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We propose PASS, aO (n) algorithm for data reduction that is specifically aimed at preserving the semantics of

time series data visualization in the form of line chart. Visualization of large trend line data is a challenge and

current sampling approaches do produce reduction but result in loss of semantics and anomalous behavior. We

have evaluated PASS using seven large and well-vetted datasets (Taxi, Temperature, DEBS challenge 2012-2014

dataset, New York Stock Exchange data, and Integrated Surface Data) and found that it has several benefits

when compared to existing state-of-the-art time series data reduction techniques. First, it can preserve the

semantics of the trend. Second, the visualization quality using the reduced data from PASS is very close

to the original visualization. Third, the anomalous behavior is preserved and can be well observed from

the visualizations created using the reduced data. We have conducted two user surveys collecting 3,000+

users’ responses for visual preference as well as perceptual effectiveness and found that the users prefer

PASS over other techniques for different datasets. We also compare PASS using visualization metrics where

it outperforms other techniques in five out of the seven datasets.
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1 INTRODUCTION

Visualization of time series data is essential in several domains [29, 35], but challenging [11]. In par-

ticular, the size of the data is a significant barrier to interactive visualization [4, 11]. Data reduction

is the key strategy to address this problem. Data reduction is widely used in approximate query

processing [5], visualization [36], spatial [28] and temporal [9] data analysis. These data reduction

strategies work well for map plot, scatter plot, etc., but they are not a good fit for visualization

This material is based upon work supported by the National Science Foundation under Grant CNS-21-20448, CCF-15-18897,

CNS-15-13263, CCF-19-34884. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National Science Foundation.

Authors’ addresses: S. Ahmed and H. Rajan, Department of Computer Science, Iowa State University, 226 Atanasoff Hall,

2434 Osborn Dr, Ames, IA 50011-1090, USA; emails: {shibbir, hridesh}@iastate.edu; Md J. Islam, Amazon Inc, 11501 Alterra

Pkwy, Austin, TX 78758, USA; email: jhislam@amazon.com.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2022 Copyright held by the owner/author(s).

2577-3224/2022/03-ART41 $15.00

https://doi.org/10.1145/3511918

ACM Transactions on Data Science, Vol. 2, No. 4, Article 41. Publication date: March 2022.

https://orcid.org/0000-0003-1183-883X
https://doi.org/10.1145/3511918
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3511918
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511918&domain=pdf&date_stamp=2022-03-30


41:2 S. Ahmed et al.

Fig. 1. The time series plots of the volume of taxicab trips in New York City in a two month period in 2014.

of time series data because they can introduce visualization errors and lose trend semantics [29].

(We present a detailed comparison in Section 5.) Due to the loss of time series data visualization

semantics along with the loss of ordering and loss of some important anomalies, the goal of ex-

ploratory data analysis can be lost. These weaknesses can affect the accuracy and effectiveness of

downstream exploratory data analysis tasks that rely on time series data visualization. This is be-

cause the observations obtained by reviewing the time series visualization of reduced data might

not agree with observations obtained by reviewing the time series visualization of the original data.

Some techniques especially for time series data reduction like M4 [29], MinMax [30], and PAA [32]

perform very well in producing loss-less visualization but still may lose some semantics that could

impact the downstream analysis of trends and anomalies. To illustrate, consider Figure 1 that visu-

alizes the time series plots of Taxi data from [37]. The time series chart in the first row of Figure 1

illustrates the original data where three random locations of the trend are zoomed in. The visual-

ization in the third and the fourth row displays data sampled using M4 and PAA. Readers will note

that the trends and anomalies are distorted in the bottom two charts. For example, in the left-most

zoomed location, M4 produces a flat horizontal line before the last peak losing the structure of the

original chart. The visualization of the data produced by sampling using PAA performs similarly.

These prior works cannot be faulted since their goal is not to preserve trends; however, if ex-

ploratory data analyses relied on the presence of these trends, the data analyses and subsequent

processes could be misled by their absence. In visualizing large-scale time series data, an ideal

reduction strategy should both (a) select fewer number of tuples to reduce the size as well as (b)
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preserve the semantics of time series data and anomalous behavior in the visualization. If the se-

mantics produced by sampled data is similar to the original chart, then the analysis or meaning

extracted from sampled data exactly match to those found from original data. This goal is very

important for domains where anomalous behavior is possible and important to observe, e.g., sud-

den rise or fall in the stock prices, anomalies in vital sign monitoring of patients, labeling large

scale EEG time-series data [8], detecting temporal patterns of viral shedding and transmissibility

of COVID-19 [22], and analyzing and forecasting the novel coronavirus COVID-19 cases using

robust time series models [49].

1.1 PASS

We present a novel approach, which we call PASS (Preserving Anomaly and Semantics Sam-

pling), for reducing time series data where we guarantee that the sampling will preserve the

semantics of time series data visualization. PASS also reduces the visualization error.

The key insight underlying PASS is to split the big time series data into windows such that data

within a window are sufficiently close to each other, and then select the beginning and endpoints

of the window. More precisely, PASS splits the entire range of data into windows such that the de-

viation angle between two lines, one drawn from the beginning point of a window to the endpoint

of the window and the second one drawn from the beginning point of a window to any interme-

diate point in the window, is less than θ (a threshold tunable by the user). As only the beginning

and endpoints of a window are selected in the sample, and intermediate points are discarded, data

reduction is achieved. Since all intermediate points with a deviation angle of more than θ are not

present within a window, trend line changes are preserved within a window.

To illustrate, we can consider Figure 1 that visualizes Taxi data [37]. The chart in the Figure 1

shows the original data, and other charts created by first applying the PASS and then visualizing

the reduced data. The trends highlighted in the original plot are all present in the reduced plot in

Figure 1. PASS achieves data reduction as well as preserves time series data visualization semantics.

1.2 Contributions

The main contributions of this work include:

• A novel sampling strategy called PASS. The sampling strategy preserves the anomalies, oper-

ates in linear time, and can achieve a very low error rate.

• A strategy to split the dataset into windows, based on preselected threshold and use them to

create the sample that preserves semantics.

• A modified gradient descent algorithm to select the best threshold to minimize the error and

to select the best threshold given a sampling rate.

• A notion of quantifying the semantics preservation of time series data computing correlation

and quantifying the anomaly preservation with a composite metric using MSE, SSIM , DSSIM ,

and PSNR.

• An experimental evaluation using publicly available datasets [18] to assess the applicability

and effectiveness of PASS for a variety of time series data.

2 PROBLEM FORMULATION

We now define the problem statement and terminologies.

2.1 Problem Statement

We denote time series dataset as D, set of windows asW , reduced dataset as S , ith window in the

setW asWi , threshold as θ used in the PASS algorithm, square error between S and D as E for all

tuples in D, and ith point in the dataset as pi .
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Data reduction problem. Given a time series dataset D = {(t1,y1), (t2,y2), . . . (tn ,yn )}, where

ith data point (ti ,yi ) is a tuple comprising of time ti and the corresponding value of interest yi at

that time, the goal of data reduction is to reduce it to a smaller subset S such that the downstream

data analyses applied to a time series visualization of S are: (i) cheaper to apply because the size of

S is smaller compared to the size of D, and (ii) produce observations that preserve the semantics

as if the analyses were applied to D.

The notion of preserving the semantics and anomaly of an arbitrary data analysis task is chal-

lenging. Instead of giving a guarantee over resulting analyses, we focus on the shape of the time

series visualization drawn using S ⊂ D. In this context, shape of the time series visualization refers

to the structural properties of that visualization. Our intuition is that if the shape of the visualiza-

tion constructed using D is identical to the visualization constructed using S , then downstream

analyses of the visualization that relies on observing patterns and anomalies would produce iden-

tical results. The kind of essential semantics and anomaly that our work tends to preserve has been

explained in Section 2.2.

2.2 Semantics and Anomaly Preservation

Semantics Preservation. Wang et al. introduced the notion of the semantics of time series data

in terms of correlation [62]. The authors modeled the time series chart to understand the system

dynamics using pattern-based correlation detection. If a time series chart has similar semantics to

another one, those charts are more likely to be derived from the systems with the same dynamics.

By time series semantics, the authors indicated similar subsequences present within the line trends

where the notion of similarity is quantified by correlation. We also compute correlation to quantify

semantics across different windows of two line charts at the same time intervals.

Given two line chartsV1 andV2, generated through sampling fromV0,V1 is said to preserve the

semantics of V0 better than V2 if,

corr (V1,V0) > corr (V2,V0) (1)

Here, corr (Vi ,V0) denotes the correlation of line chart Vi and the original line chart V0.

Anomaly Preservation. Prior works have utilized metrics MSE [29], SSIM [63], DSSIM [29],

and PSNR [29] to computationally measure the similarity of two images. Our intuition is that the

more similar in context of shape of visualization of a line chart V1 to V0 is, the more structural

properties with anomaly is preserved inV1 with respect toV0. So, we introduce a composite metric

to measure the anomaly preservation capability of a data reduction technique. As the similarity of

two images is directly proportional to PSNR and SSIM but indirectly proportional to DSSIM and

MSE, a relation can be obtained as shown in Equation (2). All these metrics are formally described

in Section 4.1.2.

AnomalyPreservation ∝ PSNR × SSIM
DSSIM ×MSE

(2)

According to the Equations (7), (8), (9), and (10) mentioned in Section 4.1.2, the unit of MSE is

pixel2, unit of PSNR is decibel (dB) and no units for computing SSIM and DSSIM as those are ratios

of similar units. The lowest value of MSE and DSSIM can be 0, so we take the inverse of the Equation

(2) to form Equation (3). For simplicity, we consider proportional linear relationship of the metrics

and constant as 1 pixel2db−1 when all the metrics are normalized to define anomaly preservation

score (APScore) as follows,

APScore =
DSSIM ×MSE

PSNR × SSIM (3)
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Fig. 2. Splitting a time series visualization into windows.

So, if APScore is lower, more anomaly is preserved in the sampled line trend compared to the

original line trend and vice versa. We have experimentally shown in Section 4.2.2 that APScore is

good at measuring the capability of preserving anomalies in the time series data after sampling.

3 PASS METHODOLOGY

PASS (Preserving Anomaly and Semantics Sampling) is a specialized data reduction and sampling

strategy that reduces data for the visualization of large-scale time series data as a line chart. Given

a dataset D, we first split the dataset into a number of windows having similar properties in terms

of trend and angular orientation. Figure 2 represents an example line chart of a dataset.

This dataset can be split into 7–8 windows depending on angular orientation. This strategy

ensures that minimum, maximum, and important anomalous behaviors are not lost from trend

while reducing the amount of data. After selecting the set of windows W from dataset, we can

keep only first and last points from each window. It achieves reduction in the dataset if the window

consists of a large number of tuples, which is prevalent in big datasets.

To select windows, we use a tunable parameter threshold represented as θ . We assume that the

current point belongs to the running window if its deviation from current window orientation is

less than θ . Finally, we select a downsample of the original dataset with the help of windows.

Definition 3.1 (PASS Problem). Given a time series dataset D and a threshold θ , the PASS problem

is to select S such that S ⊂ D and square error E is minimized to preserve the semantics of time

series visualization as well as providing desired reduction in data, i.e., |S | < |D | and the reduction

ratio |D |
|S | can be controlled by tuning threshold θ .

Example 3.1 (Example:PASS Algorithm). Consider a dataset, D = {(1, 5.9), (2, 6), (3, 6), (4, 6),
(5, 6), (6, 6), (7, 6), (8, 6), (9, 6), (10, 15)} and threshold θ = 5◦. The PASS approach will first cre-

ate the set of windows, W = {[(1, 5.9), (2, 6)], [(2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (7, 6), (8, 6), (9, 6)],
[(9, 6), (10, 15)]}. The algorithm will then select a subset S , where S = {(1, 5.9), (2, 6),
(9, 6), (10, 15)} by choosing the first and last points from each window. A tuple set is used to avoid

duplicates.

Definition 3.2 (Square Error). Given a time series dataset D and a sample S , we define square

error E as the following:

E =
N∑

i=1

(vi −v ′i )2 (4)

Here N = |D | is the length of the original dataset. vi is the value of D at the time instance ti , i.e.,

the ith tuple. v ′i is the value in S , i.e., the sampled dataset at time ti for the ith tuple. If time ti is
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present in S , then we use the corresponding vi , otherwise we use linear interpolation to find the

value v ′i . For the sample dataset discussed in the Example 3.1, the square error is calculated as 0,

and the semantics of the trend will be completely preserved if we use S to make the line chart. The

ratio of |D ||S | =
10
4 = 2.5. So, we have an error of 0 with a threshold θ = 5◦.

Example 3.2 (Larger Threshold). For the dataset discussed in the Example 3.1, if we increase the

threshold θ to 10◦, we will get a smaller sample but with some square error. While creating a

window, the tuple (1, 5.9) is merged with the second window, which introduces some error. The

new set of windows will be W = {[(1, 5.9), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (7, 6), (8, 6), (9, 6)],

[(9, 6), (10, 15)]}. Now, the reduction ratio |D |
|S | will be 10

3 indicating a smaller sample size.

An interesting property of our approach is that it can form different kinds of windows within a

dataset. These windows can be classified into two categories based on the density factor.

Definition 3.3 (Density Factor). The density factor of a window is defined as follows,

d = 1 − Ps

Pt
(5)

Here Ps is the total number of points not selected and Pt is the total number of points present in

that window. The value of d is in the range of [0, 1).

Sparse Window. When a window selected by the algorithm has only a few points and the density

factor d ≤ 0.5 then the window is sparse. A window can have as low as two points. This type of

window does not help with data reduction in this approach. The window has only two points and

all of those points need to be selected to preserve the characteristics of the window.

Dense Window. A dense window is a window where the number of points is more than 2 and

density factor d ≥ 0.5. Our approach can exploit these dense windows to achieve significant data

reduction while preserving the semantics.

The density factor d affects the percentage of points selected as sample. The data reduction

ratio increases as the density factor d moves closer to 1. The relation of density factor with data

reduction ratio is shown in Lemma 3.1.

Lemma 3.1. If the maximum density factor is dm then the data reduction ratio can not exceed 1
1−dm

i.e. |D ||S | ≤
1

1−dm
.

Proof. Let us assume that all the windows have the same maximum density factor dm = 1− Ps

Pt
.

So, 1 − dm =
Ps

Pt
. Hence, the data reduction ratio for this window is = Pt

Ps
= 1

1−dm
. So if all the

windows have same d then the data reduction ratio will be the same for all the windows. Hence,

the data reduction ratio for this case will be as follows,

|D |
|S | =

1

1 − dm
. (6)

On the other hand, if density factor in some of the windows is less than dm then our reduction

ratio will be |D ||S | <
1

1−dm
. Hence, |D ||S | ≤

1
1−dm

. �

Next, we discuss the window selection algorithm in the following subsection.
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ALGORITHM 1: Window Selection Algorithm

1: procedure SelectWindow (D, θ )

2: W← { }

3: if len(D) ≤ 2 then

4: W← W ∪ D
5: returnW
6: p1,p2 ← D (0),D (1)
7: Wc ← {p1,p2}
8: θw ← anдle (p1,p2)
9: pp ← p2

10: i ← 2

11: while (i < len(D)) do

12: pc ← D (i )
13: θc ← anдle (pp ,pc )
14: if |deviation(θw ,θc ) | ≤ θ then

15: Wc ←Wc ∪ pc

16: pp ← pc

17: else

18: W ←W ∪Wc

19: Wc ← {pp ,pc }
20: θw ← anдle (pp ,pc )

21: i ← i + 1

22: W ←W ∪Wc

23: returnW

3.1 Window Selection Algorithm

In PASS, we need to first select the windows (Wi ) of a similar threshold (θ ) from the dataset (D).

Then, we choose points from those windows to get the reduced sample. The window selection

algorithm is given in Algorithm 1.

The algorithm takes D and θ as input and produces windows as output when D has more than

two points. The algorithm starts by putting the first two points p1,p2 into the running windowWc

in line 7. Then, the algorithm calculates the angular orientation of the two points θw with respect

to the x axis in line 8. This angular orientation becomes the angle of the current windowWc . Then,

the algorithm iterates over the remaining points in the dataset. The algorithm also calculates the

angular orientation θc of the current point pc , and the previous point pp with respect to the x axis.

If the absolute difference of θc and θw is less than or equal to θ , then it includes the current point

pc in the running window Wc in line 15 and assign pc to pp in line 16. Otherwise, if the absolute

difference is greater than the threshold θ , then we close the previous window and put that into

the collection of windows W in line 18. We start a new running window with the points pp ,pc ,

then update the θw , and continue this process till the endpoint of the dataset. Finally, we return

the collection of windows in line 22.

Example 3.3 (Example of Window Selection). Let us assume that we have the line chart in Figure 2

and the threshold is 30◦. We start the first window W1 with orientation angle ∠W1 = 75◦ with

respect to the horizontal axis using the points (p1,p2). As we scan the next subsequent points, we

keep adding the new points in the windowW1 if and only if the deviation of the point pi+1 forming

line segment pipi+1 at orientation angle ∠pipi+1 with respect to the horizontal axis is less than 30◦

ACM Transactions on Data Science, Vol. 2, No. 4, Article 41. Publication date: March 2022.
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Fig. 3. Effect of threshold in window selection. The image (a) shows a better choice of threshold creating

multiple windows. The image (b) shows that selecting a large threshold can result in a single window with

better compression but result in a loss of trend information.

i.e., abs (∠pipi+1 − ∠W1) ≤ 30◦. Here, abs (∠pipi+1 − ∠W1) is the deviation of the point pi+1 from the

current window W1. As we proceed, we first observe the point p7, for which the deviation of the

line p6p7 at the orientation ∠p6p7 deviates more than 30◦ from the current window. So, we begin a

new windowW2 starting from p6 with ∠W2 = ∠p6p7. We continue in this way till the last point p29

to form the windows {W1,W2,W3,W4,W5,W6,W7,W8}.

The algorithm is a single-pass algorithm with complexityO (n). Here, n is the size of the dataset.

The algorithm iterates over all the data points and creates several windows. Extra memory of

O ( |D |) is used to store the windows. We can reduce this additional memory requirement by select-

ing points from the windows on the fly and inserting it into the sample dataset.

3.2 Point Selection from Windows

After selecting different windows W1,W2,W3, . . . ,Wn from the original dataset, we select some

points from the window. We have found that when the threshold is small, selecting only the first

and last points from each window results in less error compared to competing approaches. To

select points, we have to avoid adding repeated points from windows to ensure that we use a tuple

set to collect the samples. If the selection of threshold θ is not appropriate, the point selection

strategy can cause a higher error. For example, if we use a very large θ so that only a single large

window is selected, we might obtain only two points in reduced dataset with huge error.

For example, if we select only the two end points in Figure 3(b), we will lose important details

and anomalies incurring large error because here the threshold θ is a bad choice and we select

a single window out of the entire dataset even though the trend is not a straight line. For the

trend line in Figure 3(a), if we select only the two end points from each window then we will not

lose any peak and anomaly. The trend will be preserved, and the resulting sample will have less

error. Therefore, if the points are close enough, the proposed technique needs to check the angular

orientation much more times. It increases the computation cost. On the other hand, if the points

are far away, more errors will be generated.

Efficient point selection from windows is necessary to get the samples out of the original dataset.

The number of points selected as sample depends on the windows created using the algorithm. The

most efficient point selection strategy is to select the first and the last point from each window.

This will preserve the semantics of the trend as well as choose the least number of points given the

number of windows selected with the used threshold. But, if the trend is not linear, then a curve

fitting strategy can be applied to select points from the curve to minimize the error [55]. So far,

we have mainly worked with datasets having mostly linear windows in the trend. The datasets in

the experiment have long linear windows at the same orientations. So, we do not incur any loss

selecting the first and last points from these windows. If we have selected any other two points
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instead of them, we would lose the trends forming different structure than the original chart. Again,

including more points also did not add additional benefits as only two points, (x1,y1) and (x2,y2)
are sufficient to describe a straight line. Moreover, adding more points would negatively affect

the performance in terms of compression ratio. So, selecting only first and last point from each

window was sufficient to achieve high performance in data reduction.

Observation 1. Given a threshold θ and a trend line data D such that the trend is a straight line,

PASS will only select two endpoints and create only a single window. This is the best case scenario.

The threshold θ plays the key role in PASS. In random sampling, we can specify the percentage

and the algorithm will select that percentage of points from the original data. In PASS, θ is the only

parameter that determines how many windows will be created and how many points will be selected

as a sample out of the original dataset.

Observation 2. If the threshold θ is less than the minimum deviation of all points from the cor-

responding current window, then a maximum number of windows will be created, and all the points

will be selected as sample. This is the worst-case scenario for PASS.

Next, we investigate the lower bound of our algorithm in terms of sample size. In the following

observation, we show that if our chosen threshold θ is greater than the maximum angular deviation

from the respective current windows then only two points will be selected as sample.

Observation 3. If the threshold θ is greater than the maximum deviation of all points from the

corresponding current windows, only one window will be returned by the window selection algorithm

and the number of points selected as sample will be 2.

3.3 Finding Right Threshold

In PASS, selecting threshold has an impact on getting lossless visualization from the sample as well

as sample size. In Observation 2 and Observation 3, we have presented lower and upper bounds

for choosing a threshold. To get an effective sample we need to select a threshold that will lie in

between the bounds. First, we want to choose a threshold θ that selects a fixed sample size out of

the original dataset. Second, we want to choose a threshold of θ that minimizes the error in the

sampled dataset.

3.3.1 Finding a Threshold for the Desired Sample Size. It is often desired to ask for some x%

sample. For example, in random sampling, we can get x% of the original dataset. The best effort

algorithm for selecting a sample with a fixed size is shown in Algorithm 2.

The algorithm takes the original dataset D and the target size of the sample data n. The prede-

fined tolerance τ in the algorithm is used so that the algorithm can be terminated for a sample size

within n − τ ≤ |S | ≥ n + τ . Here, τ depends on the choice of a user. The algorithm first computes

l = |S | using the initial θ . Then, we iteratively refine the threshold. If the sample size l is less than

(n − τ ), we decrease the threshold θ and assign a new value θ = θ − α ∗ θ in line 7, where α is a

predefined learning rate. If sample size l is less than n, as per the Observation 2 and 3 , we have

to decrease the value of θ to increase the number of sample points. So, we decrease the θ using

a preset learning rate. If the length of sample l is greater than n + τ we increase θ and assign a

new value θ = θ + θ ∗ α in line 9 as per Observation 2 and 3 ,we have to increase θ to reduce

the number of sample points. To ensure termination guarantee, we return Nil if we do not find an

acceptable threshold within predefined maximum allowed iterations I .

3.3.2 Finding a Threshold to Minimize the Sample Size for a Given Error Tolerance. To find a

threshold that minimizes error, we use a gradient descent approach that iteratively minimizes the

error E using a decay rate α . The algorithm reduces the threshold of θ and reduces the number of

points selected iteratively until the error falls below an acceptable tolerance ϵ set by the user. The

ACM Transactions on Data Science, Vol. 2, No. 4, Article 41. Publication date: March 2022.
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ALGORITHM 2: Selection of optimal θ to get |S | = n
1: procedure getnSample (D, n)

2: θ , S, i ← 0.01,дetSample (D,θ ), 0
3: E ← дetE (D, S )
4: l ← len(S )
5: while true do

6: if l < n − τ then

7: θ ← θ − α ∗ θ
8: else if l > n + τ then

9: θ ← θ + α ∗ θ
10: else

11: break

12: i ← i + 1

13: S ← дetSample (D,θ )
14: E ← дetE (D, S )
15: l ← len(S )
16: if i ≥ I then

17: return Nil
18: return θ

ALGORITHM 3: Selection of optimal θ to achieve E ≤ ϵ

1: procedure optmumTheta (D, ϵ)

2: θ , S, i ← 180,дetSample (D,θ ), 0
3: E ← дetE (D, S )
4: if θ = 180 || E ≤ ϵ then

5: return θ
6: else

7: while E > ϵ do

8: θ ← θ − α ∗ θ
9: i ← i + 1

10: S ← дetSample (D,θ )
11: E ← дetE (D, S )
12: if i ≥ I then

13: return Nil
14: return θ

goal of Algorithm 3 is to return an optimal value of θ so that the error function produces a value

less than an acceptable limit of ϵ due to the reduction of original data D to sample data S .

The error function is shown in the Equation (4). The error will be minimum when |D | = |S | and

the error will be E = 0. It is not required to find the minimum error that returns the sample where

|S | = |D |. If we plot the square error curve against the sample size, then we will have a lowest

point in the curve where the error is the minimum. For |D | = |S | the point in the error curve is

the lowest showing E = 0. But that is not desired while reducing data. We stop the iteration in

our gradient descent algorithm once we see that E ≤ ϵ . Here, ϵ is an acceptable level of error. We

chose a learning rate α and run the gradient descent approach shown in Algorithm 3 iteratively.

Algorithm 3 takes the original dataset D, initial chosen threshold θ , acceptable maximum error

limit ϵ , maximum number of iterations I to be used before terminating the algorithm with Nil

ACM Transactions on Data Science, Vol. 2, No. 4, Article 41. Publication date: March 2022.



Semantics and Anomaly Preserving Sampling Strategy for Large-Scale Time Series Data 41:11

Fig. 4. Different gradient descent approaches used for various types of optimizations of the PASS.

result and a learning rate α as parameters. In each iteration of the while loop in line 4, if E > ϵ ,

we decrease θ and assign a new value of θ = θ − θ ∗ α in line 5. If we find E ≤ ϵ , then we break

the iteration in line 7 as we have found θ that will give the sum of square error less than ϵ . To

understand the properties of the proposed optimized algorithm, we have applied it to an artificial

dataset generated from a pure sine wave (frequency 20Hz, duration 5s) with 2,500 data points.

This dataset has two desirable properties. First, the curvature of sine wave provides variation in

the trend. Second, the density of data points is uniform that allows the study of even lower sample

sizes.

We run the algorithm to find optimal θ . We do not break the algorithm when error E ≤ ϵ ,

rather we run it for 100 iterations to show how the error and θ varies with iterations in the chart.

Figure 4(a-c) shows how the size of sample dataset S , error E and threshold θ varies with iterations,

respectively. We see that at around 25 iterations we get all parameters θ , sample size n and error E
to a satisfactory level for this case. Then, we see the threshold and error decrease very slightly but

the sample size (with sampling rate ∼50%) increases almost near the original dataset size, which

is 2,500 data points.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate salient properties of PASS and compare them with other eight tradi-

tional sampling techniques to assess the effectiveness and usefulness of our algorithm. Here, we

have experimentally evaluated the visualization quality and data reduction efficiency of PASS via

state-of-the-art image comparison metrics. We have also assessed the performance of our algo-

rithm with competing approaches using runtime as a metric. We have conducted two user studies

to understand the visual preference of PASS over the other competing methods. These users use

time series data regularly. In this user survey, we have used seven different time series data from

different domains and generated visualizations using reduced data by the approaches under com-

parison using the same sampling rate. We claim that our approach PASS reduces the large-scale

data significantly with visualization semantics and anomalous behavior of the time series data.

We present the experimental evaluation to support our claims in the following subsections. Firstly,

we describe the experimental settings in Section 4.1 and then we present experimental results in

Section 4.2.

4.1 Experimental Settings

In this section, we describe the experimental settings used in our experimental evaluation. We have

described the datasets used for evaluation in Section 4.1.1 and evaluation metrics in Section 4.1.2.

Here, we discuss the traditional data reduction comparable techniques in Section 4.1.3. Then, we

present the experimental setup of user study and implementation in Section 4.1.4.
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Table 1. Datasets

Dataset Name Short Name Description Size (data points)

Taxi Data Taxi Number of NYC taxi passengers in 30 min

bucket.

3600

Temperature Data Temp Monthly temperature in England from 1723

to 1970.

2976

Integrated Surface

Data

ISD Weather observation of different stations

(total 14K+) collected since 1901.

63,337

DEBS challenge

2012 dataset

D12 The dataset contains almost 50M tuples

(5.94GB)

50,000,000

DEBS challenge

2013 dataset

D13 The dataset contains almost 30M tuples

(4.26GB)

30,000,000

DEBS challenge

2014 dataset

D14 The dataset contains more than 4000M tu-

ples (145.82GB)

4,000,000,000

New York Stock

Exchange data

NYSE 7500+ stocks, each stock has around 3k tu-

ples, 0.5Mb/stock.

2862

4.1.1 Dataset. For evaluation we use seven different datasets from different domains. The

datasets are shown in Table 1: Taxi [37], Temperature (Temp) [23], the Integrated Surface Data

(ISD) provided by NOAA [46], the New York stock exchange data (NYSE), and DEBS challenge

2012-2014 data (D12, D13,D14) [26, 27, 45]. These datasets have several important properties that

make them a good fit for evaluation. First, they are all publicly available that will allow others to

reproduce our results. Second, preservation of semantics for these time series visualizations is a

crucial need. Third, each dataset contains a lot of anomalous behavior. Fourth, the density factor is

from low to moderate for most of the windows in these datasets. Finally, some of these datasets are

used for evaluation in recent competing approaches ASAP and M4. To conduct the experiment, we

have used the same sampling rate which has been empirically selected for the evaluation of MSE,

SSIM , DSSIM , and PSNR using all nine techniques to make comparisons. See details in Section 4.2.5.

4.1.2 Evaluation Metrics and Parameters. We have used four metrics to evaluate the visual-

ization quality which are MSE (Mean Square Error) [29], SSIM (Structural Similarity) [63],

DSSIM (Structural Dissimilarity) [29], and PSNR (Peak Signal to Noise Ratio) [29]. We have

described in detail these metrics and parameters in this section so that the experimental results

can be reproduced.

• MSE (Mean Square Error). MSE is a simple [29] and commonly used metric to compare

the error measure between two images. MSE is a good measure to calculate image quality

if the images don’t have noise [52]. Here, MSE is the measure of image quality in terms of

luminance at different pixel locations. This metric takes the square difference of luminance at

different pixel locations and takes an average of all the squared luminance distances. So, the

unit of MSE is pixel2. It can show how the images are different when the observer observes

them. The formula of MSE is as follows,

MSE =
1

wh

w∑

x=1

h∑

y=1

(Ix,y (V1) − Ix,y (V2))2 (7)

Here, w is the width or number of rows of image matrix and h is the height or number of

columns of image matrix. Ix,y is the luminance value of the image at the pixel location (x ,y).
• SSIM (Structural Similarity) [63]. Let X and Y be the original visualization and the

distorted visualization, respectively. Then the SSIM between them at image location i is
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described by the Equation (8):

SSIM (Xi ,Yi ) =
(2μXi

μYi
+ c1) (2σXi

σYj
+ c2)

(μ2
Xi
+ μ2

Yi
+ c1) (σ 2

Xi
+ σ 2

Yi
+ c2)

(8)

Here, μXi
and μXi

are the means of Xi and Yi , respectively; σ 2
Xi

and σ 2
Yi

are the variances

of Xi and Yi , respectively; and σXi
σYj

is the cross-covariance between Xi and Yi . Constants

c1 and c2 are used for numerical stability. We use Python scikit-image [59] to compute the

SSIM of two images, which provides a widely-used implementation of SSIM as a library and

it returns a value 1 if two images to be compared are exactly same and return 0 if the images

are totally different.

• DSSIM (Structural Dissimilarity) [29]. It is derived from the SSIM using the following

Equation (9):

DSSIM (X ,Y ) =
1 − SSIM (X ,Y )

2
(9)

This measures the structural differences between the two images. The value of DSSIM can

be between 0 and 1. DSSIM of 0 means the two images have the same structure whereas 1

means the images are totally different.

• PSNR (Peak Signal to Noise Ratio) [29]. PSNR calculates the peak signal-to-noise ratio

between two images using Equation (10). The higher the PSNR, the better the quality of the

reconstructed image. The unit of PSNR is decibel (dB).

PSNR = 10 log10

(2d − 1)2WH
∑W

i=1

∑H
j=1 (p[i, j] − p ′[i, j])2

(10)

4.1.3 Traditional Techniques for Comparison. We have compared PASS with some existing state

of the art techniques. We compare with state of the artO (n) algorithms aiming to provide loss-less

time series visualizations like M4 [29], piecewise aggregate approximation (PAA) [32], and

ASAP [51]. We have also compared with the other two common sampling techniques, which are

Random Sampling (RS) and Stratified Sampling (SS), that use randomized techniques to select

points randomly. Moreover, line simplification algorithms Ramer-Douglas-Peucker (RDP) [60],

and Visvalingam-Whyatt (VW) algorithm [61] are also used in our experimental evaluations.

These two algorithms are respectively of O (n2) and O (n logn). We have used open-source imple-

mentations of ASAP, PAA, RS, SS, RDP, and VW. We have implemented MinMax and M4 tech-

niques.

4.1.4 Experimental Setup. Implementation Details. We have implemented PASS and all other

techniques in Python and evaluated on a PC equipped with Intel Core i7-7600 processor, 32 GB of

RAM, and display resolution of 1920 × 1080.

We have excluded data loading time from our results and compute the running time for running

the algorithms to generate the sample and the time series visualization.

User Study Setup. To assess how different sampling algorithms affect users’ ability to identify

time series line chart similar to the actual one, we have conducted a large scale user study on

Amazon Mechanical Turk inspired by [15, 51]. We comply with the IRB guidelines provided by

our institute while conducting the survey. The users surveyed were regular users of time series

data and had expertise in understanding the time series visualizations. Users used the web platform

provided by Amazon Mechanical Turk which is independent of any devices. Users were not trained

for this user study but we have provided guidelines while doing the survey. The sample user study

questions are provided in the repository [18]. We have conducted two user studies using Amazon

Mechanical Turk for assessing the suitability of PASS in the context of preserving semantics and
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Fig. 5. Measured Correlation for PASS and other techniques with original trend line using different datasets.

anomalous behavior of the time series trend visualization. Visual preference user study and pattern

finding user study has been described in details in Section 4.2.3 and Section 4.2.4.

4.2 Experimental Results

In this section, we present the results obtained from the experiment on preserving semantics in

Section 4.2.1 and preserving anomaly in Section 4.2.2. Then, we present the user study experiment

in Section 4.2.3 and Section 4.2.4. After that, we evaluate the visualization quality of the visualiza-

tions created by PASS and compare with other approaches in Section 4.2.5. To evaluate that our

algorithm is a single-pass algorithm, we present the comparative analysis of runtime of different

approaches in Section 4.2.6. Finally, we also assess the effect of threshold θ in the data reduction

efficiency of PASS in Section 4.2.7. All the experimental results have been shared in the GitHub

repository [18].

4.2.1 Experiment on Preserving Semantics. For experimenting on preserving the semantics of

line chart after data reduction, we have measured correlation using MATLAB image analysis tool-

box for PASS and compared with eight other state-of-the-art techniques using seven different

datasets as depicted in Figure 5. When the measured correlation with the actual line trend for

a specific sampling technique is greater than other techniques, the sampled line trend preserves

better semantics of the original line trend in terms of the similar subsequences within that line

chart. As shown in Figure 5, PASS has a better correlation than other techniques in ISD, D13, D14

datasets compared to all other data reduction techniques. For Temp and NYSE dataset, PASS has

a comparably similar correlation with the actual line trend like RDP, which is not a linear time

algorithm. The measured correlation of PASS is not the best in Taxi and D12 dataset according

to Figure 5. RDP, VW, MinMax perform better than PASS in Taxi dataset. RS, SS, RDP, and VW

performed better than PASS in D12 dataset.

4.2.2 Experiment on Preserving Anomaly. We have computed the anomaly preservation score

(APScore) using Equation (3) and computed rank for PASS compared with other techniques. Ta-

ble 2 depicts the results. According to Equation (3), the lower APScore means more anomaly

is preserved in the sampled line trend with respect to the actual line trend. Based on that, the
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Fig. 6. Experiment with Taxi data.

computed rank of PASS is 1 for Temp, ISD, D13, D14 and NYSE dataset, which is observed from

the green cells. But computed rank of PASS is 3 for Taxi and 5 for D12 dataset. The sampling rate

that has been empirically chosen for the Taxi and D12 dataset resulted in a sample size, which

could not be achieved by PASS at an optimal threshold θ . The threshold θ needed to achieve the

same sample size was higher, caused some missing anomalies as illustrated in Figure 6. That

is why PASS could not perform well in these two datasets compared to the techniques under

comparison.

4.2.3 User Study: Visual Preference. Study Design: In the user’s visual preference study, users

are asked to find almost similar visualizations generated using different sampling techniques com-

pared to the actual time series visualization. In this study, we randomize the order in which visu-

alizations are shown. We have also chosen four comparable visualizations after randomizing the

subsets to get a balanced sampling across all the nine techniques where PASS was the common op-

tion. To experiment with this setup, we have divided the interface design into two sets of randomly

chosen five techniques at a time where PASS was kept common for comparison. The users were
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Fig. 7. Experiment with ISD data.

presented with different instances of images for each dataset. For instance, in case of Taxi dataset

(Figure 6), PASS and the other eight techniques were presented to the user after dividing into two

sets of five techniques chosen randomly at a time to compare with PASS. Similarly, Figure 7 depicts

all the visualizations generated from the original data and sampled data using all the approaches

under comparison for ISD data. We show these two combined sets of visualizations as an example

here because our approach performed best for the ISD data and performed at 75% quartile for the

Taxi data. In those figures, we have marked the locations where semantics losses are clearer with

the red circle for better understanding.

Results and Discussion: In total, 1,750 user responses have been collected in the user pref-

erence study. The users carefully observed and used their experience to answer which one is the

closest to the original image. Based on the responses, we have plotted a graph showing the per-

centage of user responses against each dataset for different techniques, as depicted in Figure 8.

From the results shown in Figure 8, it is observed that among all the methods PASS has sustained

marked anomaly of the original trend line for all the datasets except D12 dataset.
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Table 2. Comparison Among Traditional Techniques with Experimental Metrics using 7 Datasets

Dataset Metrics
Techniques

PAA ASAP M4 MinMax RS SS RDP VW PASS

Taxi

MSE 2780.07 3562.69 482.08 177.73 4955.98 4899.26 11457.59 11447.19 732.91
SSIM 0.68 0.54 0.93 0.97 0.4 0.4 0.74 0.74 0.93
DSSIM 0.16 0.23 0.04 0.01 0.3 0.3 0.13 0.13 0.04
PSNR 32.91 33.28 35.7 36.71 31.3 31.41 35.47 35.52 36
APScor e 19.8765 45.5962 0.5808 0.0499 118.7535 116.9833 56.7471 56.6158 0.8756
Running Time (sec) 0.012 0.008 1.323 1.299 0.008 0.004 2.668 0.119 0.2599
Sampled Data Points 900 977 800 800 792 828 800 800 796

Temp

MSE 11979.76 9060.89 3691.93 3574.43 5448.92 5784.93 379.4 523.75 296.08
SSIM 0.23 0.37 0.34 0.35 0.36 0.34 0.92 0.91 0.91
DSSIM 0.39 0.31 0.33 0.33 0.32 0.33 0.04 0.05 0.05
PSNR 30.53 30.54 30.73 30.81 30.19 30.08 33.98 34.07 33.61
APScor e 665.3621 248.5775 116.6073 109.3858 160.4334 186.6617 0.4855 0.8447 0.4840
Running Time (sec) 62.83 0.0159 1.073 1.0709 0.00299 0.0069 3.5279 0.115 0.268
Sampled Data Points 744 598 800 800 744 744 745 745 759

ISD

MSE 3827.61 2208.84 6613.49 7179.07 505.44 332.32 12893.18 76.34 0
SSIM 0.6 0.68 0.44 0.44 0.93 0.95 0.46 0.99 1
DSSIM 0.2 0.16 0.28 0.28 0.03 0.02 0.27 0.01 0
PSNR 33.16 36.1 30.72 30.34 38.89 39.24 32.98 42.1 100
APScor e 38.4762 14.3969 136.9982 150.5768 0.4192 0.1783 229.4644 0.0183 0.0000
Running Time (sec) 0.02199 0.021 18.471 15.74 0.007 0.012 2.668 0.4479 1.2968
Sampled Data Points 1768 1760 1800 1800 1868 1867 1791 1791 1759

D12

MSE 11435.25 11729.45 12071.77 12080.79 332.38 343.78 2.16 3.87 688.99
SSIM 0.71 0.65 0.62 0.62 0.96 0.96 1 1 0.92
DSSIM 0.15 0.18 0.19 0.19 0.02 0.02 0 0 0.04
PSNR 38.08 37.84 36.31 36.3 41.38 40.76 46.7 47.34 39.63
APScor e 63.4427 85.8392 101.8841 101.9884 0.1673 0.1757 0.0000 0.0000 0.7559
Running Time (sec) 0.1564 0.1404 1.9311 1.7274 0.1511 0.1524 1.67 0.1238 0.3195
Sampled Data Points 2500 2403 2439 2440 2500 2500 2529 2501 2403

D13

MSE 13765.27 13765.27 13717.61 13730.17 3060.98 1131.1 1811.12 1836.94 650.63
SSIM 0.49 0.49 0.51 0.51 0.63 0.83 0.75 0.75 0.89
DSSIM 0.25 0.25 0.25 0.25 0.19 0.08 0.13 0.13 0.06
PSNR 34.15 34.1 34.1 34.08 33.97 36.79 35.53 35.46 39.53
APScor e 205.6544 205.9559 197.1941 197.4905 27.1755 2.9634 8.8356 8.9792 1.1096
Running Time (sec) 0.13129 1.0653 3.1969 3.02 0.225 0.2612 5.488 0.259 0.4022
Sampled Data Points 4975 4975 4840 4840 4876 4875 4989 4951 4809

D14

MSE 16112.6 16786.32 12198.87 12148.99 7712.67 7868.36 25.94 5101.2 4.47
SSIM 0.39 0.38 0.39 0.4 0.47 0.46 0.98 0.62 0.99
DSSIM 0.31 0.31 0.31 0.3 0.27 0.27 0.01 0.19 0
PSNR 30.57 30.15 34.54 34.78 29.54 29.4 44.38 31.16 53.24
APScor e 418.9549 454.1991 280.7336 261.9822 149.9893 157.0879 0.0060 50.1692 0.0000
Running Time (sec) 0.8934 0.033307 14.6166 14.5019 0.17319 0.191 55.534 4.384 4.6251
Sampled Data Points 4546 4545 4840 4840 5000 5000 4178 5164 4425

NYSE

MSE 9143.11 9210.67 449.27 647.71 261.15 386.33 10800.53 162.55 147.31
SSIM 0.81 0.81 0.95 0.91 0.96 0.94 0.77 0.98 0.98
DSSIM 0.1 0.1 0.03 0.04 0.02 0.03 0.11 0.01 0.01
PSNR 41.99 42.13 43.58 41.62 44.01 43.06 41.32 45.21 45.61
APScor e 26.8821 26.9907 0.3256 0.6841 0.1236 0.2863 37.3411 0.0367 0.0330
Running Time (sec) 0.0049 0.168 0.9961 0.81999 0.00199 0.003978 1.3528 0.0689 0.27
Sampled Data Points 573 477 599 600 572 572 544 544 541

* Green cells indicate the best values. Blue and Yellow cells indicate the 2nd and 3rd best values, respectively.

To sum up, we have obtained that in the first set, 47.77% of the responses prefer PASS among

the other four techniques, and in another set, 45.14% of the users’ responses prefer PASS among

the other four techniques which make the reported results unbiased and interpretable. To under-

stand how easy it was to find the similar visualization to the original one, we have also recorded

the response time. The average response time for different approaches among all the datasets is

shown in Figure 9. We have noticed that PASS is as easy as other methods to identify patterns and

anomalies by the users. So, users can easily distinguish and choose the best line chart drawn using

reduced data that resembles the original line chart.

4.2.4 User Study: Pattern Finding. Study Design: We have conducted another user study for

pattern finding in a time series visualization where users have been asked to justify if the visual-

ization generated from a technique contains similar patterns like the original one. They are also

asked to rate the similarity of the charts to the original chart based on the marked patterns using

a rating scale between 1 to 5. Thus, we have performed one to one comparison of each of the nine
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Fig. 8. User’s Visual Preference experimental results of the visualizations generated from randomly chosen

four techniques at a time for comparing PASS using seven datasets.

Fig. 9. Average Response Time of visual preference user study of nine techniques using seven datasets.

techniques in a single batch for seven datasets. In total, 1,575 user responses have been collected

in the pattern-finding study. A total of 21 different patterns were used in the pattern-finding user

study as we have used seven different datasets each with different time series plots containing

three randomly marked patterns. All the images with marked patterns used for experiment have

been shared in this GitHub repository [18].

Results and Discussion: In this user study, we have observed that 22.13% of the users rated

PASS as exactly similar to the original trend in terms of pattern-finding, which is the highest among

all other comparable techniques. Figure 10 (on Page 19) illustrates the comparison between PASS

and other techniques in different user rating responses and the average rating obtained for each

technique.

4.2.5 Visualization Quality and Data Reduction Efficiency. In this section, we evaluate the visu-

alization quality of PASS with other competitive approaches using the metrics MSE, SSIM , DSSIM ,

and PSNR. Throughout the experiment, we have used the same sampling rate for all techniques.

The sampling rate in each of the datasets has been empirically selected so that the visualization

of the original data and the visualization of the sampled data are ≥0.4 SSIM different (where 0.4 is

the threshold and SSIM is the metric for measuring similarity) in the case of the Taxi dataset, and

≥0.44 SSIM different in the case of the ISD dataset. As we can observe from two example visual-

izations in Figures 6 and 7, the generated images from sampled data using all the techniques have
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Fig. 10. Pattern Finding experimental results of rating of visualizations from nine techniques using

seven datasets.

better visualization quality compared to the original images. In the empirical evaluation, we have

obtained a sampling rate of 22%, 25%, 2.7%, 48%, 48%, 4.8%, and 19% for the dataset presented in

Table 1 i.e., Taxi, Temp, ISD, D12, D13, D14, and NYSE data, respectively. According to the experi-

mental results depicted in Table 2, in the Taxi dataset, PASS stands third in terms of MSE and SSIM .

MinMax and M4 perform slightly better than PASS for this dataset in terms of MSE and SSIM , but

in terms of PSNR, PASS beats M4. In Temp, ISD, D13, D14, and NYSE PASS outperforms all the

competing approaches in terms of MSE. In the D12 dataset, RDP and VW approaches beat PASS.

In terms of SSIM , DSSIM , and PSNR, PASS outperforms other approaches in most of the cases. In

Table 2, the Sampled Data Points row represents the minimum number of points after sampling

each dataset for each technique that can regenerate the original time series graph and preserve

visualization quality. We can observe from Table 2 that PASS can reduce the most data points, pre-

serving visualization quality in the ISD, D12, and D13 datasets compared to the other approaches.

In Taxi, D14, and the NYSE datasets, PASS is the 2nd best technique to reduce the number of points

and sustain the visualization quality. In Temp, D12, and the NYSE datasets, even though ASAP can

reduce the most data points, it fails to achieve the best values of MSE, SSIM , DSSIM , and PSNR. We

observe that in most of the evaluated datasets, PASS outperforms other approaches in preserving

original semantics and interesting anomalous behaviors in large-scale time series data.

4.2.6 Performance Analysis. In this section, we demonstrate the performance of our algorithm

in terms of runtime. Our algorithm is implemented in Python. We have also done a faithful imple-

mentation of the M4 and MinMax algorithms. For other algorithms, we have used already publicly

available Python libraries. These publicly available algorithms through well-known vendors are

optimized through a C++ back-end in most cases. So, these algorithms got favor in runtime com-

parison. We have seen PASS performs well compared to the existing O (n) runtime algorithms M4

and MinMax. PASS performs much better than theO (n2) algorithm RDP, PAA, SS, and VW, which

runs faster than some of the cases due to their optimized public API provided by scikit-learn. ASAP

performs better than PASS for smaller data. But if the data size increases, the runtime of ASAP and

PASS becomes comparably similar. For D13, PASS performed 2X+ faster than ASAP to get the same

amount of reduction. We have noticed from Table 2 that PASS performs better most of the time in
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Table 3. Effect of θ on Data Reduction Using PASS

θ
Taxi ISD Temp NYSE D12 D13 D14
3600 17000 2976 2862 5000 10000 10000

5 1378 9200 946 105 2271 265 4425
10 1196 9200 888 20 2271 160 4425
15 1117 1759 888 10 2271 110 4425
20 1078 1786 888 7 2271 89 4425
25 1053 204 888 4 2271 68 4425
30 1038 202 888 4 2271 65 4425
35 1025 74 888 4 2271 56 4425
40 1009 17 888 4 2271 50 4425
45 998 10 888 4 2271 41 4425
50 995 10 888 4 2271 38 4425
55 983 2 888 4 2271 26 4425
60 976 2 888 4 2271 20 4425
65 976 2 888 4 2271 17 4425
70 968 2 888 4 2271 14 4425
75 966 2 888 4 2271 8 4425
80 962 2 888 4 2271 8 4425
85 958 2 886 4 2271 2 4425
90 952 2 851 4 2 2 4425

terms of run time compared to M4, MinMax, and ASAP implemented using similar technology. So,

our intuition is that if PASS is implemented in the optimized coding environment like PAA or VW,

then it should perform faster compared to those techniques.

4.2.7 Effect of Threshold on Data Reduction. In this section, we show the effect of threshold θ
on data reduction efficiency of PASS with Table 3 in which the first row shows the original size of

data i.e., total number of data points on which we run the experiment of tuning θ . The following

rows show the different reduced sample sizes at 5 degree intervals up to 90 degrees. The maximum

value of θ can be 180 degree. To show how increasing the θ results in decreasing sample size, we

chose up to 90 degree. This supports the upper and lower bounds of the algorithm explained in

Observation 2 and 3 (Section 3.2). In some of the dataset, sample size decreases gradually, because

the θ in those dataset change very slowly for a longer period of time. The dataset for which the

sample size decreases very fast have dense windows in some few degrees. In some datasets, we

notice the size becomes constant after a certain threshold. This is for the case that, they have a

number of windows of constant θ at different degrees and the algorithm chose two endpoints from

those windows. Then the threshold θ becomes greater than the maximum window angle of all of

those windows and hence they cannot reduce further as discussed in Observation 3 (Section 3.2).

5 RELATED WORKS

In this section, we do a literature survey of related works on sampling, data reduction, and strate-

gies for time series data visualization and compare these related works with our proposed ap-

proach.

Random sampling and stratified sampling for data reduction. Reduction of data size for

visualization to enable effective exploratory data analysis is a well-known problem [5]. A pop-

ular approach for reducing dataset size is stratified sampling [10]. But random sampling is not

well suited for visualization of scatter plot and map plot [41]. Park et al. [48] have proposed vi-

sualization aware sampling using random sampling. Random sampling, though used widely, can

lose important outliers [42] or anomalies, which cause loss of semantics totally in time series data

visualization in the line chart. Longbo et al. discussed the problems of random sampling from

time-based sliding windows over-weighted streaming data. There are different variants of random

sampling algorithm for computing quantiles [19], distinct counts [17], and reservoir sampling [1].

Reservoir sampling [1] is a variant of random sampling to preserve random samples online. Some
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researchers have used stratified sampling for reducing original data. In stratified sampling, data is

divided into disjoint subgroups [41], and then samples are taken from those subgroups. It selects

strata depending on some prior information and then selects more points randomly from that

strata [10]. Although these approaches have made significant advances in data reduction methods,

the requirement of preserving trend semantics and anomaly in large time series data has still been

unnoticed.

Relational database based approach. M4 [29] uses SQL to rewrite visualization queries to

generate images of lines by reducing time series. They split the chart into multiple smaller time

chunks and select first, last, highest and lowest data tuples from each smaller chunk. Though

they achieve very competitive visualization quality, there can be higher semantic loss when ob-

served over a small region using interactive visualization library for large dataset. In our ap-

proach, we not only get higher visualization quality when visualized as a static image, but we

also provide data analysts option to zoom over different regions and study behavior, anomalies

with higher semantic preserving guarantee. There has also been competitive work on data re-

duction for compact data visualizations [7]. Again, line simplification strategy has been used to

reduce the number of data points. A research study [16] uses perceptually important points

(PIP) to reduce the amount of data. But, the complexity of these approaches are O (n2) and vi-

sualization quality with preserving semantics is also not addressed. Recent research [54] has ex-

plored a few algorithms for downsampling data to produce visual representation. In particular,

Mode-Median-Bucket, Min-Std-Error-Bucket, Longest-Line-Bucket, Largest-Triangle-One-Bucket,

Largest-Triangle-Three-Buckets, Largest-Triangle-Dynamic algorithms have been discussed with

comparison against each other in terms of visual characteristics of downsampled line charts using

survey and comparison matrix. However, that study has not considered the notion of preserving

semantics and anomaly of large time series data formally like PASS and performed experimental

evaluation with metrics obtained from prior work [29, 62, 63] and also made comparison with

state-of-the-art techniques.

Modified sampling strategies for specific task. Research on estimating distinct values using

sampling [17, 21] exists as well. There are also sampling strategies to find samples from patterns in

subgraphs described in a research study [2]. In a distributed search over hidden web hierarchical

database, sampling is used [24]. Detecting effective change in data is done using sampling [12].

These approaches are not suitable for time series data reduction without loss of semantics.

Time series summarization. There are some relevant time series summarization techniques,

especially PLA (Piecewise Linear Approximation) [34], PAA (Piecewise Aggregate Approx-

imation) [32], APCA (Adaptive Piecewise Approximation) [33], and SAX (Symbolic Aggre-

gate approximation) [38] time series data. Among them, we have compared PASS with PAA

and got better performance in aspects of both visualization and user preference study. Again, PLA

has been a classic problem in data compression and signal tracking. APCA is used for faster ap-

proximate searching on the same index structure. Moreover, SAX is a symbolic representation for

time series that allows for dimensionality reduction and indexing with a lower-bounding distance

measure. Rahman et al. [50] incrementally improve visualizations of line chart by selecting better

samples. In that work, online sampling-based schemes have been used to generate approximations

that use as few samples as possible for trend-line visualizations. None of these techniques ensure

semantics and anomaly preservation resembling original structure by sampling, which is the pri-

mary goal of PASS.

Change point detection in time series data. There has been a significant research study [20]

for detecting the time points at which behavior change occurs utilizing the change-point detec-

tion problem in statistics. In that study, techniques have been proposed for both the batch and

incremental versions of this sort of problem. In that study, although a comparison of methods
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have been performed with visual change point detection by humans, a large scale user study and

experiments with image comparison metrics are missing. Another study [31] consists of a geomet-

ric based technique for linear models estimation using time-series data and comparative analyses

using different datasets. Moreover, Liu et al. [40] have utilized a relative divergence measure to

apply change-point detection in time-series data. None of the approaches points out the necessity

of preserving the anomalous behavior of time series data after sampling.

Visual exploration tools for time series data. A significant research study on data science

[47] illustrates a comprehensive set of tools e.g., Zenvisage [53] for searching line chart patterns,

FastMatch [44] for obtaining the histogram visualizations interactively most similar to a user-

specified target, IncVisage [50] for trendline visualization, etc. Rahman et al. incrementally im-

prove visualizations of line chart by selecting better samples in the IncVisage tool [50]. Although

in that work, online sampling-based schemes have been utilized to generate approximations that

use as few samples as possible for trendline visualizations, comparison between visualizations be-

fore and after sampling in the aspect of preserving a similar structure of trend line has not been

considered. All of these recent research studies encourage us to focus on an unexplored topic of

time series data sampling through which users can obtain from the sampled time series data almost

similar visualization to the actual time series data after sampling.

Trajectory simplification. [39] presents an aggressive one-pass error bounded trajectory sim-

plification algorithm by interpolating new data points into a trajectory under certain conditions.

Long et al. [43] proposed a min-error problem with exact algorithms for trajectory simplification

preserving direction. In these research studies, notion of preserving the semantics and anomalous

behavior of trend line with less error and higher visualization quality has not been addressed.

6 CONCLUSION AND FUTURE WORK

Three of the key challenges for visualizing large scale time series data are: to reduce the data, to pre-

serve the semantics of trends in terms of similar subsequences among the trends, and to preserve

anomalous behavior. We have presented PASS, a linear time data sampling strategy that meets all

three of those challenges. Our evaluation using seven large datasets shows that PASS performs

well compared to existing approaches in improving visualization quality as measured by MSE,

SSIM , DSSIM and PSNR. Our experimental study shows that users prefer visualization produced

by PASS compared to others. Our future work would focus on examining the performance of PASS

on data with non-linear trends as well as in the downstream application e.g., anomaly detection.

We would also explore other aspects of semantics such as time warping, frequency analysis, etc.,

with similar subsequences and find out whether those aspects of semantics are also preserved us-

ing PASS. Eventually, PASS paves the way for crafting semantics and anomaly preserving sampling

techniques for other data visualization charts e.g., scatter plot, heat map, histogram, etc. In future

work, we could explore several research directions. If graph analyses are given as code [56–58],

can we apply similar data reduction strategy for graphs in general? Focusing on the similar kind

of goal of collective program analysis [56, 57] as well as PASS in terms of reducing the data that is

sent to downstream analysis and using the semantics of task that is conducted during downstream

analysis to reduce the data, can we determine task-dependent program similarity for finding anal-

ogous programs in the realm of data science? Another goal might be to realize PASS as part of the

shared infrastructure such as Boa [3, 6, 13, 14, 25] and understand performance improvements and

computation savings that might result from it.
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