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ABSTRACT
Sparse document representations have been widely used to retrieve
relevant documents via exact lexical matching. Owing to the pre-
computed inverted index, it supports fast ad-hoc search but incurs
the vocabulary mismatch problem. Although recent neural ranking
models using pre-trained language models can address this problem,
they usually require expensive query inference costs, implying
the trade-off between effectiveness and efficiency. Tackling the
trade-off, we propose a novel uni-encoder ranking model, Sparse
retriever using aDual document Encoder (SpaDE), learning document
representation via the dual encoder. Each encoder plays a central
role in (i) adjusting the importance of terms to improve lexical
matching and (ii) expanding additional terms to support semantic
matching. Furthermore, our co-training strategy trains the dual
encoder effectively and avoids unnecessary intervention in training
each other. Experimental results on several benchmarks show that
SpaDE outperforms existing uni-encoder ranking models.
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Figure 1: MRR@10 and average query latency (in ms) on
MS MARCO development set of SpaDE varying the size of
top-𝑘 masking for the document-level pruning and existing
retrievers with sparse representations. The latency is mea-
sured with PISA [44] using Block-Max WAND [14].
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1 INTRODUCTION
Sparse document representations have been commonly used in
classical information retrieval (IR) models, such as TF-IDF [27]
and BM25 [56]. Since sparse representations are compatible with
the inverted index on the vocabulary space, query inference is
remarkably fast for ad-hoc retrieval. However, it merely relies on
exact lexical matching between a query and a document, inevitably
incurring the vocabulary mismatch problem, i.e., different terms
with similar meanings in queries and documents are mismatched.

Neural ranking models [21, 24, 45, 66, 72] have been studied
to address the vocabulary mismatch problem. Given mismatched
terms, e.g., dog vs. puppy, neural ranking models successfully match
their semantics. Notably, pre-trained language models (PLM), e.g.,
BERT [12], using contextualized representations, have shown re-
markable performance leaps on ad-hoc retrieval. As a simple base-
line, monoBERT [47] adopts BERT for query-document matching;
a cross-encoder carries out all-to-all interactions across query and
document terms, effectively providing complex matching signals.
However, it leads to too slow inference time, e.g., > 1,000 ms. Even
worse, the cross-encoder model cannot leverage pre-computed in-
dexes, which is impractical for the first-stage retrieval.
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Supporting efficient query inference is critical for the first-stage
retrieval of billion-scale documents. Recent studies, e.g., ColBERT
[29, 57], COIL [19], and SPLADE [15, 16], have proposed to sep-
arate query and document encoders, also known as a bi-encoder.
Given a pair of (query, document), it encodes query and document
representations independently and matches them via late interac-
tion. Although the bi-encoder can utilize a pre-computed index for
document representations, it is necessary to pass through the query
encoder at the retrieval, requiring additional computing costs.

In another research direction, some studies [9, 43, 48] have de-
signed uni-encoder models representing sparse document vectors
without a complex query encoder. It is categorized into two di-
rections: (i) term weighting to elaborate term scoring or (ii) term
expansion to mitigate vocabulary mismatching. For term weighting,
DeepCT [9] uses BERT [12] to adjust the importance of terms to im-
prove the quality of conventional term frequency scores. However,
it still suffers from the vocabulary mismatch problem. For term
expansion, doc2query [50] and docT5query [48] generate relevant
queries from a document using Transformer [60] or T5 [53] and
then add generated queries for document embeddings to enrich doc-
ument representation. Recently, DeepImpact [43] and TILDEv2 [76]
adjust term scores on the document expanded by docT5query [48]
or TILDE [77] respectively, mitigating the limitation of termweight-
ing. While uni-encoder models achieve fast query inference by
building the inverted index, they show lower accuracy than cross-
encoder and bi-encoder models.

In this paper, we propose a novel uni-encoder ranking model,
namely Sparse retriever using a Dual document Encoder (SpaDE), to
overcome the trade-off between effectiveness and efficiency. Specif-
ically, it adopts a dual document encoder advocating two solutions,
i.e., term weighting and term expansion. While term weighting ad-
justs the term importance scores for lexical matching, term expan-
sion enables semantic matching by appending additional terms
to the document. It should be noted that each solution handles
a different target scenario, but both scenarios exist in real-world
datasets. Although each solution has been used in the literature, it
is non-trivial to train the dual encoder effectively.

To address this problem, we devise a simple-yet-effective co-
training strategy to enjoy the benefit of the dual encoder. Our key
idea is to avoid unnecessary intervention in training each encoder
with different aspects. Unlike joint training, where the dual encoder
is trained with the same samples, our training strategy focuses on
selectively training hard samples from another. We choose large-
loss samples from one encoder and train another encoder using
them, and vice versa. As a result, SpaDE can effectively train the
dual encoder with the complementary relationship.

For efficiency, we further leverage a learning-based pruning
method to enforce the sparsity of document representations. Using
top-k masking for document-level sparsity and cutoff with approxi-
mate document frequency for corpus-level sparsity, we gradually
prune unnecessary terms in the document and fully enjoy the ad-
vantage of the inverted index. Owing to the pruning method, SpaDE
exhibits a better trade-off improving query latency by 3.4 times
with little accuracy degradation over bi-encoder models.

Figure 1 illustrates how well SpaDE alleviates the trade-off be-
tween effectiveness and efficiency for the first-stage retrieval on
the MS MARCO dataset. It can serve in 29–49 milliseconds when

Table 1: Category of existing neural ranking models using
PLM with two criteria; representation types and matching
paradigms. Note that cross-encoder models using sparse rep-
resentation and uni-encoder models using dense representa-
tion do not exist.

Sparse representations Dense representations

Cross-
encoder -

monoBERT [47],
duoBERT [49],

Simplified TinyBERT [4],
Birch [71], CEDR [39]
BERT-MaxP [10],
PreTTR [37],
PARADE [31]

Bi-
encoder

EPIC [38], SparTerm [1],
uniCOIL [32], COIL-tok [19],

SPLADE [16], SPLADE-max [15],
DistilSPLADE-max [15],

UHD-BERT [25]

Sentence-BERT [54],
DPR [28], ANCE [67],

ADORE [74], TAS-B [23],
Condenser [17, 18],

ColBERT(v1, v2) [29, 57],
TCT-ColBERT [35], JPQ [73],
COIL-full [19], CLEAR [20],
CoRT [65], RepCONC [75],
RocketQA(v1, v2) [52, 55]

Uni-
encoder

doc2query [50], docT5query [48],
DeepCT [9], DeepImpact [43],

SPLADE-doc [15]
TILDE(v1, v2) [76, 77]

-

the size of top-𝑘 masking is 2–10. Furthermore, it outperforms exist-
ing uni-encoder models and significantly reduces the latency with
comparable effectiveness to bi-encoders. In this sense, SpaDE can
be used as an alternative for the first-stage ranker in commercial
search engines.

To summarize, the key contributions of this paper are as follows.
(i) We propose a novel ranking model, called SpaDE, for effective
and efficient first-stage retrieval (Section 3.1). (ii) We introduce a
dual document encoder, enjoying both term weighting and term
expansion for document representations (Section 3.2). (iii) We also
present a co-training strategy to effectively train the dual encoder
(Section 3.3) and a learning-based pruning method to build an
efficient inverted index (Section 3.4). (iv) Lastly, we evaluate the
effectiveness and efficiency of the proposed method on various
benchmark datasets, such as MS MARCO Passage Ranking [46],
TREC DL 2019 [8], TREC DL 2020 [7], and BEIR [58] (Sections 4
and 5).

2 RELATEDWORK
We review existing neural rankingmodels [34] using the pre-trained
language model (PLM). As shown in Table 1, they are categorized
into cross-encoder, bi-encoder, and uni-encoder (Figure 2).

2.1 Cross-encoder Approach
This approach regards a query and a document as a pair of sentences
and performs all-to-all interactions across query and document
terms. First, monoBERT [47] took the concatenation of the query
and the document as input and computed a relevance score as the
point-wise ranking problem. Meanwhile, duoBERT [49] formulated
the pair-wise ranking problem to classify relevant and irrelevant
documents for the query. The two models can be pipelined for a
multi-stage ranking in an end-to-end fashion. Birch [71], BERT-
MaxP [10], CEDR [39], and PARADE [31] extended passage ranking
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Figure 2: Illustration of neural ranking models using PLM. Existing PLM-based ranking models are categorized into three
approaches depending on query-document matching paradigms.

into document ranking by utilizing BERT’s representations obtained
from the cross-encoder. Despite its effectiveness in capturing com-
plex query-document interactions, it is known that query latency is
100-1,000x slower than BM25, as reported in [29]. Recently, to miti-
gate the computational cost of cross-encoder, PreTTR [37] stored
term representations from an intermediate layer to delay all-to-
all interactions, and Simplified TinyBERT [4] utilized knowledge
distillation models to reduce query inference time.

2.2 Bi-encoder Approach
This approach encodes a query and a document separately and
learns the interaction between query and document vectors.
Dense representations. The encoder converts the query and the
document to continuous low-dimensional vectors, which naturally
bypasses the vocabulary mismatch problem. Although Sentence-
BERT [54] does not directly tackle the retrieval problem, it is used as
the basic design for the bi-encoder with dense representations. As
the canonical example, DPR [28], ANCE [67], and RocketQA [52, 55]
exploited the [CLS] vectors to compute the relevance score. These
models increase effectiveness through more sophisticated negative
sampling methods. Recently, ADORE [74] used dynamic sampling
to adapt hard negative samples during model training. TAS-B [23]
proposed topic-aware sampling to select informative queries from
topic clusters. Instead of using single dense vector representation,
ColBERT [29, 57] and COIL [19] leveraged late interactions between
query token vectors and document token vectors.

Meanwhile, Condenser [17, 18] designed a pre-training strategy
tailored for ad-hoc retrieval, and RocketQAv2 [55], TCT-ColBERT
[35], TAS-B [23], and ColBERTv2 [57] adopted knowledge distil-
lation to improve ranking performance further. To reduce query
inference time, dense representation models utilized an approx-
imate similarity search, e.g., faiss [26, 42]. However, since the
index size for dense vectors is much larger than the traditional
inverted index, loading whole dense vectors requires huge memory
space. To deal with the memory footprint problem, JPQ [73] and
RepCONC [75] compressed dense representations.
Sparse representations. Recent studies have represented sparse
query and document vectors. EPIC [38] matched a dense docu-
ment vector and a sparse query vector to reduce the query la-
tency. SparTerm [1] adopted sparse document representations by
combining the importance distribution of terms with a binary gat-
ing vector. Later, SPLADE [16] improved SparTerm [1] using a
FLOPS regularizer [51], enforcing the sparsity of term distributions.
SPLADE-max [15] further improved SPLADE [16] by replacing the

pooling operation. Although COIL-tok [19] and uniCOIL [32] stem
from COIL [19], they adopt sparse representations by excluding
[CLS] matching or setting the dimension size of dense vectors as
one, respectively. In another direction, UHD-BERT [25] adopted
a winner-take-all module for binarized sparse representations in
ultra-high dimensional space. Although the bi-encoder design using
sparse representations can employ the inverted index, it requires
additional costs to compute the query encoder. Therefore, they still
have a bottleneck in reducing query inference time.

2.3 Uni-encoder Approach
For efficient query inference, it is preferred to avoid a complex
query encoder, as pointed out in [76, 77]. The uni-encoder mod-
els minimize the burden of query inference time, especially en-
abling practical adoption of GPU-free models. Furthermore, the
uni-encoder model is inherently suitable for the inverted index by
using only a tokenizer to represent queries into a bag of words.
Term expansion. It is reformulated by the machine translation
problem. Given a dataset of (query, relevant document) pairs, a
sequence-to-sequence model is trained to generate the query from
the relevant document. doc2query [50] and docT5query [48] used
Transformer [60] and T5 [53] to predict queries and append them
to the original document. Expanded documents can also be used to
build inverted indexes or as the input of other ranking models [43,
76]. SPLADE-doc [15] performed document expansion in the BERT
vocabulary space using the masked language modeling head of
BERT. Besides, TILDE [77] utilized the query likelihood for semantic
matching.
Term weighting. Although classical IR models, e.g., TF-IDF [27]
and BM25 [56], are effective for estimating the importance of terms
in the document in an unsupervised manner, it does not reflect the
term importance for relevant queries. DeepCT [9] formulated term
weighting as the regression problem for measuring query term
recall. It learned a mapping function from contextualized word rep-
resentations to termweights in a supervisedmanner. Tomitigate the
limitations of the term weighting model, i.e., vocabulary mismatch
problem, recent studies [43, 76] adjusted term weighting scores on
the expanded document. DeepImpact [43] improved DeepCT [9] by
combining docT5query [48] and directly optimizing term weight-
ing scores; it estimates the importance of terms in the document
which is expanded by docT5query [48]. Likewise, TILDEv2 [76]
followed contextualized term weighting but employed TILDE [77]
alternatively for document expansion.
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Figure 3: Model architecture of SpaDE with the dual docu-
ment encoder for term weighting and term expansion. Each
encoder returns a document vector after training. For infer-
ence, two vectors are aggregated to a document vector.

3 PROPOSED MODEL
In this section, we propose a novel ranking model for effective and
efficient first-stage retrieval, namely Sparse retriever using a Dual
document Encoder (SpaDE), following the uni-encoder paradigm.
To overcome the trade-off between effectiveness and efficiency,
SpaDE adopts a dual document encoder for term weighting and
term expansion, adjusting term importance for lexical matching and
enriching additional terms for semantic matching. To train the dual
encoder, we devise a co-training strategy to collectively enjoy the
strength of the dual encoder. Specifically, it consists of two stages.
At the warm-up stage, each encoder is first trained independently.
At the fine-tuning stage, we choose large-loss samples from each
encoder, and the selected samples are used to train another encoder.
Despite its simplicity, it can induce a complementary relationship
by selectively training each encoder with hard samples. Further-
more, we utilize a learning-based pruning method to enforce the
document-level and the corpus-level sparsity, thereby fully enjoying
the efficiency of the inverted index.

In the following, we first explain the overall model architecture
(Section 3.1). We then introduce our key contributions, the dual
document encoder (Section 3.2), and the co-training strategy (Sec-
tion 3.3,) respectively. Lastly, we explain learning-based pruning
for building the efficient inverted index (Section 3.4).

3.1 Model Architecture
Figure 3 depicts the overall architecture of SpaDE. Our goal is to
estimate the relevance function for a query 𝑞 and a document 𝑑
and return the most relevant documents. It is formulated by

𝑠𝑖𝑚(𝑞, 𝑑) = 𝑔(𝜓 (𝑞), 𝜙 (𝑑)), (1)

where𝜓 (𝑞) returns a sparse query representation v𝑞 ∈ R |𝑉 | . Based
on the BERT tokenizer, we can easily transform the query 𝑞 into a
boolean query vector in the WordPiece vocabulary space, e.g., |𝑉 | =

30,522 word-pieces. (Although we can define different vocabulary
spaces depending on the tokenizer, for simplicity, we utilize the
BERT tokenizer.) Note that it does not require additional costs,
achieving fast query latency and reducing memory footprint to
encode the query vector.

As the core part of SpaDE, 𝜙 (𝑑) represents the dual encoder for
term weighting and term expansion. The term weighting is respon-
sible for adjusting the importance of terms in the document. The
term expansion plays a role in generating a few relevant terms from
the document and assigning their weights. After the document 𝑑
passes through the dual encoder, we combine two vectors into a
sparse document representation v𝑑 ∈ R |𝑉 | in the vocabulary space.
During model training, sparsity is enforced by controlling both
document-level and corpus-level sparsity.

Lastly, the matching function 𝑔(·, ·) is used to measure the simi-
larity between the query vector v𝑞 and the document vector v𝑑 . In
this work, we use a simple inner product for directly optimizing
the relevance score between the query and the document.

3.2 Dual Document Encoder
The architecture of the dual document encoder is based on the
transformer encoder. Given a document 𝑑 , we first tokenize it into
sequential tokens as the input of BERT, including two special tokens
[CLS] and [SEP].[

e𝑤[CLS] , e
𝑤
1 , . . . , e

𝑤
|𝑑 | , e

𝑤
[SEP]

]
and

[
e𝑒[CLS] , e

𝑒
1, . . . , e

𝑒
|𝑑 | , e

𝑒
[SEP]

]
, (2)

where each embedding vector e𝑤
𝑖
for term weighting encoder (or e𝑒

𝑖
for term expansion encoder) is combined with a token embedding
vector and a positional embedding vector.

Each embedding vector is then passed into the transformer en-
coder. The corresponding output is represented by a sequence of
hidden vectors.[

h𝑤[CLS] , h
𝑤
1 , . . . , h

𝑤
|𝑑 | , h

𝑤
[SEP]

]
and

[
h𝑒[CLS] , h

𝑒
1, . . . , h

𝑒
|𝑑 | , h

𝑒
[SEP]

]
,

(3)
where h𝑤

𝑖
, h𝑒
𝑖
∈ R𝑚 for 𝑖 ∈ {[CLS], 1, . . . , |𝑑 |, [SEP]} and𝑚 is the

dimension of embedding vectors. Note that we follow the conven-
tional structure used in BERT [12].
Term weighting encoder. As discussed in DeepCT [9], DeepIm-
pact [43] and TILDEv2 [76], it is effective to learn a relevance score
for query-document pairs by adjusting the importance of terms
in the document. Since the contextualized hidden vector for each
token from PLM can capture the word’s syntactic and semantic role
in the local context, we compute the weighting score from hidden
vectors using a two-layered MLP with the ReLU activation function.
Each hidden vector h𝑤

𝑖
is projected into a weighting score 𝑠𝑖 .

𝑠𝑖 = 𝑓MLP (h𝑤𝑖 ), for 𝑖 ∈ {1, . . . , |𝑑 |}. (4)

Conceptually, the weighting score 𝑠𝑖 for each token can be repre-
sented by a one-hot vector in the vocabulary space as follows.

w𝑖 = 𝑓one-hot (𝑠𝑖 ), for 𝑖 ∈ {1, . . . , |𝑑 |}. (5)

Here,w𝑖 ∈ R |𝑉 | is the one-hot vector for the 𝑖-th token. To buildw𝑖 ,
𝑓one-hot (·) places 𝑠𝑖 into the corresponding term for 𝑖-th token and
zeroes the rest. Finally, we aggregate them using the max pooling
operation and represent the document vector v𝑤

𝑑
∈ R |𝑉 | in the
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Figure 4: Schema of our co-training strategy. Let W and E
denote the term weighting encoder and the term expansion
encoder, respectively. Note that a learning-based pruning
method is only applied for the fine-tuning stage.

vocabulary space.

v𝑤
𝑑

= 𝑓MaxPool (w1, . . . ,w |𝑑 | ) . (6)

Termexpansion encoder. Since themasked languagemodel (MLM)
head layer is pre-trained to predict a masked token, it is effective
for capturing the semantic correlation between tokens. Motivated
by SparTerm [1], we compute the importance vector v𝑖 ∈ R |𝑉 | for
each hidden vector h𝑒

𝑖
as follows.

v𝑖 = ReLU(𝑓MLM (h𝑒𝑖 )), for 𝑖 ∈ {[CLS], 1, . . . , |𝑑 |, [SEP]}, (7)

where 𝑓MLM (·) is the MLM head in BERT [12]. We represent the
importance score by eliminating negative values using the ReLU
activation.

Then, we utilize top-k masking [25, 68] for each |𝑉 |-dimensional
vector {v𝑖, 𝑗 } |𝑉 |

𝑗=1 to control the sparsity.

v′𝑖, 𝑗 = max
𝑗

𝑘

{
v𝑖, 𝑗

} |𝑉 |
𝑗=1 for 𝑖 ∈ {[CLS], 1, . . . , |𝑑 |, [SEP]}, (8)

where k is the hyperparameter to adjust the number of non-zero
values in the |𝑉 |-dimensional vector v𝑖 and max𝑘 is the operation
to keep only top-k values while others are set to zero. (Empirically,
𝑘 is set as 2–10.) The top-k masking method explicitly enforces the
document-level sparsity, so irrelevant or redundant tokens are re-
moved from the document. (Refer to Section 3.4 for further details.)

Finally, we aggregate them into a vocabulary-level vector by
using a max-pooling operation.

v𝑒
𝑑
= 𝑓MaxPool (v′[CLS] , v

′
1, . . . , v

′
|𝑑 | , v

′
[SEP] ), (9)

where v𝑒
𝑑
∈ R |𝑉 | . Several pooling operations can be used to combine

multiple vectors into a single vector. The max-pooling operation
shows the best performance owing to capturing the most salient
values for each token, as also reported in [15].
Aggregation. Finally, SpaDE combines two vectors, v𝑤

𝑑
and v𝑒

𝑑
,

in the vocabulary space. In this process, we utilize an aggregating
hyperparameter 𝛼 to properly combine two vectors.

v𝑑 = (1 − 𝛼) · v𝑤
𝑑
+ 𝛼 · v𝑒

𝑑
, (10)

where 𝛼 is the hyperparameter to balance two document vectors.
(Empirically, the best performance was shown when 0.3 ≤ 𝛼 ≤
0.5.) SpaDE derives the final document vector by summing two
representations of different characteristics. In other words, SpaDE
(i) adjusts the importance of terms for lexical matching and (ii)
endows additional terms for semantic matching.

3.3 Co-training Strategy
We devise a co-training strategy to fully enjoy the different roles
of the dual encoder. The idea of co-training comes from the obser-
vation that joint learning does not achieve a clear improvement
compared to training with a single encoder. (Please refer to Table 6
for empirical results on the effect of training strategies.) Meanwhile,
sequential training [5] helps improve the efficacy of training when
handling two encoders. We conjecture that training with two en-
coders should be carefully handled, reducing the intervention from
another encoder during training.

Based on the empirical observation, we design the co-training
strategy with two stages (Figure 4). At the warm-up stage, each
encoder is first trained independently. At the fine-tuning stage, we
choose large-loss samples from each encoder and use those samples
for fine-tuning another encoder. Each encoder focuses on learning
different samples that their counter encoder is hard to learn, thereby
compensating for the weakness of each encoder.
Warm-up stage.We train the two encoders independently with
different objective functions. For the term weighting encoder, we
adopt a negative log likelihood of the positive passage. By min-
imizing the loss function, we can optimize the query-document
relevance score as

Lweighting = − log
exp(v⊤𝑞 v𝑤𝑑+ )

exp(v⊤𝑞 v𝑤𝑑+ ) +
∑
𝑑−∈N(𝑞) exp(v⊤𝑞 v𝑤𝑑− )

, (11)

which defined over a relevant query-document pair (𝑞, 𝑑+) ∈ R and
a set of negative documents N(𝑞). R is a training set of relevant
query-document pairs.

For the term expansion encoder, we also adopt the negative log
likelihood. Since SpaDE defines the relevance score using only the
query terms, the term expansion encoder may not learn relevance
scores for the non-query terms. To resolve the problem, we addi-
tionally introduce a point-wise loss to minimize the loss between
v𝑒
𝑑+

and v𝑞 ; v𝑒𝑑 is learned to enforce high scores for relevant query
terms and low scores for irrelevant non-query terms. Note that
the point-wise loss is similar to query likelihood estimation used
in [77].

Lexpansion = − log
exp(v⊤𝑞 ve𝑑+ )

exp(v⊤𝑞 ve𝑑+ ) +
∑
𝑑−∈N(𝑞) exp(v⊤𝑞 ve𝑑− )

− 𝜆 · v𝑞 log softmax(v𝑒
𝑑+ ),

(12)

where 𝜆 is the hyperparameter to adjust the importance of the
point-wise loss. (Empirically, we set 𝜆 = 1.)
Fine-tuning stage. Given training data, one encoder first selects
its large-loss samples as hard samples, and another encoder then
uses those samples for fine-tuning. Specifically, each encoder ex-
tracts 𝜏% large-loss samples from the training set R for one another,
i.e., Rweighting and Rexpansion, where 𝜏 is the hyperparameter to
control the ratio of the hard training sets. To provide more infor-
mative samples for each encoder, we utilize expanded documents
using docT5query [48], as in DeepImpact [43]. For example, when
the original document is used, the term weighting encoder may
pass easily handled vocabulary mismatching samples to the term
expansion encoder. (Empirically, we set 𝜏 = 30.)
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3.4 Learning-based Pruning
Building inverted indexes using dense document vectors drops the
efficiency dramatically; not only do they occupy a lot of storage
space, but all query terms should traverse all documents. As pointed
out in [1, 16, 25, 68, 72], it is challenging to enforce sparse document
representations. Previous studies exploited various techniques to
obtain sparse document representations using regularization terms
or parameter constraints, e.g., 𝐿1 regularization [72], the FLOPS
regularizer [16], learning-based gating vector [1], winner-take-all
module [25], and top-k masking [68].

In this paper, we adopt a learning-based pruning method to ob-
tain sparse document representations. Specifically, SpaDE filters
out some unnecessary terms to ensure the sparsity within the doc-
ument and across the documents, i.e., document- and corpus-level
pruning. For document-level pruning, we use top-k masking to
explicitly control sparsity by k without complex modules. In the
training process of the term expansion encoder, SpaDE leaves only
top-k values per token in the vocabulary-level vector after pass-
ing through the MLM layer as in Eq.(8). (Empirically, the average
number of tokens per document is 189 when k=10.)

Besides, we utilize corpus-level pruning based on an approximate
document frequency. Even with top-k masking, v𝑑 can still be inap-
propriate for building the inverted index in that it merely controls
the document-level sparsity. As most of the document includes
frequent terms, e.g., ‘the’ or ‘a’, it can significantly hurt the bene-
fit of the inverted index. It is crucial to consider the corpus-level
sparsity for each document, i.e., pruning terms with high docu-
ment frequency. For that, SpaDE removes the terms that appear
in too many documents and learns only with the remaining terms.
Let |𝐷′ | denote the number of documents during training, and the
terms that appear more than |𝐷′ | × 𝛾 times in the document are
removed. (Empirically, we set 𝛾 to 0.7 and omit a detailed result
due to the space limitation.) During the fine-tuning stage, we apply
the document- and corpus-level pruning, ensuring the sparsity of
document representations.

4 EXPERIMENTAL SETUP
Datasets. We mainly conduct our experiments on the MS MARCO
Passage Ranking dataset [46]. It consists of 8.8M passages collected
from Bing’s results and 1M real-world queries. The average number
of words in documents is 56. We use the official development set,
which consists of 6,980 queries with 1.07 relevant documents per
query on average. We use triples1 sampled from the MS MARCO
training dataset used in [43] and randomly split 3,000 queries for a
validation set. We use a corpus consisting of BM25 top 100 passages
to reduce a time for validation, i.e., |𝐷 | ≈ 300,000. Additionally, we
evaluate the models with TREC 2019 Deep Learning (DL 2019) [8]
and TREC 2020 Deep Learning (DL 2020) [7] queries. Each dataset
has 43 and 54 evaluation queries. We also verify the zero-shot
performance of ranking models using BEIR [58].
Competitive models. We compare SpaDE with thirteen sparse
representation based models, including one traditional model [56],
seven bi-encoders [1, 15, 19, 25, 32], and five uni-encoders [9, 15,

1https://github.com/DI4IR/SIGIR2021

43, 48, 76]; we do not consider dense representation based mod-
els [4, 19, 29, 37] due to their high query inference costs. BM25 [56]
is the conventional IR model using lexical matching. SparTerm [1]
predicts the importance distribution in vocabulary space and repre-
sents them sparsely using a binary gating vector. UHD-BERT [25]
learns high-dimensional sparse representations of a query and a
document adopting a winner-take-all module to control sparsity.
SPLADE [15, 16] is an extension of SparTerm [1] adopting FLOPS
regularizer to ensure sparsity. It has three variants, i.e., SPLADE-
max, DistilSPLADE-max, and SPLADE-doc. COIL-tok [19] and uni-
COIL [32] are based on COIL [19] while adopting sparse represen-
tations. DeepCT [9] leverages BERT [12] to adjust term frequen-
cies in the document. Next, docT5query [48] extends the docu-
ment terms by generating relevant queries from the documents
using T5 [53]. DeepImpact [43] is an improved term weighting
model of DeepCT [9] to directly learn the term scores by adopting
docT5query [48] for document expansion. Besides, TILDEv2 [76] is
a term weighting model that improves TILDE [77].
Reproducibility. We implemented SpaDE using PyTorch. The pre-
trained language model of SpaDE was initialized with BERTbase.
We used the BERT WordPiece vocabulary (|𝑉 | = 30,522) and set𝑚
to 768. We used the Adam optimizer with a learning rate of 1e-5
and 5e-6 for term weighting and term expansion, respectively. We
set the max sequence length of BERT to 256, dropout rate to 0.1,
and batch size to 32. We conducted a grid search for 𝜆 among {0.1,
1, 10} and 𝜏 in [0, 100] with the step size 10 and set to 1 and 30,
respectively. For an aggregating hyperparameter 𝛼 , we searched
among [0,1] with the step size 0.1 on the valid set for each run.
We set the warm-up stage to 32,000 iterations. We conducted all
the optimizations on the valid set and kept the best checkpoint
using MRR@10 by evaluating every 1,600 iterations; we stopped
training after MRR@10 had not been improved five times, which
stops after 54,400 iterations on average. For the document-level
pruning, top-𝑘 masking is 2–10. For corpus-level pruning, we set
𝛾=0.7 after tuning in [0.1, 0.9]. For the MS MARCO passage set,
we used expanded documents1 by docT5query [48]. We quantized
the token scores into eight bits for SpaDE. For all models, we built
the inverted index by Anserini [69] and exported it to the Com-
mon Index File Format [33] before being imported into PISA [44]
following [40]. We adopted in-batch negatives where all passages
for other queries in the same batch are considered negative. Ex-
perimental results for SpaDE are averaged over three runs with
different seeds. For BM25 [56], we followed the official guide2. For
uniCOIL3 [32], COIL-tok3 [19], SPLADE-max4 [15], DistilSPLADE-
max5 [15], DeepCT6 [9], DeepImpact1 [43], and TILDEv27 [76], we
used the official code provided by the authors. For docT5query [48],
we used the published predicted queries and added 40 predictions to
each passage as recommended. For COIL-tok [19], we also reported
the results combined with docT5query [48] expansion fair compar-
ison. We do not report the efficiency for COIL-tok [19] because it
is unable to compare in the same environment, e.g., PISA [44]. For

2http://anserini.io/
3https://github.com/luyug/COIL/tree/main/uniCOIL
4https://github.com/naver/splade
5https://github.com/castorini/pyserini/blob/master/docs/experiments-spladev2.md
6https://github.com/AdeDZY/DeepCT
7https://github.com/ielab/TILDE

https://github.com/DI4IR/SIGIR2021
http://anserini.io/
https://github.com/luyug/COIL/tree/main/uniCOIL
https://github.com/naver/splade
https://github.com/castorini/pyserini/blob/master/docs/experiments-spladev2.md
https://github.com/AdeDZY/DeepCT
https://github.com/ielab/TILDE
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Table 2: Effectiveness and efficiency comparisons of various models using sparse representations on MS MARCO passage
ranking. The latency is measured by averaging time over each query of theMSMARCO development set with a single thread and
a single batch. Among uni-encoder models, the best model is marked bold, and the second-best model is underlined. Let dT5q
denote docT5query [48]. Results not available are denoted as ‘–’. Note that the latency is reported only for the models available
for retrieval via PISA [44]. Statistical significant differences (𝑝 < 0.05) with Bonferroni correction between the reproduced
baseline models and the proposed models, i.e., SpaDE (k=5) and SpaDE (k=10), are reported with ∗ and ⋄, respectively.

Encoder Model MS MARCO dev TREC DL 2019 TREC DL 2020 Latency
(ms/query)

Index size
(GB)MRR@10 Recall@1k nDCG@10 MAP nDCG@10 MAP

- BM25 [56] 0.187*⋄ 0.859*⋄ 0.500*⋄ 0.293 0.490*⋄ 0.289 14 0.8

Bi-encoder

SparTerm [1] 0.279 0.925 - - - - - -
UHD-BERT [25] 0.300 0.960 - - - - - -
COIL-tok [19] 0.341 0.948*⋄ 0.688 0.457 0.697 0.452 - -

COIL-tok w/ dT5q [19] 0.363 0.968 0.701 0.474 0.715 0.484 - -
uniCOIL [32] 0.352 0.958⋄ 0.702 0.461 0.673 0.439 64 1.4

SPLADE-max [15] 0.340 0.965 0.682 0.431 0.671 0.451 412 2.0
DistilSPLADE-max [15] 0.369 0.979 0.728 0.485 0.710 0.490 1,606 4.6

Uni-encoder

DeepCT [9] 0.246*⋄ 0.911*⋄ 0.550 0.339 0.553* 0.344 12 0.8
docT5query [48] 0.276*⋄ 0.946*⋄ 0.641 0.403 0.617 0.408 18 1.2
DeepImpact [43] 0.327*⋄ 0.948*⋄ 0.696 0.457 0.652 0.426 24 1.6
SPLADE-doc [15] 0.325*⋄ 0.939*⋄ 0.671 0.406 0.611 0.399 108 2.1
TILDEv2 [76] 0.333*⋄ 0.958⋄ 0.652 0.408 0.648 0.432 31 2.0

SpaDE (k=2) 0.348 0.961 0.674 0.423 0.662 0.445 29 1.6
SpaDE (k=5) 0.355 0.965 0.682 0.437 0.677 0.453 36 2.3
SpaDE (k=10) 0.352 0.968 0.678 0.437 0.665 0.454 49 3.6

SPLADE-doc [15], we reproduced the model following the hyperpa-
rameters from the paper [15]. For SparTerm [1] and UHD-BERT [25],
the results are obtained from the original paper. We conducted all
experiments on a desktop with 2 NVidia GeForce RTX 3090, 512
GB memory, and a single Intel Xeon Gold 6226. All the source code
is available8.
Evaluation metrics. To measure the effectiveness, we use recall,
mean reciprocal rank (MRR), normalized discounted cumulative
gain (nDCG), and mean average precision (MAP) with retrieval size

𝐾 . Recall is defined as
∑𝑁

𝑖=1 𝑟𝑒𝑙𝑖
𝑘

, where 𝑖 is the position in the list,
𝑘 is the number of relevant documents and 𝑟𝑒𝑙𝑖 ∈ {0, 1} indicates
whether the 𝑖-th document is relevant to the query or not. We
report Recall for 𝐾=1000. MRR is defined as 1

|𝑄 |
∑ |𝑄 |
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, where
𝑟𝑎𝑛𝑘𝑖 refers to the rank position of the first relevant document for
the 𝑖-th query. nDCG considers the order of retrieved documents
in the list. DCG@K is defined as

∑𝐾
𝑖=1

2𝑟𝑒𝑙𝑖 −1
𝑙𝑜𝑔2 (𝑖+1) where 𝑟𝑒𝑙𝑖 is the

graded relevance of the result at position 𝑖 . nDCG is the ratio of
DCG to the maximum possible DCG for the query, which occurs
when the retrieved documents are presented in decreasing order
of relevance. MRR and nDCG is the official metric of MS MARCO
Passage Ranking and TREC Deep Learning Track, respectively.
We also report MAP used in existing studies [29, 43]. For MRR
and nDCG, we set 𝐾=10. To measure the efficiency, we report the
average latency time for processing each query with a single thread
and a single batch.

8https://github.com/eunseongc/SpaDE

5 RESULTS AND ANALYSIS
We evaluate the effectiveness and efficiency of SpaDE with compet-
ing models and summarize meaningful results.
• SpaDE achieves state-of-the-art performance with acceptable
latency. On the MS MARCO development set, SpaDE achieves
MRR@10 and Recall@1k of 0.352 and 0.968, outperforming the
best competitive uni-encoder model by 6.67% and 1.04% with
fast query inference time. (Section 5.1)

• SpaDE proves generalization capabilities in the zero-shot set-
ting. For search tasks from the BEIR dataset, SpaDE shows
nDCG@10 of 0.462 on average, outperforming the best compet-
ing model by 3.13%. (Section 5.1)

• SpaDE addresses the trade-off between effectiveness and effi-
ciency by showing higher accuracy than other baselines with
comparable latency. (Section 5.2)

• The co-training strategy for the dual document encoder shows
better accuracy than simple joint learning by 15.4% in MRR@10.
(Section 5.3)

• The learning-based pruning method improves efficiency by
3.4x faster in query latency without sacrificing the retrieval
effectiveness. (Section 5.3)

5.1 Effectiveness vs. Efficiency
Full-ranking evaluation on MS MARCO. Table 2 reports the
first-stage retrieval accuracy on the MS MARCO passage ranking
dataset. The key observations are as follows: (i) SpaDE shows the
best performance among all uni-encoder models and is comparable
to bi-encoder models. It is well-suited as a first-stage retriever in

https://github.com/eunseongc/SpaDE
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Table 3: nDCG@10 of uni-encoder models on BEIR [58].
The best model is marked bold, and the second-best model
is underlined. Let dT5q and S-doc denote docT5query and
SPLADE-doc. For fair evaluation, we exclude expanded terms
using docT5query in SpaDE (k=10).

Corpus BM25 DeepCT dT5q S-doc SpaDE

BEIR Search Tasks

DBPedia [22] 0.273 0.177 0.331 0.338 0.353
FiQA-2018 [41] 0.236 0.191 0.336 0.233 0.288
HotpotQA [70] 0.603 0.503 0.580 0.537 0.629
NFCorpus [3] 0.325 0.283 0.328 0.310 0.327

NQ [30] 0.329 0.188 0.399 0.400 0.476
TREC-COVID [61] 0.656 0.406 0.713 0.568 0.700

Average 0.404 0.291 0.448 0.398 0.462

BEIR Semantic Relatedness Tasks

Touché(v2) [2] 0.367 0.156 0.347 0.241 0.276
ArguAna [62] 0.315 0.309 0.349 0.230 0.288

Climate-FEVER [13] 0.213 0.066 0.201 0.091 0.167
FEVER [59] 0.753 0.353 0.714 0.627 0.691
SCIDOCS [6] 0.158 0.124 0.162 0.137 0.149
SciFact [63] 0.665 0.630 0.675 0.649 0.676

Average 0.412 0.273 0.408 0.329 0.374

terms of high recall and low computational cost. In particular, when
expanding two terms per token, it achieves higher recall with lower
query latency than other models except for models using BM25
algorithms, e.g., BM25 [56], DeepCT [9], and docT5query [48]. (ii)
Other than uniCOIL [32], bi-encoder models took much more query
processing time than uni-encoder models since they expand query
terms, increasing the number of matching terms. Although SpaDE
belongs to the uni-encoder models, it achieves comparable retrieval
effectiveness to bi-encoders with much lower query latency. Query
encoding time is excluded for bi-encoder models in measuring
latency. Note that uniCOIL [32] squeezes the dimension of a token
embedding of COIL-tok [19] to one and is always more efficient or
similar. (iii) Increasing the expanded number of terms per token
𝑘 improves the recall, which indicates that the term expanding
encoder effectively produces essential terms that are not covered
by the term weighting encoder.

In MS MARCO development queries, SpaDE achieves the best
performance among the uni-encoder models showing a clear im-
provement, e.g., +0.022 in MRR@10. This gain is 3.6x bigger than
the improvement between the best and the second-best competitive
models. TREC DL 2019 and 2020 can be considered closer to the
real-world scenarios since the average number of relevant docu-
ments per query is 58.2 and 30.9, and the relevance score is judged
on a four-point scale. As reported in Table 2, SpaDE mostly shows
better performance than all uni-encoders on TREC DL 2019 and
2020, except for DeepImpact [43].
Zero-shot evaluation on BEIR. Table 3 reports the zero-shot
performance of the first-stage retrieval models on the BEIR [58]
dataset. Among uni-encoder models, the models that adopt the doc-
ument expansion are excluded from comparison if the results are

Table 4: Effectiveness of the uni-encoder models on the sub-
sets of the MS MARCO development set, considering the
degree of query and document overlapping. The best model
is marked bold, and the second-best model is underlined.
The number in parentheses indicates the number of queries.
For SpaDE, significant differences (𝑝 < 0.05) with Bonferroni
correction are reported with ⋄ .

Dataset Model MRR@10 Recall@1k MAP

Match≤1
(291)

BM25 [56] 0.016⋄ 0.397⋄ 0.012⋄
DeepCT [9] 0.034⋄ 0.604⋄ 0.029⋄

docT5query [48] 0.106 0.785 0.102
DeepImpact [43] 0.135 0.721 0.128
SPLADE-doc [15] 0.130 0.706⋄ 0.124
TILDEv2 [76] 0.144 0.793 0.140

SpaDE (k=10) 0.145 0.799 0.137

Match>1
(5,959)

BM25 [56] 0.154⋄ 0.847⋄ 0.150⋄
DeepCT [9] 0.223⋄ 0.915⋄ 0.218⋄

docT5query [48] 0.261⋄ 0.948⋄ 0.257⋄
DeepImpact [43] 0.311⋄ 0.953⋄ 0.306⋄
SPLADE-doc [15] 0.305⋄ 0.943⋄ 0.299⋄
TILDEv2 [76] 0.313⋄ 0.961⋄ 0.307⋄

SpaDE (k=10) 0.337 0.973 0.332

Matchall
(730)

BM25 [56] 0.449⋄ 0.984⋄ 0.442⋄
DeepCT [9] 0.516 0.996 0.507

docT5query [48] 0.461⋄ 0.997 0.454⋄
DeepImpact [43] 0.535 0.996 0.528
SPLADE-doc [15] 0.560 0.997 0.553
TILDEv2 [76] 0.565 0.997 0.556

SpaDE (k=10) 0.557 0.997 0.550

not available on the BEIR leaderboard9. We divide the datasets into
two categories by task types in [58]; search tasks (i.e., bio-medical
information retrieval and question answering) and semantic re-
latedness tasks (i.e., argument retrieval, citation-relatedness, and
claim verification) considering the nature of queries following the
existing work [57]. It is found that SpaDE shows competitive perfor-
mance for search tasks, which is similar to passage retrieval. SpaDE
shows higher average accuracy than the other baselines, implying
it generalizes well to diverse datasets. For semantic relatedness
tasks, the models using term frequency scores, e.g., BM25 [56] and
docT5query [48], show better results. Compared to the search task,
SpaDE is less effective for the semantic relatedness task, but it
still shows better generalization capabilities compared to other
PLM-based models, i.e., DeepCT [9] and SPLADE-doc [15].
Break-down analysis on MS MARCO. Table 4 shows a break-
down analysis of the first-stage retrieval accuracy on theMSMARCO
development set over uni-encoders. Depending on the number of
overlapping terms between the queries and the documents, we
divided the queries into three subsets: Match≤1, Match>1, and
Matchall. A query is classified as Matchall if all query terms are
matched with the relevant document in the WordPiece vocabulary.
When the number of query terms matched with the document
is zero (23 queries) or one (268 queries), the query is classified
9https://github.com/beir-cellar/beir

https://github.com/beir-cellar/beir
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Table 5: MRR@10 of re-ranking results using MiniLM [64]
on the MSMARCO development set over various depths. The
best model is marked bold.

Depth BM25 DeepImpact TILDEv2 SpaDE (k=10)

First-stage 0.187 0.327 0.333 0.352

10 0.285 0.378 0.383 0.391
20 0.322 0.391 0.396 0.400
50 0.351 0.398 0.403 0.405
100 0.367 0.402 0.404 0.405

into a Match≤1. The rest of the queries are classified as Match>1.
The query set may vary depending on the vocabulary set, but we
judged that the performance comparison is reasonable based on
the performance of Matchall.

The key observations are as follows: (i) SpaDE shows competi-
tive performance with the other baselines, especially in Match≤1
and Match>1, and remarkably outperforms the others in most of
the metrics. It implies that SpaDE expands meaningful terms to the
document by effectively using the dual encoder. (ii) By comparing
DeepCT [9] and docT5query [48], we can observe that term ex-
panding is essential for semantic matching (Match≤1 and Match>1)
and term weighting is important for effective lexical matching
(Matchall). (iii) The models considering both term weighting and
term expansion, i.e., SpaDE, DeepImpact [43], SPLADE-doc [15],
and TILDEv2 [76], show effective performance for all query sets,
proving that adopting both solutions can be effective.
Re-ranking evaluation. Table 5 shows the re-ranking perfor-
mance on the MS MARCO development set over various depths
with MiniLM [64] as a cross-encoder re-ranker. Although the orig-
inal re-ranking task utilizes 1000 passages, it is still a high cost
for cross-encoder models. Therefore, in the real-world scenario, re-
ranking with fewer passages can be more practical. It is attractive
that SpaDE shows outstanding performance in shallow depths, e.g.,
0.391 of MRR@10 in the depth of 10, compared to other baselines.

5.2 In-depth Analysis
Figure 1 depicts the performance of SpaDE varying the number of
expanded terms per token 𝑘 with other baselines. (i) As 𝑘 increases,
SpaDE improves the accuracy, and its performance tends to con-
verge when 𝑘=10. Considering the trade-off between effectiveness
and efficiency, it seems appropriate to expand ten terms per token,
leading to 189 terms per document on average. (ii) By varying 𝑘 ,
SpaDE achieves higher efficiency than other baselines with compa-
rable effectiveness. Specifically, its latency time is much faster than
uniCOIL [32] when 𝑘=5 while achieving better performance even
without a complex query encoder.

5.3 Ablation Study
Table 6 shows the effectiveness of SpaDE with various training
methods. (i) The proposed co-training strategy remarkably im-
proves the accuracy compared to using a single encoder by more
than 11.4% in MRR@10. Using a dual encoder always shows bet-
ter performance than using a mere single encoder. It implies that

Table 6: Ablation study of SpaDE on the MS MARCO devel-
opment set in training the dual encoder. Let dT5q denote
docT5query [48].

Model MRR@10 Recall@1k MAP Latency

SpaDE (k=10) 0.352 0.968 0.347 49

Term weighting only 0.309 0.952 0.307 16
Term expansion only 0.316 0.950 0.309 42

Joint learning 0.305 0.950 0.300 56
w/o co-training 0.342 0.965 0.336 48

w/o dT5q expansion 0.344 0.958 0.339 45
w/o corpus-level pruning 0.352 0.965 0.336 165

each encoder successfully captures complementary information to
another. However, when we jointly train the dual encoder, each en-
coder fails to perform well due to unnecessary intervention during
training. Instead of minimizing Eq. (11) and Eq. (12), joint train-
ing minimizes Ljoint which replaces v𝑒

𝑑
in Eq. (12) to v𝑑 . We fix

𝛼 to 0.3 to aggregate two vectors in joint training, and it directly
learns combined document representations. (ii) When we do not
use the co-training strategy, MRR@10 drops from 0.352 to 0.342, in-
dicating that the co-training strategy is effective in accuracy gains.
Note that we apply the pruning method from the start of training
in this setting. (iii) The term expansion component can alleviate
the vocabulary mismatch problem without expanded documents
beforehand using docT5query [48]. (iv) Without the corpus-level
pruning, query latency is increased by 3.4x while there is no gain
in performance. Empirically, there is a trade-off between efficiency
and effectiveness over varying cutoff ratios 𝛾 , and the performance
seems to be converged when 𝛾=0.7 at rapid query latency. We set
the cutoff ratio 𝛾 to 0.7 which leads to 60 stopwords, e.g., {‘the’, ‘it’,
‘what’, ‘for’, ‘as’, ...}, to be removed on average.

6 CONCLUSION
In this paper, we proposed a novel uni-encoder model, Sparse re-
triever using a Dual document Encoder (SpaDE), to alleviate the
trade-off between effectiveness and efficiency of the IR system. We
adopted a dual document encoder for lexical and semantic match-
ing and developed a co-training strategy to mitigate the training
intervention between encoders. We also utilized document- and
corpus-level pruning during model training, enabling efficient re-
trieval using the inverted index. Experimental results showed that
SpaDE achieves state-of-the-art performance among uni-encoder
models with acceptable query latency, notably preferable for com-
mercial IR systems.
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Table 7: Effectiveness of various models on MS MARCO doc-
ument ranking. Among models using sparse representations,
the bestmodel ismarked bold. Let DR and dT5q denote Dense
Retrieval and docT5query [48]. Results not available are de-
noted as ‘–’.

Rep. Encoder Model MRR@100 R@100

Dense Bi

DR (Rand Neg) [74] 0.330 0.859
DR (BM25 Neg) [74] 0.316 0.794

ANCE [67] 0.377 0.894
ADORE [74] 0.405 0.919

RepCONC [75] 0.399 0.911

Sparse

Bi
COIL [19] - -

uniCOIL [32] 0.341 0.864
uniCOIL-dT5q [32] 0.353 0.886

- BM25 [56] 0.278 0.807

Uni
HDCT [11] 0.320 0.843

docT5query [48] 0.327 0.861
SpaDE (k=5) 0.369 0.899

A DOCUMENT RETRIEVAL
Table 7 shows the performance of SpaDE with other baselines on
the MS MARCO document ranking dataset. DR (Random Neg) and
DR (BM25 Neg) represent Dense Retrieval models trained with ran-
dom and BM25 negatives, respectively. All dense retrieval models
use RoBERTa-base [36] as an encoder and [CLS] token embed-
ding for query and document representations. The experimental
results of them are copied from [74, 75]. uniCOIL and uniCOIL-
dT5q performed indexing on segmented passages, and the score of
the segmented passage that obtained the highest score is used as
the score of the document, i.e., MaxP technique [10]. Other models,
including SpaDE, use only the first part of the document truncated
to BERT’s max length. We use official metrics for MS MARCO doc-
ument ranking task, i.e., MRR@100 and Recall@100. As a result,
SpaDE achieves the best performance among baselines using sparse
representations. It may seem similar to the passage ranking task
results, but spade’s effectiveness is more highlighted in long docu-
ments. For example, in the passage ranking, MRR@10 performance
of uniCOIL and SpaDE were 0.351 and 0.353, respectively, but in
the document ranking, SpaDE significantly outperforms it by 0.369
versus 0.353. Secondly, ANCE shows high ranking performance,
i.e., MRR, compared to SpaDE, but SpaDE has better recall per-
formance. If compared considering the same MRR performance,
uni-encoder outperforms bi-encoder in terms of Recall. This trend,
which was not shown before, suggests that focusing on intrinsic
lexical matching signals may be more effective than learning rep-
resentations of both documents and queries in the long document
environment where vocabulary mismatching occurs relatively less.
In other words, as the first-stage retriever in document ranking, the
uni-encoder method may be more favorable than the bi-encoder
method.
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Figure 5: MRR@10 and Recall@1k of SpaDE (k=10) over vary-
ing 𝛼 . Note that we chose 𝛼 based on the valid set.
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Figure 6: MRR@10 and query latency (in ms) of SpaDE (k=10)
over varying𝛾 of corpus-level pruning.When𝛾=0.7, we prune
terms appearing in over 70% of documents while training.
The latency is measured with PISA [44] using Block-Max
WAND [14].

B EFFECTS OF 𝛼
Figure 5 shows the effect of the aggregating hyperparameter 𝛼 .
Using the dual encoder, i.e., 0 < 𝛼 < 1, mostly shows better per-
formance than using a mere single encoder, i.e., 𝛼 = 0 or 𝛼 = 1,
depicting that each encoder only captures complementary infor-
mation to another. SpaDE (k=10) shows the best performance at
𝛼 = 0.4 with 0.352 in MRR@10, implying that the term weighting
encoder is more dominant than the term expansion encoder.

C EFFECTS OF CORPUS-LEVEL PRUNING
Figure 6 shows the effect of corpus-level pruning of SpaDE. Since
new relevant terms are appended through the term expansion
component without cutoff based on an approximate document
frequency, the number of elements in the term-document matrix is
enormous, at about 1.1 billion, implying query processing is very
costly, e.g., 510 ms per query. To reduce the query latency, we use
corpus-level pruning introduced in Section 3.4. Specifically, dur-
ing the model training, terms with high document frequency are
pruned, and the model learns document representations only with
the remaining terms. There is a trade-off between effectiveness and
efficiency depending on the cutoff ratio. When the threshold is set
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Figure 7: NDCG@10 per query of SpaDE (k=10) and DeepIm-
pact [43] on TREC DL 2019 and TREC DL 2020. We sort the
queries by increasing order of NDCG@10 scores in SpaDE.
If the blue points are above than the red line, it means that
DeepImpact [43] shows higher NDCG@10 score than SpaDE.
For 51.2% (22 out of 43) and 66.7% (36 out of 54) queries on
both datasets, SpaDE outperforms DeepImpact [43].

from 1.0 to 0.2, MRR@10 drops from 0.352 to 0.314, while the infer-
ence is about 6.9x faster. Also, it shows the highest performance in
MRR@10 when 𝛾=0.9, implying that it can be helpful for retrieval
effectiveness to learn document representations, excluding redun-
dant terms. We set the cutoff ratio 𝛾 to 0.7 which leads to 60 stop
words, e.g., {‘the’, ‘type’, ‘it’, ‘what’, ‘for’, ‘as’, ...}, to be removed on
average and the average number of tokens per document is 189.

D DETAILED TREC DL EVALUATION
Figure 7 shows the NDCG@10 on each query of SpaDE and Deep-
Impact [43]. While DeepImpact [43] is better than SpaDE in TREC
DL 2019, SpaDE is better than DeepImpact [43] in TREC DL 2020.
Our analysis found that incorrect queries of SpaDE on TREC DL
2019 mostly include relatively rare words. We conjecture that the
term weighting component is difficult to assign high weighting
scores on rare words because our learning scheme heavily depends
on the document corpus.

E VISUALIZATION
Table 8 shows the weighted document terms and expanded terms.
SpaDE can identify important terms and expand new terms of
SpaDE and DeepImpact [43]. For the query "What is a nonconfor-
mity? earth science", SpaDE gives high scores for the important
terms, e.g., "nonconformity" and expanding the terms, e.g., "science",
which are matched to the query. Owing to enriched document rep-
resentations, SpaDE can rank a given relevant document in the
27th place, where the core terms of the query, e.g., "earth", "science",
do not appear in the document. Meanwhile, even though DeepIm-
pact [43] identifies important document terms, the given document
is ranked 77th since query terms are not properly expanded by
docT5query [48]. SpaDE accurately expands the query terms by
inferring the relevant words. For the query "Dog day afternoon
meaning", SpaDE weights for the important terms, e.g., "dog", "day",
"afternoon". Moreover, SpaDE successfully expands terms such as
"warm", "weather", "hottest", which are highly related to the query.
For the query "What is the most popular food in Switzerland", both
DeepImpact and Spade give high weights for the important terms
and expand relevant terms which are matched to the query, e.g.,
"Switzerland", "popular", "most".
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Table 8: Visualization of term weighting and document expansion by SpaDE (k=10) and DeepImpact [43] on TREC DL 2019 and
2020. The number in parentheses denotes the rank of the document. The tokenization process is simplified and only top-50
expanded words are visualized. Yellow shades reflect the normalized term weights and query terms are boxed in red .

Query What is a nonconformity? earth science

Model DeepImpact [43] (#77) SpaDE (k=10) (#27)

Original
document
(Rel=3)

1 lack of conformity ; nonconformity . 2 geology a surface between

successive strata representing a missing interval in the geologic record

of time , and produced either by an interruption in deposition or by
the erosion of depositionally continuous strata followed by renewed
deposition .

lack of conformity ; nonconformity . 2 . geology a surface between

successive strata representing a missing interval in the geologic record

of time , and produced either by an interruption in deposition or by
the erosion of depositionally continuous strata followed by renewed
deposition .

Expanded
terms

meant sediment on meaning rock conformity what nonconform

is nonconformities definition define

definition define meaning term absence apical geography science

geological mean : gap con chemistry lacksum geologist rat lacking
st formation definedness period rock followingformsism characterized
not lacked rocks found why consecutive layers theory occur soil eco
associatedance form history two processivity no produces layer chemical
sedimentary un state uniform depositedation

Query dog day afternoon meaning

Model DeepImpact [43] (#26) SpaDE (k=10) (#9)

Original
document
(Rel=3)

its when its terribly hot that the dogs don ’ t do anything but lay around

. a dog ’ s day is normally laying around and doing nothing . if you

are doing the same , you are having a dog day afternoon . a hot an

humid day when even dogs have no energy .

its when its terribly hot that the dogs don ’ t do anything but lay around

. a dog ’ s day is normally laying around and doing nothing . if you

are doing the same , you are having a dog day afternoon . a hot an

humid day when even dogs have no energy .

Expanded
terms

how yahoo leave days should too what ’ s it eat begin after can home
puppy all while puppies isn ’ t lot to normal their what definition does
why causing feel my linger makes mean sleeps for answers lazy

puppy pup why mean dayspies definition home too my meaning their

normal your causes should after feel eat while makes about define lying
warm get need means cause happens before very called canine weather
much cold all time lie average hottest like heat early just so kind laid
would morning

Query what is the most popular food in switzerland

Model DeepImpact [43] (#9) SpaDE (k=10) (#10)

Original
document
(Rel=3)

some other well known swiss dishes are: 1 geschnetzeltes : sliced pieces
of meat ( pork , veal , chicken ) served with a sauce and often rsti ; 2

cheese fondue : various kinds of swiss cheese melted in a pot. 3 raclette

: various kinds of food ( bread , mushrooms , meat , potatoes ) covered

in molten or scalloped cheese .

some other well known swiss dishes are : 1 geschnetzeltes : sliced pieces
of meat ( pork , veal , chicken ) served with a sauce and often ra sti ; 2

cheese fondue : various kinds of swiss cheese melted in a pot . 3 raclette

: various kinds of food ( bread , mushrooms , meat , potatoes ) covered

in molten or scalloped cheese .

Expanded
terms

how culture common called are used there name people what ’ s eat

typical they do foods kind the like appetizer different what industry

switzerland types meal most for popular is made

how culture common called are used there name people what ’ s eat

typical they do foods kind the like appetizer different what industry

switzerland types meal most for popular is made
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