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ABSTRACT
Domain adaptation using graph-structured networks learns label-
discriminative and network-invariant node embeddings by sharing
graph parameters. Most existing works focus on domain adaptation
of homogeneous networks. The few works that study heteroge-
neous cases only consider shared node types but ignore private
node types in individual networks. However, for given source and
target heterogeneous networks, they generally contain shared and
private node types, where private types bring an extra challenge
for graph domain adaptation. In this paper, we investigate Het-
erogeneous Information Networks (HINs) with both shared and
private node types and propose a Generalized Domain Adaptive
model across HINs (GDA-HIN) to handle the domain shift between
them. GDA-HIN can not only align the distribution of identical-type
nodes and edges in two HINs but also make full use of different-
type nodes and edges to improve the performance of knowledge
transfer. Extensive experiments on several datasets demonstrate
that GDA-HIN can outperform state-of-the-art methods in various
domain adaptation tasks across heterogeneous networks.
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Figure 1: Challenges on DA across HINs: (a) feature and (b)
structure discrepancies between source and target HINs.

1 INTRODUCTION
Domain Adaptation (DA) aims to learn transferable representations
for problems those sample and label spaces remain unchanged, but
the probability distribution is different [2, 7, 9, 20]. Recently, DA
across graphs has been beginning to drawmuch attention [11, 12, 16,
19]. It aims to transfer the knowledge learned from a source network
to a target network by learning label-discriminative and network-
invariant node embeddings. However, existing methods mainly
focus on the problem of homogeneous networks. In this paper,
we study a generalized domain adaptation across Heterogeneous
Information Networks (HINs), where nodes are fully labeled in the
source network while completely unlabeled in the target network.
We intend to minimize the domain shift and transfer the model
trained on the source network to the target network.

However, this objective faces several challenges: 1) First, each
HIN is composed of multiple different types of nodes and edges.
For example, the source network DBLP [5] in Fig. 1(a) contains
four types of nodes: papers (P), authors (A), venues (V), and terms
(T), as well as different types of edges between them. This means
that different types of nodes and edges are in different semantic
spaces and have different data distributions, which results in three
discrepancies between pairwise node-type distributions (See Fig. 1
(a.top)). 2) Second, the node and edge types in two heterogeneous

ar
X

iv
:2

01
2.

05
68

8v
3 

 [
cs

.L
G

] 
 2

5 
Se

p 
20

22

https://doi.org/10.1145/3511808.3557602
https://doi.org/10.1145/3511808.3557602


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Tiancheng Huang, Ke Xu, and Donglin Wang

networks are not identical in general. For instance, DBLP and MAG
[13] citation networks have some private-type nodes and edges
in their networks (i.e., term nodes for DBLP, and field (F) nodes
for MAG). Because private node types exist across the networks
(See Fig. 1 (a.bottom)), a common semantic space needs to be built
before they are aligned to capitalize on the information about such
type nodes. For topological structures from two different domains,
there is a discrepancy to be aligned for the center node embedding
even after all distributions of node types have been aligned (See
Fig. 1 (b)). However, previous work [18] only aligns the shared type
node features but ignores that each network has its characteristics.

To address these problems, we propose a Generalized Domain
Adaptive model across HINs (GDA-HIN). Several independent dis-
criminators are used to align the embeddings in different semantic
spaces. Specifically, our model firstly constructs auto-encoders and
domain discriminators to align the node features. Secondly, we
align the topological structure in graph embedding space using an
automatically learned meta-path feature extractor (e.g., HGT [4])
and a domain discriminator. A low-rank matrix completion method
is adopted to handle private node types. Our model combines the
low-rank matrix completion method with the heterogeneity of HIN.
In this way, GDA-HIN can get rid of the precondition of matrix
completion method, that corresponding instances [17], or a few
labeled target domain data [8]. The contributions of this work:

1) To the best of our knowledge, we are the first to investigate
the generalized domain adaptation across HINs that contain both
share and private node types. Thus, it is a more general situation
on source and target HINs for real-world scenarios.

2) We systematically analyze the challenges of DA across HINs.
Based on the above analyses, we propose a novel GDA-HIN by de-
signing pairwise node-type distribution alignment and topological
structure alignment to accomplish DA across HINs.

3) We conduct extensive experiments on the three citation net-
works and six groups of cross-network tasks for node classification
to evaluate the performance of domain adaptation. The experiments
show that GDA-HIN outperforms state-of-the-art baselines.

2 METHODOLOGY
2.1 Problem Definition
Given a fully-labeled source 𝐻𝐼𝑁𝑆 =

(
V𝑙
𝑆
, E𝑆 ,A𝑆 ,R𝑆

)
and a fully-

unlabeled target 𝐻𝐼𝑁𝑇 =

(
V𝑢
𝑇
, E𝑇 ,A𝑇 ,R𝑇

)
, where V and E are

node and edge set,A and R denote the sets of node and edge types.
A𝑆 and A𝑇 not only share same node types but also have their
own private node types, also leading to the difference between R𝑆

and R𝑇 . V𝑙
𝑆
represents a set of labeled nodes while V𝑢

𝑇
represents

a set of unlabeled nodes. The transferable classification aims to
predict the label on 𝐻𝐼𝑁𝑇 with label information from 𝐻𝐼𝑁𝑆 .

2.2 Pairwise Node-type Distribution Alignment
To align each semantic component independently between source
and target domains, we construct pairwise node-type auto-encoders
and domain discriminators before aggregation and updating:
1) Shared Node-type Distribution Alignment: Assuming there
are 𝐾1 shared node-type pairs between source and target domains,
the pairwise node-type auto-encoder 𝐴𝐸𝑘1 , 𝑘1 = 1, ..., 𝐾1 is used

to encode and decode the node features of 𝑘1-th-type nodes. A
reconstruction loss is used to constrain 𝐴𝐸𝑘1 ’s projection retaining
semantic information:

Lrecon1 =
∑︁

𝑀𝑆𝐸

(
X𝑘1 , X̂𝑘1

)
, (1)

where X𝑘1 is the node feature of the 𝑘1-th shared node type for
both domains, X̂𝑘1 is the corresponding reconstructed feature, and
𝑀𝑆𝐸 represents the mean square error. Then, we construct a pair-
wise node-type domain discriminator following with a Gradient
Reversal Layer (GRL) [3] for the features of individual-type nodes
separately. By minimizing the domain adversarial similarity loss,
the encoder is trained to make similar its output processed from
both domains while the domain discriminator learns to identify the
domain of the encoder’s output. The domain discriminator loss for
all discriminators 𝐷𝑘1 and auto-encoders 𝐴𝐸𝑘1, is formulated as:

L𝑛𝑑𝑎1 =
∑︁
E
𝑥 ∈X𝑘1

𝑆

[
log

(
1 − 𝐷𝑘1

(
𝐴𝐸𝑘1 (𝑥)

))]
+E

𝑥 ∈X𝑘1
𝑇

[
log𝐷𝑘1

(
𝐴𝐸𝑘1 (𝑥)

)]
, (2)

where 𝐷𝑘1 is the discriminator for the 𝑘1-th-type nodes.
2) Private Node-type Distribution Alignment: Unlike shared-
node types, private-node types contain many unknown values.
Reconstruction constraints applied to private-node types recover
not only the observed values but also unknown parts. Meanwhile,
the private-node types like term and field are semantically rele-
vant [10], which makes the unobserved type’s embedding contain
plenty of linear dependent columns. Hence, the problem of recovery
unobserved type’s embedding turns into a low-rank matrix com-
pletion problem, which can be formulated to minimize the nuclear
norm under the constraint of reconstruction loss [1]. For private
node-type pairs, we recover the missing value and get a matrix Ŵ:

W =

[
X𝑆 0
0 X𝑇

]
𝑟𝑒𝑐𝑜𝑣𝑒𝑟
=⇒ Ŵ =

[
X̂𝑆 Û𝑆

Û𝑇 X̂𝑇

]
. (3)

In Ŵ above, X̂𝑆 and X̂𝑇 represent the recovered observed el-
ements, while Û𝑆 and Û𝑇 represent the recovered unobserved
elements. To recover Ŵ, we minimize the loss Lrecon2:

Lrecon2 =
∑︁

𝑀𝑆𝐸

(
X𝑘2 , X̂𝑘2

)
+ 𝛿R

(
Ŵ

)
, (4)

where X𝑘2 is the node feature of the 𝑘2-th private node type, X̂𝑘2

is corresponding observed part of recovered embedding, 𝐾2 is the
number of the private-type pairs. R(Ŵ) is a regularization term,
where R(∗) denotes nuclear norm operation, and 𝛿 > 0 is a trade-
off parameter. Under the reconstruction constraint, the encoder’s
output can retain enough semantic information for the private-type
pairs. The loss of discriminators for 𝑘1 shared- and 𝑘2 private-type
pairs is L𝑛𝑑𝑎 = L𝑛𝑑𝑎1 + L𝑛𝑑𝑎2, where L𝑛𝑑𝑎2 is similar as Eq. (2).

2.3 Topological Structure Alignment
In this subsection, we further elaborate on how to align the topo-
logical structure of source and target networks.
Representation of h-hop: We choose the advanced HIN model
HGT [4] as feature extractor 𝐺 , which can learn embeddings of
h-hop structure ({N1

(𝑣) , ...,N
ℎ
(𝑣) }), that is h-hop embedding, to cap-

ture network topology information. In GDA-HIN, nodes from the
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Figure 2: The framework of GDA-HIN. See more details in Methodology (§2).

source and target networks are encoded via a feature extractor
with shared learnable parameters. However, there are still h-hop
structure discrepancies between both domains. Then, we adopt the
domain alignment on the output of HGT, which aligns the data
distribution in the embedding space of h-hop structure.
TopologicalDomainDiscriminator:After extracting each nodes’
h-hop structure embedding by feature extractor𝐺 , which is a 2-layer
HGT, another domain adversarial discriminator𝐷𝑡𝑝 is implemented
to minimize the topological structure discrepancy, and its loss L𝑑𝑎

defined as:

L𝑑𝑎 = E𝑥 ∈𝑯𝑺

[
log

(
1 − 𝐷𝑡𝑝 (𝐺 (𝑥))

) ]
(5)

+E𝑥 ∈𝑯𝑻

[
log𝐷𝑡𝑝 (𝐺 (𝑥))

]
,

where H𝑆 and H𝑇 represent the outputs of encoders in source and
target domains, respectively.
Domain-invariant Classifier: The classifier 𝐶 is used to to pre-
dict the label, and its loss L𝑐𝑙𝑠 is defined as:

L𝑐𝑙𝑠 = − 1

𝑁 𝑙

𝑁 𝑙

Σ
𝑖=0

𝑌 𝑖𝑙𝑜𝑔

(
𝑌 𝑖

)
+ Z𝑡𝑟

(
H⊤LgH

)
, (6)

where Z is a balance parameter, 𝑁 𝑙 represents the number of la-
beled source- and target-domain nodes, and 𝑌 𝑖 denotes the 𝑖-th
node’s prediction. The regularization term in Eq.(6) is defined as
𝑡𝑟 (H⊤LgH), where H represents the hidden state of auto-encoders
for all private-type nodes and Lg denotes the graph Laplacian ma-
trix for all private-type nodes. In particular, the graph Laplacian

matrix is formulated as Lg =

(
LS 0
0 LT

)
, where LS and LT are

the Laplacian matrices of source and target domains computed
according to the adjacency matrices. In the matrix completion mod-
ule, there are unobserved elements involved in the computation
of private-type nodes’ embeddings, which are not constrained by

reconstruction loss. We utilize graph Laplacian matrix to smooth
their embedding over the graph, relying on the assumption that
connected nodes in the graph are likely to share the same label [6].

2.4 Optimization
Phase I Training: To minimize the nuclear norm under the con-
straint of reconstruction loss Eq.(4), GDA-HIN trains a Phase I
Training model on the shared node types of two networks to yeild
pseudo labels, and the overall objective function is composed of the
following four components:

L𝑝1 = L𝑐𝑙𝑠 + 𝛼L𝑟𝑒𝑐𝑜𝑛1 + 𝛽L𝑛𝑑𝑎1 + 𝛾L𝑑𝑎, (7)
where 𝛼 , 𝛽 and 𝛾 are hyper-parameters.

When there are only shared node types, Eq.(6) degenerates to
cross-entropy loss, L𝑐𝑙𝑠 = − 1

𝑁𝑆
Σ
𝑁𝑆

𝑖=0 𝑌
𝑖
𝑆
𝑙𝑜𝑔

(
𝑌 𝑖
𝑆

)
, where 𝑁𝑆 denotes

the number of source-domain nodes.
Phase II Training: For phase II training, we select some predic-
tions by Phase I Training model as pseudo labels for nodes in target
domain. Under the previous phase’s guidance, GDA-HIN considers
both shared- and private- node types from two networks, and the
overall optimization objective is:

L𝑝2 = L𝑐𝑙𝑠 + 𝛼 (L𝑟𝑒𝑐𝑜𝑛1 + L𝑟𝑒𝑐𝑜𝑛2) + 𝛽L𝑛𝑑𝑎 + 𝛾L𝑑𝑎 . (8)

3 EXPERIMENTS

Table 1: Dataset statistics.

Dataset Shared Private Shared Private
P A V T/K/F P-A P-V P-T/K/F

DBLP 14,328 4,057 20 2,517 19,645 14,328 8,647
Aminer 7,212 4,696 16 7,323 13,796 7,212 22,568
MAG 6,206 5,861 20 2,370 12,615 6,206 8,701
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Table 2: Node classification accuracy (%) comparisons on six
cross tasks. (D: DBLP; A: Aminer; M: MAG)

Methods D→A D→M A→D A→M M→D M→A
GCN+GRL 51.30 35.56 42.17 33.39 42.15 51.21
UDA-GCN 55.86 36.14 47.10 34.55 46.86 51.24
HAN+GRL 56.73 34.98 45.77 33.66 45.52 51.34
HGT (𝑤/𝑜 DA) 34.11 28.83 30.74 29.14 27.24 31.35
GDA-HIN𝑤/𝑜 𝑃 53.13 36.72 41.41 36.33 47.83 51.36
GDA-HIN𝑤/𝑜 𝑇 54.10 32.42 44.73 35.00 48.02 46.29
GDA-HIN𝑤/ 𝑆 58.18 37.71 47.77 36.80 48.66 52.87
GDA-HIN(ours) 58.84 39.45 58.59 36.91 50.39 54.30

3.1 Experiment Settings
Datasets: DBLP [5]. We extract a subset of DBLP which contains
14,328 papers (P), 4,057 authors (A), 20 venues (V), 2,517 terms (T),
and the edges between nodes. Aminer [14]. We extract a subset
of Aminer by selecting papers published from the year 2004 to
2008, which contains 7,212 papers, 4,696 authors, 16 venues, 7,323
keywords (K), and the edges between nodes.MAG [13]. Here we
extract a subset of MAG with publish date between the year 2017
and 2019, which contains 6,206 papers, 5,861 authors, 20 venues,
2,370 fields (F), and the edges between nodes. We categorize authors
according to their research areas: Database, Data Mining, Artificial
Intelligence, and Information Retrieval. Summary statistics of the
datasets are displayed in Table 1.
Baselines. We compare with the following baselines: GCN+GRL.
The model adopts homogeneous graph-based methods GCN [6] as
feature extractors and take GRL [3] as domain adaptation frame-
work. UDA-GCN. The method [16] adopts a multi-channel GCN
with a weight sharing strategy and takes GRL as the domain adap-
tation framework. It effectively maintains local consistency and
global consistency of the graphs. HAN+GRL. This model adopts
HIN-based method HAN [15] as feature extractor, and takes GRL
as the domain adaptation framework.

3.2 Performance Comparison
Our model carries out six groups of cross-network tasks, and the
node classification results are reported in Table 2. We have the
following primary observations: (1) Compared with all baselines,
the proposed GDA-HIN generally achieves the best performance.
The results demonstrate the effectiveness of GDA-HIN. (2) All HIN-
basedmethods exhibit better performance than homogeneous meth-
ods (i.e., GDA-HIN vs. GCN+GRL). This result reveals that consid-
ering heterogeneity helps the DA. In essence, it validates that for
the domain adaptation problem of HINs, it is essential to handle
the heterogeneity-caused multiple semantic spaces. (3) The GDA-
HIN outperforms other heterogeneous graph-basedmethods, which
demonstrates that our method can better address the discrepancies
of both pairwise node-type distributions and topological structure.

3.3 Ablation Study
To gain insights about GDA-HIN, we study its variants: GDA-
HIN𝑤/𝑜 𝑃 , GDA-HIN𝑤/𝑜 𝑇 and GDA-HIN𝑤/ 𝑆 . Specifically, GDA-
HIN𝑤/𝑜 𝑃 & GDA-HIN𝑤/𝑜 𝑇 are two variants of GDA-HIN with
the pairwise node-type distribution alignment and the topological

(a) HGT (𝑤/𝑜 DA) (b) GDA-HIN

Figure 3: The visualization: the data points of source and tar-
get domains are colored by red and blue color, respectively.

structure alignment removed, respectively. GDA-HIN𝑤/ 𝑆 is only
uses shared node types for phase I training, and without using
private node types, to verify the effectiveness of private node types.

From Table 2, we observe that GDA-HIN is better than GDA-
HIN𝑤/𝑜 𝑃 , demonstrating the effectiveness of the pairwise node-
type distribution alignment for domain shift. Similarly, it is observed
that GDA-HIN outperforms GDA-HIN𝑤/𝑜 𝑇 , verifying the effective-
ness of the topological structure alignment. Moreover, GDA-HIN
outperforms GDA-HIN𝑤/ 𝑆 on all cross-domain tasks, indicating
the effectiveness of considering private types in domain alignment.
Note that GDA-HIN𝑤/ 𝑆 outperforms other baselines, it indicates
our model only using share- node types gains competitive results.
In summary, GDA-HIN outperforms three variants, indicating that
pairwise node-type alignment, which includes shared and private
alignments, and topological structure alignment are indispensable.

3.4 Visualization
Due to the space limit, we report the t-SNE visualization of models’
embeddings on Aminer→DBLP as an illustration. The results are
shown in Fig. 3, where the source and target domains are colored
according to their own domains. From Fig. 3 (a) ∼ (b), we can
find that the result of (a) HGT contains a tremendous distribution
discrepancy due to 𝑤/𝑜 DA. Apparently, the visualization of our
(b) GDA-HIN performs best, where data points of source and target
domains are evenly mixed and hardly separated, which means that
the domain shift has been successfully minimized, and the node
embeddings learned by GDA-HIN are actually domain-invariant.
The domain-invariant representations are beneficial to transferring
from source domain to target domain.

4 CONCLUSION
In GDA-HIN, we achieve a better domain adaptation performance
by jointly considering the pairwise node-type distribution align-
ment and topology structure alignment. We adopt the matrix com-
pletion method to effectively deal with private-type nodes by pro-
jecting each private-type pair into a new common feature space.
The proposed scheme has been proven effective by experiments.
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