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ABSTRACT
When spreading information over social networks, seeding algo-

rithms selecting users to start the dissemination play a crucial role.

The majority of existing seeding algorithms focus solely on maxi-

mizing the total number of reached nodes, overlooking the issue of

group fairness, in particular, gender imbalance. To tackle the chal-

lenge of maximizing information spread on certain target groups,

e.g., females, we introduce the concept of the community and gender-

aware potential of users. We first show that the network’s commu-

nity structure is closely related to the gender distribution. Then,

we propose an algorithm that leverages the information about com-

munity structure and its gender potential to iteratively modify a

seed set such that the information spread on the target group meets

the target ratio. Finally, we validate the algorithm by performing

experiments on synthetic and real-world datasets. Our results show

that the proposed seeding algorithm achieves not only the target

ratio but also the highest information spread, compared to the

state-of-the-art gender-aware seeding algorithm.

CCS CONCEPTS
• Theory of computation → Social networks; • Social and
professional topics → Gender.
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social networks, influence maximization, fairness
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1 INTRODUCTION
The influence maximization (IM) problem, which chooses a subset

of users in the social network as seeds to maximize the number of

influenced users [2, 3, 8, 11, 12, 14], has considerable applications,

such as viral marketing, political campaigns, and so on. In [8], it

has been proved that IM is NP-hard and a greedy algorithm can

generate (1 − 1

𝑒 )-approximation solutions. However, traditional IM

only focuses on the influence spread and neglects the disparity in

underrepresented groups (URGs). For example, when the govern-

ment wants to disseminate a piece of information about financial

aid, a good seed group which maximizes the number of influenced

individuals but does not take into account if struggling individuals

learn about it, may not reach the population which needs it most.

Extensive research [5, 9, 19, 20, 24] has investigated numerous IM

problem, which aim to provide fairness and deal with the disparity

under various definitions, such as maximizing the influence on

URGs while ensuring a minimum spread on the whole network [5],

maximizing the minimum spread among all groups [24], balancing

the numbers of seeds from different groups [19], and ensuring the

ratios of influenced users in respective groups to be the same [9,

20]. Recently, the Disparity Influence Maximization (DIM) problem

was proposed [22] to further focus on promoting URG to reach a

target ratio, benefiting real-world applications with diverse needs.

However, the Disparity Seeding algorithm [22] proposed to solve

DIM is based on the ranking mechanism, neglecting the submodular

property of IM and in turn resulting in a limited influence spread.

On the other hand, community-based approaches [4, 7, 10, 16, 18]

have shown great strengths in solving IM in terms of both effec-

tiveness and efficiency, since they can narrow down the possible

seed candidates. Although the above approaches provide promising

solutions to traditional IM, none of them has considered fairness.

However, as indicated in previous studies [1, 20, 21], human social

networks usually exhibit homophily, a tendency to favor interac-

tions with similar individuals. For example, females are more likely

to interact with females to form communities. Hence, an essential

question is how to exploit such communities to improve seed selec-

tion so that a specified target gender ratio can be achieved. In this
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paper, we use the relationships between communities and genders

to design a community-based approach to solve DIM.

We start by analyzing a dataset from Facebook, where users have

three modes of interactions, i.e., likes, comments, and tags. Based

on these multi-type interactions, we apply a variant of the Lei-

den algorithm [23] to discover communities and classify them as

male-dominant, female-dominant, and evenly-distributed communi-

ties depending on their majority gender. Our key findings are (a)

the community structure is more crucial than the gender for the

homophily phenomenon and (b) evenly-distributed communities

are usually more influential than the other types of communities.

Leveraging the observations from our community analysis, we

propose Community and Gender-Aware Seeding (CGaS) to improve

various seeding approaches that are unaware of genders for solving

DIM. CGaS introduces the swapping mechanism to refine the seed

group so that the gender distribution of influenced users satisfies

the target ratio specified by DIM. To evaluate the influence of a user

on different genders, CGaS proposes a novel measure, the Gender-

aware Potential Influence (GPI). Specifically, to gain more influenced

users of the target gender, CGaS replaces the seeds having a small

GPI on the target gender with users having a large GPI on the other

gender while retaining the total influence spread. Note that CGaS

offers great flexibility since it is applicable to refine the seed groups

discovered by various seeding algorithms. Our experiments on the

Facebook dataset demonstrate that CGaS can achieve the specified

target gender ratio and outperforms Disparity Seeding [22] in terms

of the influence spread. Our contributions include:

• We are the first to study the affinity between communities

and genders in disparity influence maximization.

• We develop a novel community-gender aware seeding algo-

rithm, CGaS which iteratively refines the seeds based on a

new metric, the Gender-aware Potential Influence (GPI).

• The experimental results show that CGaS achieves more

than two times the influence spread of Disparity Seeding on

the Facebook dataset.

2 COMMUNITY ANALYSIS
2.1 Dataset and community detection
The data was gathered from voluntary senior students at 25 univer-

sity departments through the Facebook API [22].
1
Specifically, the

dataset contains 1870 unique users (765 males and 1,105 females)

and around 20 million interactions, each of which records users’

genders and the interaction type (i.e., likes, comments, or tags). The

period of interactions spans from March 2008 to May 2016.

Following [13], we first discover communities by leveraging a

variant of Leiden algorithm [23], which is suitable for multi-type

interaction social networks. Next, according to two-third majority

known in politics [17], we define a community as a male-dominant

(or female-dominant) community if the number of males (or females)

is more than twice that of females (or males) in this community.

Otherwise it is an evenly-distributed community. As a result, we

obtain 44 communities with an average size of 42.2 (±23.49) mem-

bers, includiung 21 evenly-distributed (Even), 16 female-dominant

(Female), and 7 male-dominant communities (Male).

1
More information about the dataset can be found at https://www2.ios.sinica.edu.tw/

sc/en/home2.php.

(a) The distribution of inter-
/intra-community interactions.

(b) The gender distribution of the
top-ranked users.

Figure 1: Distributions of user interactions for tagging.

(a) Community interaction. (b) The CCDF of PageRank.

Figure 2: Inter-community interactions for tagging.

2.2 User interaction
We first examine the interaction pattern of users in different types

of communities in terms of the type of communities their objects

belong to. Due to the space limitation, we follow [22] to focus on

the analysis of tags. Figure 1(a) shows the percentage of different

types of communities that users in one specific type of community

interact with. Take the second bar (i.e., Male) as an example, which

shows that the users in male-dominant communities receive and

send most tags to users in the same community. Generally, the re-

sults demonstrate that more than 98% of users tend to interact with

users in the same community regardless the type of communities.

We then analyze whether the gender distribution of top-ranked

users (i.e., those who interact with intra-community users the most)

in a community complies with the gender that dominates the com-

munity. We examine the top 5% and top 10% users as the top-ranked

users in Figure 1(b). The results show that the gender distribution

of the top-ranked users generally follows the dominant gender of

the community. For instance, there are on average 84.2% female

users in the top 10% users of a female-dominant community. The

observations suggest that with respect to influence in a gender-

dominant community, users of the dominant gender are more likely

to influence more members of the community.

2.3 Inter-community interaction
Next, we focus on inter-community interactions among different

types of communities. Specifically, we first transform the original

user-level social network into a community-level network, where

nodes are communities and weighted-edges represent the numbers

of interactions between members of two different communities. Fig-

ure 2(a) shows the distribution of interactions among communities,

where the number of interactions (i.e., weights) on each edge is

considered. We find that for all types of communities, users have
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the least interactions with male-dominant communities. The ratios

of users in female-dominant and evenly-distributed communities

interacting with those in male-dominant communities (i.e., blue

parts) are even lower than that of the male-dominant community on

this dataset (i.e.,
7

44
= 15.9%), while more interactions are observed

in interactions between male-dominant communities. By contrast,

female-dominant and evenly-distributed communities usually tend

to interact with each other, i.e., female-dominant communities have

the highest ratio to interact with evenly-distributed communities,

and vice versa. According to the above observations, different types

of communities indeed have diverse patterns in the type of com-

munities they interact with.

Finally, we report the PageRank [15] scores of each community

in the community-level graph to examine which type of communi-

ties is more influential. Figure 2(a) reveals that evenly-distributed

communities are typically the most influential since the comple-

mentary cumulative distribution function (CCDF) tail (i.e., the top-

ranked communities) of Even is greater than those of the other twos.

Moreover, as shown in Figure 2(a), evenly-distributed and female-

dominant communities interact with each other very frequently.

These observations provide evidence that traditional community-

based IM approaches that target on the most influential communi-

ties may neglect the influence on the underrepresented group.

3 THE DIM PROBLEM AND ALGORITHM
3.1 Problem formulation
In this paper, we aim to solve the Disparity Influence Maximization

(DIM) problem, which is formally defined as follows.

Definition 3.1 (DIM [22]). Given a social network 𝐺 = (𝑉 , 𝐸), a
diffusion model, a parameter 𝑘 , a target gender ratio Z , and an error

margin 𝑒 , DIM finds a seed group 𝑆 ⊆ 𝑉 with |𝑆 | = 𝑘 to maximize

the influence spread with the constraint that the ratio of the target

gender in the influenced users is Z within an error margin 𝑒 .

3.2 Algorithm
Leveraging the observations from Section 2, we propose Commu-

nity and Gender-Aware Seeding (CGaS) to solve DIM. As seeding

algorithms that are unaware of genders fail to achieve the specified

influenced ratio of the target gender Z , CGaS proposes a swapping

mechanism to refine the seed group by evaluating users’ influence

on different genders. To exploit to homophily, CGaS introduces the

Gender-aware Potential Influence (GPI) by summing up the intra-

and inter-community influence on some gender that the neighbors

of this gender can make. CGaS exchanges seeds and non-seeds

according to their GPI in iterations aiming get closer to Z while

ensuring a large influence spread. In the following, we first formally

define GPI and then explain the swapping mechanism in detail.

To evaluate one’s influence on different genders, CGaS defines

the Gender-aware Potential Influence (GPI) measure. A user 𝑣 ’s

GPI on a gender 𝑔 ∈ {M, F} is the sum of the influence on 𝑔 that

𝑣 ’s neighbors of 𝑔 have. Inspired by the success of community-

based algorithms [4, 7, 10, 16, 18], GPI considers the Gender-aware

Community Influence (GCI) to evaluate neighbors’ influence on

different genders from the intra- and inter-community aspects.

Formally, we define the GPI of a user 𝑣 on a gender 𝑔 as follows.

𝐺𝑃𝐼𝑔 (𝑣) =
∑︁

𝑤∈𝑁 (𝑣)\𝐴,𝑤’s gender is 𝑔

𝑏𝑣𝑤 ×𝐺𝐶𝐼𝑔 (𝑤), (1)

where𝐺𝐶𝐼𝑔 (𝑤) is𝑤 ’s GCI on 𝑔 (defined later), 𝑁 (𝑣) is the set of 𝑣 ’s
neighbors, 𝐴 is the set of influenced users, and 𝑏𝑣𝑤 is the weight

on the edge between 𝑣 and𝑤 (given by the social network).

Analogously to [16], we evaluate GCI by considering two types

of users in communities. One type represents core users who only

have intra-community interactions, and the other type comprises

boundary users who interact with users inside and outside the

community. For a core user, the GCI on a gender 𝑔 is based on i) the

number of users of 𝑔 in their community. Moreover, we also add ii)

the number of their neighbors of 𝑔 to account for homophily. For

a boundary user, GCI on 𝑔 is determined by the influence on each

community he/she interacts with. Similar to core users, GCI also

considers i) the average number of users of 𝑔 in the communities

that a boundary user interacts with and ii) the number of his/her

neighbors of 𝑔. As observed in Section 2.3, users in different types

of communities have diverse patterns in the type of communities

they interact with, GCI further takes iii) the number of 𝑔-dominant

communities he/she interacts with into account. Therefore, the GCI

of a user 𝑣 on a gender 𝑔 is defined as follows.

𝐺𝐶𝐼𝑔 (𝑣) =
{
𝑈𝑔 (𝑣) + 𝐷𝑔 (𝑣) if 𝑣 is a core user

𝛼 · 𝐴𝑈𝑔 (𝑣) + 𝐷𝑔 (𝑣) +𝐶𝑔 (𝑣) otherwise

, (2)

where 𝑈𝑔 (𝑣) is the number of users of 𝑔 in 𝑣 ’s community, 𝐷𝑔 (𝑣)
is the number of 𝑣 ’s neighbors of 𝑔, 𝐴𝑈𝑔 (𝑣) is the average number

of users of 𝑔 in the communities 𝑣 interacts with, and 𝐶𝑔 (𝑣) is the
weighted number of communities 𝑣 interacts with and the weight

of each community is the fraction of users of 𝑔. Besides, as users

tend to interact more with intra-community users (observed in

Section 2.2), 𝐴𝑈𝑔 (𝑣) may overestimate 𝑣 ’s influence and is adjusted

by a parameter 0 < 𝛼 ≤ 1 reflecting the ratio of inter-community

interactions to all interactions.

Equipped with GPI, CGaS applies the swapping mechanism to

refine the seed group by iteratively exchanging seeds and non-seeds.

Let 𝑆0 denote the initial seed group generated by an arbitrary, possi-

bly non-gender-aware, seeding algorithm. For each iteration 𝑖 ≥ 1,

CGaS estimates the influence spread of 𝑆𝑖−1 on each gender to

derive the influenced ratio of the target gender 𝑟𝑖−1. Based on the

comparison between 𝑟𝑖−1 and Z (defined in Definition 3.1), CGaS

determines the gender that should be mainly influenced in this

iteration 𝑖 , denoted as 𝑔𝑖 . Then, CGaS chooses 𝑛 seeds from 𝑆𝑖−1
with the lowest 𝐺𝑃𝐼𝑔𝑖 as out-candidates and 𝑛 nodes from 𝑉 \ 𝑆𝑖−1
with the highest 𝐺𝑃𝐼𝑔𝑖 as in-candidates to form 𝑛2 exchange pairs,

where 𝑛 is a parameter to control the number of exchange pairs.
2

Specifically, CGaS forms an exchange pair by one in-candidate and

one out-candidate and estimates the influence spread on each gen-

der considering 𝑆𝑖−1 is updated by this exchange pair, i.e., removing

the out-candidate from the seed group and adding the in-candidate

into the seed group. Consequently, CGaS selects the exchange pair

with the largest influence spread on 𝑔𝑖 to update 𝑆𝑖−1 as 𝑆𝑖 . The

2
A larger 𝑛 leads to more exchange pairs, which require more search time but provide

a higher chance to reach Z at once.
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Table 1: The comparison of influence spread and its female
ratios under two community-gender aware seeding.

Specified AN+CGaS CELF+CGaS DV DP

ratio (Z ) Ratio Spread #Iter Ratio Spread #Iter Ratio Spread Ratio Spread

F
a
c
e
b
o
o
k 0.4 .408 245.2 19 .461 337.0 20 .621 223.7 .403 153.6

0.5 .500 228.2 6 .508 381.8 4 .621 223.7 .506 112.4

0.6 .607 221.7 3 .594 413.3 2 .647 222.4 .595 191.9

0.7 .699 251.9 8 .692 381.2 12 .663 219.2 .698 165.2

s
y
n
t
h
e
t
i
c 0.3 .305 41.48 5 .295 37.50 5 .380 44.07 .305 26.35

0.4 .401 41.63 2 .396 39.51 2 .412 45.91 .391 36.67

0.5 .500 37.01 5 .502 36.25 5 .448 44.68 .548 33.12

0.6 .603 30.77 7 .604 32.77 6 .481 42.73 .592 27.08

swapping mechanism continues until 𝑟𝑖 reaches Z within the error

margin 𝑒 or the maximum iteration 𝑖max is reached, i.e., 𝑖 = 𝑖max.

4 EXPERIMENTS
4.1 Setup
Datasets.We first use the tag interactions on the Facebook dataset

(Section 2.1) to evaluate the performance of CGaS. Furthermore, we

construct the following synthetic dataset to illustrate our approach

on a smaller network. As there are more females than males in the

Facebook dataset (i.e., the female ratio is 60%), we apply a modified

stochastic block model [6] to generate a synthetic dataset with a

community structure that contains more males than females. This

dataset consists of four communities with 28, 20, 22, and 30 users,

and the corresponding female ratios are 0.8, 0.5, 0.25, and 0.75,

respectively. In other words, the synthetic dataset has 60 males

and 40 females and the sizes of the communities are in the same

range as small communities in the Facebook dataset. To mimic the

interaction patterns of social networks like the Facebook dataset,

the probabilities of having intra- and inter-community interactions

are chosen in ranges [0.7, 0.8] and [0.01, 0.03], respectively.
Baselines. We use two non-gender-aware seeding algorithms and

two gender-aware seeding algorithms for comparison. i) Agnostic

seeding (AN) [20] selects the top-ranked users as seeds according to

the number of users’ interactions. ii) CELF [11] greedily selects the

users with the maximum marginal gain on the influence spread as

seeds. iii) Diversity seeding (DV) [20] selects the top-ranked males

and females as seeds according to the number of users’ interactions,

where the female ratio of the seed group is searched between the

specified female ratio Z and the female ratio of AN’s seed group.

iv) Disparity seeding (DP) [22] selects the top-ranked males and

females as seeds according to the Target HI-Index scores, where the

female ratio of the seed group is learned from a scaling function.

As AN and CELF are not aware of genders, we exploit CGaS to

refine the seed groups derived from them, denoted as AN+CGaS

and CELF+CGaS, to demonstrate the applicability of CGaS to dif-

ferent seeding algorithms. Moreover, we compare AN+CGaS and

CELF+CGaS with DV and DP to show the superiority of CGaS to

maximize the influence spread while approaching Z .

Metrics and Parameter Settings. We evaluate i) the female ratio

of the influenced users and ii) the influence spread by varying the

specified female ratios of the influenced users Z . The sizes 𝑘 of the

seed group of the Facebook and synthetic datasets are set to 25 and

10, respectively, and the error margin for both datasets is set to 0.01.

Following [20], the diffusion is simulated through the IC model [8]

over 10000 times, where the probability of user 𝑣 influencing user𝑤

(i.e., the weight 𝑏𝑣𝑤 ) is the number of interactions𝑤 receives from

𝑣 divided by the total number of interactions𝑤 receives [14]. For

CGaS, 𝛼 , 𝑛 and 𝑖max are set as
1

3
, 5 and 20 for both datasets.

4.2 Results
Table 1 lists the female ratio of the influenced users and the in-

fluence spread achieved by different algorithms on the Facebook

and synthetic datasets. The female ratios with underlines represent

the success of achieving Z within the error margin 𝑒 , while the

spreads with bold are the maximum spread among the algorithms

having female ratios with underlines. Note that we vary Z between

[0.4, 0.7] and [0.3, 0.6] for the Facebook and synthetic datasets,

respectively, since their dominant genders are different.From the

results, we have three observations. (1) CGaS can approximate Z

based on the seed groups obtained by AN and CELF, showing the

applicability of CGaS to various seeding algorithms. (2) DV fails to

achieve Z within 𝑒 and has moderate errors only when Z is close

to the female ratio in the population (i.e., 0.6 and 0.4 in the Face-

book and synthetic datasets, respectively). By contrast, AN+CGaS,

CELF+CGaS, and DP deviate least from Z . (3) Although DP has

small errors, AN+CGaS and CELF+CGaS always exhibit a much

larger influence spread than DP while ensuring Z is reached, since

CGaS exploits the intra- and inter-community influence to evaluate

the users’ influence. Specifically, CELF+CGaS achieves more than

two times the influence spread of DP on the Facebook dataset.

Table 1 further presents the number of iterations required by

CGaS to approach Z . As Z deviates more from the gender distri-

bution of the population, more iterations are required. Since non-

gender-aware seeding algorithms usually yield the gender distri-

bution in the influenced users following that in the population, a

larger difference between Z and the gender distribution of the popu-

lation results in more efforts to adjust the seed group. For example,

CELF+CGaS is unable to reach 0.4 ± 0.01 within 𝑖max = 20.

5 CONCLUSION
Motivated by the prevalent community structure and the asymmet-

ric influence of different genders in social networks, we conducted

a first-of-its-kind gender-aware community analysis and presented

a novel seeding algorithm to promote the information spread on the

target group. We studied how the community structure is affected

by the gender distribution and showed that many communities

have a strong affinity to a single gender. Secondly, we designed a

community-gender aware algorithm that achieves a target ratio

of information spread by iteratively adjusting the seeding selec-

tion based on the community-gender structure. We evaluated the

proposed seeding algorithm against the state-of-the-art gender-

aware seeding algorithms on both synthetic graphs and a Facebook

trace. The results demonstrate that the proposed community-gender

aware seeding algorithm achieves the target influence ratio while

maximizing the information spread.
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