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Abstract. Federated learning is a prominent framework that enables
clients (e.g., mobile devices or organizations) to train a collaboratively
global model under a central server’s orchestration while keeping local
training datasets’ privacy. However, the aggregation step in federated
learning is vulnerable to adversarial attacks as the central server cannot
manage clients’ behavior. Therefore, the global model’s performance and
convergence of the training process will be affected under such attacks.
To mitigate this vulnerability issue, we propose a novel robust aggrega-
tion algorithm inspired by the truth inference methods in crowdsourcing
via incorporating the worker’s reliability into aggregation. We evaluate
our solution on three real-world datasets with a variety of machine learn-
ing models. Experimental results show that our solution ensures robust
federated learning and is resilient to various types of attacks, including
noisy data attacks, Byzantine attacks, and label flipping attacks.

Keywords: Federated Learning · Robustness · Adversarial Attack

1 Introduction

Federated learning (FL) has emerged as a promising new collaborative learning
framework to build a shared model across multiple clients (e.g., devices or or-
ganizations) while keeping the clients’ data private [21,20,1]. The latter is also
known as cross-silo FL, which we focus on in this paper. Such a framework is
practical and flexible and can be applied in various domains, such as conver-
sational AI and healthcare [21,22,20]. Training a generalizable model for these
domains requires a diverse dataset. Accessing and obtaining data from multi-
ple organizations and centralizing them in a third-party service provider can be
impractical considering data privacy concerns or regulations. Yet, we still wish
to use data across various organizations because a model trained on data from
one organization may be subject to bias and poor generalization performance.
FL makes it possible to harness the data for joint model training with better
generalization performance without the requirement to share raw private local
datasets [1].

In a cross-silo FL framework (as shown in Figure 1), there is a semi-honest
global coordinating server and several participating clients. The global server
controls the learning process and aggregates the model parameters submitted
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by clients during multiple communication rounds. The clients train the same
model locally using their local datasets. Then, they share their updated local
model parameters, not their raw data, with the server, which aggregates all
their contributions and broadcasts back the updated global model parameters.

Fig. 1: Overview of Cross-silo Federated Learning (FL) Framework

The most commonly used aggregation algorithm is called Federated Averag-
ing (FedAvg) [21] that takes a weighted average of the local model parameters.
This aggregation method is vulnerable to adversarial attacks or unintentional
errors in a system. Due to strategic adversarial behavior (e.g., label-flipping
and Gaussian noise attacks [14,6,11,4]) or infrastructure failures (e.g., Byzan-
tine faults [17] where client nodes act arbitrarily), the clients can send malicious
(manipulated) or arbitrary values to the server. Thus, the global model can
be affected severely. Therefore, robust FL against such potential behaviors or
failures is essential.

Recently, several methods have been proposed to mitigate attacks in FL
or distributed learning [9,5,30,8,4]. The statistical methods such as median or
trimmed mean based aggregation (instead of weighted averaging) [30] perform
well under Byzantine attack. However, they fail under other types of attacks
such as label-flipping and Gaussian noise attacks.

This paper proposes using a truth inference approach for robust aggregation
against such attacks in FL. Truth inference is a key component of crowdsourcing
that aggregates the answers of the crowd (i.e., workers) to infer the true label
of tasks (e.g., traffic incidents, image annotation) [24,15]. We make this connec-
tion for the first time that the model parameter aggregation can be formulated
as a truth inference problem, i.e., each client is a worker, the local parameters
(answers) by the workers need to be aggregated to estimate the global param-
eter (label). The key idea is to explicitly model the reliability of clients and
take them into consideration during aggregation. Such an approach has shown
promising results in crowdsourcing compared to simple aggregation approaches
such as majority voting (or averaging). However, there are several challenges and
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opportunities in applying the truth inference approach for robust FL (compared
to crowdsourcing). First, an attacker can manipulate the local training data
(e.g., adding noise or flipping the labels) to affect the model parameters (versus
directly changing the model parameters). The server only observes the model
parameters without access to the data. Hence, a direct application of the truth
inference approach on the model parameters cannot detect the malicious clients
reliably. Second, FL requires multi-round communication of the local model pa-
rameters to the server. This dynamic information creates both challenges and
opportunities in detecting unreliable clients. Finally, as in many practical set-
tings, the server does not have access to any golden validation set for validating
the local parameter models in order to detect unreliable clients.

To address these challenges, we derive the clients’ reliability score by solving
an optimization problem over multiple iterations of FL. We then incorporate the
reliability of each client in the aggregation. Our approach is based on two main
insights. First, the existing truth inference approaches rely entirely on the derived
reliability of the workers for aggregation. In our case, since the model parameters
may not accurately reflect the reliability of the workers due to the different kinds
of attacks (e.g., label-flipping), we use a pruning algorithm that removes clients
with outlier reliability, which mitigates the impact of the malicious clients during
aggregation. Second, we exploit the multi-round model parameters submitted by
the clients for evaluating the client’s reliability in a more robust way. We briefly
summarize our contributions as follows.

– We develop a novel robust aggregation method for FL against potential ad-
versarial attacks and Byzantine failures of clients. The method explicitly
models the clients’ reliability based on their submitted local model parame-
ters and incorporates them into aggregation, hence providing a robust esti-
mate of the global model parameters.

– We further enhance the aggregation method by exploiting the multi-round
communication of FL and considering the model parameters submitted by
the clients both in the previous rounds and the current round for evaluating
the client’s reliability.

– We compare our proposed method to several baselines on three image datasets.
The results show that our proposed aggregation methods mitigate the impact
of attacks and outperform other baselines.

2 Related Works

In this section, we provide a brief review of adversarial attacks on federated
learning (FL) along with the existing defense and robustness methods in FL.
Subsequently, we briefly review truth inference methods in crowdsourcing.

2.1 Adversarial Attacks on Federated Learning

In federated learning (FL), all the participants agree on a common learning
objective and model structure. The attacker aims to compromise the global
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model by uploading the malicious data to the global server [21]. The adversary
can control the whole local training dataset, local hyper-parameter of a model,
and local model parameters in this system.

This paper mainly considers the data poisoning attack scenario, in which
malicious clients create poisoned training samples and inject them into their local
training dataset [8]. Then, the local model is trained on the dataset contaminated
with such poisoned samples. The purpose of this attack is to manipulate the
global model to misclassify on test datasets. These attacks can be further divided
into two categories: 1) label-flipping attacks [8] and 2) noisy features attack [8].
The label-flipping attack occurs where the labels of training examples of one
class are flipped to another class while the data features remain unchanged.
For example, an attacker can train a local model with cat images misclassified
as a dog and then share the poisoned local model for aggregation. A successful
attack forces a model to incorrectly predicts cats to be dogs. In the noisy features
attacks, the adversary adds noise to the features while keeping the class label of
each data point intact [8]. Noisy data and the backdoor attacks fall in this type
of attack [29,28].

FL is vulnerable to poisoning attacks. Studies [8,3] show that just one or
two adversarial clients are enough to compromise the performance of the global
model. Thus, developing a robust method against these attacks is essential. Fung
et al. [8] proposed a defense method, called FoolsGold, against data poisoning
attack in FL in a non-IID setting. Their solution differentiates the benign clients
from the adversary ones by calculating the similarity of their submitted gradi-
ents. Other techniques use the recursive Bayes filtering method [23] to mitigate
the data poisoning attack. In some studies [3,25], researchers assume that the
global server has access to a golden validation dataset that represents data dis-
tribution from clients. The server can detect adversaries by assessing the effec-
tiveness of provided updates on the global model’s performance. If the updates
do not improve the global model’s performance, the client is flagged as a poten-
tial adversary [3]. However, this method requires the validation dataset which is
difficult to achieve in practice.

2.2 Byzantine-Robust Federated Learning

Byzantine clients aim to prevent the global model’s convergence or lead the
global model to converge to a poor solution. In some scenarios, the Byzantine
clients choose to add Gaussian noise to the gradient estimators, then send these
perturbed values to the server. The Byzantine gradients can be hard to distin-
guish from the benign clients since their variance and magnitude are similar to
the benign gradient submissions. Byzantine-Robust methods have been studied
in recent years [2,30,23,12,4,18,5]. Most existing methods assume that data is
distributed IID among clients and are based on robust statistical aggregation.

A common aggregation method against the Byzantine attack is based on the
median of the updates [5]. This method aggregates each model parameter inde-
pendently. It sorts the local models’ jth parameters and takes the median as the
jth parameter for the global model. Trimmed mean [30] is another method that
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sorts jth parameters of all local models, then removes the largest and smallest
of them, and computes the mean of the remaining parameters as the jth pa-
rameter of the global model. Krum [4] selects one of the local models that are
similar to other models as the global model. Krum first computes the nearest
neighbors to each local model. Then, it calculates the sum of the distance be-
tween each client and their closest local models. Finally, select the local model
with the smallest sum of distance as the global model. Aggregation methods
such as Krum and trimmed mean need to know the upper bound of the number
of compromised workers. Other methods extend Krum, such as Multi-Krum [4]
and Bulyan [12]. Multi-Krum combines Krum and averaging. Bulyan combines
Krum and trimmed mean. It iteratively applies Krum to local models then ap-
plies trimmed mean to aggregate the local models.

2.3 Truth Inference Methods

Crowdsourcing aggregates the crowd’s wisdom (i.e., workers) to infer the truth
label of tasks in the system, which is called truth inference. Effective truth in-
ference, especially given sparse data, requires assessment of workers’ reliability.
There exist various approaches to infer the truth of tasks [13,19,7,27,16,10,32], in-
cluding direct computing [13], optimization [13,19], probabilistic graphical model
(PGM) [7,27,16], and neural network based [31]. The simplest method is major-
ity voting, which works well if all workers provide answers to all of the tasks.
However, it fails when data is sparse and workers may be unreliable, as in many
practical settings.

Recently, two experimental studies compared state-of-the-art truth inference
methods in a ”normal” setting and ”adversarial” setting [32,26]. The ”adversar-
ial” environment is where workers intentionally or strategically manipulate the
answers. In the ”normal” setting, the study [32] concluded that truth inference
methods that utilize a PGM have the best performances in most settings where
the type of tasks are binary and single label. The study in the ”adversarial” set-
tings [26] focusing on binary tasks showed that neural networks and PGM based
methods are generally more robust than other methods for the binary type of
tasks. In our FL setting, since we are dealing with model parameters that are
numeric and updates that are dense (i.e. a subset of participants submit their
model parameters in each round), we use an optimization based truth inference
method PM as a baseline method.

3 Preliminaries

3.1 Federated Learning (FL)

The FL framework is important when the participating organizations desire to
keep their data private. Instead of sharing data, they share the model parameters
to take advantage of a high volume of data with different distributions and
improve the model’s generalization. FL consists of K clients and a global server
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G. Each client ci has their own local dataset Di = {xi1, ....xili}, where |Di| = li.

The total number of samples across all the clients is
∑K
i=1 li = l. The goal of FL

is to keep the data local and learn a global model with n parameters wG ∈ Rn
which minimizes the loss among all samples D =

⋃K
i=1Di in the aim that the

model generalizes well over the test data Dtest.
At each time step t, a random subset from the clients is chosen for syn-

chronous aggregation, i.e. the global server computes the aggregated model,
then sends the latest update of the model to all selected clients. Each client
ci ∈ K uses their local data Di to train the model locally and minimize the
loss over its own local data. After receiving the latest global model, the clients
starts the new round from the global weight vector wtG and run model for E
epochs with a mini-batch size B. At the end of each round, each client obtains a
local weight vector wt+1

ci and computes its local update δt+1
ci = wt+1

ci − w
t
G, then

sends the corresponding local updates to the global server, which updates the
model according to a defined aggregation rule. The simplest aggregation rule is a
weighted average, i.e., Federated Averaging (FedAvg), and formulated as follow,

where αi = li
l and

∑K
i=1 αi = 1.

wt+1
G = wtG +

K∑
i=1

αi · δt+1
i (1)

3.2 Adversarial Model

We assume any of the clients can be attackers who have full access to the local
training data, model structure, learning algorithms, hyperparameters, and model
parameters. The adversary’s goal is to ensure the system’s performance degrades
or causes the global model to converge to a bad minimum.

In this paper, we mainly consider the data poisoning attack and Byzantine
attack. The data poisoning attack is applied in the local training phase and
divided into label-flipping and noisy data attacks. In each round, the attacker
trains a new local model (based on the global model from the previous round) on
the poisoned training data and uploads the new model parameters to the server.
Byzantine attack directly changes the model parameters to be uploaded to the
server. For the adversarial model, we follow two assumptions: (1) The number of
adversaries is less than 50% of whole clients; (2) the data is distributed among
the clients in an independent and identically (IID) fashion.

4 Proposed Robust Model Aggregation

We present our proposed robust aggregation method in this section. The key
idea is to explicitly model the reliability of clients inspired by truth inference
algorithms and take them into consideration during aggregation. We first intro-
duce the truth inference framework and utilize it in FL to estimate the reliability
of provided updates by clients in each round. We further improve it by remov-
ing the outlier clients before aggregation to address its limitations of correctly
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detecting malicious clients in data poisoning attacks. Finally, we incorporate
the multi-round historical model parameters submitted by the clients for more
robust aggregation. The high-level system model is illustrated in Figure 2. The
server comprises two modules: (1) the reliability score calculator; and (2) the ag-
gregator. The server calculates each client’s reliability based on three proposed
methods that is improved upon each other.

Fig. 2: Overview of Proposed Methods

4.1 Truth Inference Method

Due to the openness of crowdsourcing, the crowd may provide low-quality or even
noisy answers. Thus, it is crucial to control crowdsourcing’s quality by assigning
each task to multiple workers and aggregating the answers given by different
workers to infer each task’s correct response. The goal of truth inference is to
determine the true answer based on all the workers’ answers for each task.

Fig. 3: Example of Crowdsourcing System

Figure 3 shows an example given three workers W={w1, w2, w3} and five
tasks T={t1, t2, .., t5}, the goal is to infer the true answer for each tasks. For
example, worker w1 provides 1.72 as an answer to task t4. A naive solution to
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infer the true answer per task is Majority Voting (MV) or averaging. Based
on Figure 3, the truth derived by MV for task t1 is 1.77, which is inferred
incorrectly. A more advanced method such as PM [19] models the reliability of
each worker explicitly and resolves conflicts from different sources for each entry.
Compared with the ground truth answers, it is clear that worker w1 and w2

provide more accurate information (more reliable) while w3 is not very reliable.
By modeling and learning the reliability of workers, PM provides more accurate
results compared with averaging.

We can map the model aggregation at the server in FL into the truth in-
ference problem by considering the model’s weight parameters as tasks. In both
crowdsourcing and FL, we deal with unlabeled data. In crowdsourcing, the true
label of tasks are not available; in FL, the true parameters of the model are
unknown (the server does not have access to any validation dataset). The pa-
rameter aggregation can be considered as a numeric task (as versus binary task).
Algorithm ?? shows the truth inference framework for numeric tasks. The reli-
ability of each worker i ∈ [k] is denoted as rci . It initializes clients’ reliability
with the same reliability as rci = 1. Also, it initializes the estimated truth for
each weight parameter as the median of all values provided by the clients. Then
it adopts an iterative approach with two steps, 1) inferring the truth and 2)
estimating client reliability.

Algorithm 1: Obtain Clients Reliability

Input: Provided parameters by local clients δk =
⋃K

i=1 δci , w
t
G

Output: R=
⋃K

i=1 rci
1 Initialize clients’ reliability (rci = 1 for i ∈ K)

2 Initialize inferred truth of each update parameter (∆̂G) as the median of local
updates of δk

3 while True do
4 // Step 1: Inferring the Truth
5 for each weight parameter j ∈ N do

6 Inferring the ∆̂G based on δk and R
7 end
8 // Step 2: Estimating client reliability
9 for each client do

10 estimate R based on δk and ∆̂G

11 end
12 if converge then
13 break
14 end

15 end
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4.2 Robust Aggregation Method: RobustFed

In this section, details of our proposed aggregation method are provided. To
begin each round, we compute the reliability level of each client by applying the
truth inference method.

Let δtci = {δtci [1], δtci [2], ..., δtci [n]} be the local updates that is shared by
client ci at round t. Let K = {c1, c2, ...ck} be the set of clients. Hence, at round
t, the updated parameters δtk are collected from K clients. Given the updated
parameters δtk provided by K clients, the goal of utilizing the truth inference
is to infer the reliability of each clients R = {rc1 , ...rck} and incorporate this
reliability score into the aggregation method.

The idea is that benign clients provide trustworthy local updates, so the ag-
gregated updates should be close to benign clients’ updates. Thus, we should
minimize the weighted deviation from the true aggregated parameters where the
weight reflects the reliability degree of clients. Based on this principle, we uti-
lize the PM method, which is a truth inference method applicable in numerical
tasks [19]. First, by minimizing the objective function, the values for two sets
of unknown variables ∆ and R, which correspond to the collection of truths
and clients’ reliabilities are calculated. The loss function measures the distance
between the aggregated parameters (estimated truth) and the parameters pro-
vided by client (observation). When the observation deviates from the estimated
truth, the loss function return a high value. To constrain the clients’ reliabilities
into a certain range, the regularization function is defined and it reflects the
distributions of clients’ reliabilities.

Intuitively, a reliable client is penalized more if their observation is quite
different from the estimated truth. In contrast, the observation made by an
unreliable client with low reliability is allowed to be further from the truth. To
minimize the objective function, the estimated truth relies more on the clients
with high reliability. The estimated truth and clients’ reliabilities are learned
together by optimizing the objective function through a joint procedure. We
formulate this problem as an optimization problem as follows:

min
R,∆̂

K∑
i=1

rci · dist (∆̂G, δ
t
ci), (2)

where rci , δ
t
ci and ∆̂G represent client ci’s reliability, provided update by

client ci at time t, and aggregated updates at time t on the global server, respec-
tively. Also dist (∆̂G, δ

t
ci) is a distance function from the aggregated updates of

all clients to the clients’ provided update. The goal is to minimize the overall
weighted distance to the aggregation parameters in the global server in a way
that reliable clients have higher weights (importance).In our problem, the type
of parameters provided by clients are continuous, therefore Euclidean distance

is used as a distance function,

√∑N
j=1

(
∆̂j
G − δ

j
ci

)2

, where N is the number of

local parameters and δjci indicates the j-th local parameter shared by client ci.
The client ci’s reliability is modeled using a single value rci . Intuitively, workers



10 Farnaz Tahmasebian, Jian Lou, and Li Xiong

with answers deviating from the inferred truth tend to be more malicious. The
algorithm iteratively conducts the following two steps, 1) updating the client’s
reliability and 2) updating the estimated truth for parameters.

To update the client’s reliability, we fix the values for the truths and compute
the clients’ reliability that jointly minimizes the objective function subject to
the regularization constraints. Initially, each client is assigned with the same
reliability, ∀i∈ K rci=1. The reliability score of each client after each iteration is
updated as:

rci = − log

( ∑N
j=1 dist(∆̂

j
G , δjci)∑cK

k′=c1

∑N
j=1 dist(∆̂

j
G , δk′

j)

)
(3)

Equation 3 indicates that a clients reliability is inversely proportional to the
difference between its observations and the truths at the log scale.

By fixing the reliability of clients, the truths of parameters are updated in
a way that minimizes the difference between the truths and the client’s ob-
servations where clients are weighted by their reliabilities and calculated as:

∆̂G =
∑K

i=1 rci ·δci∑K
i=1 rci

At the aggregation step, the global server incorporates the provided param-
eters of each clients based on their reliability. Hence, the global parameters are
updated as follows:

wt+1
G = wtG +

∑
i∈K

rtci · αi · δ
t+1
ci (4)

4.3 Reduce Effect of Malicious Clients: RobustFed+

RobustFed incorporate the reliability of every client in the aggregation but does
not include explicit mechanisms to detect and exclude malicious clients. To fur-
ther reduce the effect of malicious clients, we further propose RobustFed+ to
detect non-reliable clients at each round and discard their participation during
the aggregation phase.

Algorithm 2: Robust Aggregation (RobustFed+)

Input: selected clients Kt, Rt (reliability of all clients), wt
G,

Output: wt+1
G

1 Cand (set of clients’ candidate) initialized to ∅
2 Rt ← getClientsReliablity()
3 µ̄, σ ← median(Rt), std(Rt)
4 for i ∈ K do
5 if µ̄− σ <= rtci <= µ̄+ σ then
6 Add ci to Cand

7 wt+1
G ← wt

G +
∑

i∈[Cand] r
t
ci · αi · δt+1

ci
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Algorithm 2 summarizes RobustFed+ method. After obtaining the reliability
of each clients, the median (µ̄) and standard deviation (σ) of the reliabilities
are computed for all the clients participated in the round t. The clients whose
reliability fit in the range of [µ̄ − σ, µ̄ + σ] are selected as a candidate, and the
global parameters are updated as follows: wt+1

G = wtG +
∑
i∈[Cand] r

t
ci ·αi ·δ

t+1
ci .

We note that a straightforward method is to remove the clients with lowest
reliability scores. Intuitively, we expect the server to assign a higher reliability
to honest clients and a lower score to the malicious ones. In our experimental
studies, we indeed observe this when no attack happens or under specific types
of attacks such as Byzantine or data noise attacks. However, under label-flipping
attack, we observe that the RobustFed method assigns higher reliability to the
malicious clients. This is because the gradients of the malicious clients can be
outliers under such attacks and significantly dominates (biases) the aggregated
model parameters, and hence has a high reliability because of its similarity to
the aggregated values. Therefore, in our approach, we disregard the clients with
reliability deviating significantly from the others.

4.4 Incorporate the Temporal Data to Improve the Defense
Capability: RobustFedt

Given the multi-round communication between the clients and the server in FL,
RobustFed and RobustFed+ only consider one round and ignore the temporal
relationship among weight parameters in multiple rounds. Ignoring this temporal
relationship might miss important insights of the parameters shared by clients at
each rounds. Intuitively, under data poisoning or label flipping attacks, consider-
ing the parameters over multiple rounds will more effectively reveal the malicious
clients. To take advantage of temporal information, we propose RobustFedt to
incorporate the statistical information of the previous rounds during the relia-
bility estimation. Incorporating the statistical information is dependent on the
way the clients are selected in each round:
Static Setting: The server selects the same set of clients at each round to
participate in training global model. Therefore, we add the statistics of the
model parameters from previous rounds as new tasks in addition to the vec-
tor of weights. These statistics are the number of large weights, number of small
weights, median of weights and average of weights. The reliability is then eval-
uated based on all statistics and the parameters submitted in current rounds.
Dynamic Setting: The server dynamically selects a set of clients to join FL
and participate in training global model. Since each client may participate with
different frequency, we only add median and average of weights from previous
round as the weights provided by the new clients.

5 Evaluation

5.1 Experiment Settings

Dataset. We consider the following three public datasets.
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– MNIST dataset: This dataset contains 70,000 real-world hand written images
with digits from 0 to 9 with 784 features. We split this dataset into a training
set and test set with 60,000 and 10,000 samples respectively.

– Fashion-MNIST (fMNIST) dataset: This dataset consists of 28×28 gray scale
images of clothing and footwear items with 10 type of classes. The number
of features for this dataset is 784. We split this dataset in which training has
60,000 and test data has 10,000 samples.

– CIFAR-10 dataset: This dataset contains 60,000 natural color image of 32x32
pixels in ten object classes with 3,072 features. We split this dataset in which
training has 50,000 and test data has 10,000 samples.

For MNIST and fMNIST datasets, we use a 3-layer convolutional neural
network with dropout (0.5) as the model architecture. The learning rate and
momentum are set as 0.1 and 0.9, respectively. For CIFAR-10, we use VGG-11
as our model. The droput, learning rate and momentum are set as 0.5, 0.001,
0.9, respectively.
Experiment Setup and Adversarial Attacks. We consider the training data
split equally across all clients. For selecting clients to participate in each round,
two selection methods are considered, 1) static mode and 2) dynamic mode. In
the static mode, the number of clients are set to be 10 and at each iteration, the
same set of clients are chosen. In the dynamic mode, the server randomly selects
10 clients from the pool of 100 clients in each round.

We assume that 30% of the clients are adversary. We consider three attack
scenarios.

– Label-Flipping Attacks: Adversaries flip the labels of all local training data
on one specific class (e.g., class #1) and train their models accordingly.

– Noisy Data: In MNIST and FMNIST, the inputs are normalized to the inter-
val [0,1]. In this scenario, for the selected malicious clients, we added uniform
noise to all the pixels, so that x ← x + U(-1.4,1.4). Then we cropped the
resulting values back to the interval [0,1].

– Byzantine Attack: Adversary perturb the model updates and send the noisy
parameters to the global server. δti ← δti+ε, where ε is a random perturbation
drawn from a Gaussian distribution with µ = 0 and σ = 20.

5.2 Experiment Results

Effect of Attacks on Reliability Score of Clients. Figure 4 shows the reli-
ability range of malicious and benign clients under label-flipping and Byzantine
attacks in static mode learned by RobustFed and RobustFedt, correspondingly.
We observe that RobustFed assigns higher reliability to benign workers and vice
versa under Byzantine attack and noisy data attack as we expected. However,
the opposite behavior is observed under flipping attack. As we discussed, this
is likely because the gradients of the malicious clients are outliers under such
attacks and significantly dominates (biases) the aggregated model parameters,
and hence has high reliability due to the Euclidean distance based evaluation.
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(a)
Flipping(RobustFed)

(b)
Byzantine(RobustFed)

(c)
Flipping(RobustFed+)

(d)
Byzantine(RobustFed+)

Fig. 4: Range of Clients’ Reliability on FMNIST dataset (10 clients, 30% mali-
cious clients)

Therefore, in our Robust+ approach, we disregard the clients with both high or
low reliabilities, which will help mitigate the impact of the malicious clients.

For Robustt, by incorporating the statistical information of previous rounds,
it is able to correctly assign higher reliability to the benign clients (even though
with some fluctuations under flipping attacks). It’s worth noting that it separates
the two types of clients extremely well under Byzantine attack and successfully
recognizes malicious clients in all attacks, i.e., assigning close to 0 reliability for
them.
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Fig. 5: Effect of number of Malicious Clients

Impact of number of Malicious Clients. We study the impact of the num-
ber of malicious clients on the proposed aggregation method. As it is shown
in Fig.5, By increasing the number of malicious clients, the performance of the
global model slightly drops. It can be observed that RobustFedt improves upon
RobustFed+ for FMNIST and MNIST datasets that have a higher accuracy on
their clean data (i.e., no attack). However, in the CIFAR 10 dataset that has a
poor performance on clean data, RobustFedt could not improve the performance.
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Robustness. In this experiment we compare our robust aggregation methods
(RobustFed, RobustFed+, RobustFedt) with the state-of-the-art baselines. The
results of these methods along with average performance are shown in Table 1.

Table 1: Aggregation Method Comparison in Static & Dynamic Mode
(30% malicious clients)

Static Mode

Dataset Attack FedAvg Median Trim mean Krum RobustFed RobustFed+ RobustFedt

CIFAR 10 Clean 70.25 70.75 70.78 57.75 68.05 69.74 69.75
Byzantine 10.0 55.01 10.29 57.24 44.64 59.66 54.67
Flip Label 51.37 41.34 46.74 10.0 10.0 52.34 51.10

Noisy 67.51 68.31 68.22 57.67 67.22 67.64 67.80

Average Performance 42.96 54.88 41.75 41.63 40.62 59.88 58.19

FMNIST Clean 91.15 90.95 91.05 87.79 91.05 91.05 91.07
Byzantine 10.0 89.20 10.0 87.66 81.25 90.62 84.59
Flip Label 79.05 77.58 73.23 10.0 14.55 80.38 83.52

Noisy 89.25 89.20 89.32 84.78 84.09 87.74 89.0

Average Performance 59.433 85.32 57.51 60.81 59.96 85.9 85.7

MNIST Clean 99.29 99.31 99.34 98.51 99.01 99.3 99.32
Byzantine 11.35 98.18 11.35 97.43 91.35 98.21 98.34
Flip Label 94.58 97.80 94.47 11.35 11.40 95.56 96.34

Noisy 92.08 93.01 88.26 83.16 80.04 96.74 96.82

Average Performance 66 96.33 64.69 63.98 60.93 96.8 97.2

Dynamic Mode

Dataset Attack FedAvg Median Trim mean Krum RobustFed RobustFed+ RobustFedt

CIFAR 10 Clean 69.22 69.58 68.22 56.69 67.87 69.22 67.25
Byzantine 12.53 44.93 10.00 61.49 55.0 58.78 60.56
Flip Label 10.0 35.00 10.07 10.32 11.56 57.73 55.53

Noisy 63.27 63.35 61.18 61.36 61.67 63.43 63.78

Average Performance 28.6 47.76 27.08 44.39 42.74 59.98 56

FMNIST Clean 91.68 92.00 88.26 89.79 91.79 91.98 91.87
Byzantine 10.0 88.90 25.0 90.36 81.35 89.85 83.00
Flip Label 10.0 68.23 10.25 11.04 11.35 70.93 78.24

Noisy 89.08 88.12 86.13 81.12 89.24 90.01 90.24

Average Performance 36.36 81.75 40.46 60.84 60.64 83.49 83.82

MNIST Clean 99.32 99.35 99.28 99.01 99.32 99.34 99.33
Byzantine 11.35 97.05 10.01 96.37 96.27 97.07 94.38
Flip Label 10.28 94.63 10.54 11.35 12.16 94.99 95.23

Noisy 80.12 96.67 95.34 94.23 87.37 96.10 96.07

Average Performance 33.91 95.95 38.63 67.31 65.26 96.05 95.22

– Static Mode.
In this experiment, clients that participate in each round are fixed. The
total number of clients are considered to be 10, in which 30% of them
(i.e., 3 clients) are malicious ones. As shown in Table 1, RobustFed+ and
RobustFedt provide more consistent and better robustness against all three
types of attacks while having comparable accuracy on clean data compared
with all state-of-the-art methods. As expected, FedAvg’s performance is
significantly affected under the presence of malicious clients, especially in
Byzantine and flipping attacks. It is also interesting to observe that both
Krum and Median are very sensitive to label flipping attacks.

– Dynamic Mode. In this experiment, at each round, 10 clients are randomly
selected from a pool of 100 clients consists of 30 malicious clients and 70
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normal clients. We observe that RobustFed+ performs stronger robustness
by incorporating historical information.

6 Conclusions & Future Works

In this paper, we have studied the vulnerability of the conventional aggregation
methods in FL. We proposed a truth inference approach to estimate and incor-
porate the reliability of each client in the aggregation, which provides a more
robust estimate of the global model. In addition, the enhanced approach with
historical statistics further improves the robustness. Our experiments on three
real-world datasets show that RobustFed+ and RobustFedt are robust to mali-
cious clients with label flipping, noisy data, and Byzantine attacks compared to
the conventional and state-of-the-art aggregation methods. This study focuses on
data with IID distribution among clients; future research could consider non-IID
distribution.
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