
MetaTrader: An Reinforcement Learning Approach Integrating
Diverse Policies for Portfolio Optimization

Hui Niu∗
niuh17@mails.tsinghua.edu.cn

Tsinghua University
Beijing, China

Siyuan Li∗
lisiyuan199511@gmail.com

Harbin Institute of Technology
Harbin, China

Jian Li
lapordge@gmail.com
Tsinghua University

Beijing, China

ABSTRACT
Portfolio management is a fundamental problem in finance. It in-
volves periodic reallocations of assets to maximize the expected
returns within an appropriate level of risk exposure. Deep rein-
forcement learning (RL) has been considered a promising approach
to solving this problem owing to its strong capability in sequential
decision making. However, due to the non-stationary nature of
financial markets, applying RL techniques to portfolio optimization
remains a challenging problem. Extracting trading knowledge from
various expert strategies could be helpful for agents to accommo-
date the changing markets. In this paper, we propose MetaTrader,
a novel two-stage RL-based approach for portfolio management,
which learns to integrate diverse trading policies to adapt to vari-
ous market conditions. In the first stage, MetaTrader incorporates
an imitation learning objective into the reinforcement learning
framework. Through imitating different expert demonstrations,
MetaTrader acquires a set of trading policies with great diversity.
In the second stage, MetaTrader learns a meta-policy to recognize
the market conditions and decide on the most proper learned policy
to follow. We evaluate the proposed approach on three real-world
index datasets and compare it to state-of-the-art baselines. The
empirical results demonstrate that MetaTrader significantly outper-
forms those baselines in balancing profits and risks. Furthermore,
thorough ablation studies validate the effectiveness of the compo-
nents in the proposed approach.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Applied computing → Economics.

KEYWORDS
Portfolio Management, Deep Reinforcement Learning, Imitation
Learning, Meta-Policy Learning

ACM Reference Format:
Hui Niu, Siyuan Li, and Jian Li. 2022. MetaTrader: An Reinforcement Learn-
ing Approach Integrating Diverse Policies for Portfolio Optimization. In

∗Equal Contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557363

Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3511808.3557363

1 INTRODUCTION
Portfolio management has long been an important and challeng-
ing problem in quantitative trading [10, 22–24], which aims to
maximize the expected returns with acceptable risks through real-
locating portfolio weights. Generally, portfolio management is a
sequential decision making problem.

The Markowitz model [24], also called the mean-variance model,
is the first theoretical work to formally investigate portfolio opti-
mization. This model formulates portfolio management as a single-
period optimization problem, and is then generalized to multi-
period optimization in several works [23, 29, 38]. However, the
mathematical solutions for those models require explicit models of
both temporal dynamics of individual assets and their co-movements,
which are difficult to acquire in practice [10]. Some empirical work
devotes to solving the portfolio management problem based on
typically observed patterns, including momentum investing [18],
mean reversion [17], and multi-factor models [7]. Nevertheless,
these traditional investment strategies could hardly adapt to the
changing markets since they only perform well in certain cases.

More recently, a variety of machine learning methods are devel-
oped to address the portfolio management problem. In particular,
deep neural networks such as graph models [4, 35, 36] and recur-
rent networks [14, 43] are widely employed to extract temporal
and spatial relationships of asset data, benefitting from their strong
abilities in representation learning. Several supervised learning
methods are proposed to predict price movements based on various
kinds of financial information [13, 15, 33, 49]. Nevertheless, these
supervised learning algorithms require data with a set of labels that
are associated with certain tasks (e.g. classification and regression).
The design of labels for financial data is nontrivial [5], especially
in the context of portfolio management. Moreover, as the portfolio
weights are generated indirectly, these supervised learning methods
suffer from fragile hyper-parameter tuning.

Efforts have also been made to adopt deep reinforcement learn-
ing (RL) techniques to address the portfolio management problem
[6, 16, 19, 37, 44, 46]. Compared to supervised learning, RL is con-
sidered a more flexible framework for portfolio management since
it takes advantage of various reward functions to achieve better
risk-return balancing. Despite promising results achieved by the
previous RL-based methods, applying RL to real-world portfolio
management still faces challenges. The non-stationary nature of the
financial markets induces a challenging exploration problem for RL
algorithms: Agents could hardly fully explore the fluctuate trading

1573

https://doi.org/10.1145/3511808.3557363
https://doi.org/10.1145/3511808.3557363
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557363&domain=pdf&date_stamp=2022-10-17


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Hui Niu, Siyuan Li, and Jian Li

environments through maximizing cumulative rewards without
additional knowledge, which further influences the performance of
the learned policy.

To overcome this challenge, we propose MetaTrader, a novel
RL-based portfolio management approach incorporating with imi-
tation learning techniques. The proposed approach is inspired by
the following facts: (1) Beyond learning from interactions with the
environment, extracting trading knowledge from seasoned experts
is also an appealing way to mine profitable patterns in quantitative
trading [6]. (2) Leveraging expert data is a favorable approach to
improve the exploration ability of RL algorithms [2, 25, 30, 40]. (3)
Financial companies employ multiple portfolio managers to diver-
sify risks, and those managers are adept at dealing with different
market conditions [21]. To summarize, the key insight of Meta-
Trader is that utilizing knowledge from various trading strategies
promotes the agent’s adaptability to the changing markets.

Motivated by the above intuitions, MetaTrader decomposes the
portfolio optimization process into two phases. The first is a diverse
policy learning phase, which aims to obtain a set of base policies
capable of dealing with various market conditions. To achieve this
goal and promote efficient exploration of the complex trading en-
vironment, we develop a novel learning objective that combines
the RL objective of maximizing expected cumulative rewards with
imitating different trading experts. This objective enables learning
from interactions with the environments and through extracting
knowledge from expert datasets as well. The second is ameta-policy
learning phase, where a meta-policy is learned to recognize the
market conditions and make decisions on which learned base policy
to follow in each holding period. This phase is modeled with the
RL framework, and MetaTrader learns to score the base policies
obtained in the first phase while freezing their parameters.

The contribution of this paper can be summarized as follows:

• To the best of our knowledge, MetaTrader is the first attempt
to utilize trading knowledge from multiple experts to acquire
diverse policies in the portfolio optimization literature.

• MetaTrader learns to select the reasonable base policy to fol-
low by recognizing the market conditions. The scores given
by the meta-policy reflect its confidence in the profitability
of those base policies, which enhances the interpretability
of the learned portfolio management decisions.

• Extensive experiments on three well-known stock indexes
show that our portfolio management agent learns to adapt to
the changing markets properly and achieves superior perfor-
mance in profitability and risk-return balancing compared
to state-of-the-art baselines. Further ablation studies verify
the effectiveness of meta-policy learning.

This paper is organized as follows: In Section 2, we formulate
the portfolio management problem as a Markov decision process
and introduce the trading procedure. Afterward, we describe the
proposed approach MetaTrader in Section 3, including the detailed
objective, structure, and workflow. Next, in Section 4, we conduct
extensive experiments to illustrate the effectiveness of MetaTrader.
Then, in Section 5, we review and discuss the related works in
portfolio management. Finally, Section 6 concludes and points out
some possible future directions.

2 PROBLEM FORMULATION
In this section, we introduce some notations and describe the prob-
lem formulation in this work for portfolio management.

2.1 Problem Setup
A financial portfolio is a collection of assets comprised of stocks,
bonds, cash, or other forms of assets. We consider the investment
in 𝑁 risky assets in a market, e.g., stocks1.

Portfolio management is a sequential decision making problem
involving periodically reallocating the asset weights. Suppose an
investor enters the market at time 0 with an initial wealth 𝐴𝐶0,
he/she reallocates the asset weights at time 𝑡×Δ𝑡 for 𝑡 = 0, 1, ...,𝑇−1,
where Δ𝑡 is a minimum time unit for investment, for example, one
day or one month. The 𝑡-th holding period lasts from time 𝑡 × Δ𝑡
to time (𝑡 + 1) × Δ𝑡 . The starting time of the 𝑡-th holding period is
called timestep 𝑡 , and the ending time of it is called timestep 𝑡 + 1.
The accumulated capital at timestep 𝑡 is denoted by 𝐴𝐶𝑡 . Simiarly,
the subscript 𝑡 denotes timestep 𝑡 in the following.

This sequential decision making problem is formulated as a
Markov decision process (MDP)𝑀 = ⟨S,A, 𝑃, 𝑅,𝛾⟩, where S is the
state space,A is the 2𝑁 -dimensional action space, 𝑃 : S×A×S →
[0, 1] is the state transition function specifying the conditional
transition probabilities between states, 𝑅 : S × A × S → R is the
bounded reward function and 𝛾 ∈ (0, 1] is the discount factor.

The details of the MDP environment are set as follows:
• State space S: A state 𝑠𝑡 ∈ S consists of three components
𝑠𝑡 = {𝒙𝑠𝑡 ; 𝒙𝑚𝑡 ; 𝒙𝑎𝑡 }, which are generated from different data
sources. Asset features 𝒙𝑠𝑡 describe the information of the
assets, including historical asset prices and some classical
technical indicators2. Market features 𝒙𝑚𝑡 reflect current mar-
ket conditions using macro indicators such as index trends
and market sentiment. Account feature 𝒙𝑎𝑡 is the portfolio
weight at timestep 𝑡 − 1, 𝒙𝑎𝑡 = 𝒂𝑡−1.

• Action space A: Both long and short operations can be per-
formed in this formulation. An action 𝑎𝑡 ∈ A is the re-
allocated portfolio weight at timestep 𝑡 . Specifically, 𝑎𝑡 =

[𝒘+
𝑡 ;𝒘

−
𝑡 ]𝑇 = [𝑤+

0,𝑡 ,𝑤
+
1,𝑡 , ...,𝑤

+
𝑁−1,𝑡 ;𝑤

−
0,𝑡 ,𝑤

−
1,𝑡 , ...,𝑤

−
𝑁−1,𝑡 ]

𝑇 ,
where 𝑤+

𝑖,𝑡
∈ [0, 1] denotes the weight of long position on

asset 𝑖 ,
∑𝑁−1
𝑖=0 𝑤+

𝑖,𝑡
= 1; and𝑤−

𝑖,𝑡
∈ [−1, 0] denotes the weight

of short allocation on asset 𝑖 ,
∑𝑁−1
𝑖=0 𝑤−

𝑖,𝑡
= −𝜌𝑡 . Here 𝜌𝑡 is a

learned ratio of the short position. Precisely, at the beginning
of the 𝑡-th holing period, the total value of the new borrowed
stocks is equal to 𝐴𝐶𝑡 × 𝜌𝑡 , where 𝐴𝐶𝑡 is the accumulated
capital at the end of the (𝑡 − 1)-th holding period. More
details about the action execution are provided in Section
2.2.

• Transition function 𝑃 : Note that a state consists of three parts:
𝒙𝑠 , 𝒙𝑚 , and 𝒙𝑎 . Since we assume that the agent’s behaviours
could hardly influence the market, the transitions of asset
features 𝒙𝑠 and market features 𝒙𝑚 are dominated by the
price movements in the market. In contrast, the transition
of account feature 𝒙𝑎 is affected by actions.

1For ease of explanation, wemay refer to assets as stocks in the following. The proposed
approach is applicable to other kinds of risky assets as well.
2The details for the classical technical indicators are specified in the experiment section,
Section 4.

1574



MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Trading Environment

Policy 1
A(.|6; D*)

Policy 2
A(.|6; D/)

Policy K
A(.|6; D0)…

Dataset E* Dataset E/ Dataset E0

Trading Environment

Policy 1
A(.|6; D*)

Policy 2
A(.|6; D/)

Policy K
A(.|6; D0)…

Meta-policy
A$(F|6$)

e.g., F = 2

Portfolio weights .

6

6$ , ?

Policy gradient loss Behavior cloning loss Frozen

(a) Diverse trading policy learning (b) Meta-policy learning

Figure 1: The learning framework of MetaTrader.

• Reward function 𝑅: We adopt the Differential Sharpe Ratio
(𝐷𝑆𝑅) [27] as rewards. Recall that the Sharpe Ratio (𝑆𝑅) is the
average return in excess of the risk-free return per unit of
volatility. Considering an investment process that contains
𝑇 holding periods, its Sharpe ratio can be calculated as:

𝑆𝑅𝑇 = ( 1
𝑇

𝑇∑︁
𝑡=1

𝑅𝑜𝑅𝑡 − 𝑅𝑜𝑅 𝑓 )/𝑉𝑇 , (1)

where 𝑅𝑜𝑅𝑡 is the rate of return for the 𝑡-th holding period:

𝑅𝑜𝑅𝑡 = (𝐴𝐶𝑡+1 −𝐴𝐶𝑡 )/𝐴𝐶𝑡 ; (2)

𝑅𝑜𝑅 𝑓 is the risk-free return rate per holding period; and 𝑉𝑡
is the volatility:

𝑉𝑇 =

√√√
𝑇∑︁
𝑡=1

(𝑅𝑜𝑅𝑡 −
1
𝑇

𝑇∑︁
𝑡=1

𝑅𝑜𝑅𝑡 )2/𝑇 .

Note that directly taking the Sharpe ratio as the reward
induces a sparse-reward challenge for RL algorithms since
it can only be obtained at the end of the trading process.
Therefore, to leverage dense rewards and achieve a balance
between profits and risks, we adopt the DSR as rewards. Let
𝑆𝑅𝑡 denote the Sharpe ratio at timestep 𝑡 . The differential
Sharpe ratio 𝐷𝑆𝑅𝑡 is then obtained by expanding 𝑆𝑅𝑡 with
decay rate 𝜂, and considerding the moving average of the
return rates and the standard deviation of return rates in
equation (1),

𝐷𝑆𝑅𝑡 :=
d𝑆𝑅𝑡
d𝜂

=
𝛽𝑡−1Δ𝛼𝑡 − 1

2𝛼𝑡−1Δ𝛽𝑡

(𝛽𝑡−1 − 𝛼2𝑡−1)
3
2

, (3)

where 𝛼𝑡 and 𝛽𝑡 are exponential moving estimates of the
first and second moments of 𝑅𝑡 :

𝛼𝑡 = 𝛼𝑡−1 + 𝜂Δ𝛼𝑡 = 𝛼𝑡−1 + 𝜂 (𝑅𝑡 − 𝛽𝑡−1),
𝛽𝑡 = 𝛽𝑡−1 + 𝜂Δ𝛽𝑡 = 𝛽𝑡−1 + 𝜂 (𝑅2𝑡 − 𝛽𝑡−1).

With attractive properties such as weights recent returns
more and facilitating recursive updating, the DSR is a proven
effective reward form as it enables efficient online optimiza-
tion [27].

In the above MDP environment, after taking action 𝑎𝑡 at state
𝑠𝑡 , a trading agent switches to the next state 𝑠𝑡+1 according to
the transition function 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) and obtains a reward 𝑟𝑡 =

𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). To solve the portfolio management problem, we need
to optimize a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) which outputs an action 𝑎𝑡 for a given
state 𝑠𝑡 . To balance profits and risks, we adopt the differential Sharpe
ratio as rewards. The learning objective is to obtain a policy 𝜋 (𝑎𝑡 |𝑠𝑡 )
to maximize the cumulative rewards E𝜋 [

∑𝑇−1
𝑡=0 𝛾

𝑡𝑟𝑡 ], where 𝑇 × 𝜏
is the ending time of the whole trading process.

2.2 Trading Procedure
Consider the investment process on a portfolio that contains both
long position and short position. At the end of the (𝑡 − 1)-th hold-
ing period, an investor holds b+

𝑡−1 = {𝑏+
𝑡−1,1, 𝑏

+
𝑡−1,2, ..., 𝑏

+
𝑡−1,𝑛} ∈ R

𝑛

volume of stocks on a long position. Besides, the investor has bor-
rowed b−

𝑡−1 ∈ R𝑛 volume of stocks at timestep 𝑡 − 1 and sold them
as a short position. Given the close price of assets 𝑃𝑐𝑙𝑜𝑠𝑒𝑡 ∈ R𝑛 and
portfolio vector [𝒘+

𝑡 ;𝒘
−
𝑡 ], the investor follows the following steps

to conduct wealth reposition: (1) At the end of the (𝑡 −1)-th holding
period, the investor sells all long position (b+

𝑡−1) and gets cash; (2)
Meanwhile, he/she buys the borrowed stocks (b−

𝑡−1) and returns
them to the stock brokerage, and at that moment the wealth is de-
noted by 𝐴𝐶𝑡 . (3) At the beginning of the 𝑡-th period, the investor
borrows stocks from a broker according to short proportion𝒘−

𝑡 and
wealth𝐴𝐶𝑡 , and sell them immediately to get cash. At that moment
the total value of the cash is denoted by𝑇𝐶𝑡 ; (4) Afterwards, he/she
purchases stocks using the cash 𝑇𝐶𝑡 according to long proportion
𝒘+
𝑡 .

3 APPROACH
Due to the complexity and volatility of trading markets, portfolio
management has long been a challenging problem [27, 44, 46]. A
portfolio manager who follows a fixed trading strategy all the time
can hardly always gain profits in the changing markets [21]. In
contrast, timely identifying market conditions and switching to
appropriate trading strategies potentially enable more competitive
trading decisions. Inspired by this, we propose a novel RL-based

1575



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Hui Niu, Siyuan Li, and Jian Li

LST
M

T
op

M
m

ask

SoftM
ax

SoftM
ax

C
oncat

FC
T

em
poral 

A
ttention

C
oncat

𝝆

T
C

N

Spatial 
A

ttention

residual

Portfolio vector
𝑎 = [𝑤+,𝑤−]

−𝟏

𝒙𝒎

𝒙𝒂

𝒙𝒔

Asset-axis 

T
im

e-axis 
T

im
e-axis 

…

Sigm
oid

T
op

M
m

ask

−𝟏

𝒗

Short ratio

Last portfolio vector

Multiply

Sigm
oid

FC
FC

Figure 2: The proposed network structure for portfolio generation in the diverse policy learning phase.

portfolio management approach named MetaTrader, which con-
ducts the learning by two phases, i.e, a diverse policy learning phase
and a meta-policy learning phase. In the first phase, MetaTrader
learns multiple diverse trading policies via combining a reinforce-
ment learning (RL) objective and an imitation learning objective.
In the second phase, MetaTrader learns a meta-policy to select suit-
able policies to execute from the learned trading policy set, and the
meta-policy is conditioned on the current market condition. Figure
1 depicts the learning scheme of those two stages.

In the rest of this section, we provide the details of the proposed
approach. Section 3.1 elaborates on the method of learning multiple
policies which act as diversely as possible, and Section 3.2 presents
the meta-policy learning, which is in charge of selecting proper
policies to execute based on the market conditions.

3.1 Diverse Policy Learning
To steadily gain profits under different market conditions, we need
multiple trading policies with a great diversity. In general, investors
face two major challenges to achieve this goal: (1) How to diversify
the learned policies while maintaining their profitability; (2) How
to model the asset relations over time accurately.

3.1.1 Learning objective. To address Challenge (1), we develop a
novel learning objective, which combines an imitiation learning ob-
jective that encourages mimicking the behaviors in expert datasets,
with an RL objective of maximizing the cumulative rewards. The
data flow of the diverse policy learning phase is shown in Figure
1(a). Here we explain the motivation of this proposed learning objec-
tive. On the one hand, despite the RL objective could help balance
profits and risks, the full exploration in the complex trading envi-
ronment is challenging for RL algorithms. Furthermore, learning
via optimizing a single RL objective could not achieve the goal of
generating multiple policies that act diversely. On the other hand,
extracting trading knowledge from various expert datasets might
help diversify the learned policies.

To acquire diverse and profitable trading policies, MetaTrader
integrates the knowledge from a set of expert datasets {𝐷𝑘 |1 ≤
𝑘 ≤ 𝐾} with the policy learned online by RL. The various datasets
ensure the diversity of the learned policies, and the RL objective
enables the maximization of profits while balancing risks.

Sepcifically, the loss function for this mixed learning objective is
formulated as

𝐿𝜃𝑘 =E𝜏∼𝜋 [−
𝑇∑︁
𝑡=0

Ψ𝑡 𝑙𝑜𝑔𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃𝑘 )]

+ 𝜆E(𝑠𝑖 ,𝑎𝑖 )∼𝐷𝑘
[(𝜋 (𝑎 |𝑠𝑖 ;𝜃𝑘 ) − 𝑎𝑖 )2],

(4)

whereΨ𝑡 =
∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ is the discounted return,𝜏 = (𝑠0, 𝑎0, ..., 𝑠𝑇+1)
is a trajectory rolled out by policy 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃𝑘 ) in the trading envi-
ronment, 𝐷𝑘 is the 𝑘-th expert dataset and 𝜆 is a scaling factor.

The first term in Equation (4) is the loss function for the deter-
ministic policy gradient algorithm [41], which serves to maximize
the cumulative rewards through optimizing policy 𝜋 . The second
term in Equation (4) is the loss for behavior cloning [31], which
aims to extract trading knowledge from expert datasets. By training
with 𝐾 different expert datasets, our approach obtains a policy set
{𝜋 (𝑎 |𝑠;𝜃𝑘 ) |1 ≤ 𝑘 ≤ 𝐾} containing 𝐾 diverse trading policies, as
illustrated in Figure 1(a). Here Policy 𝜋 (𝑎 |𝑠 ;𝜃𝑘 ) denotes the policy
trained by imitating the behaviors in dataset 𝐷𝑘 .

3.1.2 Network Structure. To tackle Challenge (2), we provide a well-
designed neural network structure to abstract the time-axis and
data-axis correlations among the assets. This structure is shown in
Figure 2 as a detailed supplement for Figure 1(a).

Temporal Convolution Block. As demonstrated in Figure 2,
MetaTrader first utilizes a temporal convolution network (TCN)
[50] block to extract the time-axis relations in the asset features
data 𝒙𝑠 . Compared to recurrent neural networks, TCN has several
appealing properties including facilitating parallel computation,
alleviating the gradient exploration/vanishing issue, and demon-
strating longer effective memory [46, 50]. After conducting TCN
operations on 𝑥𝑠 along the time axis, we obtain an output tensor
denoted by 𝑯̂ ∈ R𝑁×𝐹×𝑇 , where 𝐹 is the dimension of hidden
features, 𝑁 is the number of risky assets, and 𝑇 is the temporal
dimension.

Spatial Attention Layer. Afterward, MetaTrader adopts an
attention mechanism [42] to handle the spatial relationships among
different assets. Given the output vector of TCN, we calculate the
spatial attention weight as

𝑺 = 𝑽𝑠 · sigmoid
(
(𝑯̂𝑾1)𝑾2 (𝑾3𝑯̂

𝑇1,2 )𝑇 + 𝒃𝑠
)
, (5)

1576



MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

where𝑾1 ∈ R𝑇 ,𝑾2 ∈ R𝐹×𝑇 ,𝑾3 ∈ R𝐹 , and 𝑽𝑠 ∈ R𝑁×𝑁 are param-
eters to learn, 𝒃𝑠 ∈ R𝑁×𝑁 is the bias vector, and the superscript
𝑇1,2 denotes transposing the first two dimensions of 𝑯 . The matrix
𝑆 ∈ R𝑁×𝑁 is then normalized by rows to represent the correlation
among stocks:

𝑺𝑖, 𝑗 =
exp(𝑺𝑖, 𝑗 )∑𝑁

𝑢=1 exp(𝑺𝑖,𝑢 )
,∀1 ≤ 𝑖 ≤ 𝑁 . (6)

Residual Connections. We adopt the ResNet [11] structure to
alleviate the vanishing gradient problem in deep learning. To be
precise, the final representation abstracted from 𝑥𝑠 is denoted by
𝐻 = 𝑆 × 𝑯̂ + 𝑥𝑠 , and it is then translated to a vector with dim N
using a fully connected layer: 𝒗 =𝑊4𝑯 + 𝒃4 . The representation
𝒗 is concatenated with the account feature 𝒙𝑎 to obtain a vector 𝒗
with dim N: 𝒗 = sigmoid(𝑊𝑡 · [𝒗;𝑥𝑎] + 𝒃), which implies the price
rising potential of the N risky assets.

Next, MetaTrader generates the portfolio weights according to
vector 𝒗: Taking the top 𝑀 elements of 𝒗 and normalizing them
with a SoftMax activation function, we obtain the weights𝒘+ for
long position; Note that 𝒗 ∈ [−1, 1]𝑁 , the weights𝒘− are acquired
by a similar procedure using SoftMax activation for −𝒗, and these
elements are multiplied by the total short ratio 𝜌 . Let G+ and G−

denote the set of selected stocks for long position and short position
respectively. Thus, the portfolio weights can be calculated by

𝑤+
𝑖 =

{ exp(𝒗𝑖 )∑
𝑗∈G+ exp(𝒗𝑗 ) 𝑖 ∈ G+

0 𝑖 ∉ G+ 𝑤−
𝑖 =

{
𝜌 ∗ exp(−𝒗𝑖 )∑

𝑗∈G− exp(−𝒗𝑗 ) 𝑖 ∈ G−

0 𝑖 ∉ G−

(7)
As shown in Figure 2, we condition the short ratio 𝜌 on market

features 𝒙𝑚 . Similar to DeepTrader [46] and DA-RNN [33], Meta-
Trader employs an LSTM neural network [12] and a temporal at-
tention structure to extract representation for market features:

𝒉𝑡 = LSTM(𝒉𝑡−1, 𝑥𝑚𝑡 ), 1 ≤ 𝑡 ≤ 𝑇,

𝑒𝑡 = 𝑽𝑇𝑒 tanh(𝑾5 [𝒉𝑡 ;𝒉𝑇 ]) +𝑾6𝑥
𝑚
𝑘
,

𝛼𝑡 =
exp(𝑒𝑡 )∑𝑇
𝑗=1 exp(𝑒 𝑗 )

,

𝜌𝑡 =
1
2
sigmoid(𝑊7 · (

𝑇∑︁
𝑡=1

𝛼𝑡 · 𝒉𝑡 ) + 𝒃𝑚) + 1
2
,

(8)

where 𝑽𝑒 ∈ R𝐹 , 𝑾5 ∈ R𝐹×2𝐹 , 𝑾6 ∈ R𝐹×2𝐹 , 𝑾7 ∈ R𝐹 are free
parameters. 𝒉𝑡 denotes the hidden embedding encoded by LSTM at
step 𝑡 , 𝛼𝑡 is the normalized attention weight output by the temporal
attention module, and 𝜌𝑡 is the short ratio at step 𝑡 . It is worth
mentioning that compared to the DeepTrader method, MetaTrader
does not rely on a separate portfolio generator module. The short
ratio 𝜌 serves as a latent variable in the neural network, which is
trained jointly with the portfolio vector [𝒘+,𝒘−] with the learning
objective introduced in Section 3.1.1.

3.2 Meta-Policy Learning
With the diverse policies learned in Section 3.1, there are generally
two methods for policy ensemble: weighted sum of the pretrained
policies, or selecting one policy to follow per timestep. We adopt
the latter one in this paper, as illustrated in Figure 1(b).

Dynamical policy selection is also a challenging sequential de-
cision making problem. In the second phase, DeepTrader trains
a meta-policy to accomplish the automatic policy selection. The
meta-policy makes decisions in a meta MDP environment. The
meta-policy recognizes the market conditions mainly based on sev-
eral macro indicators such as the index trend and market sentiment,
and the historical performance of base policies. Therefore, the state
at timestep 𝑡 in the meta-MDP is defined by 𝑠𝑚𝑡 = [𝒙𝑚𝑡 ; 𝒙𝑝𝑡 ], where
the superscript 𝑝 denotes the past performance of the frozen di-
verse policies. And the action space for the meta-MDP is the policy
identity space {1, ..., 𝐾}. Since the action space of the meta-policy
is discrete, we optimize the meta-policy with the deep Q-learning
algorithm [26]. For the Q network structure, we adopt an LSTM
network and the temporal attention mechanism to extract a latent
embedding from the market features 𝒙𝑚𝑡 . The latent embedding
of 𝒙𝑚𝑡 is concatenated with the past performance vector 𝒙𝑝𝑡 . The
concatenated embedding is passed through two fully connected
layers to output the Q values.

Algorithm 1 Meta-Policy Learning

Input: A trading policy set {𝜋 (𝑎 |𝑠;𝜃𝑘 ), 𝑘 = 1, ..., 𝐾}
Initialize: Q-function 𝑄 (𝑠𝑚, 𝑘), replay buffer 𝐵
1: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1..𝑁𝑒 do
2: for 𝑡 = 1..𝑇 do
3: With a probability 𝜖 , randomly sample 𝑘𝑡 from {1, ..., 𝐾}
4: otherwise 𝑘𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑄 (𝑠𝑚𝑡 , 𝑘)
5: 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ;𝜃𝑘𝑡 )
6: Execute the action𝑎𝑡 and observe reward 𝑟𝑡 and new states

𝑠𝑚
𝑡+1 and 𝑠𝑡+1

7: Store transition (𝑠𝑚𝑡 , 𝑘𝑡 , 𝑟𝑡 , 𝑠𝑚𝑡+1) in 𝐵
8: Perform one step of optimization using Eq. (9)
9: end for
10: end for
11: Return: 𝑄 (𝑠𝑚, 𝑘)

Algorithm 1 demonstrates the learning process of the meta-
policy. To explore the diverse policies, MetaTrader randomly selects
a policy in the policy set probabilistically (Line 3). As the Q-learning
converges, the probability 𝜖 of the uniform random exploration de-
creases. After making decisions using the meta-policy, the portfolio
weights given by the selected policy are executed in the simulated
trading environment, and the agent receives a reward and transits
to the next state (Line 5, 6). The transitions are stored in a replay
buffer 𝐵 (Line 7). Q-values of the meta-policy are updated using the
minibatches sampled from 𝐵 with the following loss function:

𝐿𝑄 = E(𝑠 𝑗 ,𝑘 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1)∼𝐵 [(𝑦 𝑗 −𝑄 (𝑠𝑚𝑗 , 𝑘 𝑗 ))
2], (9)

where𝑦 𝑗 = 𝑟 𝑗 +𝛾 max𝑘 𝑗+1 𝑄̂𝑡𝑎𝑟𝑔𝑒𝑡 (𝑠𝑚𝑗+1, 𝑘 𝑗+1). The target Q-function
𝑄𝑡𝑎𝑟𝑔𝑒𝑡 is synchronized from the optimized Q-function every 𝐶
steps. As 𝑄 (𝑠𝑚, 𝑘) is the expected future cumulative reward of se-
lecting the𝑘-th policy at state 𝑠𝑚 , the learnedmeta-policy𝜋𝑚 (𝑘 |𝑠𝑚)
is determined by 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑄 (𝑠𝑚, 𝑘). The portfolio weights are gen-
erated with a joint inference of the Q-network and the selected
policy network. In addition, to stabilize the learning process, those
diverse trading policies are not finetuned in this learning stage.

1577



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Hui Niu, Siyuan Li, and Jian Li

4 EXPERIMENTS
In this section, we conduct a series of experiments to evaluate
the proposed approach. First, we demonstrate that our approach
achieves better risk-return balancing in three real financial markets
and substantially outperforms the baseline methods. Next, we dig
into the reason for the effectiveness of the proposed method and
analyze the learned portfolio management strategy in detail. Finally,
we conduct ablation studies and show the importance of the meta-
policy learning.

4.1 Experimental Setup
This subsection provides a description about the market data for
training and test, the expert datasets for imitation learning, the
compared baseline methods and the evaluation metrics.

Financial Data. Aiming at enhancing the indexes as lots of
real-world funds, we conduct experiments on the constituent stocks
of three well-known stock indexes, including Dow Jones Industrial
Average (DJIA) in the U.S. market, Hang Seng Index (HSI) in Hong
Kong market, and CSI100 Index in Chinese A-share market. Note
that Chinese A-share market does not allow short positions, the
short ratio 𝜌 is set as 0 in this scenario. The splitting of the data
to training and test sets is shown in Table 1. A few companies are
dropped from the pools for the sake of missing data 3.

We adopt several technical indicators to generate input features
from the price-volume data, such as MACD and KDJ, using Stock-
Stats4.

Table 1: Training/Test splitting of the datasets

Index # stocks Training Test

DJIA 23 1987.08-2007.08 2007.09-2018.12
HSI 38 2005.06-2015.04 2015.05-2021.12

CSI100 82 2006.01-2013.12 2014.01-2020.12

Expert Datasets. To acquire diverse trading policies, we em-
ploy four different datasets to train our approach. Three expert
datasets (𝐷1 ∼ 𝐷3) are used to generate policies imitating the mo-
mentum, mean reversion and hindsight strategies respectively. An
empty dataset 𝐷4 is also adopted to generate a policy learned from
interactions with the environment without imitation.

• D1 is a set of portfolio vectors following the Cross-Sectional
Momentum (CSM) [18] strategy during the training period.
In the CSM method, stocks are ranked based on their rela-
tive strength momentum, and we utilize the past price rising

rate
3∏

𝑖=1
(1 + 𝑅𝑜𝑅𝑡−𝑖 ) as the momentum when make deci-

sions at timesetp 𝑡 . The long/short portfolios consist of the
top/bottom𝑀 stocks with equal weights.

• D2 is a set of portfolio vectors following the Buying-Loser-
Selling-Winner (BLSW) [17] strategy during the training
period. BLSW is a classical mean reversion strategy. Stocks
are ranked according to the difference between prices and

37, 12, 18 stocks are dropped from the index constitutes of DJIA, HSI, and CSI100,
respectively.
4More indicators can be find in https://github.com/dventimiglia/StockStats.

their near-term averages. The long/short portfolios consist
of the top/bottom𝑀 stocks with equal weights.

• D3 is a set of portfolio vectors decided by a hindsight greedy
strategy. As we are accessible to the price data during the
training time, we create a hindsight expert that purchases
𝑀 stocks with the highest future returns and sell those with
the lowest future returns. The weights of the𝑀 stocks are
generated with the normalization of the the price rising rates,
different from the equal weights in 𝐷1 and 𝐷2.

• D4 is an empty dataset. It can be considered as a special case
in Equation (4), i.e., 𝜆 = 0.

Baseline Methods. We compare our method with the three cat-
egories of portfolio management methods summarized in Section
5. (1) Traditional investment strategies: Market, CSM and BLSW.
Market is a strategy replicating the index. CSM and BLSW are the
strategies to generate the expert datasets. (2) Supervised learning
approaches5: LightGBM [20] and DA-RNN [33]. LightGBM is a
widely-used ensemble model of decision trees for classification
and regression. The DA-RNN method utilizes an LSTM neural net-
work with temporal attention mechanism for stock price prediction.
(3) State-of-the-art RL-based methods: AlphaStock [44] and Deep-
Trader [46].

Evaluation Metrics. We adopt six evaluation metrics to meet
different risk appetites of the investors.

(1) Annualized Rate of Return (ARR) is the annualized average
of the return rate of one holding period, calculated as

𝐴𝑅𝑅𝑇 = (𝑅𝑜𝑅1:𝑇 − 𝑅𝑜𝑅 𝑓 ) × 𝑁𝑦,

where 𝑅𝑜𝑅1:𝑇 is the average return rate of a holding period,
and 𝑁𝑦 is the number of holding periods in a year.

(2) Annualized Volatility (AVol) is an annualized average of volatil-
ity (𝑉𝑜𝑙 ) that reflects risks of a strategy

𝐴𝑉𝑜𝑙𝑇 = 𝑉𝑇 ×
√︃
𝑁𝑦 .

(3) Maximum DrawDown (MDD) measures the loss under the
worst case during the investment. It can be defined as

𝑀𝐷𝐷𝑇 = max
1≤𝑖< 𝑗≤𝑇

(𝐴𝐶𝑖 −𝐴𝐶 𝑗 )/𝐴𝐶𝑖 ,

where𝐴𝐶𝑖 and𝐴𝐶 𝑗 denote the accumulated capital at timestep
𝑖 and 𝑗 respectively.

(4) Annualized Sharpe Ratio (ASR) is the risk-adjusted ARR based
on Annualized Volatility, calculated as

𝐴𝑆𝑅𝑇 =
𝐴𝑅𝑅

𝐴𝑉𝑜𝑙
.

(5) Calmar Ratio (CR) is the risk-adjusted ARR based on MDD,
formulated by

𝐶𝑅𝑇 = 𝐴𝑃𝑅/𝑀𝐷𝐷.
(6) Sortino Ratio (SoR) is also a risk-adjustment metric, which

implies the additional return for each unit of downside risk,
defined as

𝑆𝑜𝑅 =
𝐴𝑅𝑅𝑇√︃∑𝑇

𝑡=1 (min(𝑅𝑜𝑅𝑡 , 0) − 1
𝑇

∑𝑇
𝑡=1min(𝑅𝑜𝑅𝑡 , 0))2/𝑇

.

5The implementation of those supervised learning methods is based on Qlib (https:
//github.com/microsoft/qlib).

1578

https://github.com/dventimiglia/StockStats
https://github.com/microsoft/qlib
https://github.com/microsoft/qlib


MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Table 2: The comparison results on DJIA, HSI, and CSI100.

Data DJIA HSI CSI100
Methods ARR(%) AVol ASR SoR MDD(%) CR ARR(%) AVol ASR SoR MDD(%) CR ARR(%) AVol ASR SoR MDD(%) CR

Market 8.66 0.176 0.491 7.560 53.78 0.161 -1.19 0.190 -0.063 -0.934 35.15 -0.034 16.80 0.234 0.717 10.966 43.75 0.384
CSM 12.84 0.537 0.239 2.073 55.50 0.231 4.41 0.391 0.113 0.426 40.52 0.109 32.49 0.510 0.638 2.945 66.78 0.487
BLSW 10.78 0.239 0.452 1.757 49.73 0.217 -0.35 0.345 -0.010 -0.035 67.01 -0.005 11.21 0.416 0.270 1.002 75.01 0.149
LightGBM 8.05 0.251 0.320 1.051 62.96 0.128 5.64 0.313 0.180 0.611 48.20 0.117 14.48 0.464 0.312 1.103 72.99 0.198
DA-RNN 12.09 0.230 0.525 1.841 47.58 0.254 -6.96 0.281 -0.248 -0.723 60.48 -0.115 13.93 0.305 0.456 1.630 42.92 0.325
AlphaStock 17.86 0.150 1.190 4.333 24.51 0.729 18.75 0.193 0.969 4.169 28.90 0.649 27.51 0.250 1.099 4.501 19.08 1.442
DeepTrader 14.90 0.122 1.122 4.617 13.22 1.127 21.68 0.189 1.145 4.322 23.24 0.933 33.55 0.280 1.197 4.380 22.70 1.478
Ours 25.61 0.196 1.310 5.602 19.91 1.287 44.12 0.320 1.379 7.759 27.46 1.607 43.21 0.249 1.733 6.409 22.45 1.924

Among these metrics, ARR is a profit criteria; AVol and MDD
are risk criterion for which the lower values are preferred; ASR,
CR, and SoR are risk-return criterion.

4.2 Comparison Results on DJIA, HSI, and
CSI100

Table 2 summarises the comparison results of our approach and
the baselines, and Figure 3 depicts the corresponding accumulated
capital in the three markets.

Performance on DJIA. Our method achieves the best per-
formance in terms of profit criteria (ARR) and profit-risk criteria
(ASR, SoR, and CR). It gains a much higher return rate while keep-
ing the risk at a relatively lower level compared to other meth-
ods. For the traditional investment strategies, the CSM strategy
achieves a higher average return rate than the Market. However,
it also suffers from high volatility and MDD. As shown in Figure
3(a), the CSM strategy performs well from 2009 to 2014, but it per-
forms poorly from 2015 to 2018. While the BLSW strategy performs
well during the period of 2009-2012, 2013-2014, and 2015-2017, and
fails to gain profits in 2012 and 2014. These results verify that
the traditional investment strategies only perform well in certain
cases. The supervised learning-based baselines (LightGBM and DA-
RNN) fail in reducing risks, since they concentrate more on price
movement prediction, ignoring the expensive cost of failed predic-
tions. We find that RL-based methods, i.e., AlphaStock, DeepTrader,
and our method, outperform traditional strategies and supervised
learning-based methods in risk-return balancing. In Figure 3(a),
the wealth curves of RL-based methods rise steadily. Correspond-
ingly, as shown in the DJIA columns of Table 2, these methods have
high risk-adjusted return rates and low risks. In particular, Deep-
Trader achieves the lowest MDD (13.22%) possibly because MDD is
adopted as the reward in its market scoring unit. This phenome-
non validates the flexibility and effectiveness of the RL objective
in portfolio management. Since our method could extract knowl-
edge from the datasets and tackle different market conditions with
the corresponding trading styles, our method has accomplished a
significantly larger ARR than DeepTrader at the cost of slightly
greater risks, leading to higher profit-risk criteria.

Performance onHSI. As shown in the middle columns of Table
2, the ARR of Market on HSI in the back-test period is negative,
which indicates a grim economic situation. Even in this situation,
our method still substantially outperforms the baselines in terms
of profits and profit-risk criteria, verifying the effectiveness of our
approach. As illustrated in Figure 3(b), the traditional investment

strategies and the supervised learning baselines perform no better
than the Market. The two RL baselines remain competitive methods
in this bad economic situation.

Performance onCSI100. In themarket of CSI100, CSM achieves
a fascinating ARR of 32.49%. However, as demonstrated in the right
columns of Table 2, all the traditional methods and supervised
learning methods have poor performance regarding MDD and AVol.
These results are consistent with the declining wealth curves dur-
ing the bear market in 2015 shown by Figure 3(c). In comparison,
RL-based methods maintain relatively steady performance during
the whole back-test period. Particularly, our method outperforms
the baselines in obtaining higher profits with low risks.

4.3 Analysis of Diverse Trading policies
We visualize the trading policies trained with the learning objec-
tive proposed in Section 3.1 to answer the following questions: (1)
Do the learned policies have diverse trading styles? (2) Is there a
single policy performing consistently better than others from the
beginning to the end?

To answer Question (1), we depict the portfolio weights given
by the four trading policies on May 18th, 2010 in the U.S. market
in Figure 4(a). The heights of the bars represent the price rising
rates in the future trading period. The colors denote the portfolio
weights of the candidate stocks: green for long operations, and red
for short operations. As shown in Figure 4(a), the behaviors of those
policies are quite different from each other. For example, Policy 1
and 2 hold opposite views on the allocation for stock AXP and CAT.
According to the price rising rates, the decision of Policy 2 is the
most reasonable on that day. That is, the stocks with higher price
rising rates are selected for long operations by Policy 2.

To answer Question (2), we rank the four policies based on their
monthly profits from Oct. 2010 to Sep. 2013 in the U.S. market in
Figure 4(c), where higher ranks indicate higher profits. Figure 4(c)
demonstrates that no single policy always performs better than
the others. Instead, their rankings fluctuate with time. Besides,
Figure 4(b) depicts the monthly return of the four base policies
from Oct. 2007 to Sep. 2010. According to Figure 4(b), in the vast
majority of cases, there are at least one base policy that performs
not bad even when encountering the 2008 crisis. This confirms the
effectiveness of the first phase of DeepTrader. Therefore, switching
to appropriate policies according to the current market conditions
is crucial to improving the performance of portfolio management
as demonstrated in the next subsection.

1579



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Hui Niu, Siyuan Li, and Jian Li

2007-09 2009-09 2011-09 2013-09 2015-09 2017-09

A
cc

um
ul

at
ed

 C
ap

it
al

 ($
1M

)

MetaTrader

CSM

BLSW

LightGBM

DA-RNN

AlphaStock

DeepTrader

Market

0

2

4

6

8

10

12

14

(a) DJIA.

0

2

4

6

8

10

12

2015-06 2016-06 2017-06 2019-06 2020-07 2020-072018-06

A
cc

um
ul

at
ed

 C
ap

it
al

 ($
1M

)

MetaTrader

CSM

BLSW

LightGBM

DA-RNN

AlphaStock

DeepTrader

Market

(b) HSI.

2014-02 2015-02 2016-03 2018-03 2019-03 2020-032017-03

A
cc

um
ul

at
ed

 C
ap

it
al

 ($
1M

)

MetaTrader

CSM

BLSW

LightGBM

DA-RNN

AlphaStock

DeepTrader

Market

0

2

4

6

8

10

12

14

(c) CSI100.

Figure 3: The accumulated capital of the proposed method and baselines on DJIA,HSI and CSI100.

(a) Portfolio vectors given by the four trading policies on May 18th, 2010.

Policy 4
Policy 3
Policy 2
Policy 1

2007-10 2008-10 2009-10 2010-10

0.3

0.0

-0.3

(b) The monthly return rates of the learned base policies from Oct., 2007 to
Sep.,2010.

Policy 4
Policy 3
Policy 2
Policy 1

2010-10 2011-10 2012-10 2013-10

4
3
2
1

(c) Ranking the four policies by profits from Oct., 2010 to Sep.,2013. Darker
colors denote higher monthly profits (larger ranks) .

Figure 4: Visualization of the diverse policies learned in the
first phase on DJIA constituent stocks.

4.4 Visualization of the Learned Meta-Policy
In this subsection, we visualize and analyze the decisions of the
learned meta-policy on DJIA during the test period. Figure 5 com-
pares the accumulated capital of the four base trading policies and
the method of integrating them together. The color of the integra-
tion curve represents the policy identity selected by the meta-policy.
As we can see, the wealth of the base policies all significantly out-
performs that of the Market index, which verifies the utility of the
novel learning objective proposed in Section 3.1. With the second
training stage described in Section 3.2, the meta-policy has learned
to select the most profitable trading policy to follow. For example,
after Sep. 2011, the policy selection switches from the red policy

(Policy 2) to the lightcoral policy (Policy 4). Similarly, from Sep.
2013 to Sep. 2014, the selection of the red policy is switched back
to the light blue policy for a faster increase of wealth. We calculate
the profit rankings of the selected policies as well, and find that for
about 95% of the trading dates, the meta-policy selects the most
profitable or the second profitable policy.

2007-09 2009-09 2011-09 2013-09 2015-09 2017-09

2

4

6

8

10

12

14
A

cc
um

ul
at

ed
 C

ap
it

al
 ($

1M
)

DJIA

MetaTrader

Policy 3
Policy 2
Policy 1

Policy 4

Figure 5: The accumulated capital of the meta-policy and the
base policies on DJIA during the test period.

4.5 Ablation Study of Meta-Policy Learning
To investigate the effectiveness of the meta-policy learning, we
compare the proposed approach with its three variations including
Single-Best, Random-Pick and Average-Weight. Single-Best selects
the policy with the largest ARR from the policy set. Random-Pick
denotes using a random meta-policy instead of training it. Average-
Weight means taking the average of outputs of the four base policies
as the portfolio weights, which is the same as the ensemble method
in MAPS [21].

The results of the ablation study are shown in Table 3. The
performance of our method is superior than all the three variant
methods. This phenomenon empirically verifies that it is critical
to effectively integrate the learned base policies based on market
conditions via learning the meta-policy. Note that the Single-Best
method outperforms the other two variant methods on HSI and
CSI100, indicating that integrating different policies by averaging
or random selection is unhelpful to spread risks.

1580



MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

Table 3: Ablation study of the meta-policy learning.

Data DJIA HSI CSI100

Methods ARR(%) AVoL ASR SoR MDD(%) CR ARR(%) AVoL ASR SoR MDD(%) CR ARR(%) AVoL ASR SoR MDD(%) CR

Single-Best 16.05 0.133 1.210 5.210 13.10 1.226 22.31 0.223 0.999 5.222 19.08 1.169 35.67 0.221 1.236 5.207 20.40 1.363
Random-Pick 21.64 0.182 1.189 4.637 24.04 0.900 19.54 0.217 1.191 3.437 31.44 0.622 22.15 0.444 0.499 2.000 63.55 0.348
Average-Weight 20.08 0.174 1.152 3.844 28.01 0.717 18.59 0.177 0.901 3.699 32.36 0.575 24.89 0.309 0.805 2.965 42.77 0.582
Ours 25.61 0.196 1.310 5.602 19.91 1.287 44.12 0.320 1.379 7.759 27.46 1.607 43.21 0.249 1.733 6.409 22.45 1.924

5 RELATEDWORK
Quantitative portfolio management has received much attention in
financial domain. We classify the related work into three categories,
and provide a discussion about them as follows.

Traditional Investment Strategies. Traditional portfolio man-
agement strategies comprise momentum trading, mean reversion,
and multi-factor models. The momentum trading strategies suggest
following the current trends, e.g., buying the winners and selling
the losers [9], cross-sectional momentum [18], time series momen-
tum [28], and so on. The mean reversion strategy [32] purchases
assets whose prices are lower than their historical mean and sells
those whose prices are higher than the mean, e.g., buying the losers
and selling the winners [17]. Multi-factor models [7] do asset selec-
tion according to various factors correlated with the returns of the
assets. Although based on solid financial theories, most traditional
investment strategies only perform well in particular scenarios, and
fail to adapt to the complex markets.

Supervised Learning in Portfolio Management. With an
exceptional ability to extract useful representations, deep neural
networks have been applied to solve the portfolio management
problem in recent years. The supervised learning methods firstly
train a deep predictive model of asset prices, and then use the
predictive model and a rule to generate portfolio weights. Previ-
ous supervised learning methods mainly focus on two aspects to
improve the prediction accuracy: using advanced neural network
structures [4, 33–35, 49], and proposing new representation learn-
ing objectives [8, 13, 51].

The DA-RNN method [33] adopts a temporal attention structure
to learn the correlations among historical prices, and the DTML
approach [49] utilizes a transformer encoder to learn inter-stock
correlations. Graph neural networks [36] are also widely used to
detect stock relations by extracting knowledge from extra data
resources [4, 15, 34, 35, 47]. As for the new representation learning
objectives, Feng et al. [8] proposed an adversarial training objective
to achieve more robust predictions, and Hou et al. [13] leveraged a
contrastive learning objective to process the multi-granularity data
in markets. The prediction models in those supervised learning
methods are trained with deep learning techniques, but the way of
generating portfolio weights is based on specific rules. In contrast,
our approach trains the portfolio allocation framework in an end-to-
end manner, which has obtained superior performance in markets
as demonstrated in Section 4.

Reinforcement Learning in Portfolio Management. Com-
pared to the supervised learning methods, RL provides a seam-
less and flexible framework for portfolio management [39]. With
different risk appetite, previous RL-based portfolio management
algorithms adopt various reward functions including the Sharpe

ratio [44], the maximum drawdown [1, 46], and the total profits
[19, 45, 48]. The performance of the methods utilizing a pure RL
objective is constrained by not fully exploring the fluctuate markets.
Via imitating the behaviors of real investors, the Investor-Imitator
method [6] achieves better exploration in the complex trading en-
vironment. However, this method has not solved the problem of
integrating different human trading styles to accomplish a superior
trading performance. Besides the portfolio management methods
using the single-agent RL framework, some related work employs
multi-agent techniques to learn investment decisions [3, 16, 21].
MAPS [21] is a multi-agent portfolio management method, which
diversifies the multiple trading agents with a global reward based
on correlations between agents. Nevertheless, MAPS naively takes
the average of those agents’ outputs as the final portfolio weights.
The performance of this averaging method is much worse than our
method of learning a meta-policy, as demonstrated in Section 4.5.
MPSM [16] is also a multi-agent portfolio management method,
and it aims to obtain a scalable and reusable trading system, which
is different from our motivation of training policies with varying
trading styles to succeed in various market conditions.

6 CONCLUSION
In this paper, we propose MetaTrader, a two-phase deep RL-based
portfolio management approach incorporated with imitation learn-
ing techniques to deal with the challenge of changing markets.
Through abstracting trading knowledge frommultiple expertsmean-
while interacting with the environments, MetaTrader learns a set
of base policies that act diversely in the first phase. Visualization
results confirm the diversity of the learned base policies. In the
second phase, these learned base policies are then integrated by a
meta-policy optimized by DQN based on market conditions. Exper-
iments on three markets demonstrate that MetaTrader outperforms
the existing baselines in terms of risk-adjusted returns. And Fur-
ther ablation studies verify the effectiveness of the components
in MetaTrader. Since it is important for investors to avoid risks in
financial scenarios, we expect the meta-policy could conduct policy
ensemble while providing the confidence for its decisions in the
future work.

7 ACKNOWLEDGEMENT
Niu and Li are supported in part by the National Natural Science
Foundation of China Grant 62161146004, Turing AI Institute of
Nanjing and Xi’an Institute for Interdisciplinary Information Core
Technology.

REFERENCES
[1] Saud Almahdi and Steve Y Yang. 2017. An adaptive portfolio trading system: A

risk-return portfolio optimization using recurrent reinforcement learning with

1581



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Hui Niu, Siyuan Li, and Jian Li

expected maximum drawdown. Expert Systems with Applications 87 (2017), 267–
279.

[2] Benjamin Balaguer and Stefano Carpin. 2011. Combining imitation and reinforce-
ment learning to fold deformable planar objects. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 1405–1412.

[3] Vivian Batista, Noel Alonso, Luis Alonso, and María Moreno García. 2010. A
Multiagent System for Efficient Portfolio Management, Vol. 71. 53–60. https:
//doi.org/10.1007/978-3-642-12433-4_7

[4] Rui Cheng and Qing Li. 2021. Modeling the Momentum Spillover Effect for Stock
Prediction via Attribute-Driven Graph Attention Networks. In AAAI.

[5] Marcos Lopez De Prado. 2018. Advances in financial machine learning. John
Wiley & Sons.

[6] Yi Ding,Weiqing Liu, Jiang Bian, Daoqiang Zhang, and Tie-Yan Liu. 2018. Investor-
Imitator: A Framework for Trading Knowledge Extraction. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & amp;
Data Mining (London, United Kingdom) (KDD ’18). Association for Computing
Machinery, New York, NY, USA, 1310–1319. https://doi.org/10.1145/3219819.
3220113

[7] Eugene F. Fama and Kenneth R. French. 1996. Multifactor Explanations of Asset
Pricing Anomalies. Journal of Finance 51 (1996), 55–84.

[8] Fuli Feng, Huimin Chen, Xiangnan He, Ji Ding, Maosong Sun, and Tat-Seng Chua.
2019. Enhancing Stock Movement Prediction with Adversarial Training. Technical
Report. 5843–5849 pages. https://doi.org/10.24963/ijcai.2019/810

[9] Mark Grinblatt, Sheridan Titman, and Russ Wermers. 1995. Momentum invest-
ment strategies, portfolio performance, and herding: A study of mutual fund
behavior. The American economic review (1995), 1088–1105.

[10] Ben Hambly, Renyuan Xu, and Huining Yang. 2021. Recent Advances in Rein-
forcement Learning in Finance. arXiv preprint arXiv:2112.04553 (2021).

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Min Hou, Chang Xu, Yang Liu, Weiqing Liu, Jiang Bian, Le Wu, Zhi Li, Enhong
Chen, and Tie-Yan Liu. 2021. Stock Trend Prediction with Multi-Granularity
Data: A Contrastive Learning Approach with Adaptive Fusion. Association for
Computing Machinery (2021), 700–709.

[14] Hao Hu and Guo-Jun Qi. 2017. State-Frequency Memory Recurrent Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org, 1568–1577.

[15] Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, and Tie-Yan Liu. 2018. Listening
to Chaotic Whispers: A Deep Learning Framework for News-Oriented Stock
Trend Prediction. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association
for Computing Machinery, New York, NY, USA, 261–269. https://doi.org/10.
1145/3159652.3159690

[16] Zhenhan Huang and Fumihide Tanaka. 2022. MSPM: A modularized and scal-
able multi-agent reinforcement learning-based system for financial portfolio
management. PLoS ONE 17 (2022).

[17] Narasimhan Jegadeesh and Sheridan Titman. 1993. Returns to Buying Winners
and Selling Losers: Implications for Stock Market Efficiency. The Journal of
Finance 48, 1 (1993), 65–91. https://doi.org/10.1111/j.1540-6261.1993.tb04702.x

[18] Narasimhan Jegadeesh and Sheridan Titman. 2015. Cross-Sectional and
Time-Series Determinants of Momentum Returns. The Review of Finan-
cial Studies 15, 1 (06 2015), 143–157. https://doi.org/10.1093/rfs/15.1.143
arXiv:https://academic.oup.com/rfs/article-pdf/15/1/143/24432396/150143.pdf

[19] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. 2017. A Deep Reinforcement
Learning Framework for the Financial Portfolio Management Problem. ArXiv
abs/1706.10059 (2017).

[20] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017).

[21] Jinho Lee, Raehyun Kim, Seok-Won Yi, and Jaewoo Kang. 2020. MAPS: multi-
agent reinforcement learning-based portfolio management system. arXiv preprint
arXiv:2007.05402 (2020).

[22] Bin Li and Steven C. H. Hoi. 2014. Online Portfolio Selection: A Survey. ACM
Comput. Surv. 46, 3, Article 35 (jan 2014), 36 pages. https://doi.org/10.1145/
2512962

[23] Duan Li and Wan-Lung Ng. 2000. Optimal Dynamic Portfolio Selection: Multi-
period Mean-Variance Formulation. Mathematical Finance 10, 3 (2000), 387–406.
https://doi.org/10.1111/1467-9965.00100

[24] Harry Markowitz. 1952. Portfolio Selection. The Journal of Finance 7, 1 (1952),
77–91. http://www.jstor.org/stable/2975974

[25] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. 2019. Guided meta-policy search. Advances in Neural Informa-
tion Processing Systems 32 (2019).

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[27] John Moody and Matthew Saffell. 1998. Reinforcement learning for trading.
Advances in Neural Information Processing Systems 11 (1998).

[28] Tobias J. Moskowitz, Yao Hua Ooi, and Lasse Heje Pedersen. 2012. Time series
momentum. Journal of Financial Economics 104, 2 (2012), 228–250. https://doi.
org/10.1016/j.jfineco.2011.11.003 Special Issue on Investor Sentiment.

[29] Jan Mossin. 1968. Optimal Multiperiod Portfolio Policies. The Journal of Business
41, 2 (1968), 215–229. http://www.jstor.org/stable/2351447

[30] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. 2018. Overcoming exploration in reinforcement learning with demon-
strations. In 2018 IEEE international conference on robotics and automation (ICRA).
IEEE, 6292–6299.

[31] Dean A Pomerleau. 1991. Efficient training of artificial neural networks for
autonomous navigation. Neural computation 3, 1 (1991), 88–97.

[32] James M Poterba and Lawrence H Summers. 1988. Mean reversion in stock prices:
Evidence and implications. Journal of financial economics 22, 1 (1988), 27–59.

[33] Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and GarrisonW.
Cottrell. 2017. A Dual-Stage Attention-Based Recurrent Neural Network for
Time Series Prediction. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (Melbourne, Australia) (IJCAI’17). AAAI Press, 2627–2633.

[34] Ramit Sawhney, Shivam Agarwal, and Arnav Wadhwa. 2020. Deep Attentive
Learning for Stock Movement Prediction From Social Media Text and Company
Correlations. (01 2020), 8415–8426. https://doi.org/10.18653/v1/2020.emnlp-
main.676

[35] Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, Tyler Derr, and Rajiv Ratn
Shah. 2021. Stock Selection via Spatiotemporal Hypergraph Attention Network:
A Learning to Rank Approach. 35 (May 2021), 497–504. https://ojs.aaai.org/
index.php/AAAI/article/view/16127

[36] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[37] Si Shi, Jianjun Li, Guohui Li, Peng Pan, and Ke Liu. 2021. XPM: An Explainable
Deep Reinforcement Learning Framework for Portfolio Management. Association
for Computing Machinery, New York, NY, USA, 1661–1670. https://doi.org/10.
1145/3459637.3482494

[38] Marc C. Steinbach. 2001. Markowitz Revisited: Mean-VarianceModels in Financial
Portfolio Analysis. SIAM Rev. 43, 1 (jan 2001), 31–85. https://doi.org/10.1137/
S0036144500376650

[39] Shuo Sun, Rundong Wang, and Bo An. 2021. Reinforcement Learning for Quanti-
tative Trading. arXiv preprint arXiv:2109.13851 (2021).

[40] Wen Sun, J Andrew Bagnell, and Byron Boots. 2018. Truncated horizon policy
search: Combining reinforcement learning & imitation learning. arXiv preprint
arXiv:1805.11240 (2018).

[41] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[43] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. 2018. Multilevel Wavelet
Decomposition Network for Interpretable Time Series Analysis. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & amp;
Data Mining (London, United Kingdom) (KDD ’18). Association for Computing
Machinery, New York, NY, USA, 2437–2446. https://doi.org/10.1145/3219819.
3220060

[44] Jingyuan Wang, Yang Zhang, Ke Tang, Junjie Wu, and Zhang Xiong. 2019. Al-
phastock: A buying-winners-and-selling-losers investment strategy using in-
terpretable deep reinforcement attention networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1900–1908.

[45] Rundong Wang, Hongxin Wei, Bo An, Zhouyan Feng, and Jun Yao. 2020. Com-
mission fee is not enough: A hierarchical reinforced framework for portfolio
management. arXiv preprint arXiv:2012.12620 (2020).

[46] Zhicheng Wang, Biwei Huang, Shikui Tu, Kun Zhang, and Lei Xu. 2021. Deep-
Trader: A Deep Reinforcement Learning Approach for Risk-Return Balanced
Portfolio Management with Market Conditions Embedding. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 643–650.

[47] Jin Xu, Jingbo Zhou, Yongpo Jia, Jian Li, and XiongHui. 2020. AnAdaptiveMaster-
Slave Regularized Model for Unexpected Revenue Prediction Enhanced with
Alternative Data. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE). 601–612. https://doi.org/10.1109/ICDE48307.2020.00058

[48] Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, Yada Zhu, Ju Xiao, and Bo Li.
2020. Reinforcement-learning based portfolio management with augmented asset
movement prediction states. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 1112–1119.

1582

https://doi.org/10.1007/978-3-642-12433-4_7
https://doi.org/10.1007/978-3-642-12433-4_7
https://doi.org/10.1145/3219819.3220113
https://doi.org/10.1145/3219819.3220113
https://doi.org/10.24963/ijcai.2019/810
https://doi.org/10.1145/3159652.3159690
https://doi.org/10.1145/3159652.3159690
https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
https://doi.org/10.1093/rfs/15.1.143
https://arxiv.org/abs/https://academic.oup.com/rfs/article-pdf/15/1/143/24432396/150143.pdf
https://doi.org/10.1145/2512962
https://doi.org/10.1145/2512962
https://doi.org/10.1111/1467-9965.00100
http://www.jstor.org/stable/2975974
https://doi.org/10.1016/j.jfineco.2011.11.003
https://doi.org/10.1016/j.jfineco.2011.11.003
http://www.jstor.org/stable/2351447
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://doi.org/10.18653/v1/2020.emnlp-main.676
https://ojs.aaai.org/index.php/AAAI/article/view/16127
https://ojs.aaai.org/index.php/AAAI/article/view/16127
https://doi.org/10.1145/3459637.3482494
https://doi.org/10.1145/3459637.3482494
https://doi.org/10.1137/S0036144500376650
https://doi.org/10.1137/S0036144500376650
https://doi.org/10.1145/3219819.3220060
https://doi.org/10.1145/3219819.3220060
https://doi.org/10.1109/ICDE48307.2020.00058


MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

[49] Jaemin Yoo, Yejun Soun, Yong-chan Park, and U Kang. 2021. Accurate Mul-
tivariate Stock Movement Prediction via Data-Axis Transformer with Multi-
Level Contexts. In Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & amp; Data Mining (Virtual Event, Singapore) (KDD ’21). As-
sociation for Computing Machinery, New York, NY, USA, 2037–2045. https:
//doi.org/10.1145/3447548.3467297

[50] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122 (2015).

[51] Liang Zeng, Lei Wang, Hui Niu, Jian Li, Ruchen Zhang, Zhonghao Dai, Dewei
Zhu, and Ling Wang. 2021. Trade When Opportunity Comes: Price Movement
Forecasting via Locality-Aware Attention and Iterative Refinement Labeling.
https://doi.org/10.48550/ARXIV.2107.11972

1583

https://doi.org/10.1145/3447548.3467297
https://doi.org/10.1145/3447548.3467297
https://doi.org/10.48550/ARXIV.2107.11972

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Problem Setup
	2.2 Trading Procedure

	3 Approach
	3.1 Diverse Policy Learning
	3.2 Meta-Policy Learning

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison Results on DJIA, HSI, and CSI100
	4.3 Analysis of Diverse Trading policies
	4.4 Visualization of the Learned Meta-Policy
	4.5 Ablation Study of Meta-Policy Learning

	5 Related Work
	6 Conclusion
	7 Acknowledgement
	References



