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ABSTRACT

Model explanations provide transparency into a trained machine

learning model’s blackbox behavior to a model builder. They indi-

cate the influence of different input attributes to its corresponding

model prediction. The dependency of explanations on input raises

privacy concerns for sensitive user data. However, current literature

has limited discussion on privacy risks of model explanations.

We focus on the specific privacy risk of attribute inference at-
tack wherein an adversary infers sensitive attributes of an input

(e.g., Race and Sex) given its model explanations. We design the

first attribute inference attack against model explanations in two

threat models where model builder either (a) includes the sensitive

attributes in training data and input or (b) censors the sensitive

attributes by not including them in the training data and input.

We evaluate our proposed attack on four benchmark datasets

and four state-of-the-art algorithms. We show that an adversary

can successfully infer the value of sensitive attributes from explana-

tions in both the threat models accurately. Moreover, the attack is

successful even by exploiting only the explanations corresponding

to sensitive attributes. These suggest that our attack is effective

against explanations and poses a practical threat to data privacy.

On combining the model predictions (an attack surface exploited

by prior attacks) with explanations, we note that the attack success

does not improve. Additionally, the attack success on exploiting

model explanations is better compared to exploiting only model

predictions. These suggest that model explanations are a strong

attack surface to exploit for an adversary.
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1 INTRODUCTION

Machine Learning (ML) models are used for high-stakes decision

making for several real-world applications. For instance, these mod-

els assist decision makers such as doctors and judges in healthcare

and criminal justice [27]. However, the model’s high complexity

makes it difficult for human interpretation into the decision mak-

ing process. This creates the need for transparency into the model

behaviour. Model explanations release additional information to

explain the behaviour of complex ML models. Specifically, attribute

based model explanations explain the model’s prediction on an

input by releasing the influence of different input attributes respon-

sible for the prediction [2, 22, 30, 34, 37].

Some of the input attributes can be sensitive (e.g., Race and Sex).

This raises the data privacy concerns when an adversary (A𝑑𝑣)

can leverage model explanations as an attack surface. For instance,

Shokri et al. [29] show that explanations can be exploited for mem-

bership inference (i.e., inferring whether input record was part

of training data) and data reconstruction. Additionally, releasing

model explanations could leak the values of sensitive attributes

which is a privacy risk, not considered in literature. For instance,

consider the setting where an ML model is trained to predict the

likelihood that a criminal will re-offend as an aid to judges in a court.

In addition to output predictions, the model reveals explanations

on why it made the prediction on that input. Attribute inference

attacks could reveal Race and Sex from model explanations which

individual prefers to keep their private to avoid biased decisions.

However, this quantification of privacy risk of model explana-

tions to attribute inference attacks is lacking in current literature. An
analysis of this trade-off between privacy and transparency is nec-

essary so that a model builder (M) can make appropriate choices

to train ML models for high-stakes applications. In this work, we

ask the following research question: can an A𝑑𝑣 exploit model ex-
planations to infer sensitive attributes of individual data records? We

design the first attribute inference attack to infer sensitive attributes
from model explanations in two threat models:

TM1 Sensitive attributes are included in the training dataset and

the input (following prior work [8, 9]) andA𝑑𝑣 only sees the

output predictions but not their inputs. A𝑑𝑣 has no control

over passing the inputs but has to infer sensitive attributes

from only the observed predictions.

TM2 Sensitive attributes are not included in training data or input

(censored by M for privacy). This corresponds to real-world

application such as ML as a Service (MLaaS).

In this work, we claim the following main contributions.

(1) We design the first attribute inference attack, to infer sensitive

attributes, e.g., Race and Sex, of the data records from corre-

sponding model explanations. A𝑑𝑣 trains an ML attack model

to map model explanations to sensitive attributes. We addition-

ally calibrate the threshold over the attack model’s predictions

to increase A𝑑𝑣 ’s power (Section 4).

(2) In TM1, we show that our attack successfully infers the sensi-

tive attributes from model explanations (Section 6). On evalu-

ating across four benchmark datasets and four model explana-

tions, we note:

• a high F1-score of 0.92 ± 0.07 (Race) and 0.88 ± 0.11 (Sex) us-

ing entire model explanations corresponding to both sensitive

and non-sensitive attributes (Section 6.1).

• a high F1-score of 0.90 ± 0.10 (Race) and 0.83 ± 0.09 (Sex)

using model explanations corresponding to only sensitive

attribute (Section 6.2).

(3) In TM2, despite censoring the sensitive attributes, we show

that our attack can successfully infer them using model explana-

tions of other non-sensitive attributes (Section 7). On evaluating

across four benchmark datasets and four model explanations,

we note:
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• a high F1-score of 0.83 ± 0.12 (Race) and 0.77 ± 0.09 (Sex)

(Section 7.1).

• that on combining model explanations with model predic-

tions, attack success does not improve. Hence, model ex-

planations are a strong attack surface for A𝑑𝑣 to exploit

(Section 7.2).

(4) In both TM1 and TM2, exploiting model explanations has a

higher success than prior state-of-the-art attribute inference

attacks which exploit model predictions. This indicates that re-

leasingmodel explanations increases the attack surface enabling

A𝑑𝑣 to mount strong attribute inference attacks (Section 8).

2 BACKGROUND

Consider a training dataset D = {X,S,Y} where X is the space

of non-sensitive input attributes, S is the space of sensitive input

attributes, Y is the space of classification labels. We denote a data

record as (𝑥,𝑦, 𝑠) with non-sensitive attributes 𝑥 and sensitive at-

tribute 𝑠 where (𝑥, 𝑠) ∈ X × S and classification label 𝑦 ∈ Y. ML

models learn a function 𝑓𝜃 : (𝑥 ∪𝑠) → 𝑦 which maps the input with

sensitive and non-sensitive attributes to𝑦. Alternatively, the models

can be trained without 𝑠 in the training dataset given by 𝑓𝜃 : 𝑥 → 𝑦.

The models are parameterized by 𝜃 which are iteratively updated to

minimize the loss on correctly predicting 𝑥 or 𝑥 ∪ 𝑠 as 𝑦. The model

training, hyperparameters selection and deployment to application

is done by M.

Given these formal notations, we describe the state-of-the-art

algorithms for model explanations considered in this work (Sec-

tion 2.1) and prior work on attribute inference attacks (Section 2.2).

2.1 Model Explanations

Model explanations describe a model’s behaviour to M on specific

inputs. Specifically, attribute based model explanations estimate the

influence of input attributes on the model’s output prediction. In

other words, these explanations assign a score to each attribute in

the input point of interest (PoI) which resulted in a particular model

prediction. Formally, for a given PoI ®𝑥 = (𝑥1, · · · 𝑥𝑛), the model

explanations 𝜙 ( ®𝑥) outputs a vector indicating the importance of

different attributes influential in the model’s prediction of ®𝑥 . Here,
𝜙 ( ®𝑥)’s attribution of the prediction at input PoI ®𝑥 relative to a

baseline input ®𝑥 ′ is a vector 𝜙 ®𝑥 ′ ( ®𝑥) = (𝜙1, · · · , 𝜙𝑛).
We consider two types of attribute based explanation algorithms:

(a) backpropagation-based explanations (IntegratedGradients

andDeepLift) and (b) perturbation-based explanations (GradientSHAP

and SmoothGrad).

Gradient-based Explanations compute gradients using backprop-

agation to estimate the influence of attributes to predictions.

• IntegratedGradients [37] computes the integration of gra-

dients with respect to inputs by considering a straight line path

from the baseline ®𝑥 ′ to the PoI ®𝑥 . This integration across the

𝑖𝑡ℎ dimension can be computed as: 𝜙IntegratedGradients𝑖 ( ®𝑥) =
( ®𝑥 − ®𝑥 ′) ×

∫ 1

𝛼=0
𝜕𝑓𝜃 ( ®𝑥 ′+𝛼 ( ®𝑥− ®𝑥 ′))

𝜕𝑥𝑖
𝑑𝛼 . Here,

𝜕𝑓𝜃 (𝑥)
𝜕𝑥𝑖

indicates the

gradient computed using the model 𝑓𝜃 over the input 𝑥 across

the 𝑖𝑡ℎ dimension.

• DeepLift [2, 30] estimates the contribution of specific neurons

using the difference in output with respect to a baseline output.

It assignes scores as 𝜙DeepLift ( ®𝑥) = 𝑚Δ®𝑥Δ𝑡
𝐶Δ ®𝑥Δ𝑡
Δ®𝑥 where 𝑥 is a

given input neuron, Δ𝑥 is the difference from baseline, 𝑡 is tar-

get neuron and its output difference from baseline is given as

Δ𝑡 . The multiplier captures the contribution of Δ𝑥 to Δ𝑡 and is

similar to partial derivative but over finite differences instead of

infinitesimal differences.

Perturbation-based Explanations add noise to data records or

remove some attributes to see the impact on the model utility.

• GradientSHAP [22] computes the Shapley values and adds

Gaussian noise to each input PoI by sampling multiple times

and selects a random input 𝑥 along the path between baseline

and input. The gradient of outputs with respect to those selected

random points are then computed. In other words, the final at-

tributes are computed as the expected value over the product

of the gradient and the difference in input PoI to the baseline:

𝜕𝑓𝜃 (𝑥)
𝜕𝑥 × (®𝑥 − ®𝑥 ′).

• SmoothGrad [34] samples random inputs in a neighborhood

of PoI ®𝑥 by adding Gaussian noise to the PoI. Then it averages

the resulting sensitivity maps (i.e., derivative of model predictive

with respect to input) corresponding to the 𝑛 noisy neighbour

records 𝜙SmoothGrad ( ®𝑥) = 1
𝑛

∑𝑛
1

𝜕𝑓𝜃 ( ®𝑥+N(0,𝜎2))
®𝑥 .

A natural choice for baseline ®𝑥 ′ to compute model explanations

is where the prediction is unbiased [37]. In all the cases, we use

the mean vector over the inputs as our baseline. Additionally, each

model explanation algorithm also outputs a convergence delta, 𝛿

where the lower the absolute value of the convergence delta the

better is the approximation (i.e., low error). We append 𝛿 with 𝜙 ()
to obtain the final attack vector. We abuse the notation to refer the

appended vector as 𝜙 ().

2.2 Attribute Inference Attacks

Attribute inference attacks aim to infer 𝑠 (e.g., 𝑠 = 1 for males

and 𝑠 = 0 for females) for an individual data record. A𝑑𝑣 exploits

observable information (i.e., model predictions or explanations in

our case) to infer unobservable information (i.e., 𝑠). This attack is

different from property inference attacks proposed in literature

which aim to infer global properties of dataset (e.g., inferring the

ratio of males to female attributes on which the model was trained

on) [10, 24, 42].

Several prior work have proposed attribute inference attacks

against ML models using the model’s output predictions [7–9, 23,

35, 40]. Fredrikson et al. [8, 9] propose an attribute inference attack

where A𝑑𝑣 infers 𝑠 using the knowledge of both 𝑥 and 𝑓𝜃 (𝑥 ∪ 𝑠).
However, this assumption of A𝑑𝑣 ’s knowledge is strong. Mahajan

et al. [7] and Song et al. [35] proposed an attack where an ML at-

tack model was trained to infer 𝑠 using only model prediction. This

attack exploits the distinguishability in predictions conditioned on

different values of 𝑠 . However, the attack model performs poorly for

imbalanced dataset since the default threshold of 0.5 for estimating

the value of 𝑠 is incorrect for skewed prediction distribution. To ad-

dress this, Aalmoes et al. [1] proposed an attack which accounts for

this skewness of attack model’s predictions. They select a threshold

over attack model’s predictions which maximizes attack F1-Score

on an auxiliary dataset known to A𝑑𝑣 . That threshold is used over

attack model’s predictions to infer 𝑠 for target data records.
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3 PROBLEM STATEMENT

Our goal is to evaluate the privacy risks of model explanations to

attribute inference attacks and hence study the trade-offs between

privacy and transparency. We consider the following setting: target

ML model 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 is trained and deployed on the Cloud by M
within MLaaS paradigm. Given a POI ®𝑥 , we assume that 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 can

output both the model prediction (𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ( ®𝑥)) and corresponding

explanations on that input (𝜙 ( ®𝑥)). 𝜙 () are required to be released

by AI regulations to ensure trustworthy computation [14, 15, 17,

21, 38].

Given that model explanations measure the influence of individ-

ual attributes in the input to the model’s prediction, it is natural

to ask, given access to 𝜙 (), can A𝑑𝑣 infer 𝑠? This study is currently

lacking in literature. We describe three main requirements for the

design of an effective attack:

AR1 Attack should operate in a blackbox threat model, where

A𝑑𝑣 sends an input and obtains an output via an API from a

MLaaS service provider.A𝑑𝑣 does not have access to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ’s

internal parameters or architecture.

AR2 Attack should be practical, i.e., uses model observables (𝜙 ()
or 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ()) to infer unobservables (𝑠).

AR3 Attack should account for class imbalance in 𝑠 . In all prac-

tical applications, 𝑠 is imbalancedwhich skews the predictions

of 𝑓𝑎𝑑𝑣 lowering the A𝑑𝑣 ’s attack success to correctly infer 𝑠 .

AR4 Attack should be applicable to model explanations, i.e.,

exploits 𝜙 () to infer the values of 𝑠 .

Prior attacks exploit the distinguishability in 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 () given
different values of 𝑠 [1, 7–9, 35, 40]. Fredrikson et al. [8, 9] and

Yeom et al. [40] attacks have strong assumptions aboutA𝑑𝑣 knowl-

edge, such as knowledge of 𝑥 in addition to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 () (violating
requirement AR2). Alternatively, Song et al. [35] and Mahajan et

al. [7] do not account for the class imbalance in 𝑠 (violating require-

ment AR3). Aalmoes et al. [1] use threshold calibration to improve

the attack success but they exploit 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 () and not 𝜙 () (violating
AR4).

3.1 Threat Model and Attack Methodology

We discuss two threat models TM1 and TM2 along with the as-

sumptions about A𝑑𝑣 ’s knowledge and attack methodology.

• TM1 (w/ 𝑠 in D): We assume 𝑠 is included in both D and input

(i.e., 𝑥 ∪ 𝑠). Hence, 𝜙 (𝑥 ∪ 𝑠) are released as part of the API and

A𝑑𝑣 can obtain 𝜙 (𝑠) along with 𝜙 (𝑥). This is when the A𝑑𝑣

is monitoring the outputs from the model. Here, A𝑑𝑣 cannot

choose inputs to send to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (as it already includes 𝑠)
1
but can

only observe 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥∪𝑠) and 𝜙 (𝑥∪𝑠) for some arbitrary inputs.

Given only𝜙 (𝑥∪𝑠),A𝑑𝑣 aims to infer 𝑠 using an attackMLmodel

𝑓𝑎𝑑𝑣 : 𝜙 (𝑥 ∪ 𝑠) → 𝑠 . Here, A𝑑𝑣 can also attack different model

explanations: 𝑓𝑎𝑑𝑣 : 𝜙 (𝑥) → 𝑠 and 𝑓𝑎𝑑𝑣 : 𝜙 (𝑠) → 𝑠2.

• TM2 (w/o 𝑠 in D): We assume 𝑠 is not included in D and input

(i.e., 𝑥). A𝑑𝑣 has blackbox access to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 and pass an input 𝑥

and obtain access to both 𝜙 (𝑥) and 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥). Unlike TM1,A𝑑𝑣

can choose the input to pass to the model. This is the worst case

forA𝑑𝑣 where 𝑠 is censored byM for privacy making this threat

1
Despite this, this is seen in several prior attribute inference attacks [7–9, 35, 40].

2𝜙 (𝑠) and 𝜙 (𝑥) indicates model explanations corresponding to 𝑠 and 𝑥 respectively.

Accessible to A𝑑𝑣

𝑓𝑡𝑎𝑟𝑔𝑒𝑡

D : {𝑥𝑖 , 𝑠𝑖 , 𝑦𝑖 }𝑁𝑖

𝑥 ∪ 𝑠

Input

𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥 ∪ 𝑠)

𝜙 (𝑥 ∪ 𝑠)
𝑓𝑎𝑑𝑣 𝑠

D𝑎𝑢𝑥 : {𝑥𝑖 , 𝑠𝑖 , 𝑦𝑖 }𝑁𝑖

Train

Train

Figure 1: TM1 threat model: train 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 on training data

with 𝑠 included.A𝑑𝑣 only has access to predictions 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥∪
𝑠) and explanations 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥 ∪ 𝑠) but cannot pass inputs. At-
tack requires training 𝑓𝑎𝑑𝑣 onD𝑎𝑢𝑥 to infer 𝑠 given𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥∪
𝑠).

model more practical. Given 𝜙 (𝑥), A𝑑𝑣 aims to infer 𝑠 using an

attack ML model 𝑓𝑎𝑑𝑣 : 𝜙 (𝑥) → 𝑠 .

Accessible to A𝑑𝑣

𝑓𝑡𝑎𝑟𝑔𝑒𝑡

D : {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖

𝑥

Input

𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥)

𝜙 (𝑥)
𝑓𝑎𝑑𝑣 𝑠

D𝑎𝑢𝑥 : {𝑥𝑖 , 𝑠𝑖 , 𝑦𝑖 }𝑁𝑖

Train

Train

Figure 2: TM2 threat model: train 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 on data without

𝑠. A𝑑𝑣 has access to predictions 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) and explanations

𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) and choose the inputs to pass (w/o 𝑠). Attack trains

𝑓𝑎𝑑𝑣 on D𝑎𝑢𝑥 to infer 𝑠 given 𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥).

Figure 1 and 2 where red indicates components accessible to

A𝑑𝑣 . In both TM1 and TM2, we assume that A𝑑𝑣 has additional

auxiliary dataset D𝑎𝑢𝑥 which is drawn from the same distribution

as D and includes data records (𝑥, 𝑠,𝑦) containing non-sensitive

and sensitive attributes with corresponding label. This assumptions

is inline with all the prior attribute inference attacks proposed

in literature [7–9, 35, 40]. D𝑎𝑢𝑥 is used to train 𝑓𝑎𝑑𝑣 : A𝑑𝑣 passes

data records (𝑥, 𝑠,𝑦) (TM1) or (𝑥,𝑦) (TM2) to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 and uses the

generated model explanations to train 𝑓𝑎𝑑𝑣 by mapping them to 𝑠

(known to A𝑑𝑣 for D𝑎𝑢𝑥 ). This access to 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 can be alleviated

by training a “shadow model” on D𝑎𝑢𝑥 to mimic 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 ; and use

the model explanations from “shadowmodel” to train 𝑓𝑎𝑑𝑣 . We only

use predictions from 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 to train 𝑓𝑎𝑑𝑣 . Once 𝑓𝑎𝑑𝑣 is trained, the

attack is evaluated on target dataset (distinct from D𝑎𝑢𝑥 ).

Moreover, any attack designed within TM1 and TM2 are black-

box (satisfyAR1) and practical (satisfyAR2). In both threat models,

𝜙 () is accessible to adversary to exploit and hence satisfies AR4.

Given this, we now have to design an attack which satisfies require-

ment AR3 to account for class imbalance in 𝑠 and improve attack

success.

4 OUR PROPOSED ATTACK

Prior attribute inference attacks are directly applicable as they do

not satisfy requirements AR1-AR4. We design attribute inference

attacks to adapt to 𝜙 () to infer 𝑠 while calibrating the threshold over
3



𝑓𝑎𝑑𝑣 ’s predictions to improve attack success. Instead of using the

default threshold of 0.5, as in prior attacks over model predictions [7,

35], we calibrate the threshold over 𝑓𝑎𝑑𝑣 (𝜙 ()) to maximize F1-Score.

We compute an optimal threshold 𝜏∗ over the probability 𝑃 (𝑠 |𝜙 (𝑥)),
which is the output of 𝑓𝑎𝑑𝑣 (𝜙 (𝑥)), to infer 𝑠 . In practice, we use the

precision-recall curve which computes precision and recall values

for multiple thresholds over 𝑓𝑎𝑑𝑣 ’s predictions. Then, 𝜏
∗
is chosen

based onmaximum F1-Score and this in-turn improves the precision

and recall values. This is effective when there is a moderate to large

class imbalance (satisfies AR3).

Calibrating the Threshold. First, as a sanity check, we ensure

the precision-recall curves are above random guess baseline. A

random guess for precision-recall curve is the horizontal line with

the precision value computed over the positive class examples in

the dataset. Figure 3 shows the precision-recall curves for 𝑓𝑎𝑑𝑣 on

D𝑎𝑢𝑥 which is beyond random guess in all cases. This indicates the

possibility of finding 𝜏∗ to improve A𝑑𝑣 ’s F1-Score.

Table 1: 𝜏∗ is different from default threshold of 0.5. “IG” is

IntegratedGradients, “DL” is DeepLift, “GS” is Gradi-

entSHAP and “SG” is SmoothGrad.

IG DL

w/ S w/o S w/ S w/o S

Dataset Race Sex Race Sex Race Sex Race Sex

CENSUS 0.64 0.47 0.42 0.54 0.96 0.51 0.82 0.37

COMPAS 0.94 0.89 0.38 0.59 0.97 0.84 0.38 0.52

LAW 0.93 0.56 0.93 0.56 0.93 0.74 0.79 0.56

CREDIT 0.55 0.42 0.54 0.48 0.61 0.55 0.46 0.40

GS SG

w/ S w/o S w/ S w/o S

Dataset Race Sex Race Sex Race Sex Race Sex

CENSUS 0.77 0.26 0.55 0.47 0.68 0.49 0.51 0.50

COMPAS 0.61 0.58 0.46 0.54 0.81 0.72 0.33 0.55

LAW 0.68 0.61 0.82 0.56 0.97 0.96 0.93 0.57

CREDIT 0.48 0.48 0.56 0.52 0.60 0.43 0.51 0.44

Table 1 further shows that the resultant 𝜏∗ is indeed different

from 0.5 default threshold, indicative of improving attack success.

It is important to note that 𝜏∗ is computed onD𝑎𝑢𝑥 which might be

different from optimal threshold on target dataset which is being

attacked. However, this cannot be known before-hand byA𝑑𝑣 . This

is the best A𝑑𝑣 can do before performing the attack in real-world

with imbalanced datasets hoping that 𝜏∗ improves attack success.

Why is this a Privacy Risk? Our threat models are similar to

prior attacks [7–9, 35, 40]. One can argue that the attack is not

actually exploiting the model explanations but using the existing

correlations between sensitive and non-sensitive attributes (which

A𝑑𝑣 could deduce from D𝑎𝑢𝑥 ). In this case, there is no privacy

violation. However, as seen in Table 2, Pearson’s correlation be-

tween 𝑠 and other attributes is low. Hence,A𝑑𝑣 exploits non-trivial

information, i.e., information memorized by 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 about 𝑠 which is

present in 𝜙 () (similar to the case of inferring 𝑠 from 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 () [35]).

Table 2: Low Pearson Correlation of 𝑠 with𝑦, 𝑥 , 𝜙 (𝑠) and 𝜙 (𝑥)
indicates thatmodel ismemorizing unintended private data.

Dataset y x

Race Sex Race Sex

CENSUS 0.02 0.01 0.00 ± 0.02 0.00 ± 0.02

COMPAS -0.06 0.02 -0.01 ± 0.03 -0.02 ± 0.05

LAW 0.02 0.02 -0.01 ± 0.02 0.00 ± 0.01

CREDIT 0.01 -0.01 0.01 ± 0.01 0.00 ± 0.02

IntegratedGradients

Dataset 𝜙 (𝑠) 𝜙 (𝑥)
Race Sex Race Sex

CENSUS 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02

COMPAS -0.01 ± 0.02 -0.01 ± 0.06 -0.01 ± 0.02 0.00 ± 0.07

LAW 0.02 ± 0.00 0.02 ± 0.02 0.02 ± 0.00 0.01 ± 0.02

CREDIT 0.01 ± 0.02 0.00 ± 0.03 0.01 ± 0.02 0.00 ± 0.02

DeepLift

Dataset 𝜙 (𝑠) 𝜙 (𝑥)
Race Sex Race Sex

CENSUS 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02

COMPAS 0.00 ± 0.03 -0.02 ± 0.06 -0.01 ± 0.02 0.01 ± 0.06

LAW -0.01 ± 0.03 -0.00 ± 0.01 -0.02 ± 0.03 0.00 ± 0.01

CREDIT 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.02

GradientSHAP

Dataset 𝜙 (𝑠) 𝜙 (𝑥)
Race Sex Race Sex

CENSUS 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02

COMPAS -0.01 ± 0.04 -0.01 ± 0.03 -0.03 ± 0.02 -0.01 ± 0.03

LAW -0.01 ± 0.02 0.00 ± 0.00 -0.02 ± 0.00 0.00 ± 0.00

CREDIT 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.01 0.01 ± 0.02

SmoothGrad

Dataset 𝜙 (𝑠) 𝜙 (𝑥)
Race Sex Race Sex

CENSUS 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.02

COMPAS 0.00 ± 0.02 -0.01 ± 0.07 -0.01 ± 0.02 0.00 ± 0.08

LAW -0.04 ± 0.04 -0.01 ± 0.03 -0.03 ± 0.06 0.01 ± 0.03

CREDIT 0.01 ± 0.02 0.00 ± 0.02 0.01 ± 0.02 0.00 ± 0.02

5 EXPERIMENTAL SETUP

We describe the tabular benchmark datasets used in our evaluation

(Section 5.1), 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑓𝑎𝑑𝑣 architectures (Section 5.2), andmetrics

for evaluating attack success (Section 5.3).

5.1 Datasets

We consider four tabular datasets to demonstrate different high-

stakes decision making applications. All the datasets have a binary

classification task and publicly available.

• Adult Income (CENSUS) comprises of 48,842 data records with

14 attributes about individuals from 1994 US Census data. The

attributes include marital status, education, occupation, job hours

per week among others. The binary classification is whether an

individual makes an income of 50k per annum.
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(a) CENSUS (IntegratedGradients) (b) COMPAS (IntegratedGradients) (c) CREDIT (IntegratedGradients) (d) LAW (IntegratedGradients)

(e) CENSUS (DeepLift) (f) COMPAS (DeepLift) (g) CREDIT (DeepLift) (h) LAW (DeepLift)

(i) CENSUS (GradientSHAP) (j) COMPAS (GradientSHAP) (k) CREDIT (GradientSHAP) (l) LAW (GradientSHAP)

(m) CENSUS (SmoothGrad) (n) COMPAS (SmoothGrad) (o) CREDIT (SmoothGrad) (p) LAW (SmoothGrad)

Figure 3: Precision-recall curves for finding optimal threshold to improving A𝑑𝑣 ’s success. The precision recall are above

random guess which can allow A𝑑𝑣 to compute an optimal threshold to improve attack success.

• Recidivism (COMPAS) is used for commercial algorithms by

judges and parole officers for estimating the likelihood of a crimi-

nal reoffending. It contains 10,000 criminal defendants in Florida.

The binary classification is if a criminal will reoffend.

• Law School Dataset (LAW) is based on survey conducted by

Law School Admission Council across 163 law schools in the

United States. It contains information on 21,790 law students

such as their entrance exam scores (LSAT), their grade-point

average (GPA) collected prior to law school, and their first year

average grade. The classification is to predict if an applicant will

have a high first year average grade.

• UCI Credit Card (CREDIT) is an anonymized dataset from the

UCI Machine Learning dataset repository and contains informa-

tion about different credit card applicants. The dataset contains

30,000 records with 24 attributes for each record. The binary

classification is if the application was approved.

In all the four datasets, the sensitive attributes are Race and

Sex. We use this sensitive attributes for demonstration. The attack
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however can extend to other sensitive attributes with discrete val-

ues. We use 70% of D for 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 and the remaining 30% as testing

dataset. D𝑎𝑢𝑥 is 50% of the testing dataset while the other half is

used as unseen dataset for evaluating the attack success.

5.2 Architecture

We now describe the model architectures and training hyperparam-

eters for 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 , trained on the main classification task, and 𝑓𝑎𝑑𝑣
used byA𝑑𝑣 to map the explanations to 𝑠 . We use pytorch and cap-

tum library for model explanations and our code is made publicly

available: https://github.com/vasishtduddu/AttInfExplanations.git.

• Target Models.We consider a fully connected neural network

with four hidden layers of sizes [1024, 512, 256, 128] for all the

datasets. Note that all the datasets have a binary classification

tasks and the target models are binary classifiers. The target mod-

els are trained for 30 epochs with Adam optimizer and learning

rate of 1e-3 and no regularization.

• Attack Models. We use a neural network model for all datasets

other than LAW, where we use a random forest classifier with

a maximum depth of 150. We consider a fully connected neural

network with three hidden layers of sizes [64, 128, 32]. The model

is trained using Adam optimizer with a learning rate of 1e-3

trained for 500 epochs.

The attack methodology is independent of ML models used and

can be evaluated easily against other architectures.

• Model Accuracy. Themodel utility is computed over the unseen

test dataset across all the datasets. The test accuracy for the

CENSUS dataset is 82.20%, CREDIT dataset is 77.92%, COMPAS

dataset is 74.67%, and LAW dataset is 95.63%.

5.3 Metrics

We consider three main metrics for evaluating the success of at-

tribute inference attack.

• Precision. The ratio of true positives to the sum of true posi-

tive and false positives. This indicates the fraction of 𝑠 inferred

as having a positive value by A𝑑𝑣 which indeed have positive

attribute value as ground truth.

• Recall. The ratio of true positives to the sum of true positives

and false negatives. This indicates the fraction of 𝑠 with positive

values which are correctly inferred by A𝑑𝑣 .

• F1 Score. The harmonic mean of precision and recall computed

as 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . The highest value is one indicating perfect
precision and recall while theminimumvalue of zero, when either

precision or recall is zero.

6 TM1: EVALUATION OF ATTACK SUCCESS

We first consider TM1, whereA𝑑𝑣 has access to 𝜙 (𝑥∪𝑠) and hence
𝜙 (𝑥) and 𝜙 (𝑠). We evaluate attack success to infer 𝑠 from 𝜙 (𝑥 ∪ 𝑠)
(Section 6.1). Followed by this, we evaluate attack success to infer 𝑠

from only 𝜙 (𝑠) (Section 6.2).

6.1 Inferring 𝑠 from 𝜙 (𝑥 ∪ 𝑠)
We first evaluate the simplest attack surface: A𝑑𝑣 has access to

the entire model explanation vector 𝜙 (𝑥 ∪ 𝑠) to infer 𝑠 . A𝑑𝑣 ’s 𝑓𝑎𝑑𝑣
maps the entire explanation to 𝑠 , i.e., 𝑓𝑎𝑑𝑣 : 𝜙 (𝑥 ∪ 𝑠) → 𝑠 . Our

hypothesis is that 𝜙 (𝑥 ∪ 𝑠) is distinguishable for different values of
𝑠 which is captured by 𝑓𝑎𝑑𝑣 .

Table 3: TM1: Inferring 𝑠 from 𝜙 (𝑥 ∪ 𝑠).

IntegratedGradients

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.98 | 0.95 0.95 | 0.87 0.97 | 0.91

COMPAS 1.00 | 1.00 1.00 | 0.98 1.00 | 0.99

CREDIT 0.95 | 0.94 0.69 | 0.61 0.80 | 0.74

LAW 0.93 | 0.57 0.92 | 0.55 0.93 | 0.56

DeepLift

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.99 | 0.98 0.95 | 0.93 0.97 | 0.96

COMPAS 1.00 | 0.97 1.00 | 0.98 1.00 | 0.97

CREDIT 0.95 | 0.91 0.70 | 0.61 0.81 | 0.73

LAW 0.94 | 0.88 0.92 | 0.54 0.93 | 0.67

GradientSHAP

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.94 | 0.97 0.98 | 0.94 0.96 | 0.95

COMPAS 0.94 | 0.96 0.95 | 0.94 0.95 | 0.95

CREDIT 0.97 | 0.95 0.70 | 0.61 0.81 | 0.74

LAW 0.99 | 0.93 0.99 | 0.95 0.99 | 0.94

SmoothGrad

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.97 | 0.95 0.94 | 0.90 0.95 | 0.93

COMPAS 0.99 | 0.99 1.00 | 0.99 0.99 | 0.99

CREDIT 0.93 | 0.92 0.70 | 0.61 0.80 | 0.73

LAW 0.99 | 0.99 1.00 | 1.00 0.99 | 0.99

As seen in Table 3, we indeed validate our hypothesis. The attack

success as measured using F1-Score are high: IntegratedGradi-

ents (Sex: 0.80 ± 0.16; Race: 0.92 ± 0.07), DeepLift (Sex: 0.83 ±
0.13; Race: 0.92 ± 0.07), GradientSHAP (Sex: 0.89 ± 0.08; Race:

0.92 ± 0.06) and SmoothGrad (Sex: 0.91 ± 0.10; Race: 0.91 ± 0.10).

In addition to high F1-Scores, the high precision and recall values

indicate that our proposed attribute inference attack is effective to

infer 𝑠 from 𝜙 (𝑥 ∪ 𝑠).

6.2 Inferring 𝑠 from 𝜙 (𝑠)
We now consider a different setting for fine-grained analysis: can

A𝑑𝑣 exploit only𝜙 (𝑠) to infer 𝑠? Here,𝜙 (𝑠) is directly influenced by
𝑠 while 𝜙 (𝑥) is indirectly influence by 𝑠 . Our hypothesis that 𝜙 (𝑠) is
sufficient for reasonable attack success and does not require entire

model explanation 𝜙 (𝑥∪𝑠) to successfully infer 𝑠 .A𝑑𝑣 ’s 𝑓𝑎𝑑𝑣 infers

𝑠 using only its corresponding explanation, i.e., 𝑓𝑎𝑑𝑣 : 𝜙 (𝑠) → 𝑠 .

We validate our hypothesis as indicated by the high F1-Score: In-

tegratedGradients (Sex: 0.88 ± 0.09; Race: 0.88 ± 0.15), DeepLift

(Sex:0.86 ± 0.09; Race: 0.87 ± 0.09), GradientSHAP (Sex: 0.78 ±
0.06; Race: 0.91 ± 0.05), and SmoothGrad (Sex: 0.79 ± 0.09; Race:

0.93 ± 0.07). In addition to high F1-Scores, the high precision and
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Table 4: TM1: Inferring 𝑠 from 𝜙 (𝑠).

IntegratedGradients

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 1.00 | 0.96 0.90 | 0.75 0.94 | 0.84

COMPAS 0.99 | 0.98 1.00 | 0.94 0.99 | 0.96

CREDIT 1.00 | 1.00 0.70 | 0.82 0.61 | 0.75

LAW 0.98 | 1.00 1.00 | 1.00 0.98 | 1.00

DeepLift

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 1.00 | 1.00 0.99 | 0.70 0.99 | 0.82

COMPAS 0.94 | 1.00 0.97 | 0.81 0.95 | 0.89

CREDIT 1.00 | 0.99 0.70 | 0.61 0.82 | 0.75

LAW 0.60 | 1.00 0.99 |1.00 0.75 | 1.00

GradientSHAP

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.99 | 1.00 0.90 | 0.66 0.94 | 0.79

COMPAS 0.94 | 1.00 0.96 | 0.81 0.95 | 0.89

CREDIT 1.00 | 1.00 0.70 | 0.60 0.82 | 0.75

LAW 0.99 | 0.99 0.93 | 0.55 0.96 | 0.71

SmoothGrad

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 1.00 | 0.79 0.90 | 0.73 0.94 | 0.76

COMPAS 0.98 | 0.99 1.00 | 0.93 0.99 | 0.96

CREDIT 0.99 | 0.99 0.70 | 0.61 0.82 | 0.75

LAW 1.00 | 1.00 1.00 | 0.56 1.00 | 0.72

recall values indicate that our proposed attribute inference attack

is effective to infer 𝑠 from only 𝜙 (𝑠).

Remark. In TM1, the high attack success is attributed to the dis-
tinguishability of model explanations for different values of 𝑠 . In
other words, different values of 𝑠 explicitly influence the model pre-
dictions as they are included in the training dataset. This in-turn
results in distinguishable explanations for different values of 𝑠 . This
distinguishability is captured by training 𝑓𝑎𝑑𝑣 to infer 𝑠 .

7 TM2: EVALUATION OF ATTACK SUCCESS

Having shown that our proposed attack is successful in TM1, we

now evaluate the attack success inTM2. We show the attack success

on exploiting 𝜙 (𝑥) (Section 7.1) followed by exploiting combination

of 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) and 𝜙 (𝑥) (Section 7.2).

7.1 Inferring 𝑠 from 𝜙 (𝑥)
We evaluate the effectiveness of our attack to exploit 𝜙 (𝑥) which
are the only explanations available to A𝑑𝑣 . A𝑑𝑣 maps 𝜙 (𝑥) to
value of 𝑠 using the trained attack ML model, i.e., 𝑓𝑎𝑑𝑣 : 𝜙 (𝑥) → 𝑠 .

Our hypothesis is that despite 𝑠 not directly being included in the

training dataset and input, some attributes in 𝑥 might act as a proxy

for 𝑠 . Hence, 𝑠 influences model predictions indirectly resulting in

distinguishable model explanations for different values of 𝑠 .

Table 5: TM2: Inferring 𝑠 from 𝜙 (𝑥).

IntegratedGradients

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.97 | 0.85 0.90 | 0.79 0.94 | 0.82

COMPAS 0.76 | 0.99 0.57 | 0.80 0.65 | 0.89

CREDIT 0.91 | 0.91 0.69 | 0.60 0.79 | 0.72

LAW 0.98 | 0.90 0.94 | 0.56 0.96 | 0.69

DeepLift

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.98 | 0.90 0.91 | 0.80 0.94 | 0.85

COMPAS 0.81 | 1.00 0.54 | 0.81 0.65 | 0.89

CREDIT 0.98 | 0.91 0.70 | 0.60 0.81 | 0.72

LAW 0.99 | 0.99 0.92 | 0.55 0.96 | 0.70

GradientSHAP

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.94 | 0.85 0.90 | 0.80 0.92 | 0.83

COMPAS 0.75 | 0.90 0.55 | 0.82 0.63 | 0.86

CREDIT 0.95 | 0.95 0.70 | 0.61 0.80 | 0.74

LAW 0.93 | 0.53 0.92 | 0.55 0.93 | 0.54

SmoothGrad

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.98 | 0.87 0.90 | 0.78 0.94 | 0.82

COMPAS 0.77 | 0.98 0.56 | 0.80 0.65 | 0.89

CREDIT 0.92 | 0.88 0.70 | 0.60 0.79 | 0.72

LAW 0.97 | 0.96 0.94 | 0.55 0.96 | 0.70

We confirm this hypothesis in Table 5 which indicates high

attack success. For instance, F1-Score across four datasets for each

explanation algorithm are as follows: IntegratedGradients (Sex:

0.78 ± 0.07; Race: 0.83 ± 0.12), DeepLift (Sex: 0.79 ± 0.08; Race:

0.84± 0.12), GradientSHAP (Sex: 0.74± 0.12 Race: 0.82± 0.12), and

SmoothGrad (Sex: 0.78 ± 0.07; Race: 0.83 ± 0.12). Hence, censoring

𝑠 is ineffective to mitigate privacy risk to attribute inference attacks.

7.2 Inferring 𝑠 from 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) ∪ 𝜙 (𝑥)
Having shown the attack success on exploiting 𝜙 (𝑥), we answer
how good are explanations + predictions combination as an attack
surface forA𝑑𝑣 to exploit? Wewant to evaluate the impact on attack

success on combining 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) with 𝜙 (𝑥).
Given the combination 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) ∪ 𝜙 (𝑥) as input, A𝑑𝑣 trains

𝑓𝑎𝑑𝑣 to map it to 𝑠 , i.e., 𝑓𝑎𝑑𝑣 : (𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) ∪ 𝜙 (𝑥)) → 𝑠 . In Table 6,

we note that the attack success does not show a significant differ-

ence compared to the results in Table 5 for exploiting only model

explanations. Furthermore, for Race, the attack success degrades

compared to using only model explanations (Table 5). Here, we con-

jecture that the model predictions lower the distinguishability for

𝑓𝑎𝑑𝑣 to infer 𝑠 compared to only using model explanations. These

observations indicate that model explanations are a strong attack

surface for A𝑑𝑣 to exploit independent of model predictions.
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Table 6: TM2: Inferring 𝑠 from 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 (𝑥) ∪ 𝜙 (𝑥).

IntegratedGradients

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.99 | 0.72 0.90 | 0.66 0.94 | 0.69

COMPAS 0.76 | 0.99 0.47 | 0.82 0.58 | 0.90

CREDIT 0.89 | 0.90 0.70 | 0.60 0.78 | 0.72

LAW 0.98 | 0.98 0.93 | 0.55 0.95 | 0.70

DeepLift

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.99 | 0.75 0.90 | 0.66 0.94 | 0.70

COMPAS 0.75 | 0.99 0.49 | 0.81 0.59 | 0.89

CREDIT 0.97 | 0.92 0.80 | 0.60 0.81 | 0.73

LAW 0.99 | 0.99 0.92 | 0.54 0.95 | 0.70

GradientSHAP

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.95 | 0.60 0.90 | 0.66 0.93 | 0.63

COMPAS 0.55 | 0.93 0.50 | 0.81 0.52 | 0.86

CREDIT 0.93 | 0.92 0.69 | 0.61 0.79 | 0.73

LAW 0.83 | 0.58 0.92 | 0.55 0.87 | 0.56

SmoothGrad

Dataset Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.90 | 0.72 0.90 | 0.66 0.90 | 0.69

COMPAS 0.84 | 0.88 0.69 | 0.61 0.76 | 0.72

CREDIT 0.69 | 0.99 0.47 | 0.81 0.56 | 0.89

LAW 0.97 | 0.95 0.92 | 0.54 0.95 | 0.69

Remark. In TM2, similar to TM1, the high attack success is at-
tributed to the distinguishability of model explanations for different
values of 𝑠 . Unlike TM1, different values of 𝑠 implicitly influence
the model predictions via other attributes acting as proxy variables
for 𝑠 . This in-turn results in distinguishable explanations for different
values of 𝑠 which is exploited by 𝑓𝑎𝑑𝑣 .

8 COMPARING PRIVACY RISK OF

EXPLANATIONS VS. PREDICTIONS

Having shown the success of attack on model explanations, we

answer how risky are explanations compared to model predictions
with respect to attribute inference attacks? The experimental setup

in our work is the same as Aalmoes et al. [1]. Hence, we report the

results from Aalmoes et al. [1] as the state-of-the-art for attribute

inference attacks. Specifically, we consider their PrecRec attack

for both TM1 and TM2.

We compare the inference capability of 𝑠 from 𝜙 (𝑥 ∪𝑠) (reported
Table 3) against the inference capability of using model predictions

(reported Table 7 (w/ 𝑠)). We note that the attack success in Table 3

for model explanations is higher than model predictions in Table 7

in most of the cases. Similarly, when 𝑠 is not included in training

data, we find that the performance reported in Table 5 is better than

the results in Table 7 (w/o 𝑠).

Table 7: Reported state-of-the-art attribute inference at-

tack success exploiting model predictions from Aalmoes et

al. [1].

PrecRec Attack (w/o 𝑆)

Dataset

Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.91 | 0.94 0.90 | 0.69 0.90 | 0.80

COMPAS 0.97 | 0.96 0.48 | 0.82 0.64 | 0.88

LAW 0.98 | 1.00 0.95 | 0.56 0.96 | 0.72

CREDIT 0.99 | 0.97 0.69 | 0.61 0.81 | 0.75

PrecRec Attack (w/ 𝑆)

Dataset

Recall Precision F1-Score

Race | Sex Race | Sex Race | Sex

CENSUS 0.90 | 0.91 0.92 | 0.70 0.91 | 0.79

COMPAS 0.72 | 0.97 0.67 | 0.82 0.69 | 0.89

LAW 0.98 | 0.96 0.97 | 0.57 0.97 | 0.72

CREDIT 0.99 | 0.84 0.69 | 0.67 0.81 | 0.75

In summary, model explanations alone are stronger attack sur-

face for attribute inference attack compared to model predictions.

9 RELATEDWORK

We discuss some prior works which have indicated security and

privacy vulnerabilities for model explanations.

Security Attacks on Model Explanations.Model explanations

are sensitive to distribution shifts and adversarial examples. Model

explanations do not accurately reflect the biases in ML model lead-

ing to misleading explanations which influence user trust in black

box models [20]. Adversarial examples can be generated for model

misclassification as well as fooling interpretations [13, 43]. The

attack exploits the fact that model predictions and their interpreta-

tions are misaligned. SHAP and LIME explanations algorithms have

also been shown to be vulnerable to adversarial examples [31, 33].

Counterfactual examples are an alternative approach for explana-

tions which are not robust: they converge to different counterfac-

tuals under a small perturbation [32]. To address these, Lakkaraju

et al. [19] propose adversarial training with minimax objective to

construct high fidelity explanations with respect to the worst-case

adversarial perturbations. Additionally, Yeh et al. [39] propose two

measures for evaluating robustness of explanations: sensitivity and

infidelity, and propose algorithms to improve both.

Privacy Attacks on Model Explanations. Prior works have in-

dicated a trade-off between transparency and privacy. Model expla-

nations have been shown to be vulnerable to membership inference

attacks where A𝑑𝑣 aims to infer whether a given data record be-

longed to the model training data using model explanations [29].

This threat was extended to data reconstruction attacks for ex-

planations which reveal training data instances. To incorporate

membership privacy and transparency, model explanations with

differential privacy have been proposed in literature [12, 26]. How-

ever, this comes at the cost of quality of explanations. Furthermore,

since model explanations characterize the model’s decision bound-

ary, it can be used to steal the functionality of a model using model
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extraction attacks [3, 25]. None of the prior works evaluate the

vulnerability to attribute inference attacks.

10 DISCUSSIONS AND CONCLUSIONS

Summary. Model explanations assign scores to attributes of an

input by estimating their influence to model prediction. These

model explanations potentially leak sensitive attributes.We propose

the first attribute inference attack on model explanations and show

their effectiveness in two threat models. We show yet another trade-

off between privacy and transparency in ML models.

Attribute Privacy Risk Metric. There is a need to design data

privacy risk assessment tools as required by several privacy laws

such as GDPR (Article 35). However, there is limited prior work

on estimating privacy risk of different sensitive attributes to infer-

ence attacks: Hannun et al. [11] propose a generic metric based

on Fisher Information Loss which are shown to estimate privacy

risk to attribute inference attacks. However, it is applicable only to

linear and convex models and hence, not scalable to deep neural

networks with non-linear and non-convex objective. Furthermore,

they limit A𝑑𝑣 to unbiased estimators which they indicate will be

violated in the presence of D𝑎𝑢𝑥 .

We discuss the viability of model explanations as a tool for at-

tribute privacy risk assessment. We indicate different requirements

to be satisfied for attribute privacy risk metric and indicate how

model explanations satisfy them.

(1) Independent of Attacks. The metric should estimate the attribute

privacy risk scores without using any specific attacks. The as-

signed scores should capture the root cause of attribute privacy

risk, i.e., different values of 𝑠 have different influence on model

prediction which can be exploited by A𝑑𝑣 to infer the value of

𝑠 . This makes the privacy risk scores to quantify privacy risk to

all possible future attacks.

• Model explanations are independent of any specific attribute

inference attacks and capture the influence of attributes to

the model predictions.

(2) Correlation with Attacks. The attribute privacy risk scores as-

signed to each record’s sensitive attribute should correlate with

the attack success to infer 𝑠 . This ensures that the privacy risk

scores capture the susceptibility to attack success.

• Model explanations can be mapped to 𝑠 as shown in this

work (Section 6.2) which can allow for model explanations

as a relative privacy risk measure.

(3) Efficient and Scalable. The computation of scores should be

efficient and scale to large deep neural network architectures.

• Model explanations can be efficiently computed on deep neu-

ral networks and scalable to large models.

We leave the careful design and evaluation of attribute privacy

risk metric based on model explanations for future work.

Defences Against Attribute Inference Attacks. Current litera-

ture lacks specific defences against the described attribute inference

attacks as well as prior attacks leveraging model predictions. At-

triGuard was proposed as a method to lower the success of A𝑑𝑣 ’s

attackMLmodel by adding adversarial noise toA𝑑𝑣 ’s auxiliary data

obtained from public sources [16]. This defence is more generic

and can be adapted to ML models: M can use vulnerability of

model explanations to adversarial examples, proposed in prior lit-

erature [13, 19, 20, 31–33, 39, 43], as a defence mechanism to lower

the success of A𝑑𝑣 ’s attack model. Data sanitization to remove the

privacy risk while maintaining the utility of the MLmodel have also

been explored [4]. Finallly, model explanations with differential

privacy [12, 26] can possibly lower the privacy risk to attribute

inference attacks as the minimize the influence of individual data

records as a whole. However, using mechanisms based on puffer-

fish privacy [18, 36, 41] is likely address attribute inference risks.

However, these have not been explored in the context of model

explanations. We keep the evaluation of defences for future work.

Algorithmic Fairness and Attack Success. There are several al-

gorithms which guarantee fairness across sensitive attributes in

ML models [5, 6, 28]. It is unclear whether there is a correlation

between model bias and attack success to infer 𝑠 from model ex-

planations. We speculate that since many evaluated datasets have

proxy attributes to 𝑠 , attribute inference attacks might still be effec-

tive (see Section 7.1). A detailed study of the impact of algorithmic

fairness on attribute inference attacks of 𝑠 is left for future work.
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