the weights being their

corresponding stubbornness:

� (G) =
∑

8 ∈+
:8 (I8 − B8)2 . (15)

Note that (15) reduces to the expression for internal conflict
in [13], when :8 = 1 for all 8 ∈ + .

Definition 5.2. [14, 39] For opinion dynamics on an undirected

graph G = (+ , �,F) with stubborn matrix K , the disagreement be-

tween two nodes 8 and 9 is defined asF8 9 (I8 −I 9 )2. The disagreement

of the whole graph G is the sum of the squared differences between

all pairs of nodes, given by

� (G) =
∑

(8, 9) ∈�,8< 9

F8 9 (I8 − I 9 )2 . (16)

Disagreement � (G) is also called the external conflict of graph
G [13].

In the FJ model, the expressed opinion of a node often deviates
from the (weighted) average 1⊤Kz = 0 of the expressed opinions
for all nodes. We use polarization to measure how expressed opin-
ions deviate from their weighted average in the equilibrium.

Definition 5.3. For opinion dynamics on an undirected graph

G = (+ , �,F) with stubborn matrix K , the polarization % (G) is de-
fined to be:

% (G) =
∑

8 ∈+
:8I

2
8 . (17)

Equation (17) is reduced (3) in [39], when :8 = 1 for all 8 ∈ + .
There is a trade-off between disagreement and polarization, the

sum of which is called polarization-disagreement index [39].

Definition 5.4. For opinion dynamics on an undirected graph

G = (+ , �,F) with stubbornmatrixK , the polarization-disagreement

index �pd (G) is the sum of the polarization % (G) and disagreement

� (G) : �pd (G) = % (G) + � (G).
It is easy to derive that the polarization-disagreement index �pd (G)

equals
∑=
8=1 :8B8I8 , which reduces to the result in [39] when K = I .

5.2 Expressions in Terms of Quadratic Forms

The above-defined quantities for social phenomena can be expressed
by quadric forms of related matrices.

Proposition 5.5. For opinion dynamics on an undirected graph

G = (+ , �,F) with LaplacianmatrixL, stubbornmatrixK and inter-

nal opinion vector s, the quantities � (G), � (G), % (G), and �pd (G)
can be expressed, in terms of quadratic forms as:

� (G) = s⊤K (L + K)−1LK−1L(L + K)−1Ks, (18)

� (G) = s⊤K (L + K)−1L(L + K)−1Ks, (19)

% (G) = s⊤K (L + K)−1K (L + K)−1Ks, (20)

�pd (G) = s⊤K (L + K)−1Ks. (21)

The quantities concerned obey the following conservation law:

� (G) + 2� (G) + % (G) =
∑

8 ∈+
:8B

2
8 , (22)

which extends the result in [39] when K = I .

6 ALGORITHM FOR RELATED QUANTITIES

In this section, we address the problem of fast calculation for those
quantities defined in last section, including� (G),� (G), % (G), and
�pd (G). Proposition 5.5 shows that exactly computing the quanti-

ties involves inverting matrix L+K , which takes$ (=3) time and is
computationally unacceptable for large graphs. In order to tackle
the computational barrier, a fast approximation algorithm is de-
veloped, which has a nearly linear time complexity with respect to
the number of edges in G. We first explicitly express the concerned
quantities as ℓ2 norms of vectors.

Lemma 6.1. Let W1/2 be a diagonal matrix defined as W1/2
=

diag(√F1,
√
F2, . . . ,

√
F< ). For opinion dynamics on an undirected

graph G = (+ , �,F) with Laplacian matrix L, stubborn matrix K

and internal opinion vector s, the quantities� (G),� (G), % (G), and
�pd (G) can be expressed, respectively, in terms of ℓ2 norms as:

� (G) = z⊤LK−1Lz = ‖K−1/2L(L + K)−1s‖2, (23)

� (G) = z⊤Lz = ‖W1/2B(L + K)−1s‖2, (24)

% (G) = z⊤Kz = ‖K1/2 (L + K)−1s‖2, (25)

�pd (G) = ‖W1/2B(L + K)−1s‖2 + ‖K−1/2 (L + K)−1s‖2. (26)

Since directly calculating the ℓ2 norms still requires inverting
matrix L + K , below we resort to the linear system solvers [31]
that can efficiently avoid the inverse operation, thus significantly
reducing the computational complexity.

Lemma6.2. [31] There is a nearly linear time solver y = Solve (T , x, X),
which takes an = × = positive semi-definite matrix T with < non-

zero entries, a column vector x, and an accuracy parameter X , and

returns a column vector y satisfying ‖y−T†x‖T ≤ X ‖T†x‖T , where
‖v‖T =

√
v⊤Tv and T† is the pseudo-inverse of matrix T . The ex-

pected time for performing this solver is $
(

< log3 = log
(

1
X

))

.

We now exploit Lemma 6.2 to obtain n-approximations for the
concerned quantities.

Lemma6.3. For opinion dynamics on an undirectedweighted graph

G = (+ , �,F) with each edge weight in the interval [Fmin,Fmax],
Laplacian matrix L, incident matrix B, diagonal edge weight matrix

W , parametern ∈ (0, 12 ), internal opinion vector s = (B1, B2, . . . , B=)⊤,
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and stubbornness matrix K obeying relation 1
⊤Ks = 0, let q =

Solve (L + K , s, X), then the following relations hold:

(1 − n)‖K1/2 (L + K)−1s‖2

≤‖K1/2q‖2 ≤ (1 + n)‖K1/2 (L + K)−1s‖2, (27)

if X satisfies X ≤ X1 =
n

3
√

:−1min:
−1
max (:max+=Fmax)

;

(1 − n)‖W 1/2B(L + K)−1s‖2

≤‖W1/2Bq‖2 ≤ (1 + n)‖W 1/2B(L + K)−1s‖2, (28)

if X satisfies X ≤ X2 =
n:min ‖s ‖

3= (:max+=Fmax)
√

Fmin
= (:max+=Fmax) ;

(1 − n)‖K−1/2L(L + K)−1s‖2

≤ ‖K−1/2Lq‖2 ≤ (1 + n)‖K−1/2L(L + K)−1s‖2, (29)

if X satisfies

X ≤ X3 =
nFmin:min

√

:min‖s‖
3Fmax=3 (:max + =Fmax)

√

=:max(:max + =Fmax)
.

Proof. By Lemma 6.2, we have

‖y − (L + K )−1s‖2L+K ≤ X2‖(L + K)−1s‖2L+K .
The term on the left-hand side (lhs) is bounded as

‖q − (L + K)−1s‖2L+K ≥ :−1max‖K1/2q − K1/2 (L + K)−1s‖2

≥:−1max

�

�

�‖K1/2q‖ − ‖K1/2 (L + K)−1s‖
�

�

�

2
,

while the term on the right-hand side (rhs) is bounded by

‖(L + K)−1s‖2L+K ≤ :−1min (:max + =Fmax)‖K1/2 (L + K)−1s‖2.
Combining the above results leads to

�

�

�‖K1/2q‖ − ‖K1/2 (L + K)−1s‖
�

�

�

2

≤X2:−1min:
−1
max(:max + =Fmax)‖K1/2 (L + K)−1s‖2,

which implies
�

�

�‖K1/2q‖ − ‖K1/2 (L + K)−1s‖
�

�

�

‖K1/2 (L + K)−1s‖

≤
√

X2:−1min:
−1
max (:max + =Fmax) ≤

n

3

and

(1 − n

3
)2‖K1/2 (L + K)−1s‖2 ≤ ‖K1/2q‖2 ≤ (1 + n

3
)2‖K1/2 (L + K)−1s‖2.

Using 0 < n <
1
2 , one obtains

(1 − n)‖K 1/2 (L + K)−1s‖2 ≤ ‖K1/2q‖2 ≤ (1 + n)‖K1/2 (L + K)−1s‖2,
which finishes the proof. �

The proofs for (28) and (29) are similar to that of (27), and are
thus omitted. On the basis of Lemmas 6.2 and 6.3, we design a fast
algorithm Approxim to estimate � (G), � (G), % (G), and �pd (G)
for opinion dynamics on an undirected weighted graph G. In Al-
gorithm 1 we present the pseudocode of Approxim, where X is less
than or equal to the minimum of X1, X2, X3 defined in Lemma 6.3.
Theorem 6.4 summarizes the performance of algorithm Approxim.

Algorithm 1: Approxim (G, s, n)
Input :G: a graph with edge weight in [Fmin,Fmax]

s: initial opinion vector with 1
⊤Ks = 0

n: the error parameter in (0, 12 )
Output : {�̃ (G), %̃ (G), �̃ (G), �̃pd (G)}

1 X =
nFmin:min

√
:min ‖s ‖

3Fmax=3 (:max+=Fmax)
√
=:max (:max+=Fmax)

2 q = Solve(L + K , s, X)
3 �̃ (G) = ‖K−1/2Lq‖2
4 �̃ (G) = ‖W1/2Bq‖2
5 %̃ (G) = ‖K1/2q‖2
6 �̃pd (G) = %̃ (G) + �̃ (G)
7 return {�̃ (G), �̃ (G), %̃ (G), �̃pd (G)}

Theorem 6.4. For opinion dynamics on an undirected weighted

graph G = (+ , �,F) having = nodes, < edges with weight of each

edge being in the interval [Fmin,Fmax], an error parameter n ∈
(0, 12 ), and the internal opinion vector s, the algorithmApproxim (G, s, n)
runs in expected time$

(

< log4 = log
( A
n

)

)

where A = Fmax
Fmin

.Approxim

returns �̃ (G), �̃ (G), %̃ (G), �̃pd (G) for the the n-approximation of

internal conflict � (G), disagreement � (G), polarization % (G) and
polarization-disagreement index �pd (G), satisfying �̃ (G) ≈n � (G),
�̃ (G) ≈n � (G), %̃ (G) ≈n % (G), and �̃pd (G) ≈n �pd (G).

7 EXPERIMENTS

In this section, we evaluate the efficiency and effectivity of our
approximation algorithm Approxim. To achieve this goal, we im-
plement this algorithm on a large set of real networks, and com-
pare the accuracy and running time of Approxim with an exact
algorithm Exact, which computes relevant quantities via directly
inverting the matrix L + K , performing matrix product of related
matrices, and calculating related ℓ2 norms.

Machine and Repeatability.All our experiments were run on
a Linux box with 4-core 4.2GHz Intel i7-7700K CPU and 32GB of
main memory. In our experiments, the error parameter n is set to
be 10−6. Both approximation algorithm Approxim and exact al-
gorithm Exact are programmed with Julia v1.5.1 using a single
thread. The solver Solve used in this paper is based on the method
in [31], whose Julia language implementation is open and acces-
sible on the website https://github.com/danspielman/Laplacians.jl.
Our code is available at https://anonymous.4open.science/r/heter_stubbornness.

Datasets. The real network datasets used in our experiments
are publicly available in the Koblenz Network Collection [30] and
Network Repository [43]. The statistics for basic information of
these datasets are listed in the first three columns of Table 1.

Distributions of Innate opinions. We use four different dis-
tributions of the innate opinions in our experiments, including:
uniform distribution, power-law distribution, normal distribution,
and exponential distribution. The innate opinion B8 for each node
8 is in interval [−1, 1].

Efficiency and Scalability. In Table 1, we report the running
time of algorithms Approxim and Exact on different networks
in order to compare their computation complexity. Note that for

https://github.com/danspielman/Laplacians.jl
https://anonymous.4open.science/r/heter_stubbornness
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Table 1: Statistics of real datasets and comparison of running time (seconds, B) between Exact and Approxim.

Running time (B) for algorithms Exact and Approxim

Network = <
Uniform Power-law Normal Exponential

Exact Approxim Exact Approxim Exact Approxim Exact Approxim

GrQc 4158 13422 1.44 2.42 1.41 2.40 1.45 2.40 1.43 2.40
USgrid 4941 6594 2.24 2.41 2.22 2.36 2.25 2.35 2.23 2.35
Erdos992 5094 7515 2.37 2.42 2.37 2.40 2.46 2.40 2.51 2.41
Advogato 5167 39432 2.51 2.44 2.55 2.42 2.52 2.42 2.56 2.43
Bcspwr10 5300 8271 2.71 2.37 2.73 2.60 2.72 2.41 2.69 2.40
Reality 6809 7680 6.01 2.37 6.55 2.36 5.98 2.38 5.95 2.36

PagesGovernment 7057 89429 6.75 2.42 6.84 2.42 7.07 2.41 8.04 2.34
WikiElec 7115 100753 7.45 2.43 6.93 2.43 8.01 2.42 7.18 2.43
Dmela 7393 25569 8.87 2.42 8.51 2.42 9.23 2.41 8.65 2.41
HepPh 11204 117619 30.21 2.37 28.49 2.35 29.15 2.36 28.25 2.35
Anybeat 12645 49132 40.94 2.31 41.39 2.31 41.74 2.30 41.49 2.34

PagesCompany 14113 52126 56.67 2.32 57.07 2.31 59.83 2.43 59.20 2.33
AstroPh 17903 196972 122.64 2.44 119.47 2.44 114.35 2.44 118.19 2.43
CondMat 21363 91286 205.04 2.36 202.79 2.35 203.85 2.37 202.91 2.35
Gplus 23628 39194 276.76 2.63 275.54 2.63 279.40 2.79 280.99 2.69

GemsecRO 41773 125826 1584.76 3.05 1573.48 3.29 1577.72 3.05 1599.97 3.09
GemsecHU 47538 222887 2448.57 4.59 2537.67 4.65 2561.06 4.43 2480.51 4.44
WikiTalk 92117 360767 - 3.06 - 3.16 - 3.11 - 3.13
Buzznet 101163 2763066 - 5.70 - 6.01 - 5.99 - 6.02

LiveMocha 104103 2193083 - 6.33 - 6.09 - 6.09 - 6.04
Douban 154908 327162 - 3.18 - 3.02 - 3.15 - 3.17
Gowalla 196591 950327 - 4.07 - 4.02 - 4.07 - 4.06
Academia 200169 1022441 - 4.27 - 4.34 - 4.35 - 4.44
GooglePlus 211186 1141650 - 4.17 - 4.08 - 4.07 - 4.37

Pwtk 217891 5653221 - 8.16 - 8.33 - 8.24 - 8.06
Citeseer 227320 814134 - 3.74 - 3.61 - 3.66 - 3.71

MathSciNet 332689 820644 - 4.32 - 4.24 - 4.14 - 4.36
TwitterFollows 404719 713319 - 3.64 - 3.67 - 3.67 - 3.63

Flickr 513969 3190452 - 7.42 - 7.99 - 7.68 - 7.84
Delicious 536108 1365961 - 4.92 - 5.09 - 5.06 - 5.00
FourSquare 639014 3214986 - 6.78 - 6.70 - 6.78 - 6.63

Digg 770799 5907132 - 12.59 - 12.61 - 12.51 - 12.25
IMDB 896305 3782447 - 13.21 - 13.99 - 13.17 - 13.59
Ldoor 909537 20770807 - 23.37 - 23.31 - 23.26 - 23.24

RoadNetPA 1087562 1541514 - 6.65 - 7.00 - 6.47 - 6.68
YoutubeSnap 1134890 2987624 - 9.11 - 8.56 - 9.85 - 8.95

Lastfm 1191805 4519330 - 11.81 - 11.50 - 11.16 - 11.58
Pokec 1632803 22301964 - 95.00 - 96.11 - 94.52 - 95.13

RoadNetCA 1957027 2760388 - 10.26 - 10.88 - 10.57 - 10.17
Flixster 2523386 7918801 - 19.99 - 20.27 - 20.75 - 19.96
Patent 3774768 16518947 - 80.63 - 78.45 - 77.77 - 80.85

LiveJournal 4033137 27933062 - 108.10 - 97.97 - 101.74 - 104.98
ItalyOsm 6686493 7013978 - 22.18 - 23.62 - 23.08 - 22.28

large networks we cannot compute related quantities using algo-
rithm Exact, due to the high cost of memory and time, but we can
perform algorithm Approxim. For each distribution of the innate
opinions, we record the running times of Approxim and Exact in
different networks. Table 1 shows that for all networks considered,
the running time of Approxim is smaller than that of Exact. For
moderately large networks with more than ten thousand nodes,
Approxim is orders of magnitude faster than Exact. In particular,
Approxim is scalable to large network swithmore than onemillion
nodes.

Accuracy. In Table 2, we present the accuracy results for algo-
rithm Approxim. For each of the four distributions of innate opin-
ions, we compare the results of Approximwith those of Exact for
some networks in Table 1. For each relevant quantity d , we apply
the mean relative error f = |d − d̃ |/d of d̃ obtained by Approxim

as an estimation of d . Table 2 reports the mean relative errors of
the four estimated quantities, �̃ (G), �̃ (G), %̃ (G), and �̃?3 (G), for
many real networks. We can see that for all quantities concerned,

the results of Approxim are very close to those associated with Ex-
act, since their actual relative errors are negligible, which are all
less than 10−8.

8 RELATED WORK

In this section, we briefly review some prior work that lies close to
ours.

Stubbornness. As an important individual attribute, stubborn-
ness is a fundamental element affecting diverse aspects of opinion
dynamics. For an individual, stubbornness indicates the degree to
which the individual sticks to its own internal opinion or willing-
ness to conform to its neighbors’ opinions. In fact, stubbornness
is equivalent to people’s susceptibility to persuasion introduced
in [1, 2]. There is a rich body of work [6, 17, 20, 47, 48] in politics
and social psychology, studying empirically this key factor, which
show that stubbornness can be applied to a large variety of practi-
cal scenarios, such as product marketing, public health campaigns,
and political candidates. Some recent work also studied how to
change an individual’s attitude or stubbornness [21, 28, 29], and
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showed that heterogeneity of individual’s stubbornness is ubiqui-
tous. It is thus of practical and theoretical interest to analyze the
influences of heterogeneous stubbornness of agents on different
aspects of opinion dynamics.

Opinion dynamics model. To better understand the forma-
tion of opinion dynamics, several relevant models have been pre-
sented, among which, FJ model is a popular one. It is frequently
adopted to study various aspects of opinion dynamics, and thus
has been extensively studied. A sufficient condition for stability of
the FJ model was obtained in [42], and the equilibrium expressed
opinion was derived in [8, 15]. In the FJ model, the total expressed
opinion is equal to the total internal opinion [26, 50]. Some in-
terpretations of the FJ model were provided in [8] and [25]. Most
of the previous work only considered homogeneous stubbornness.
In [1, 2], the impact of stubbornness on optimizing the overall opin-
ion dynamics were analyzed by introducing a resistance param-
eter to modify the FJ model. However, it is still not well under-
stood how heterogeneous stubbornness affects other respects of
opinion dynamics, such as convergence speed and overall opinion.
Furthermore, some prior interpretations for expressed opinion are
not applicable to the case with inhomogeneous stubbornness, for
example, electrical networks [25]. Our interpretation for spanning
diverging forest is novel, which differs greatly from previous ones.

Quantification of social phenomena. In recent years, social
media and online social networks have experienced explosive growth,
which is a accompanied by diverse social phenomena, including po-
larization, disagreement, and conflict. Actually, these phenomena
have taken place in human societies for millenia, and have been
a recent hot subject of study in different disciplines, especially so-
cial science. Thus far, various measures have been developed to
quantify these phenomena, such as disagreement [14, 39], polariza-
tion [14, 36, 39], conflict [13], and controversy [13]. Most of these
measures are based on the FJ opinion dynamics model [23] with
uniform stubbornness, which do not apply to the case in the pres-
ence of different stubbornness. To make up for the deficiency, we

extend these quantities by incorporating heterogeneous stubborn-
ness, so that they can measure the corresponding social phenom-
ena. The issue of how to quantify these phenomena has received
increasing amount of attention. Since direct computation of these
indicators involves the operations of matrix inversion andmultipli-
cation, making it computationally infeasible for large-scale graphs
with millions of nodes, we present a nearly linear time algorithm
to estimate all these quantities.

Impacts of reciprocity on dynamics. Note that the FJ model
on an undirected network with non-zero heterogeneous stubborn-
ness is equivalent to traditional FJmodel on a correspondingweighted
directed graphwith uniform stubbornness and asymmetric weights
between edges linking a pair of nodes. The tendency of node pairs
to formmutual asymmetric connection in directed networks is also
called link reciprocity, which is a common characteristic of many
realistic networks [4, 24, 46, 49], such as the World Wide Web [5],
e-mail networks [18, 40], and world trade web [44]. It has been
shown the ubiquitous link reciprocity strongly affects dynamical
processes running in binary networks, for example, spread of com-
puter viruses [40] or information [54], percolation [9], and random
walks [52]. By contrast, the influence of reciprocity on opinion dy-
namics has attracted much less attention, although it is suggested
that reciprocity could play a crucial role in various aspects of this
dynamics.

9 CONCLUSION

Stubbornness of individuals is a key factor affecting various as-
pects opinion dynamics. In this paper, we provided a solid theo-
retical analysis of a classic model for opinion dynamics on undi-
rected graphs in the presence of heterogeneous stubbornness for
different nodes. We demonstrated that heterogeneous stubborn-
ness strongly affects almost all aspects of opinion dynamics, such
as the expressed opinion, convergence velocity to equilibrium, and
overall opinion. For example, when a node increase its stubborn-
ness, the expressed opinions of nodes place more weight on the

Table 2: Relative error for estimated� (G), � (G), % (G), �pd (G) for four internal distributions with input parameter n = 10−6.

Network

Relative error of four estimated quantities for four internal opinion distributions

Uniform Distribution Power-law distribution Normal distribution Exponential distribution

� (G) � (G) % (G) �pd (G) � (G) � (G) % (G) �pd (G) � (G) � (G) % (G) �pd (G) � (G) � (G) % (G) �pd (G)

GrQc 2.69E-09 1.79E-10 1.23E-10 1.04E-14 1.94E-09 6.12E-10 5.42E-10 8.51E-16 6.00E-09 2.39E-09 1.30E-09 3.03E-15 2.42E-08 4.51E-11 1.84E-11 2.32E-14

USgrid 3.61E-08 1.05E-08 4.56E-09 2.89E-14 7.72E-10 3.02E-09 4.90E-09 3.78E-15 3.48E-08 1.27E-08 5.74E-09 2.71E-14 3.19E-09 4.43E-09 3.53E-09 1.24E-14

Erdos992 2.45E-08 8.04E-10 4.30E-10 4.71E-15 2.23E-10 3.12E-10 5.09E-10 4.94E-16 5.01E-09 9.26E-10 5.87E-10 7.81E-15 9.41E-09 7.38E-10 4.17E-10 1.66E-15

Advogato 1.78E-08 6.70E-09 3.21E-09 4.58E-15 4.66E-09 2.03E-09 1.70E-09 2.76E-16 2.09E-09 2.01E-10 1.60E-10 2.02E-15 9.51E-10 5.41E-10 4.59E-10 1.91E-16

Bcspwr10 2.56E-08 1.43E-08 6.28E-09 2.01E-14 8.02E-09 3.19E-09 1.58E-09 4.45E-14 3.04E-09 7.10E-10 4.17E-10 1.19E-14 1.07E-08 2.02E-09 1.18E-09 7.24E-15

Reality 7.43E-10 6.97E-10 3.32E-10 4.26E-16 9.62E-11 8.92E-10 1.05E-09 1.70E-15 4.95E-09 2.31E-11 1.24E-11 1.69E-16 1.75E-09 5.53E-10 2.95E-10 3.49E-16

PagesGovernment 3.01E-07 3.45E-08 7.91E-10 5.79E-15 1.66E-08 6.34E-10 1.28E-09 4.03E-15 2.60E-08 1.01E-08 1.07E-08 1.14E-14 4.58E-09 2.21E-09 1.72E-09 1.51E-15

WikiElec 5.37E-11 4.91E-11 2.48E-11 3.92E-16 4.98E-09 2.46E-10 4.58E-10 3.87E-16 2.67E-08 4.58E-09 2.59E-09 6.57E-16 9.24E-09 5.78E-11 6.80E-11 1.81E-15

Dmela 4.56E-11 2.62E-10 1.70E-10 9.74E-16 3.67E-09 6.35E-10 1.07E-09 6.87E-16 5.88E-09 3.76E-09 2.36E-09 3.61E-15 6.75E-09 2.99E-09 1.65E-09 9.77E-16

HepPh 1.25E-09 6.00E-09 3.61E-09 1.25E-14 4.49E-09 8.54E-10 2.18E-09 1.46E-15 1.36E-08 6.47E-09 5.06E-09 8.41E-15 7.73E-08 4.77E-08 9.19E-09 1.82E-14

Anybeat 1.38E-08 1.46E-09 9.03E-10 1.25E-16 1.02E-09 3.85E-11 3.20E-10 1.44E-15 2.83E-08 3.37E-09 1.91E-09 1.39E-14 2.50E-08 1.40E-09 8.55E-10 2.63E-15

PagesCompany 5.93E-10 1.91E-09 1.70E-09 5.05E-15 2.85E-08 7.04E-09 8.21E-09 4.37E-15 4.12E-09 2.57E-10 2.92E-10 6.40E-15 8.06E-09 6.91E-09 4.65E-09 1.66E-14

AstroPh 3.44E-09 1.08E-09 1.36E-09 4.58E-16 2.68E-08 3.50E-08 3.99E-09 7.67E-15 5.04E-09 3.18E-09 2.36E-09 8.49E-16 6.12E-09 8.24E-10 1.08E-09 1.89E-14

CondMat 1.58E-09 2.00E-09 1.67E-09 8.07E-15 4.60E-09 2.89E-09 4.69E-09 2.18E-15 8.52E-09 1.93E-09 2.17E-09 3.60E-15 8.17E-09 3.16E-10 2.34E-10 1.56E-14

Gplus 2.32E-09 3.88E-10 2.51E-10 6.70E-16 3.33E-10 1.88E-11 5.01E-11 7.62E-16 6.17E-10 6.78E-11 5.00E-11 3.23E-16 1.28E-09 1.30E-10 1.11E-10 2.26E-16

GemsecRO 9.75E-09 4.75E-09 4.12E-09 2.53E-15 4.50E-09 1.25E-09 2.05E-09 7.98E-16 4.30E-09 3.52E-09 3.05E-09 2.93E-15 4.45E-08 4.03E-08 1.18E-08 7.01E-14

GemsecHU 9.90E-09 2.03E-09 3.10E-09 1.19E-14 2.20E-09 1.40E-09 1.32E-08 2.29E-14 5.15E-09 2.98E-09 3.33E-09 1.45E-14 1.08E-08 4.40E-09 5.48E-09 3.23E-15
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internal opinions of this node, showing that a more stubborn in-
dividual has more steady social power. Again for instance, when
the stubbornness are different among nodes, the sum of expressed
opinions is often not equal to the total initial opinion, indicating
the difference between the evolution of social power with hetero-
geneous and homogeneous stubbornness. We provided an inter-
pretation of the expressed opinion in terms of spanning diverging
forests of a stubbornness-dependent digraph associated with the
original undirected graph.

In addition, we extended previously proposed quantitative indi-
cators for social phenomena in the opinion dynamics model with
identical stubbornness to the case when stubbornness are hetero-
geneous. The considered social concepts include conflict, disagree-
ment, and polarization, all of which incorporate heterogeneous
stubbornness. Since direct computation of these quantities involves
matrix inverse, which is computationally challenging for large graphs.
We devised an approximation algorithm to estimate these quanti-
ties concerned. Our algorithm has a theoretical guarantee for ac-
curacy and an almost linear computation time complexity with re-
spect to the number of edges. Finally, we executed experiments on
many real-world networks, demonstrating the high efficiency and
good effectiveness of our algorithm, which is applicable to large
graphs with millions of nodes.
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