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ABSTRACT
ManyU.S. metropolitan cities are notorious for their severe shortage

of parking spots. To this end, we present a proactive prediction-
driven optimization framework to dynamically adjust parking prices.

We use state-of-the-art deep learning technologies such as neural

ordinary differential equations (NODEs) to design our future park-

ing occupancy rate prediction model given historical occupancy

rates and price information. Owing to the continuous and bijective

characteristics of NODEs, in addition, we design a “one-shot” price

optimization method given a pre-trained prediction model, which

requires only one iteration to find the optimal solution. In other

words, we optimize the price input to the pre-trained prediction

model to achieve targeted occupancy rates in the parking blocks.

We conduct experiments with the data collected in San Francisco

and Seattle for years. Our prediction model shows the best accuracy

in comparison with various temporal or spatio-temporal forecasting

models. Our “one-shot” optimization method greatly outperforms

other black-box and white-box search methods in terms of the

search time and always returns the optimal price solution.

CCS CONCEPTS
• Theory of computation → Mathematical optimization; •
Computing methodologies→ Neural networks.
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(a) Black-box query-based prediction-driven optimization
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(b) Our proposed “one-shot”, i.e., O(1)-runtime, prediction-driven optimization

Figure 1: Comparison of two paradigms of prediction-driven
optimization. (a) The black-box query-based method typi-
cally requires a large number of queries until convergence
of the solution. (b) As the name “one-shot” suggests, our
method requires only one query to find the optimal solution.
We can easily find the optimal price by solving the reverse-
mode integral problem of the NODE layer in our model.

1 INTRODUCTION
Maintaining an adequate parking occupancy rate is a highly es-

sential but challenging problem in crowded metropolitan areas [5,

29, 30]. In 2011-2013, for instance, San Francisco piloted SFpark, a

demand-responsive parking pricing program adjusts parking prices

based on observed occupancy rates. [27] If an observed occupancy

rate is higher than a target occupancy rate, its price is increased.

By adjusting prices in this manner, the program aimed to control

parking occupancy rates around a target (ideal) rate of 70%-80%.

SFpark’s success has led to its adoption to other cities such as Los

Angeles, Seattle, and Madrid [14, 23, 27]. They mainly focused on

improving parking availability by keeping occupancy rates below

the ideal rate, which is also of our utmost interest in this paper.

In this work, we propose an advanced prediction-driven optimiza-
tion method to optimally adjust prices and achieve target on-street

parking occupancy rates — we conduct experiments for San Fran-

cisco and Seattle. Our approach differs from previous methods in

the following sense: i) previous methods relied on observed park-

ing demand to optimize price, i.e., reactive, but we implement a

prediction-based optimization model which predicts occupancy

rates and optimizes prices based on those predictions, i.e., proactive.
ii) The price elasticity of demand varies depending on locations [27],
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(b) Overall workflow of how we optimize the price

Figure 2: The overall workflow of our prediction-driven dy-
namic price optimization. (a) Our predictive model consists
of three parts: i) an initial predictionmodulewith spatiotem-
poral processing to process short-term and long-term occu-
pancy history, ii) a price reflection module to adjust the ini-
tial prediction with price information, and iii) a final predic-
tionmodule tomake thefinal predictions on the future occu-
pancy rates of 𝑁 parking blocks. (b) Our price optimization
process, which happens after training the prediction model,
consists of three steps: i) given a pre-trained model and the
short-term and long-term history, 𝒛𝑖𝑛𝑖𝑡 is created as shown
in the red box, ii) given a pre-trained model and a target oc-
cupancy rate𝒚∗, we solve the reverse-mode integral problem
to derive 𝒛∗

𝑎𝑑 𝑗𝑢𝑠𝑡
as shown in the blue box, and iii) we find the

optimal price 𝒑∗ which minimizes the error between 𝒛𝑖𝑛𝑖𝑡
and 𝒛∗

𝑎𝑑 𝑗𝑢𝑠𝑡
in the green box (cf. Eq. (9)).

which implies that each block’s demand may have a different de-

gree of responsiveness to price changes. This is not considered in

the existing approach, as it adjusts parking prices simultaneously

for all blocks by fixed amounts. Our approach can change prices

in a much more fine-grained manner, e.g., hourly and separately

for each block. iii) We adjust the prices accurately, maximizing the

influence of price adjustment.

Given a set of parking blocks, denoted {𝑏𝑖 }𝑁𝑖=1, let 𝒚
∗ ∈ [0, 1]𝑁

be an 𝑁 -dimensional vector which contains target occupancy rates

for𝑁 parking blocks. Ourmethod finds𝒑∗ ∈ [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ]𝑁 , where

𝑝𝑚𝑎𝑥 /𝑝𝑚𝑖𝑛 denotes the maximum/minimum price, which makes

the pre-trained occupancy prediction model output 𝒚∗ (cf. Fig. 1
(b)). In this research, it is important to design a high-accuracy pre-

diction model since it is imperative to guarantee the quality of price

optimization. The most important technical concern is, however,

how to integrate the prediction model and the optimization method

because an ill-integrated prediction-driven optimization does not

return a solution in time [2, 3, 17, 21]. The simplest method is to

use black-box queries, where the optimization algorithm queries

the prediction model about the quality of a solution (cf. Fig. 1 (a)).

This black-box method typically requires a non-trivial number of

queries. A better approach is the gradient-based white-box method.
Gradients are created from the internals of the prediction model to

update the input feature (i.e., the parking prices in our case). This

approach achieves a shorter search time than that of the black-box

method. However, this also requires multiple iterations to achieve

a reliable solution.

In this work, we propose yet another “one-shot” white-box search

method that can find the optimal price solution with only one query
to the prediction model, owing to the continuous and bijective

characteristic of neural ordinary differential equations (NODEs [7]).

Fig. 2 shows our model design. Since we solve two coupled prob-

lems in this paper, the occupancy rate prediction and the price

optimization, Figs. 2 (a) and (b) show the two workflows of a) how

we forecast the future occupancy rates and b) how we optimize

the prices, respectively. The final prediction module in our model,

which consists of NODEs, is continuous and bijective, and our one-

shot prediction-driven optimization process in Fig. 2 (b) is possible.

Our predictionmodel consists of threemodules as shown in Fig. 2

(a): i) the initial prediction module, ii) the price reflection module,

and iii) the final prediction module. The initial prediction module is

further decomposed into three layers, depending on the type of pro-

cessed information. The short-term layer processes the occupancy

rates during 𝐾 recent periods and the long-term layer processes

the past occupancy rates older than the short-term information,

e.g., a week ago. The concatenated processing layer combines the

two hidden representations, one by the short-term layer and the

other by the long-term layer, to produce the initial predictions on

the future occupancy rates of all those 𝑁 parking blocks. Up to this

moment, however, we do not consider the price information yet,

and it is the second price reflection module that processes the price

information to enhance the initial occupancy predictions. The final

prediction module fine-tunes the predictions to increase the model

accuracy. The continuous and bijective characteristics of the final

prediction module enables the one-shot price optimization.

The detailed price optimization process is depicted in Fig. 2 (b).

We first train the predictive model and then give the observed

short/long-term occupancy information and the target occupancy

rates 𝒚∗, we decide the best prices 𝒑∗ which yield the target rates.

The red box of Fig. 2 (b) is first processedwith the observed short/long-

term input to derive the initial prediction 𝒛𝑖𝑛𝑖𝑡 and the blue box

is processed to derive 𝒛∗
𝑎𝑑 𝑗𝑢𝑠𝑡

. We note that at this moment, the

input and output of the final prediction module are opposite in

comparison with Fig. 2 (a), which is theoretically possible due to its

continuous and bijective properties. Then, we calculate 𝒑∗ which
matches 𝒛𝑖𝑛𝑖𝑡 to 𝒛∗𝑎𝑑 𝑗𝑢𝑠𝑡 .
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We conduct experiments on two datasets collected in San Fran-

cisco and Seattle for multiple years. Our prediction model outper-

forms various baselines, and our one-shot optimization can very

quickly find the optimal prices for most of the parking blocks during

the testing period, whereas other black-box and white-box meth-

ods fail to do so. In addition, our visualization results intuitively

show that our proposed method is effective in adjusting the park-

ing occupancy rates to on or below the ideal occupancy rate. Our

contributions can be summarized as follows:

(1) We design a sophisticated future parking occupancy rate

prediction model based on NODEs.

(2) We design a novel one-shot price optimization, owing to the

continuous and bijective characteristics of NODEs.

(3) In our experiments with two real-world datasets, our pre-

diction model outperforms many existing temporal and spa-

tiotemporal models, and our one-shot optimization finds bet-

ter solutions in several orders of magnitude faster in compar-

ison with other prediction-driven optimization paradigms.

2 RELATEDWORK AND PRELIMINARIES
2.1 Neural Ordinary Differential Equations
NODEs solve the following integral problem to calculate the last

hidden vector 𝒛 (𝑇 ) from the initial vector 𝒛 (0) [7]:

𝒛 (𝑇 ) = 𝒛 (0) +
∫ 𝑇

0
𝑓 (𝒛 (𝑡);𝜽𝑓 )𝑑𝑡, (1)

where 𝑓 (𝒛 (𝑡);𝜽𝑓 ), which we call ODE function, is a neural network

to approximate ¤𝒛 def

=
𝑑𝒛 (𝑡 )
𝑑𝑡

. To solve the integral problem, NODEs

rely on ODE solvers, e.g., the explicit Euler method, the Dormand–

Prince (DOPRI) method, and so forth [11].

Let 𝜙𝑡 : R
dim(𝒛 (0)) → Rdim(𝒛 (𝑇 )) be a mapping from 𝑡 = 0 to

𝑡 = 𝑇 created by an ODE after solving the integral problem. It is

well-known that 𝜙𝑡 becomes a homeomorphic mapping [12, 25]:

𝜙𝑡 is continuous and bijective and 𝜙−1𝑡 is also continuous for all

𝑡 ∈ [0, 1]. It was shown that the homeomorphic characteristic

increases the robustness of NODEs to scarce input [9, 19]. We

conjecture that NODEs are, for the same reason, also suitable for our

occupancy prediction, since we cannot feed abundant information

to our model due to the difficulty of collecting other auxiliary data.

Occupancy prediction is an information-scarce task and therefore,

the robustness of the model is crucial for our task.

Reverse-mode integral problem. In addition, the bijective char-

acteristic makes our prediction optimization process easier than

other methods. For instance, let 𝒛∗ (𝑇 ) be the preferred output

that we want to see. Our price optimization corresponds to find-

ing the 𝒛∗ (0) that leads to 𝒛∗ (𝑇 ). In the case of NODEs, for find-

ing 𝒛∗ (0), we can solve the reverse-mode integral problem, i.e.,

𝒛∗ (0) = 𝒛∗ (𝑇 ) −
∫ 𝑇
0
𝑓 (𝒛 (𝑡);𝜽𝑓 )𝑑𝑡 , and 𝒛∗ (0) is unique.

Adjoint sensitivitymethod. Instead of the backpropagationmethod,

the adjoint sensitivity method is used to train NODEs for its effi-

ciency and theoretical correctness [7]. After letting 𝒂𝒛 (𝑡) = 𝑑L
𝑑𝒛 (𝑡 )

for a task-specific loss L, it calculates the gradient of loss w.r.t

model parameters with another reverse-mode integral as follows:

∇𝜽𝑓 L =
𝑑L
𝑑𝜽𝑓

= −
∫ 𝑡0

𝑡𝑚

𝒂𝒛 (𝑡)T
𝜕𝑓 (𝒛 (𝑡);𝜽𝑓 )

𝜕𝜽𝑓
𝑑𝑡 .

∇𝒛 (0)L can also be calculated similarly and we can propagate

the gradient backward to layers before the ODE if any. It is worth

mentioning that the space complexity of the adjoint sensitivity

method is O(1) whereas using the backpropagation to train NODEs
has a space complexity proportional to the number of DOPRI steps.

The time complexity of the adjoint sensitivity method is similar, or

slightly more efficient than that of backpropagation. Therefore, we

can train NODEs efficiently.

2.2 Parking Occupancy Prediction
Parking management in metropolitan areas has long been a mat-

ter of interest and researched from diverse perspectives since the

1970s. In recent years, there have been many studies on predicting

parking availability, of which several have focused on the SFpark

data. Two studies compared the efficacy of regression trees and

various regression methods for predicting San Francisco’s parking

occupancy rates [31, 35]. Other studies have been conducted on

other data, such as Santander, Spain [32]; Birmingham, UK [5]; Mel-

bourne, Australia [30]. Traditional machine learning algorithms

have been extended for processing spatiotemporal data, e.g., traffic

forecasting [4, 8, 22, 33]. According to the survey [18], two recent re-

searches [18, 34] used a spatiotemporal model to predict the parking

occupancy rates of Beijing and Shenzhen in China. These models

are fine-grained and use different features and datasets. Most im-

portantly, they do not consider the price information and their

models are designed without considering the price optimization.

We instead compare our model with spatiotemporal models.

2.3 Parking Price Optimization
The parking price optimization problem can be formulated as ad-

justing prices to minimize the error between predicted and target

occupancy rates. In [13], they introduced a predictive optimization

strategy that enables proactive parking pricing rather than a reac-

tive approach based on observed parking rates. By implementing

a regression-based prediction model considering price elasticity,

they optimized parking prices. However, their model is a simple

regression for which prediction-driven optimization is technically

straightforward. In [29], they compared various machine learning

prediction models and utilized them to produce occupancy-based

parking prices for Seattle city’s on-street parking system.

These papers have adopted prediction-based optimization, for-

mulating pricing schemes based on predicted occupancy rates (as

in ours). However, our method is novel in the following aspects:

(1) Most of the previous work implemented predictive models

with simple machine learning approaches such as linear

regression. Our model uses the latest and advanced deep

learning approaches, such as NODEs.

(2) Traditional optimization methods, such as greedy, gradient-

based optimization, and so forth, were used for previous

papers. We greatly reduce the running time of our method

using the novel one-shot optimization which relies on the

continuous and bijective nature of NODEs.
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3 OCCUPANCY RATE PREDICTION
3.1 Overall Architecture
As shown in Fig. 2, our proposed method consists of three modules:

Firstly, the initial predictionmodule with spatiotemporal processing

can be further decomposed into the following three layers:

(1) The short-term layer processes the short-term occupancy

rate information. This layer only considers 𝐾 recent occu-

pancy rates and produces the hidden representation matrix

𝑯𝑠ℎ𝑜𝑟𝑡 ∈ R𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )
.

(2) The long-term layer reads the long-term occupancy rate

information (i.e., the mean occupancy rates on the same

day of the last week/last two weeks/last month/last two

months and so forth). Since the long-term occupancy rate has

irregular time intervals, we found that the fully-connected

layer is a reasonable design for this layer. This layer produces

the hidden representation matrix 𝑯𝑙𝑜𝑛𝑔 ∈ R𝑁×dim(𝑯𝑙𝑜𝑛𝑔)
.

(3) Given the concatenated hidden representationmatrix𝑯𝑠ℎ𝑜𝑟𝑡⊕
𝑯𝑙𝑜𝑛𝑔 , where ⊕ means the horizontal concatenation, the

concatenated processing layer produces the initial future

occupancy rate prediction 𝒛𝑖𝑛𝑖𝑡 ∈ R𝑁×1.
Secondly, the price reflection module adjusts 𝒛𝑖𝑛𝑖𝑡 created by

the initial prediction module since it does not consider the price

information yet. Given 𝒛𝑖𝑛𝑖𝑡 , this module adjusts it to 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 ∈
R𝑁×1 by considering the inputted price information.

Lastly, the final prediction module evolves 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 to the final

prediction𝒚 ∈ [0, 1]𝑁×1. We use a series of NODEs since we found

that a single NODE does not return reliable predictions.

3.2 Initial Prediction Module
We note that in this module, all parking blocks’ short-term and long-

term occupancy information is processed altogether. Therefore, our

model is able to consider, when predicting for a parking block, not

only its own historical information but also other related parking

blocks’ historical information, i.e., spatiotemporal processing.

Short-term history layer. Given a set of 𝐾 recent short-term oc-

cupancy rates, denoted {𝒔𝑖 }𝐾𝑖=1, where 𝒔𝑖 ∈ [0, 1]
𝑁
, 𝑁 refers to the

number of parking blocks, and 𝒔𝐾 represents the most recent record,

we extract the hidden representation of the short-term history. We

note that {𝒔𝑖 }𝐾𝑖=1 constitutes a time-series sample for which any

type of time-series processing technique can be applied. This layer

is to use the following NODE where 𝑯 (0) is created from {𝒔𝑖 }𝐾𝑖=1:

𝑯𝑠ℎ𝑜𝑟𝑡 = 𝑯 (0) +
∫ 1

0
𝑓 (𝑯 (𝑡);𝜽𝑓 )𝑑𝑡, (2)

The ODE function 𝑓 : R𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 ) → R𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )
is

defined as follows:

𝑓 (𝑯 (𝑡);𝜽𝑓 ) =𝜓 (𝐹𝐶𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )→𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 ) (𝑬1)),
𝑬1 =𝜎 (𝐹𝐶𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )→𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 ) (𝑬0)),
𝑬0 =𝜎 (𝐹𝐶𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )→𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 ) (𝑯 (𝑡))),

where 𝜎 is a rectified linear unit,𝜓 is a hyperbolic tangent, 𝜽𝑓 refers
to the parameters of the three fully-connected layers. Note that this

ODE layer’s hidden size is the same as the input size dim(𝑯𝑠ℎ𝑜𝑟𝑡 ).

Long-term history layer. Let {𝒍𝑖 }𝐿𝑖=1, where 𝒍𝑖 ∈ [0, 1]
𝑁
, be a set

of the long-term occupancy rate information. We have 12 types of

the long-term historical information for each parking block, i.e.,

𝐿 = 12, which includes the past occupancy rates at different time

points. We use the following fully-connected layer to process the

long-term history {𝒍𝑖 }𝐿𝑖=1 since they do not clearly constitute a

time-series sample:

𝑯𝑙𝑜𝑛𝑔 = FC𝑁×𝐿→𝑁×𝐿 (⊕𝐿𝑖=1𝒍
⊺
𝑖
), (3)

where FC𝑁×𝐿→𝑁×𝐿 means the fully-connected layer with an input

size (i.e., the dimensionality of input matrix) of 𝑁 × 𝐿 to an output

size of 𝑁 × 𝐿.

Concatenated processing layer. We horizontally combine 𝑯𝑠ℎ𝑜𝑟𝑡
and 𝑯𝑙𝑜𝑛𝑔 to produce the initial prediction 𝒛𝑖𝑛𝑖𝑡 . We evolve 𝒛𝑖𝑛𝑖𝑡
from 𝑯𝑠ℎ𝑜𝑟𝑡 by referring to 𝑯𝑙𝑜𝑛𝑔 . In this layer, we have one more

augmented NODE layer as follows:

𝒛𝑖𝑛𝑖𝑡 = 𝒄 (1) = 𝒄 (0) +
∫ 1

0
𝑚(𝒄 (𝑡),𝑯𝑙𝑜𝑛𝑔;𝜽𝑚)𝑑𝑡, (4)

where 𝒄 (0) = FC𝑁×dim(𝑯𝑠ℎ𝑜𝑟𝑡 )→𝑁×1 (𝑯𝑠ℎ𝑜𝑟𝑡 ). We note that after

this processing, 𝒛𝑖𝑛𝑖𝑡 ∈ R𝑁×1. For reducing the overall computa-

tional overhead of our method, we early make the initial prediction.

The ODE function𝑚 : R𝑁×(𝐿+1) → R𝑁×1 is defined as follows:

𝑚(𝒄 (𝑡),𝒉𝑙𝑜𝑛𝑔;𝜽𝑚) =𝜓 (𝐹𝐶𝑁×1→𝑁×1 (𝒖1)),
𝒖1 =𝜎 (𝐹𝐶𝑁×1→𝑁×1 (𝒖0)),
𝒖0 =𝜎 (𝐹𝐶𝑁×(𝐿+1)→𝑁×1 (𝒄 (𝑡) ⊕ 𝒉𝑙𝑜𝑛𝑔)),

where 𝜽𝑚 refers to the parameters of the three fully-connected

layers. In particular, this type of NODEs is called as augmented

NODEs, which can be written as follows for our case:

𝑑

𝑑𝑡

[
𝒄 (𝑡)
𝒉𝑙𝑜𝑛𝑔

]
=

[
𝑚(𝒄 (𝑡),𝒉𝑙𝑜𝑛𝑔;𝜽𝑚)

0

]
. (5)

3.3 Price Reflection Module
The above initial prediction module does not consider one of the

most important factors in forecasting the future occupancy, which

is the price information. We reflect the price information 𝒑 ∈
[𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ]𝑁 into 𝒛𝑖𝑛𝑖𝑡 and create 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 in this module. We

use the following regressor for this module:

𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 = 𝒛𝑖𝑛𝑖𝑡 −
(
(𝒄 ⊙ 𝒑)⊺ + 𝒃

)
, (6)

where 𝒄 ∈ [0,∞]𝑁 is a coefficient vector that represents the de-

mand elasticity on price changes, i.e. how much the occupancy rate

reacts to the price. ⊙ means the element-wise product. 𝒃 ∈ R𝑁×1
is a bias (column) vector.

3.4 Final Prediction Module
Given the adjusted prediction 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 ∈ R𝑁×1, there are multiple

NODE layers to evolve it to the future occupancy prediction 𝒚.
Since we found that only one NODE layer is not enough for this
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Algorithm 1: How to train our model

Input: Training data 𝐷𝑡𝑟𝑎𝑖𝑛 , Validating data 𝐷𝑣𝑎𝑙 ,
Maximum iteration number𝑚𝑎𝑥_𝑖𝑡𝑒𝑟

1 Initialize all parameters, denoted 𝜃𝑎𝑙𝑙 ;

2 𝑖𝑡𝑒𝑟 ← 0;

3 while 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
4 Train all parameters 𝜃𝑎𝑙𝑙 with the loss L;
5 Validate and update the best parameters;

6 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1;
7 return the selected best parameters;

purpose, we adopt the following𝑀 NODE layers:

𝒚1 (1) = 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 +
∫ 1

0
𝑗1 (𝒚1 (𝑡);𝜽 𝑗1 )𝑑𝑡,

𝒚𝑖 (1) = 𝒚𝑖−1 (1) +
∫ 1

0
𝑗𝑖 (𝒚𝑖 (𝑡);𝜽 𝑗𝑖 )𝑑𝑡, 1 < 𝑖 < 𝑀,

𝒚𝑀 (1) = 𝒚𝑀−1 (1) +
∫ 1

0
𝑗𝑀 (𝒚𝑀 (𝑡);𝜽 𝑗𝑀 )𝑑𝑡,

(7)

where the future occupancy prediction 𝒚 = 𝒚𝑀 (1).
We use the following identical architecture for 𝑗𝑖 : R𝑁×1 →

R𝑁×1, for all 1 ≤ 𝑖 ≤ 𝑀 , but their parameters 𝜽 𝑗𝑖 are different:

𝑗𝑖 (𝒚𝑖 (𝑡);𝜽 𝑗𝑖 ) =𝜓 (𝐹𝐶𝑁×1→𝑁×1 (𝒐1)),
𝒐1 =𝜎 (𝐹𝐶𝑁×1→𝑁×1 (𝒐0)),
𝒐0 =𝜎 (𝐹𝐶𝑁×1→𝑁×1 (𝒚𝑖 (𝑡))).

3.5 Training Algorithm
We use the adjoint method [7] to train each NODE layer in our

model, which requires a memory of O(1) and a time of O(𝛿) where
𝛿 is the (average) step-size of an underlying ODE solver. In Alg. (1),

we show our training algorithm.We use the followingmean squared

error loss with the training data 𝐷𝑡𝑟𝑎𝑖𝑛 :

L =

∑ |𝐷𝑡𝑟𝑎𝑖𝑛 |
𝑖=1 ∥𝒚𝑖 −𝒚𝑖 ∥22
|𝐷𝑡𝑟𝑎𝑖𝑛 |

+𝑤 ∥𝜃𝑎𝑙𝑙 ∥22,

where 𝒚𝑖 and 𝒚𝑖 mean the ground-truth and predicted occupancy

rate of the 𝑖-th training sample, respectively. 𝑤 is the coefficient

of the 𝐿2 regularization term. 𝜃𝑎𝑙𝑙 denotes the super set of the all

parameters in our model.

Well-posedness of Training. The well-posedness1 of NODEs was
already proved in [24, Theorem 1.3] under the mild condition of

the Lipschitz continuity. We show that training our NODE layers

is also a well-posed problem. Almost all activations, such as ReLU,

Leaky ReLU, SoftPlus, Tanh, Sigmoid, ArcTan, and Softsign, have

a Lipschitz constant of 1. Other common neural network layers,

such as dropout, batch normalization and other pooling methods,

have explicit Lipschitz constant values. Therefore, the Lipschitz

continuity of 𝑓 ,𝑚 and 𝑗𝑖 for all 𝑖 can be fulfilled in our case, making

it is a well-posed training problem. Our training algorithm solves a

well-posed problem so its training process is stable in practice.

1
A well-posed problem means i) its solution uniquely exists, and ii) its solution contin-

uously changes as input data changes.

12 a.m. 12 a.m.9 a.m. 5 p.m.

Meter Operating Hours
Free Free

Parking Operating Hours

Figure 3: The visualization of parking operating hours and
meter operating hours of San Francisco

4 ONE-SHOT PRICE OPTIMIZATION
We describe our proposed dynamic pricing method. The key algo-

rithm is the following “one-shot” price optimization method which

finds a solution in one iteration. For this step, we pre-train the

prediction model and all its parameters are considered as constants

during this step.

Given the short-term history information {𝒔𝑖 }𝐾𝑖=1, the long-term
history information {𝒍𝑖 }𝐿𝑖=1, and the target occupancy rates 𝒚∗, we
want to find the optimal prices 𝒑∗ that leads to 𝒚∗ as follows:

argmin
𝒑∗

∥𝒚 −𝒚∗∥1
𝑁

,

subject to 𝒑𝑚𝑖𝑛 ≤ 𝒑∗ ≤ 𝒑𝑚𝑎𝑥 ,

𝒚 = 𝜉 (𝒑∗, {𝒔𝑖 }𝐾𝑖=1, {𝒍𝑖 }
𝐿
𝑖=1;𝜽𝜉 ),

(8)

where 𝜉 is our pre-trained occupancy prediction model, and 𝜽𝜉 is its
set of parameters. This becomes a complicated non-linear resource

allocation problem, whose polynomial-time solver is unknown,

if 𝜉 is a general deep neural network [1, 15]. For those reasons,

people typically rely on the Karush–Kuhn–Tucker (KKT) condition,

when it is possible to calculate the derivative of objective, which

teaches us the necessary condition of optimality to find a reasonable

solution, but this method sometimes converges to saddle points

that are not good enough [28]. In our case, however, we use the

following one-shot method due to our special design suitable for

solving the problem:

(1) We feed the given short-term and the long-term history infor-

mation and derive 𝒛𝑖𝑛𝑖𝑡 from the initial prediction module;

(2) Let 𝒚∗ is the target occupancy rates that we want to achieve.

We then solve the following series of reverse-mode integral

problems to derive 𝒛∗
𝑎𝑑 𝑗𝑢𝑠𝑡

:

𝒚𝑀−1 (1) = 𝒚∗ −
∫ 1

0
𝑗𝑀 (𝒚𝑀 (𝑡);𝜽 𝑗𝑀 )𝑑𝑡,

𝒚𝑖−1 (1) = 𝒚𝑖 (1) −
∫ 1

0
𝑗𝑖 (𝒚𝑖 (𝑡);𝜽 𝑗𝑖 )𝑑𝑡, 1 < 𝑖 < 𝑀,

𝒛∗
𝑎𝑑 𝑗𝑢𝑠𝑡

= 𝒚1 (1) −
∫ 1

0
𝑗1 (𝒚1 (𝑡);𝜽 𝑗1 )𝑑𝑡 ;

(3) The optimal price vector 𝒑∗ can be calculated as follows:

𝒑∗ =
𝒛𝑖𝑛𝑖𝑡 − 𝒛∗𝑎𝑑 𝑗𝑢𝑠𝑡 − 𝒃

𝒄
. (9)

We note that we query the initial prediction module and solve

each of the integral problems exactly once, i.e., a constant com-

plexity of O(1) given a fixed number𝑀 of NODE layers, which is

theoretically the minimum complexity that we can achieve (since

optimization with zero queries is infeasible). Note𝑀 does not vary

during operation but is fixed given a prediction model.
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Table 1: The size of the training/testing datasets

Training Dataset Test Dataset

San Francisco

𝐾 = 1 407,008 183,280

𝐾 = 2 356,132 160,370

𝐾 = 3 305,256 137,460

Seattle

𝐾 = 1 75,264 31,360

𝐾 = 2 65,856 27,440

𝐾 = 3 56,448 23,520

5 EXPERIMENTS ON PREDICTION
Our software and hardware environments are as follows: Ubuntu

18.04 LTS, Python 3.7.10, PyTorch 1.6.0, TORCHDIFFEQ 0.2.2,

TORCHDIFFEQPACK 0.1.0, CUDA 11.2, andNVIDIADriver 460.91.03,

and i7 CPU, and NVIDIAQuadro RTX 8000.

5.1 Experimental Environments
Dataset. The San Francisco Municipal Transportation Agency

(SFMTA) website
2
provides data collected during the SFpark pilot

project. On-street occupancy rate data contain per-block hourly

occupancy rate and meter prices for seven parking districts.

The Seattle Department of Transportation (SDOT) sets on-street

parking rates based on data to obtain a target occupancy rate of

70% to 85%. The SDOT website
3
provides a dataset of on-street

occupancy rates from 2010. In contrast to San Francisco, Seattle has

fixed annual pricing that is updated based on the previous year’s

data. Prices vary depending on the time of day; 8 a.m. to 11 a.m., 11

a.m. to 5 p.m., and 5 p.m. to 8 p.m.

Since we optimize the parking price, we define parking occu-

pancy as metered parking occupancy and only predict and optimize

when the parking blocks are metered. For instance, as shown in

Fig. 3, meters are only operational from 9 a.m. to 5 p.m in San Fran-

cisco. Many parking blocks in Seattle also are not metered after

5 p.m. In San Francisco, parking is free on all weekends, and in

Seattle on Sundays. Therefore, only data from 9 a.m. to 5 p.m. of

San Francisco and data from 8 a.m. to 5 p.m. of Seattle on weekdays

are used in our experiments.

We use data from August 11, 2011, to July 31, 2013 for San Fran-

cisco. Finally, 𝑁 = 158 blocks from 63 streets and 7 districts with

no missing data in the aforementioned period are selected for pre-

diction/optimization. For Seattle, we extract the most recent data

from July 19, 2019 to March 23, 2020 and predict/optimize 𝑁 = 98
parking blocks in 9 parking areas.

Historical data from various periods are derived via feature en-

gineering. In the case of short-term history, the occupancy rate in

the past 𝐾 hours is given as a feature. Different 𝐾 settings lead to

different training/testing data as shown in Table 1. For example, San

Francisco dataset consists of 407,008 (resp. 356,132) samples, when

𝐾 = 1 (resp. 𝐾 = 2). The ratio between a training set and a test set

is 7:3. We only consider 𝐾 = {1, 2, 3} for short-term history length

in our experiments because longer 𝐾 settings lead to a drastic re-

duction in the number of training samples (as daily occupancy rates

2
https://www.sfmta.com/getting-around/drive-park/demand-responsive-

pricing/sfpark-evaluation

3
https://www.seattle.gov/transportation/projects-and-programs/programs/parking-

program/performance-based-parking-pricing-program

are only available from 8 a.m./9 a.m. to 5 p.m.). However, long-term

history contains much detailed information.

For the long-term historical features, we obtained historical oc-

cupancy records for various periods. The average occupancy rates

for the last week, last two weeks, last month, and past two months

are derived. Moreover, we separated the time zones into 9 a.m. to 11

a.m., 12 p.m. to 2 p.m., and 3 p.m. to 5 p.m. Adopting this strategy,

we ended up with 12 long-term history features.

Baselines. We compare our model with the following baseline

prediction models:

(1) RNN, LSTM [16] and GRU [10] are popular time-series pro-

cessing models. We create two different ways of how to uti-

lize them for experiments: i) These models are used instead

of our short-term history layer and other implementations

are the same. ii) We feed only the short-term historical infor-

mation to them and predict (without any other layers) since

they are designed to consider only one type of sequence.

(2) DCRNN [22], AGCRN [4], and STGCN [33] are popular base-

lines in the field of spatiotemporal machine learning. DCRNN

combines graph convolution with recurrent neural networks

in an encoder-decoder manner. AGCRN learns an adaptive

adjacency matrix from data. STGCN combines graph convo-

lution with gated temporal convolution. We also define two

different versions for them in the same way above.

Hyperparameters. We test the following hyperparameters for

each model — we trained for 1,000 epochs with a batch size of 64

for all models and other detailed settings are in Table 2:

(1) For RNN, LSTM, and GRU, we use one layer has the hidden

size of 500.

(2) For STGCN,we set the channels of three layers (two temporal

gated convolution layers and one spatial graph convolution

layer) in ST-Conv block to 64, and the Chebyshev polyno-

mials to 1. To construct a parking block graph, we compute

the pairwise network distances between blocks and build an

adjacency matrix using thresholded Gaussian kernel.

(3) For DCRNN, we set the number of GRU hidden units to 64

and the number of recurrent layers to 2. We use the weighted

adjacency matrix constructed in the same way as STGCN.

(4) For AGCRN, we set the hidden unit to 64 for all the AGCRN

cells. The size of node embeddings is set to 2 and 5 for San

Francisco and Seattle, respectively.

(5) For ours, NODE, we use MALI [36], the training algorithm

for NODEs and the ODE solver error tolerance is set to 1e-5.

5.2 Experimental Results
Experimental results are summarized in Table 3 — we report the

mean and std. dev. performance with five different random seeds.

In general, RNN-based models perform poorly compared to other

spatiotemporal models, such as AGCRN and STGCN. Moreover,

when spatiotemporal models are plugged into our model in the

place of Eq. (2), they mostly perform better than when they are

used solely with the short-term information. Other modules remain

the same when we substitute Eq. (2) with other baselines, thus the

long-term features and price are also used, which is reasonable. In

all cases, the best outcomes are achieved by our full model.

https://www.sfmta.com/getting-around/drive-park/demand-responsive-pricing/sfpark-evaluation
https://www.sfmta.com/getting-around/drive-park/demand-responsive-pricing/sfpark-evaluation
https://www.seattle.gov/transportation/projects-and-programs/programs/parking-program/performance-based-parking-pricing-program
https://www.seattle.gov/transportation/projects-and-programs/programs/parking-program/performance-based-parking-pricing-program
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Table 2: Best hyperparameters and the number of trainable parameters. The weight decay is the 𝐿2 regularization coefficient
term 𝑤 of (8). The number of final layers is 𝑀 of (7). Considering the original price range of each dataset, we set the initial
coefficient value of the price reflection module, 𝒄 of (6).

Model Batch size Learning rate Weight decay #Final layers Initial coefficient #Params
S
a
n
F
r
a
n
c
i
s
c
o

Substitute Eq. (2) with

RNN 64 1 × 10−4 1 × 10−5 10 0.03 7,911,217

LSTM 64 1 × 10−4 1 × 10−5 10 0.03 10,404,217

GRU 64 1 × 10−4 1 × 10−5 10 0.03 9,573,217

STGCN 64 1 × 10−3 1 × 10−5 10 0.03 7,700,854

DCRNN 64 1 × 10−3 1 × 10−5 10 0.03 7,753,914

AGCRN 64 1 × 10−3 1 × 10−5 10 0.03 13,594,000

Proposed (full model) 64 1 × 10−4 1 × 10−5 15 0.03 7,001,059

Proposed (w/o final module) 64 1 × 10−4 1 × 10−5 15 0.03 8,131,549

S
e
a
t
t
l
e Substitute Eq. (2) with

RNN 64 1 × 10−3 1 × 10−5 10 0.5 3,544,657

LSTM 64 1 × 10−3 1 × 10−5 10 0.5 5,947,657

GRU 64 1 × 10−3 1 × 10−5 10 0.5 5,146,657

STGCN 64 1 × 10−3 1 × 10−5 10 0.5 2,977,894

DCRNN 64 1 × 10−3 1 × 10−5 10 0.5 3,031,074

AGCRN 64 1 × 10−3 1 × 10−5 10 0.5 5,322,406

Proposed (full model) 64 5 × 10−4 5 × 10−5 10 0.5 2,985,619

Proposed (w/o final module) 64 5 × 10−4 5 × 10−5 10 0.5 2,694,559

Table 3: The results of parking occupancy prediction (mean ± std.dev.)

Model

𝐾 = 1 𝐾 = 2 𝐾 = 3

MSE 𝑅2
MSE 𝑅2

MSE 𝑅2

S
a
n
F
r
a
n
c
i
s
c
o

Ours
Substitute Eq. (2) with

RNN 0.01374 ± 0.00027 0.60727 ± 0.00763 0.01296 ± 0.00223 0.62080 ± 0.00223 0.01373 ± 0.00016 0.59760 ± 0.00457

LSTM 0.01701 ± 0.00027 0.51369 ± 0.01161 0.01443 ± 0.00321 0.57783 ± 0.00321 0.01517 ± 0.00009 0.55557 ± 0.00261

GRU 0.01505 ± 0.00039 0.56983 ± 0.01113 0.01395 ± 0.00334 0.59187 ± 0.00334 0.01446 ± 0.00014 0.57618 ± 0.00406

STGCN 0.01040 ± 0.00050 0.70287 ± 0.01419 0.01027 ± 0.00045 0.69969 ± 0.01319 0.01037 ± 0.00049 0.69619 ± 0.01433

DCRNN 0.01022 ± 0.00030 0.70796 ± 0.00851 0.01012 ± 0.00041 0.70404 ± 0.01199 0.01020 ± 0.00053 0.70113 ± 0.01534

AGCRN 0.01021 ± 0.00012 0.70821 ± 0.00329 0.01001 ± 0.00014 0.70727 ± 0.00417 0.01047 ± 0.00032 0.69326 ± 0.00938

Proposed (full model) 0.00980 ± 0.00002 0.71985 ± 0.00046 0.00975 ± 0.00001 0.71473 ± 0.00034 0.00999 ± 0.00003 0.70726 ± 0.00092
Proposed (w/o final module) 0.01005 ± 0.00003 0.71278 ± 0.00084 0.00994 ± 0.00004 0.70915 ± 0.00109 0.01009 ± 0.00003 0.70435 ± 0.00090

Existing

Method

(only

short-term)

RNN 0.01295 ± 0.00004 0.62994 ± 0.00120 0.01258 ± 0.00003 0.63189 ± 0.00102 0.01321 ± 0.01378 0.61225 ± 0.00145

LSTM 0.01564 ± 0.00020 0.55307 ± 0.00562 0.01395 ± 0.00005 0.59198 ± 0.00137 0.01476 ± 0.01378 0.56762 ± 0.00296

GRU 0.01374 ± 0.00006 0.60724 ± 0.00174 0.01280 ± 0.00006 0.62547 ± 0.00167 0.01319 ± 0.01378 0.61344 ± 0.00240

STGCN 0.01119 ± 0.00054 0.68005 ± 0.01546 0.01100 ± 0.00047 0.67825 ± 0.01378 0.01112 ± 0.00077 0.67407 ± 0.02243

DCRNN 0.01125 ± 0.00004 0.67850 ± 0.00127 0.01077 ± 0.00002 0.68493 ± 0.00046 0.01072 ± 0.00005 0.68578 ± 0.00136

AGCRN 0.01092 ± 0.00010 0.68796 ± 0.00282 0.01059 ± 0.00012 0.69012 ± 0.00355 0.01095 ± 0.00066 0.67913 ± 0.01948

NODE 0.01058 ± 0.00005 0.69753 ± 0.00146 0.01055 ± 0.00008 0.69123 ± 0.00238 0.01063 ± 0.00006 0.68840 ± 0.00170

S
e
a
t
t
l
e

Ours
Substitute Eq. (2) with

RNN 0.02392 ± 0.00015 0.62621 ± 0.00225 0.02721 ± 0.00036 0.57511 ± 0.00567 0.02799 ± 0.00053 0.56240 ± 0.00828

LSTM 0.02564 ± 0.00034 0.59918 ± 0.00529 0.02797 ± 0.00032 0.56323 ± 0.00500 0.03128 ± 0.00085 0.51106 ± 0.01323

GRU 0.02466 ± 0.00010 0.61449 ± 0.00151 0.02660 ± 0.00058 0.58451 ± 0.00902 0.02917 ± 0.00149 0.54399 ± 0.01746

STGCN 0.02125 ± 0.00029 0.66792 ± 0.00451 0.02154 ± 0.00103 0.66360 ± 0.01611 0.02183 ± 0.00112 0.65870 ± 0.01746

DCRNN 0.02128 ± 0.00023 0.66740 ± 0.00352 0.02171 ± 0.00056 0.66094 ± 0.00873 0.02203 ± 0.00088 0.65556 ± 0.01376

AGCRN 0.02165 ± 0.00009 0.66162 ± 0.00140 0.02170 ± 0.00038 0.66137 ± 0.00643 0.02359 ± 0.00038 0.63345 ± 0.00610

Proposed (full model) 0.02098 ± 0.00006 0.67204 ± 0.00088 0.02126 ± 0.00008 0.66803 ± 0.00122 0.02153 ± 0.0000 0.66339 ± 0.00029
Proposed (w/o final module) 0.02266 ± 0.00009 0.64580 ± 0.00140 0.02331 ± 0.00017 0.63599 ± 0.00263 0.02386 ± 0.00021 0.62708 ± 0.00327

Existing

Method

(only

short-term)

RNN 0.02428 ± 0.00002 0.62045 ± 0.00035 0.02674 ± 0.00010 0.58230 ± 0.00162 0.02712 ± 0.00010 0.57598 ± 0.00155

LSTM 0.02490 ± 0.00008 0.61076 ± 0.00118 0.02529 ± 0.00013 0.60497 ± 0.00202 0.02720 ± 0.00004 0.57485 ± 0.00063

GRU 0.02427 ± 0.00006 0.62067 ± 0.00088 0.02466 ± 0.00004 0.61491 ± 0.00064 0.02548 ± 0.00010 0.60162 ± 0.00156

STGCN 0.02148 ± 0.00037 0.66423 ± 0.00574 0.02167 ± 0.00007 0.66158 ± 0.00111 0.02179 ± 0.00008 0.65931 ± 0.00131

DCRNN 0.02416 ± 0.00022 0.62232 ± 0.00338 0.02323 ± 0.00047 0.63721 ± 0.00735 0.02250 ± 0.00036 0.64833 ± 0.00558

AGCRN 0.02158 ± 0.00010 0.66263 ± 0.00158 0.02485 ± 0.00217 0.61193 ± 0.03388 0.02168 ± 0.00021 0.66108 ± 0.00321
NODE 0.02138 ± 0.00006 0.66596 ± 0.00094 0.02163 ± 0.00005 0.66211 ± 0.00078 0.02182 ± 0.00005 0.65894 ± 0.00080

Ablation Study. As an ablation study, we remove the final predic-

tion module and let 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 be the final prediction. Since 𝒛𝑎𝑑 𝑗𝑢𝑠𝑡 is
adjusted with the price information from the initial prediction, we

can also use it for price optimization (or dynamic pricing). However,

the proposed prediction model without the final prediction module

does not perform as well as our full model as shown in Table 3.

6 EXPERIMENTS ON OPTIMIZATION
We describe our optimization results. The prediction model is fixed

during this process and we optimize an actionable input, i.e., price,

to achieve target occupancy rates. Since our proposed full model

produces the lowest prediction errors, we use it as an oracle. In

this step, it is crucial to use the best predictive model as an ora-

cle (although some sub-optimal models provide a lower complex-

ity) [2, 3, 6, 17, 21, 26]. If not, the optimized solution (toward the

sub-optimal model) does not yield expected outcomes when being

applied to real-world environments.
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Table 4: The optimization performance (the ratio of failed
test cases where the optimized occupancy rate exceeds the
threshold 𝜏) and the average runtime of San Francisco

Optimization Performance Runtime
(seconds)𝝉 = 70% 𝝉 = 75% 𝝉 = 80%

Observed in Data 0.5475 0.4440 0.3450 N/A

Greedy 0.4685 0.2045 0.0553 446.6343

Gradient-based 0.3606 0.1609 0.0488 0.5471

One-shot (Ours) 0.1938 0.0065 0.0033 0.0000007

Table 5: The optimization performance and the average run-
time of Seattle

Optimization Performance Runtime
(seconds)𝝉 = 70% 𝝉 = 75% 𝝉 = 80%

Observed in Data 0.1307 0.1003 0.0756 N/A

Greedy 0.1533 0.0917 0.0495 0.5438

Gradient-based 0.1739 0.1171 0.0724 0.0042

One-shot (Ours) 0.0997 0.0684 0.0440 0.0000007

6.1 Experimental Environments
Baselines. We compare our method with the following baseline

methods (whose design concepts are similar to what used in [2,

3, 17, 21]) — the target occupancy rate 𝒚∗ is set to 70% and the

minimum price 𝑝𝑚𝑖𝑛 is set to $0.25 and $0.5 for San Francisco and

Seattle, respectively; the maximum price 𝑝𝑚𝑎𝑥 is set to $34.5 for

San Francisco and $3.0 for Seattle. Given the short-term, long-term

occupancy rates, and the pre-trained prediction model’s parameters

𝜽𝜉 , we optimize the price 𝒑∗ given the target occupancy rate 𝒚∗:
(1) We use the following greedy black-box search strategy: We

set the initial price vector 𝒑∗ to 𝑝𝑚𝑖𝑛 for all parking blocks.

For each iteration, we increase each block’s parking price

by $0.25 (given that its price has not already reached 𝑝𝑚𝑎𝑥 )

and find the parking block which decreases the error term

∥𝒚∗ −𝒚∥22 the most. We then increase the price of this block

by $0.25. The aforementioned strategy is repeated until the

current iteration does not decrease the error term.

(2) We test the following gradient-basedwhite-box strategy: The

gradient

𝜕 ∥𝒚∗−𝒚 ∥22
𝜕𝒑∗ flows to 𝒑∗ with the Adam optimizer [20]

up to 1,000 iterations until the error term ∥𝒚∗−𝒚∥22 stabilizes
— 𝒑∗ is initialized to $0.25 for all parking blocks. Note that

in this scheme, 𝒑∗ is optimized to minimize the error term,

with 𝑝𝑚𝑖𝑛 ≤ 𝒑∗ ≤ 𝑝𝑚𝑎𝑥 . This method can find the optimal

solution if the error term is a convex function, which is not

the case in our setting, so it returns a sub-optimal solution.

Theworst-case complexity of the greedy strategy isO(𝑁 2 𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛

0.25 )
whereas our method has a complexity of O(1). Depending on how

quickly the solution converges, the gradient method’s performance

varies substantially.

Research Questions. We answer the following research questions

from our experiments:

(RQ1) What is the runtime of each method?

(RQ2) For how many test cases does each method successfully

find (or fail to find) 𝒑∗?

Figure 4: San Francisco’s mean observed occupancy rate and
the mean optimized parking price at 12:00 p.m. in the test
period for seven blocks in seven different districts

6.2 Experimental Results
RQ1. In Tables 4 and 5, we compare the optimization results. In

the case of San Francisco, our method is several orders of magnitude

faster than the greedy black-box method and the gradient-based

white box method. The greedy method, in particular, showed sig-

nificant limitations in terms of runtime, with one test case lasting

447 seconds on average and taking up to 4,653 iterations. Con-

sidering that we optimized 183,280 cases in the test period, our

one-shot method showed remarkable runtime. Seattle’s price range

is not as broad as San Francisco’s, i.e., $0.5 to $3.0. As a result, the

optimization of Seattle showed faster runtime in Table 5.

RQ2. We also show the percentage of the failure cases where

the optimized occupancy rate is larger than the threshold 𝜏 =

{70%, 75%, 80%}. These errors occur due to imperfections in the

price optimization process. Our method greatly outperforms other

methods by showing a much smaller failure ratio in comparison to

others. Theoretically, our method should show zero error if we can

exactly solve the reverse-mode integral, but due to the practical

limitation of ODE solvers, it produces a small amount of error.

However, 80.6% to 99.7% of the 183,280 cases in San Francisco, and

91% to 95.6% of the 31,360 cases in Seattle are still below the optimal

occupancy rate 𝜏 = {70%, 75%, 80%}, which are acceptable.

7 CASE STUDIES
We introduce selected examples of prediction and price optimiza-

tion outcomes with visualization. Figure 4 shows the mean observed
(or ground-truth in the dataset) occupancy rate and optimized park-

ing price of San Francisco during the test period. As shown, the

optimized parking price and the observed parking occupancy rate

are highly correlated. The correlation between the mean hourly

observed occupancy rate and the mean optimized price on each

block is 0.724 in our San Francisco’s test set.
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(a) The block between E James St and E Cherry St, 12th Avenue
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(b) The block between E Marison St and E Spring St, 12th Avenue

Figure 5: The correlation visualization between the occu-
pancy rate and the optimized price. These figures include
Seattle’s test data from January 31st.

The interesting point is that the mean optimized price jumped

when the observed occupancy exceeded the ideal rate of 80%. The

parking block in downtown, 500 Battery St’s occupancy rate was

almost always over 90% at noon, with a mean rate of 93%. The mean

optimized price at noon is $15, a fairly high price. Since the parking

block is almost always over-occupied, our framework accordingly

recommends a reasonably high price to reduce the occupancy rate.

The average parking price observed in the dataset was $5.9, which

seems to be insufficiently high to achieve the target occupancy rate.

Our strategy also shows adaptability to sudden changes in de-

mand. On July 4, 2013, the aforementioned block’s parking occu-

pancy rate was observed 1% at noon. For this day, our method

dynamically decreased the price to $0.25, the minimum price. How-

ever, the observed price was $6. Similarly, the block in the civic

center, 500 Franklin St., showed a low occupancy rate on average.

However, on April 12, the occupancy rate at noon was higher than

usual at 81%. Our optimized price was $1.72, while the observed

price was $0.75–even lower than the mean price of $0.86. These

cases demonstrate the robustness of our proactive optimization.

Fig. 5 shows the effectiveness of our dynamic pricing with some

selected examples in two parking blocks in Seattle. As shown, their

occupancy rates by the oracle in red are well controlled by our

dynamic pricing in blue. The observed ground-truth price of these

blocks is set to the basic price, $0.5, and adjusted to $1 at 5 p.m.

In Fig. 6, we show other types of visualization. In the four parking

blocks of Seattle, the ground-truth occupancy rates observed in the

data are above the ideal range [0.6, 0.85] in many cases, whereas

ourmethod successfully suppresses the occupancy rates on or below

the range.

8 CONCLUSIONS & LIMITATIONS
In the U.S. metropolitan cities, dynamic pricing is necessary to keep

parking occupancy rates within a tolerable range. To this end, we
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Figure 6: The comparison between the ground-truth occu-
pancy rate and the predicted occupancy rate when our opti-
mized pricing is applied. These figures show Seattle’s data.

presented a one-shot prediction-driven optimization framework

which is featured by i) an effective prediction model for the price-

occupancy relation, and ii) a one-shot optimization method. Our

prediction model is carefully tailored for the price-occupancy re-

lation and therefore, it outperforms other general time series (or

spatiotemporal) forecasting models. Our sophisticated prediction

model, which includes many layers for processing the short-term

and the long-term historical information, and the price information,

is designed considering the optimization process, which is quite

different from other predictive models. In general, predictive mod-

els are not designed considering optimization, and therefore, one

should rely on a black-box optimization technique and so on. In

our case, however, the price reflection module is deferred to after

the initial prediction module, and the final prediction module relies

on NODEs which are bijective and continuous. Owing to all these

design points, the price optimization can be solved in O(1). Our
experiments with the data collected in San Francisco and Seattle

show that the presented dynamic pricing works well as intended,

outperforming other optimization methods. Our method is several

orders of magnitude faster than them and successfully suppresses

too large occupancy rates.

One limitation in our work is that we should have relied on

the oracle model to verify the efficacy of our method (instead of

running real systems in San Francisco and Seattle). However, this

is a common limitation of many prediction-driven optimization re-

searches [2, 3, 6, 17, 21, 26]. We contribute a novel approach, which

drastically enhances the complexity of solving the optimization

problem, to the community of prediction-driven optimization.
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