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ABSTRACT
Sequential recommender systems have shown effective suggestions
by capturing users’ interest drift. There have been two groups of
existing sequential models: user- and item-centric models. The user-
centric models capture personalized interest drift based on each
user’s sequential consumption history, but do not explicitly consider
whether users’ interest in items sustains beyond the training time,
i.e., interest sustainability. On the other hand, the item-centric mod-
els consider whether users’ general interest sustains after the train-
ing time, but it is not personalized. In this work, we propose a recom-
mender system taking advantages of the models in both categories.
Our proposed model captures personalized interest sustainability,
indicating whether each user’s interest in items will sustain beyond
the training time or not. We first formulate a task that requires to
predict which items each user will consume in the recent period
of the training time based on users’ consumption history. We then
propose simple yet effective schemes to augment users’ sparse con-
sumption history. Extensive experiments show that the proposed
model outperforms 10 baseline models on 11 real-world datasets.
The codes are available at: https://github.com/dmhyun/PERIS.
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Figure 1: Comparison of models capturing interest drift.
Solid arrow denotes prediction based on items. Labels𝑦𝑖 and
𝑦𝑢,𝑖 : whether any user consumed item 𝑖 and whether a user𝑢
consumed item 𝑖, in the recent period, respectively. Dashed
arrow denotes the elapsed time from the last prediction.
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1 INTRODUCTION
Recommender system has been an indispensable technique to pro-
vide users with appealing items (e.g., products or services) from
large catalogs of candidate items [1]. Recent research has focused on
sequential recommender system that captures users’ interest drift-
ing from the past to the recent to accurately suggest attractive items
based on users’ sequential history of consumption [10, 11, 15, 16].
There have been two groups of the sequential models capturing
interest drift based on how they utilize the sequential history of
consumption: i) user- and ii) item-centric models.

The user-centric models capture the interest drift in items for
each user based on each user’s chronological sequence of consumed
items [15, 16] (Figure 1a). Thus, the user-centric model can track
personalized interest drift over time. However, the user-centric
models do not explicitly consider whether users’ interest sustains
beyond the training time. Concretely, user-centric models learn user
representations based on the next item prediction (Figure 1a), and
thus the user representation reflects the user’s interest only up to the
user’s last consumption. For example, the representation of a user
who consumed items up to 2019 contains the user’s interest only
up to 2019, which can be inaccurate to perform recommendation in
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2022 (i.e., after the training time) due to the prolonged absence of
consumption, e.g., a long red line in Figure 1a.

The item-centric models utilize all users’ consumption history
for each item to capture users’ general interest in each item [10, 27]
(Figure 1b). In a recent work [10], the model captures whether users’
general interest in each item will sustain beyond the training time,
and the notion is called interest sustainability. Specifically, it explic-
itly predicts whether each item will be consumed in a recent period
of training data, i.e., the gray box in Figure 1b. Thus, users’ interest
learned by the item-centric model can align better to the users’ in-
terest in the test time, i.e., the future, than the user-centric models
thanks to the shortened period of time between the time at which
users’ last interest is captured and the test time, i.e., a short blue
line in Figure 1b. However, the model only learns whether users’
non-personalized interest sustains beyond the training time, and
thus the item-centric model assigns the same interest sustainability
for items even to users with different tastes, e.g., recommending
generally-consumed coffee to a person who has caffeine allergy.

Motivated by these limitations, we propose a recommender sys-
tem that takes the benefits of both user- and item-centric mod-
els while addressing the downsides. Our method, Personalized
Interest Sustainability-aware recommender system (PERIS), learns
each user’s interest sustainability by predicting which items each
user will consume in the recent period of the training time, i.e.,
the gray box in Figure 1c. As a result, PERIS can learn the person-
alized interest sustainability for items by considering each user’s
consumption in the recent period of training data, which cannot
be learned by either the user-centric or item-centric models. How-
ever, it is non-trivial to predict items that each user is likely to
consume in the recent period of the training time because most
users have insufficient consumption history per item, e.g., users
have 2.6 interactions per item on average in Yelp data. To this end,
we devise simple yet effective schemes to supplement users’ sparse
consumption history in both intrinsic and extrinsic manners.

The intrinsic scheme augments each user’s consumption history
for an item based on other items consumed by the user. Its underlying
idea is that a user’s interest in an item (e.g., espresso) is assumed to
sustain if the user recently consumes a similar item (e.g., cappuccino).
Hence, the intrinsic scheme is beneficial to supplement each user’s
consumption history for an item if the user consumes a variety of
items. In addition, we devise the extrinsic scheme to supplement a
target user’s consumption history by referring other like-minded
users’ consumption history. The idea is that we can infer the interest
of a target user (e.g., vegetarian) in items (e.g., foods) through the
interest of like-minded users (e.g., other vegetarians) in those items.
Specifically, the extrinsic scheme trains the model to predict like-
minded users’ interest in the future to infer a target user’s interest.

Experiments show that PERIS outperforms 10 baseline recom-
mender systems such as general, user-centric, and item-centric
models on 11 real-world datasets. In addition, we observe that
PERIS consistently enhances the recommendation accuracy over dif-
ferent elapsed times since users’ last consumption compared to the
baseline models, implying the personalized interest sustainability
is beneficial to accurately infer users’ interest drift. Moreover, we
observe that PERIS successfully captures the personalized interest
sustainability, which is not fully captured by existing user- and
item-centric sequential recommender systems.

2 RELATEDWORK
2.1 General Recommender Systems
The general recommender systems learn each user’s preference
from a set of consumed items, i.e., no order information among
consumed items. Bayesian personalized ranking (BPR) [23] formu-
lates a pair-wise ranking loss to train recommender systems. CML
[9] adopts the metric learning to train a recommender system for
satisfying the triangle inequality, which cannot be satisfied by the
widely-used inner product operation. TransCF [21] extends CML
by applying translation vectors to users and items. SML [14] also
enhances CML by incorporating an item-side training objective and
trainable parameters for margins. SimpleX [17] is a model based on
a contrastive learning and it outperforms recent recommender sys-
tems including the models based on the metric learning. However,
the general models do not utilize the order information in users’
consumption history to track their interest drift.

2.2 Sequential Recommender Systems
2.2.1 User-centric Sequential Models. The user-centric mod-
els mainly utilize the order information of consumed items to track
users’ interest drift. Recurrent neural network (RNN)-based model
[2] naturally handles the sequential nature of consumed items. Simi-
larly, convolution neural network (CNN)-basedmodels [16, 24] treat
the consecutive items as an image with the convolution operation
to compute the interaction among the items. SASRec [11] applies
the self-attention mechanism [25] to the recommender system to
capture long-term dependency among consumed items compared
to RNN and CNN. TiSASRec [13] extends SASRec [11] by modeling
the time interval between consecutive consumed items. Recently,
LSAN [15] captures local and global interactions among consumed
items based on both CNN and self-attention modules.

Despite their success, these models do not explicitly consider
whether users’ interest sustains beyond the training time as they
depend on the next item prediction. PERIS learns which items each
user is likely to consume beyond the training time by predicting
users’ consumption in the recent period of the training time instead
of the whole training time as in the next item prediction.

2.2.2 Item-centric Sequential Models. Item-centric sequential
recommendation is an under-studied topic. In contrast to the user-
centric models, item-centric models capture users’ general interest
drift for each item by leveraging all users’ consumption history
for each item. A precedent item-centric work [27] considers the
period of time after the last consumption of each item to predict
a repetitive consumption of items in the future. CRIS [10] learns
whether users’ general interest in items will sustain up to the future
by predicting whether each item is consumed in the recent period of
the training time. The recent item-centric model [10] shows better
recommendation accuracy than the user-centric models.

However, as these models only learn non-personalized interest
drift, they tend to recommend generally-consumed items with-
out considering each user’s taste, e.g., vegan or non-vegan. PERIS
addresses the problem by predicting each user’s consumption to
capture the personalized interest sustainability instead of predicting
all users’ consumption for each item as in the item-centric models.
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(a) Data split (b) Model training

Figure 2: Illustration of a proposed prediction task.

3 PERIS: PROPOSED METHODOLOGY
We describe the problem (§3.1) and a new task to predict whether
each user’s interest in items sustains beyond the training time
(§3.2). However, due to users’ sparse consumption history, it is
non-trivial to successfully perform the task based only on users’
inherent consumption history. To this end, we propose simple yet
effective intrinsic (§3.3) and extrinsic (§3.4) schemes to supplement
users’ sparse consumption history. In addition, we complement a
label noise of the newly-introduced task by adopting conventional
preference learning (§3.5). We lastly describe the training loss and
inference score (§3.6).

3.1 Problem Formulation
Let D = {(𝑢, 𝑖, 𝑡) | user 𝑢 interacted with item 𝑖 at time 𝑡} be the
training data and U and I are the set of users and items. As in-
put, a model takes user 𝑢 and the user’s consumption history, i.e.,
ℎ𝑢 = {(𝑖, 𝑡) | a user 𝑢 interacted with item 𝑖 at time 𝑡}. In this work,
recommender systems suggest top-K items for users.

3.2 Personalized Interest Sustainability
To overcome the limitations of the user- and item-centric models,
we propose a task that requires to predict which items each user
consumes in the recent period of the training time. The recom-
mender system trained under this task can learn the personalized
interest by predicting each user’s consumption as in the user-centric
models. In addition, the task requires to predict users’ consump-
tion occurred within the recent period of the training time. Thus,
the model can focus on users’ recent interest like the item-centric
models, resulting in accurate recommendation thanks to the short
period of time between the test time and the time at which users’
last interest is captured.

3.2.1 PIS Prediction Task. The goal of this task is to predict the
personalized interest sustainability (PIS) defined as whether each
user’s interest in items is likely to sustain up to the future. We treat
the recent period of the training time as the future, and control the
length of the recent period based on a predefined time𝑇 , which is a
tunable parameter. Specifically, as shown in Figure 2a, we divide a
user’s consumption history ℎ𝑢 into the past and recent parts based
on the predefined time 𝑇 :

ℎ𝑢 = ℎ
𝑝
𝑢 ∪ ℎ𝑟𝑢

(a) 𝑦𝑢,𝑖 = 1

(b) 𝑦𝑢,𝑖 = 0

Figure 3: Temporal consumption patterns belonging to each
label. Each vertical line and color intensity denote the con-
sumption time and the number of consumption, respec-
tively.

ℎ
𝑝
𝑢 = {(𝑖, 𝑡) | (𝑖, 𝑡) ∈ ℎ𝑢 , 𝑡 < 𝑇 }

ℎ𝑟𝑢 = {(𝑖, 𝑡) | (𝑖, 𝑡) ∈ ℎ𝑢 , 𝑡 ≥ 𝑇 }
where ℎ𝑝𝑢 and ℎ𝑟𝑢 are the past and recent parts of each user’s con-
sumption history ℎ𝑢 . Given the divided consumption history, the
proposed task requires to predict which items each user𝑢 consumes
in the recent period, i.e., {𝑖 |𝑖 ∈ ℎ𝑟𝑢 }, based on the user’s previous
history ℎ𝑝𝑢 . Formally, we define the label representing whether item
𝑖 is consumed by user 𝑢 in the recent period of the training time:

𝑦𝑢,𝑖 = 1[𝑖 ∈ ℎ𝑟𝑢 ] (1)

where 𝑦𝑢,𝑖 is a binary label and 1 → {0, 1} is the indicator function.

3.2.2 Features for PIS Prediction. As the feature for perform-
ing this task, we consider users’ temporal consumption pattern, i.e.,
the times at which a user consumed an item. We first analyze how
users’ temporal consumption pattern belonging to each label is
discriminative on Yelp data (Figure 3). We overlap each user 𝑢’s the
consumption time for each consumed item 𝑖 within the past part
ℎ
𝑝
𝑢 , i.e., the period for defining features, according to whether user

𝑢 consumes item 𝑖 in the recent period (Figure 3a) or not (Figure 3b).
Based on the analysis, we observe that the labels are discriminative
based on the temporal consumption patterns, i.e., the more recently
consumed, the more likely it will be consumed in the future, i.e.,
𝑦𝑢,𝑖 = 1 (Figure 3a), whereas the other case does not show such
clear consumption pattern, i.e., 𝑦𝑢,𝑖 = 0 (Figure 3b).

Thus, we utilize user 𝑢’s temporal consumption pattern for item
𝑖 as input feature as follows:

𝐶𝑢,𝑖 = {𝑡 | (𝑖, 𝑡) ∈ ℎ
𝑝
𝑢 }

where𝐶𝑢,𝑖 is a set of user𝑢’s consumption times for item 𝑖 . We then
discretize the consumption times 𝐶𝑢,𝑖 into sequential frequency
bins (Figure 2b) with an equal width 𝑤 to capture the temporal
dynamics of consumption. We split the whole period of time before
the predefined time𝑇 , which is the period for defining the features,
into a set of time intervals:

𝑉𝑛 = [min(𝐿) + (𝑛 − 1) ·𝑤, min(𝐿) + 𝑛 ·𝑤],∀𝑛 ∈ {1, ..., 𝑁 }
where𝑉𝑛 is a time interval for𝑛-th frequency bin ,𝑤 is the bin width
(e.g., one month), 𝐿 ∈ {𝑡 |𝑡 ∈ D, 𝑡 < 𝑇 } is a set of consumption times
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in the whole period for defining features, 𝑁 is the number of time
bins calculated by 𝑁 = ⌈(max(𝐿) − min(𝐿))/𝑤⌉. We then assign
each consumption time 𝑡 into time bins based on corresponding
time intervals as follows:

𝑏𝑛𝑢,𝑖 =
∑︁

𝑡 ∈𝐶𝑢,𝑖

1[𝑡 ∈ 𝑉𝑛], ∀𝑛 ∈ {1, ..., 𝑁 } (2)

where 𝑏𝑛
𝑢,𝑖

∈ R is 𝑛-th frequency bin. From the definition, we can
obtain a sequence of the frequency bins, i.e., b𝑢,𝑖 ∈ R𝑁 .

3.2.3 TrainingObjective. Given the feature, we predict the label
𝑦𝑢,𝑖 defined as whether user 𝑢 consumes item 𝑖 in the recent period
with a prediction model such that:

𝑦𝑢,𝑖 = 𝑓𝑠 (b𝑢,𝑖 )

where 𝑦𝑢,𝑖 is the prediction score and 𝑓𝑠 is a prediction model that
predicts the label 𝑦𝑢,𝑖 from the sequential feature b𝑢,𝑖 . The detailed
architecture is provided in the following section (§3.2.4).

We then train the prediction model 𝑓𝑠 under the following loss:

L =
1
|U|

∑︁
𝑢∈U

∑︁
𝑖∈ℎ𝑢

(𝑦𝑢,𝑖 − 𝑦𝑢,𝑖 )2 (3)

We note that, for each user, we set the candidate items for training
as the items consumed by each user, i.e., {𝑖 |𝑖 ∈ ℎ𝑢 }, instead of all
the items. Thus, we can train the model more efficiently by focusing
on items in which users are interested than exhaustively predicting
users’ consumption for every item.

After training, we can predict users’ interest beyond the training
time by expanding the frequency bins up to the whole training time
and feeding the expanded frequency bins to the trained model 𝑓𝑠 :

𝑉𝑛 = [min(𝐿) + (𝑛 − 1) ·𝑤, min(𝐿) + 𝑛 ·𝑤],∀𝑛 ∈ {1, ..., 𝑀}

where𝑉𝑛 is the expanded time interval up to the end of the training
time, 𝐿 ∈ {𝑡 |𝑡 ∈ 𝐷} is a set of consumption times in the training
data D and 𝑀 ≥ 𝑁 where 𝑀 = ⌈(max(𝐿) − min(𝐿))/𝑤⌉. We can
obtain the expanded frequency bins (b𝑢,𝑖 ∈ R𝑀 ) based on Equation
2 with the new time interval 𝑉𝑛,∀𝑛 ∈ {1, ..., 𝑀}.

3.2.4 Details of Prediction Model. We here provide the details
of the prediction model 𝑓𝑠 . In this work, we design a prototype-
based classifier similar to [18] as we observe that it produces higher
accuracy than other alternatives such as the multi-layer perceptron
thanks to the small number of parameters to avoid the overfitting:

𝑓𝑠 (b𝑢,𝑖 ) = 1 − 𝑑 (C,h𝑢,𝑖 )

h𝑢,𝑖 =
−−−−→
𝐿𝑆𝑇𝑀 (b𝑢,𝑖 )

where C ∈ R𝑘 is a trainable parameter representing a positive class
(i.e., 𝑦𝑢,𝑖 = 1), called prototype, and 𝑑 is the euclidean distance.
To capture the sequential dynamics of the feature b𝑢,𝑖 , we use
Long Short-Term Memory (LSTM) [8], and the prediction model 𝑓𝑠
predicts the label based on the last hidden representation h𝑢,𝑖 ∈ R𝑘
from LSTM. Thus, the model 𝑓𝑠 classifies the frequency bins b𝑢,𝑖
(i.e., the feature) as the positive label, i.e., 𝑦𝑢,𝑖 = 1, if its hidden
representation h𝑢,𝑖 is close to the prototype C, and vice versa.

A remaining issue is that users consume items only few times
in some domain, which degrades the prediction accuracy due to
the sparse consumption history, e.g., zero values in most frequency

Figure 4: Example of intrinsic and extrinsic supplementa-
tion schemes. Strips depict supplemented frequency bins. ⊕
denotes the element-wise addition.

bins b𝑢,𝑖 as shown in Figure 2b. To address the sparsity issue, we
devise intrinsic and extrinsic supplementation schemes.

3.3 Intrinsic Supplementation Scheme
We first propose an intrinsic scheme (Figure 4) to alleviate the data
sparsity by augmenting each user’s consumption history for an item
based on other items consumed by the user. Its underlying idea is
that a user’s interest in an item (e.g., espresso) is assumed to sustain
if the user recently consumes a similar item (e.g., cappuccino).

Formally, the goal of this intrinsic scheme is to augment user
𝑢’s feature for item 𝑖 , i.e., b𝑢,𝑖 , by utilizing features of other items
consumed by user 𝑢 based on the item-wise similarity:

b𝐼𝑢,𝑖 = b𝑢,𝑖 +
∑︁

𝑗 ∈ℎ𝑝𝑢\{𝑖 }
𝛼𝑖, 𝑗 · b𝑢,𝑗

𝛼𝑖, 𝑗 = sim(v𝑖 , v𝑗 ) (4)

where b𝐼𝑢,𝑖 ∈ R𝑁 denotes user 𝑢’s augmented feature for item 𝑖

by aggregating the features of user 𝑢’s other consumed items. In
addition, sim is the normalized cosine similarity (i.e., sim(·, ·) =

(cos(·, ·)+1)/2+𝜏 ) with a tunable scaling parameter 𝜏 ∈ R, and v𝑖 ∈
R𝑘 is an embedding vector for item 𝑖 . Thus, this intrinsic scheme
supplements each user’s consumption history of a target item by
referring to the consumption history of other highly-relevant items
consumed by the user. We then make the prediction as follows:

𝑦𝐼𝑢,𝑖 = 𝑓𝑠 (b𝐼𝑢,𝑖 + e𝑢,𝑖 ) (5)

where 𝑦𝐼
𝑢,𝑖

is the prediction based on the feature from the intrinsic
scheme, i.e., b𝐼𝑢,𝑖 . In addition, we include a user-item joint represen-
tation (i.e., e𝑢,𝑖 = u𝑢 + v𝑖 ) as an additional input to provide a model
the information of a target user 𝑢 and item 𝑖 where u𝑢 ∈ R𝑘 is an
embedding vector for user 𝑢. Note that we adopt warm-up steps
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to prepare the embedding vectors as they are randomly initialized,
the details are provided in the following section (§3.6).

3.4 Extrinsic Supplementation Scheme
We then propose an extrinsic scheme (Figure 4) to supplement the
consumption history of each user (e.g., vegan) by referring to the
consumption history of other like-minded users (e.g., other vegans).
In a nutshell, the goal is to infer a target user’s interest in items
through the like-minded users’ interest in those items.

We first aggregate like-minded users’ features for target item 𝑖:

b𝐸𝑢,𝑖 =
∑︁

b𝑢′,𝑖 ∈𝐵𝑢,𝑖
𝛽𝑢,𝑢′ · b𝑢′,𝑖

where b𝐸𝑢,𝑖 is the aggregated features of like-minded users of a
target user 𝑢 for a target item 𝑖 , and other users are denoted by 𝑢 ′.
𝐵𝑢,𝑖 is a set of features of other users who consume the target item
𝑖 except user 𝑢 and 𝛽𝑢,𝑢′ is the similarity between a target user 𝑢
and other users 𝑢 ′, which are formalized as follows:

𝐵𝑢,𝑖 = {b𝑢′,𝑖 | |𝑢 ′ ∈ U \ {𝑢}, 𝑖 ∈ ℎ
𝑝

𝑢′, }
𝛽𝑢,𝑢′ = sim(u𝑢 ,u𝑢′)

The similarity function sim is identical to Equation 4, which is
defined with the cosine similarity.

We also set the label of the like-minded users’ consumption of a
target item 𝑖 based on Equation 1 such that:

𝑦𝐸𝑢,𝑖 = 1[
∑︁
𝑢′

𝛽𝑢,𝑢′ · 𝑦𝑢′,𝑖 ≥ 1] (6)

where the aggregated label 𝑦𝐸
𝑢,𝑖

indicates that the like-minded users
consume the target item 𝑖 if their weighted consumption is greater
than one consumption, i.e., item 𝑖 is consumed at least one time.
Given the extrinsic feature b𝐸𝑢,𝑖 and label 𝑦𝐸

𝑢,𝑖
, we perform the pre-

diction based on Equation 3.

3.5 Preference Learning
The PIS prediction task enables the model to predict which items
each user will consume in the future, but the label 𝑦𝑢,𝑖 can be
noisy because a user can still prefer an item even though the user
does not consume the item in the recent period, e.g., a user has a
long consumption period. To complement the label noise, we train
PERIS along with conventional preference learning, which trains
the model with ground-truth labels, i.e., consumed items. Among
existing methods, we adopt a metric learning-based method with
a prototype [10, 20] as it empirically shows better results than
conventional methods such as BPR [19].

We first obtain a joint representation for a user-item pair:

e𝑢,𝑖 = u𝑢 + v𝑖

where e𝑢,𝑖 ∈ R𝑘 is the joint representation. Given the joint repre-
sentation, the preference learning is formulated as follows:

L𝑃 =
∑︁
𝑢∈U

∑︁
𝑖+∈ℎ𝑢 ,𝑖−∉ℎ𝑢

[𝑑 (P, e𝑢,𝑖+ ) − 𝑑 (P, e𝑢,𝑖− ) +𝑚]+

where 𝑑 is the euclidean distance, 𝑖+ is a positive item consumed
by users, 𝑖− is a negative item not consumed by users, 𝑚 ∈ R
is a margin between the positive and negative interactions (i.e.,
e𝑢,𝑖+ and e𝑢,𝑖− , respectively) from a prototype P ∈ R𝑘 that is a

trainable parameter (i.e., a prototype), and [·]+ denotes max(·, 0).
Thus, the more likely user 𝑢 is to consume item 𝑖 , the closer the
joint representation e𝑢,𝑖 is to the prototype P, and vice versa.

3.6 Model Training and Inference
The final loss is the combination of the training objectives:

L𝐹 = 𝜆
{
𝜇L𝐼 + (1 − 𝜇)L𝐸

}
+ (1 − 𝜆)L𝑃 (7)

where 𝜆 and 𝜇 are tunable coefficients to control the balance among
the losses, L𝐼 is a loss computed with the intrinsic scheme (i.e.,
L𝐼 = 1

|U |
∑
𝑢∈U

∑
𝑖∈ℎ𝑢 (𝑦𝑢,𝑖 − 𝑦𝐼

𝑢,𝑖
)2), and L𝐸 is a loss computed

with the extrinsic scheme (i.e.,L𝐸 = 1
|U |

∑
𝑢∈U

∑
𝑖∈ℎ𝑢 (𝑦

𝐸
𝑢,𝑖

−𝑦𝐸
𝑢,𝑖

)2).
We also adopt warm-up steps to train PERISwith only the loss of the
preference learning L𝑃 since the similarity used by intrinsic and
extrinsic schemes is computed based on user and item embedding
vectors, which are otherwise randomly initialized. After the warm-
up steps, we train PERIS with the final loss L𝐹 .

We then compute the recommendation score as follows:

𝑟𝑢,𝑖 = 𝜆
{
𝜇𝑦𝐼𝑢,𝑖 + (1 − 𝜇)𝑦𝐸𝑢,𝑖

}
+ (1 − 𝜆)𝑦𝑃𝑢,𝑖 (8)

where 𝑟𝑢,𝑖 ∈ R is the final recommendation score, 𝑦𝐼
𝑢,𝑖

and 𝑦𝐸
𝑢,𝑖

are
user 𝑢’s interest in item 𝑖 from the intrinsic and extrinsic schemes,
and 𝑦𝑃

𝑢,𝑖
= −𝑑 (P, e𝑢,𝑖 ) is the interest from the preference learning.

Comparison to Item-Centric Model. The recent item-centric
model [10] learns the non-personalized interest sustainability (NIS).
However, PERIS advances the interest sustainability in three aspects.
First, we formulate the PIS, which can better track users’ interest
drift thanks to the consideration of each user’s interest compared to
all users’ general interest. Moreover, we devise simple yet effective
schemes to supplement users’ sparse consumption history, and ob-
serve that, without the schemes, the PIS prediction task harms the
recommendation accuracy due to users’ sparse consumption history.
Second, PERIS is an end-to-end method, whereas the item-centric
model consists of two independent training steps. The item-centric
approach first obtains the NIS before training a recommender sys-
tem, then trains the recommender system while fixing NIS during
the training. Therefore, the NIS can be sub-optimal with respect
to the recommendation as the NIS is obtained without consider-
ing the recommendation performance. In contrast, we train PERIS
by simultaneously performing both tasks, i.e., the PIS prediction
task and preference learning, which enables to learn the PIS with
considering the recommendation performance. Third, PERIS can
easily update each user’s PIS by adding newly-consumed items to
the consumption history, but the item-centric model requires to
re-train the model to update users’ new consumption as the model
depends on the fixed NIS. Therefore, PERIS substantially enhances
the recommendation accuracy as we will see in the experiments.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We evaluate PERIS compared to 10 baseline recom-
mender systems on 11 real-world datasets. Amazon datasets1 con-
tain users’ consumption history in the product shopping domains

1jmcauley.ucsd.edu/data/amazon

jmcauley.ucsd.edu/data/amazon
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and have been commonly used benchmark datasets to evaluate rec-
ommender systems [16, 17]. We use the datasets in 9 categories (i.e.,
from Cell phones to CDs in Table 1) to consider the scenario of the
recommendation in diverse domains. Yelp dataset2 contains users’
consumption history in various services, e.g., hotels and restaurants.
Google dataset3 contains users’ interaction with businesses from
Google Maps. We note that the published Yelp dataset is intention-
ally filtered by the Yelp system4, making the data highly dense with
respect to items, i.e., 28.1 interactions for each item on average.
Thus, we make the Yelp dataset to have a similar statistic to raw
data, i.e., the Amazon and Google datasets, by randomly dropping
the interactions associated with items. On all the datasets, we filter
out noisy data by dropping users who consumed less than 10 items
[9, 14, 24]. We also exclude cold-start users/items, i.e., users/items
that do not appear in the training time, as addressing the cold-start
problem is a separate issue [6, 26] and thus out of scope of this
work. Table 1 reports the statistics of the datasets.

4.1.2 Baselines. We consider the following baseline models.
1) General recommender system
− BPR [23] learns users’ preference based on a pair-wise rank-

ing loss with the positive and negative items.
− CML [9] addresses the triangle inequality issue of the inner

product with a distance-based metric learning.
− SML [14] is an extension of CML that adopts a symmetric

learning mechanism and adaptive margin parameters.
− SimpleX (SimX) [17] is the state-of-the-art general model

that uses cosine similarity and contrastive learning.
2) User-centric sequential recommender system
− Caser [24] adopts convolutional neural network (CNN) to

capture local context in each user’s consumption history.
− SASRec (SSR) [11] utilizes self-attention to capture long-

term dependency between items in consumption history.
− TiSASRec (TSSR) [13] extends SASRec by modeling time

intervals between items in users’ consumption history.
− HGN [16] captures users’ long- and short-term interest

based on a hierarchical gating network.
− LSAN [15] is the state-of-the-art user-centric sequential

model that combines CNN and self-attention to capture both
local and global contexts.

3) Item-centric sequential recommender system
− CRIS [10] is the state-of-the-art item-centric sequential model

that captures users’ general interest drift from all user’ con-
sumption history for each item.

4.1.3 Evaluation Protocol. We split the datasets into training,
validation, and test data based on the interaction times. Specifically,
we set the last one month, i.e., 30 days, as the test data by following
[10]. We then set the last month of the remaining data as the valida-
tion data, and the final remaining data is used as the training data.
As for the performance metrics, we use two widely-used metrics:
hit ratio (HR) and normalized discounted cumulative gain (nDCG).
The HR measures whether the recommendations from models in-
clude items that users consumed. Moreover, nDCG considers the
2www.yelp.com/dataset
3cseweb.ucsd.edu/~jmcauley/datasets.html
4www.yelp.com/dataset/documentation/faq

Table 1: Data statistics. Int./user (item) denotes the averaged
number of the interactions associated with users (items).

Data # users
(|U|)

# items
(|I |)

# data
(|D|)

Int./
user

Int./
item Time span

Cell phones 8,192 47,671 118,323 14.44 2.48 2000.10-2014.05
Digital music 6,062 65,094 127,484 21.03 1.96 1998.05-2014.05
Tools 8,971 61,271 150,780 16.81 2.46 1999.11-2014.05
Grocery 8,215 54,452 168,933 20.56 3.10 2000.08-2014.05
Toys 12,636 99,051 230,473 18.24 2.33 1999.10-2014.05
Health 14,149 68,810 252,356 17.84 3.67 2000.12-2014.05
Sports 16,959 99,927 276,214 16.29 2.76 2000.07-2014.05
Clothing 35,824 315,818 578,135 16.14 1.83 2000.11-2014.05
CDs 40,339 330,179 1,278,176 31.69 3.87 1997.11-2014.05
Yelp 18,284 83,871 384,330 21.02 4.58 2004.10-2020.11
Google 125,341 1,552,812 3,066,438 24.46 1.97 1990.12-2014.01

position of the consumed items in the recommendation list, i.e.,
the higher the position is, the higher the score. We consider top-K
recommendation, and thus report the HR@K (H@K) and nDCG@K
(N@K). Following a commonly-used evaluation protocol [4, 10, 13],
we measure the metrics for each consumed item compared to 100
randomly-sampled items which are not consumed by a target user.
We run models 5 times and report the mean of the metrics [5, 16].

4.1.4 Implementation Details. For fair comparison, we imple-
ment PERIS and the baselinemodels in a unified framework based on
PyTorch library [22]. We tune their hyperparameters by grid search.
We tune a learning rate of Adamoptimizer [12] in {0.01, 0.005, 0.001},
the mini-batch size in {64, 128, 256, 512, 1024, 2048}, the dimension
for the embeddings (i.e., 𝑘) in {16, 32, 64, 128}, and we initialize user
and item embeddings in all models with Xavier initialization [7].
We also normalize the user and item embeddings of CML-based
models including PERIS into a unit sphere to alleviate the curse of
dimensionality issue as suggested in [3, 9]. We tune other hyperpa-
rameters of the baseline models as reported in their literature. In the
case of PERIS, 𝜆 and 𝜇 are tuned in {0.1, 0.3, 0.5, 0.7, 1}, the bin width
𝑤 in {4, 8, 12} weeks, the scaling parameter 𝜏 in {0, 0.3, 0.5, 0.7}. We
tune the predefined time for defining the recent period (i.e., 𝑇 )
to have the recent period of {16, 32, 64} weeks, and set the first
5 epochs as the warm-up steps. In PIS task, we handle the class
imbalance by controlling the scale of losses for the negative label,
i.e., 𝑦𝑢,𝑖 = 0, with a factor 𝛾 within {1, 0.1, 0.01}. We also use the
recent half of the frequency bins b𝑢,𝑖 to save the computation time
as we observe that the past half of the frequency bins only have a
modest effect to the recommendation accuracy.

4.2 Recommendation Accuracy Comparison
We tabulate the recommendation accuracy of the recommender
systems in Table 2, and make the following observations. 1) PERIS
significantly outperforms the baseline models including the gen-
eral, user-centric, and item-centric sequential models on the 11
real-world datasets. This result indicates the effectiveness of in-
corporating the PIS, i.e., whether each user’s interest in items will
sustain beyond the training time, over various domains. We provide
detailed analyses on PERIS in the following sections to understand

www.yelp.com/dataset
cseweb.ucsd.edu/~jmcauley/datasets.html
www.yelp.com/dataset/documentation/faq
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Table 2: Comparison of recommendation accuracy. The results are in percentage without ‘%’ for brevity. Δ𝐺 and Δ𝑆 denote the
relative improvement of PERIS over the best result from general and sequential model. I-SRS: Item-centric sequential RS. The
results of PERIS are statistically significant compared to the best baseline model for each dataset with p < 0.001 from the t-test.

Setting General RS User-centric Sequential RS I-SRS Proposed RS
Dataset Metric BPR CML SML SimX SSR TSSR Caser HGN LSAN CRIS PERIS Δ𝐺 Δ𝑆

Cell
Phones

H@5 48.17 48.91 50.85 52.89 45.79 50.15 43.78 51.95 54.21 56.07 63.68 20.4% 13.6%
H@10 59.61 60.68 63.57 63.84 59.32 63.31 56.73 63.63 65.55 68.38 76.28 19.5% 11.6%
N@5 35.34 36.50 38.02 39.57 32.44 36.36 32.28 39.63 40.79 43.19 48.74 23.2% 12.9%
N@10 39.06 40.32 42.16 43.09 36.84 40.62 36.46 43.42 44.47 47.20 52.84 22.6% 11.9%

Digital
Music

H@5 35.21 34.49 38.46 37.22 24.10 25.00 25.56 25.38 34.83 27.78 47.31 23.0% 35.8%
H@10 44.53 44.49 50.21 46.54 31.97 36.37 36.28 34.53 44.79 37.78 58.50 16.5% 30.6%
N@5 25.71 25.30 28.32 27.98 16.53 16.99 18.56 18.64 25.46 19.38 35.31 24.7% 38.7%
N@10 28.73 28.53 32.12 30.98 19.06 20.52 22.05 21.58 28.70 22.62 38.93 21.2% 35.6%

Tools
H@5 36.55 36.53 37.78 39.83 34.79 32.96 30.70 34.92 37.95 35.61 43.64 9.6% 15.0%
H@10 48.89 47.86 50.50 52.69 48.03 47.45 44.95 47.45 48.93 49.77 57.15 8.5% 14.8%
N@5 25.67 25.80 26.39 28.13 23.48 22.65 20.66 24.35 26.40 24.19 31.35 11.4% 18.8%
N@10 29.66 29.46 30.50 32.30 27.78 27.31 25.27 28.41 29.94 28.75 35.73 10.6% 19.3%

Grocery
H@5 46.85 46.27 47.61 46.78 45.36 46.12 43.46 45.24 46.27 49.50 51.86 8.9% 4.8%
H@10 56.93 56.64 58.32 57.98 57.10 57.19 55.36 56.28 57.26 60.60 62.91 7.9% 3.8%
N@5 33.91 33.91 34.86 34.99 33.98 34.00 30.03 34.41 34.33 37.13 40.55 15.9% 9.2%
N@10 37.17 37.27 38.32 38.61 37.78 37.56 33.88 37.98 37.88 40.73 44.13 14.3% 8.3%

Toys
H@5 45.87 45.89 46.84 48.53 34.22 35.11 35.87 42.41 48.73 49.54 53.21 9.6% 7.4%
H@10 57.08 57.28 58.73 61.74 48.73 52.02 48.61 55.28 61.46 62.63 66.61 7.9% 6.4%
N@5 33.99 33.67 34.91 35.46 22.62 23.70 25.37 31.28 36.18 36.68 39.64 11.8% 8.1%
N@10 37.61 37.35 38.75 39.75 26.97 29.11 29.50 35.42 40.31 40.92 43.99 10.7% 7.5%

Health
H@5 46.43 47.97 49.07 51.18 43.50 44.92 46.06 49.03 50.31 52.43 53.99 5.5% 3.0%
H@10 60.20 60.35 61.57 62.78 57.93 58.60 56.20 59.99 61.84 64.92 66.38 5.7% 2.2%
N@5 32.71 34.55 35.09 37.68 31.72 32.23 34.42 37.72 37.64 38.77 42.48 12.7% 9.6%
N@10 37.17 38.55 39.14 41.43 36.37 36.67 37.70 41.24 41.38 42.82 46.48 12.2% 8.5%

Sports
H@5 47.90 48.73 49.18 50.85 39.59 39.81 40.78 46.82 48.89 49.81 54.30 6.8% 9.0%
H@10 58.53 60.23 60.66 64.12 52.38 54.35 53.38 59.07 60.39 61.38 66.82 4.2% 8.9%
N@5 35.95 36.33 36.69 37.00 27.43 28.26 29.50 34.56 36.78 37.52 40.62 9.8% 8.3%
N@10 39.38 40.04 40.41 41.30 31.57 32.74 33.57 38.51 40.51 41.27 44.68 8.2% 8.3%

Clothing
H@5 39.26 40.01 36.83 46.95 40.17 43.51 39.88 38.78 38.99 45.36 50.48 7.5% 11.3%
H@10 48.21 50.14 46.89 58.45 51.25 57.18 52.91 50.64 50.23 57.07 64.70 10.7% 13.2%
N@5 30.06 29.97 27.06 35.18 28.15 31.51 28.31 27.79 28.47 33.43 36.31 3.2% 8.6%
N@10 32.95 33.24 30.30 38.90 31.74 35.92 32.53 31.63 32.10 37.22 40.90 5.1% 9.9%

CDs
H@5 62.96 62.16 62.96 59.58 37.32 42.04 56.15 56.96 60.83 63.05 65.13 3.4% 3.3%
H@10 75.53 74.83 75.57 71.28 50.29 53.68 67.87 68.44 73.56 73.90 76.25 0.9% 3.2%
N@5 47.57 47.40 48.51 45.30 26.19 30.32 43.18 44.15 46.51 49.37 51.45 6.1% 4.2%
N@10 51.65 51.51 52.63 49.12 30.07 34.12 46.98 47.87 50.64 52.88 55.06 4.6% 4.1%

Yelp
H@5 66.13 63.60 65.21 65.21 43.41 46.36 62.38 64.34 68.79 66.09 73.93 11.8% 7.5%
H@10 84.53 82.74 82.42 84.11 61.75 63.75 78.21 80.02 85.63 84.38 87.29 3.3% 1.9%
N@5 47.66 45.98 47.19 46.50 28.59 31.93 45.20 46.60 50.59 46.90 55.06 15.5% 8.8%
N@10 53.66 52.20 52.78 52.65 34.55 37.58 50.37 51.73 56.06 52.84 59.45 10.8% 6.0%

Google
H@5 60.38 74.40 75.83 73.01 33.09 37.76 42.63 67.31 60.46 74.01 81.01 6.8% 9.5%
H@10 68.69 81.08 82.54 78.62 44.54 48.01 53.97 73.83 72.76 81.94 86.83 5.2% 6.0%
N@5 49.43 63.27 64.67 61.49 23.23 28.03 31.30 57.65 46.83 61.88 70.33 8.8% 13.7%
N@10 52.12 65.44 66.85 63.33 26.93 31.35 34.97 59.76 50.81 64.47 72.23 8.0% 12.0%

its behavior and ensure that the PIS is indeed crucial to enhance the
recommendation accuracy. 2) The item-centric sequential model,
i.e., CRIS, shows better performance than the user-centric models,
e.g., LSAN, indicating the importance of the interest sustainabil-
ity even though it is considered only at the item-level (i.e., non-
personalized). However, due to the characteristic of datasets, CRIS
does not consistently outperform LSAN, e.g., on Digital Music and
Yelp datasets. In contrast, PERIS takes the benefits of both user-
and item-centric models, resulting in a higher recommendation
accuracy than the models in either category. 3) General recom-
mender systems, e.g., SML and SimpleX, reach or outperform the
performance of the user- and item-centric sequential recommender
systems without modeling the sequence signal from the users’ con-
sumption history. Despite their competitive performance, PERIS
consistently outperforms the general models, which implies the
effectiveness of the PIS inferred from users’ sequential consump-
tion history. In addition, our experiments show that the sequential

models are not consistently superior compared to the recent gen-
eral models even though it is known that the sequential models are
more accurate than the general models.

4.3 Model Behavior Comparison
In this section, we analyze the behavior of the recommender sys-
tems to understand the benefit of PERIS compared to the base-
line models. Due to the space limitation, we report the average of
HR@10 and nDCG@10 on the test data as the performance, but the
results are similar when using either one.

4.3.1 Elapsed Time Since Users’ Last Consumption. In Fig-
ure 5, we report the recommendation accuracy of the models for
different user groups divided by the elapsed time since their last
consumption, e.g., 0 < 𝑥 ≤ 4 is the group of users who have their
last consumption within 1 ∼ 4 days before the test time. To divide
user groups, we compute the percentile of users’ elapsed times since
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Figure 5: Performance over users’ elapsed days since their
last consumption. Performance: (HR@10+nDCG@10)/2.

their last consumption and use 25-th, 50-th, and 75-th percentile as
the threshold, e.g., 0, 4 and 58 on Health dataset, respectively.

We observe that the performance of the models decreases when
the elapsed time since their last consumption becomes long due to
the prolonged absence of users’ consumption. We have the follow-
ing observations. 1) Among themodels, PERIS consistently enhances
the recommendation accuracy over different elapsed times com-
pared to all the baseline models. 2) The performance improvement
of PERIS over LSAN becomes larger as the elapsed time increases
because LSAN depends on the next item prediction that learns users’
interest only up to their last consumption, while PERIS learns users’
recent interest by performing the PIS prediction. 3) CRIS outper-
forms LSAN on the Health dataset as CRIS learns users’ recent
interest by predicting whether any user consumes each item in
the recent period of the training time. However, CRIS is limited
to learn users’ recent personalized interest as its prediction task
is formulated as item-level. Thus, PERIS surpasses CRIS thanks to
the user-level prediction task, i.e., the PIS prediction. 4) Compared
to the sequential models, SimpleX shows inconsistent trends of
performance over the elapsed time as it does not depend on the
sequential information of users’ consumption history. However,
PERIS consistently outperforms SimpleX, signifying the importance
of the sequential information in the form of the PIS. Thus, these
observations imply that the PIS is beneficial to accurately infer
users’ interest compared to existing baseline models.

4.3.2 PIS inOtherRecommender Systems. We investigatewhether
other baseline models can capture the PIS or not (Figure 6). We
compute the overlapping ratio between the recommendation lists
generated by other baseline models and the one generated based
on the PIS score, i.e., 𝜇𝑦𝐼

𝑢,𝑖
+ (1 − 𝜇)𝑦𝐸

𝑢,𝑖
from Equation 8, which is

learned by PERIS. In this experiment, we consider the top-10 items
for each user in the test data as the recommendation list. From the
result, we make several observations: First, the baseline models
including user- and item-centric models show lower overlapping
ratio with the recommendation list generated based on the PIS
score than PERIS does. Thus, their approaches to learn users’ future
interest cannot fully capture the PIS, while PERIS captures the PIS
thanks to the explicit modeling of the PIS. Second, depending solely
on the PIS score can result in inaccurate recommendation, i.e., PIS
on both datasets. This can be due to the label noise as the labels for

Figure 6: Performance over overlapping ratio between rec-
ommendation lists of recommender systems and PIS.

Figure 7: Overlapping ratio between original recommenda-
tion list and lists after shifting users’ consumption history.

the PIS task are not the ground-truth labels but the pseudo-labels.
We argue that it is beneficial to address the label noise by incor-
porating users’ preference score (i.e., 𝑦𝑃

𝑢,𝑖
in Equation 8) from the

classical preference learning along with the PIS scores.

4.3.3 Sensitivity to Shifted Consumption History. To illumi-
nate the benefit of PERIS, we compare the sensitivity of the models
to the temporal change in users’ consumption history (Figure 7).
In this experiment, we shift users’ consumption history, i.e., each
user’s whole sequence of consumed items, by month from its start
time to the relative past or future without distinction between them,
while maintaining the order and intervals of items. Then, we mea-
sure how the recommendations after shifting users’ consumption
history are changed from the original recommendations (i.e., shifted
month = 0) by computing the overlapping ratio between them. We
consider top-10 items for each user as the recommendation list. We
observe that the general, user-centric, and item-centric baseline
models (black dashed line) are invariant to the consumption his-
tory shift because they cannot differentiate the same consumption
histories that start from different times. Specifically, LSAN only
considers the order information in the consumption history, and
CRIS does not utilize each user’s consumption history. In contrast,
PERIS differentiates consumption histories that start from different
times thanks to the PIS with the feature b𝑢,𝑖 , which considers the
time each user consumes items. Hence, PERIS can produce more
personalized recommendations than the state-of-the-art baseline
models, which supports the superior performance of PERIS.
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Table 3: Ablation study of PERIS. Int. and Ext. denote intrin-
sic and extrinsic scheme.

Components Tools Toys Yelp

Int. Ext. PIS H@10 N@10 H@10 N@10 H@10 N@10

✓ ✓ ✓ 60.34 39.16 71.73 51.36 89.85 59.53
✗ ✓ ✓ 59.39 38.24 69.55 49.57 87.79 58.94
✓ ✗ ✓ 46.60 25.03 64.62 44.12 86.77 53.96
✗ ✗ ✓ 46.41 24.95 64.25 43.15 88.10 54.10
✗ ✗ ✗ 52.01 31.96 65.92 46.23 85.15 53.87

Last bin (𝑏𝑁
𝑢,𝑖

) 54.21 33.76 66.85 47.97 86.36 54.28
− e𝑢,𝑖 (Eqn. 5) 60.34 38.62 71.40 51.01 86.77 57.98
+ e𝑢,𝑖 to Ext. 56.32 33.31 70.52 49.10 87.38 54.50

4.4 In-depth Model Analysis
We provide experiments to understand the impact of each compo-
nent of PERIS with the ranking metrics on the validation data.

4.4.1 Ablation Study on Supplementation Schemes. We first
perform an ablation study to inspect the effect of the supplemen-
tation schemes of PERIS. From Table 3, we make the following
observations: 1) the exclusion of either the intrinsic or extrinsic
schemes (from second to fourth row in the table) degrades the rec-
ommendation accuracy due to the absence of the supplementation
scheme for alleviating the sparsity of users’ consumption history.
Thus, both supplementation schemes are crucial to successfully
capture the PIS for improving the recommendation accuracy, while
the extrinsic scheme is more effective than the intrinsic scheme.
2) The intrinsic scheme enhances the recommendation accuracy
when it is used along with the extrinsic scheme (from first to sec-
ond row in the table). This result suggests that both intrinsic and
extrinsic should be incorporated together to achieve a higher rec-
ommendation accuracy. 3) The model trained without the intrinsic
and extrinsic schemes (fourth row in the table) generally produces
a lower recommendation accuracy than the model trained only
on the preference learning (fifth row in the table). The result reaf-
firms that the vanilla PIS prediction task suffers from the sparsity
of users’ consumption history, resulting in the failure of the PIS
prediction task. Therefore, both supplementation schemes are vital
to successfully perform the PIS prediction task.

4.4.2 Ablation Study on Components. We further provide the
ablation study on the components of PERIS. First, we study the effect
of users’ temporal consumption history b𝑢,𝑖 , which is the feature
for the PIS prediction task. We use the most recent frequency bin
𝑏𝑁
𝑢,𝑖

instead of a sequence of the frequency bins, i.e., b𝑢,𝑖 . PERIS that
takes only the last bin 𝑏𝑁

𝑢,𝑖
(Last bin in Table 3) shows the substan-

tial degradation of recommendation accuracy. Thus, we assert the
necessity of users’ sequential consumption pattern to predict the
PIS. Second, we exclude the user-item joint representation for per-
forming the PIS prediction task with the intrinsic scheme (− e𝑢,𝑖 in
Table 3), and observe the degradation of recommendation accuracy
in most cases. This result identifies the importance of the joint infor-
mation of users and items to predict their interest in items beyond
the training time with the intrinsic feature, i.e., 𝑦𝐼

𝑢,𝑖
= 𝑓𝑠 (b𝐼𝑢,𝑖 +e𝑢,𝑖 ).

In contrast, the inclusion of the user-item representation e𝑢,𝑖 to

(a) Tools (b) Yelp

Figure 8: Sensitivity analysis on balancing parameters.

the extrinsic feature b𝐸𝑢,𝑖 decreases the recommendation accuracy
(+ e𝑢,𝑖 to Ext. in Table 3), i.e., 𝑦𝐸

𝑢,𝑖
= 𝑓𝑠 (b𝐸𝑢,𝑖 + e𝑢,𝑖 ). We conjecture

that the inclusion of the target user-item representation e𝑢,𝑖 is
noisy since the goal of the extrinsic scheme is to predict not a target
user’s interest but the other users’ interest. These results suggest to
include the joint representation e𝑢,𝑖 only to the intrinsic scheme.

4.4.3 Sensitivity Analysis of Balancing Parameters. In Fig-
ure 8, we analyze the sensitivity of the balancing terms (i.e., 𝜆 and
𝜇), which are used to balance among the losses in Equation 7. We
note that 𝜆 balances between the losses for the PIS prediction task
(i.e., L𝐼 +L𝐸 ) and the preference learning (i.e., L𝑃 ), and 𝜇 balances
between the loss for the intrinsic scheme L𝐼 and the loss for the
extrinsic scheme L𝐸 . In this experiment, we use the average of
HR@10 and nDCG@10 as the value for each combination. From
the analysis (Figure 8), we first observe that PERIS trained only on
the PIS task (i.e., 𝜆 = 1) shows a substantial degradation of recom-
mendation accuracy as the model learns users’ interest based only
on whether a user consumes items in the recent period or not. We
speculate that, even though a user does not consume an item in the
recent period, the user’s interest in the item can sustain up to the
future, e.g., a user has a long consumption period. Thus, to alleviate
the label noise, it is better to incorporate the preference learning
(i.e., L𝑃 ), which uses ground-truth labels (i.e., users’ consumption),
along with the PIS prediction task. The second observation is that
the best value of 𝜇 is around 0.3. Thus, other liked-minded users’
interest is essential to infer a target user’s interest in items, which
reconfirms the observation from the ablation study (§4.4.1).

5 CONCLUSION
In this work, we propose a recommender system that captures the
personalized interest sustainability (PIS), indicating whether each
user’s interest in items will sustain beyond the training time, i.e., up
to the test time. To obtain the PIS, we formulate the PIS prediction
task, and devise the simple yet effective schemes to supplement
users’ sparse consumption history. Experiments show that the pro-
posed model, i.e., PERIS, enhances the recommendation accuracy
compared to 10 baseline models on 11 real-world datasets. In ad-
dition, in-depth analysis reveals that PERIS successfully captures
the PIS while the baseline models do not capture the PIS, which is
newly-introduced information.
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