skip to main content
10.1145/3512290.3528741acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Expensive optimization with production-graph resource constraints: a first look at a new problem class

Published:08 July 2022Publication History

ABSTRACT

We consider a new class of expensive, resource-constrained optimization problems (here arising from molecular discovery) where costs are associated with the experiments (or evaluations) to be carried out during the optimization process. In the molecular discovery problem, candidate compounds to be optimized must be synthesized in an iterative process that starts from a set of purchasable items and builds up to larger molecules. To produce target molecules, their required resources are either used from already-synthesized items in storage or produced themselves on-demand at an additional cost. Any remaining resources from the production process are stored for reuse for the next evaluations. We model these resource dependencies with a directed acyclic production graph describing the development process from granular purchasable items to evaluable target compounds. Moreover, we develop several resource-eficient algorithms to address this problem. In particular, we develop resource-aware variants of Random Search heuristics and of Bayesian Optimization and analyze their performance in terms of anytime behavior. The experimental results were obtained from a real-world molecular optimization problem. Our results suggest that algorithms that encourage exploitation by reusing existing resources achieve satisfactory results while using fewer resources overall.

References

  1. Richard Allmendinger. 2012. Tuning Evolutionary Search for Closed-Loop Optimization. Ph.D. Dissertation. The University of Manchester, UK.Google ScholarGoogle Scholar
  2. Richard Allmendinger and Joshua Knowles. 2010. On-Line Purchasing Strategies for an Evolutionary Algorithm Performing Resource-Constrained Optimization. In Parallel Problem Solving from Nature, PPSN XI, Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and Günter Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 161--170. Google ScholarGoogle ScholarCross RefCross Ref
  3. Richard Allmendinger and Joshua D. Knowles. 2011. Policy Learning in Resource-Constrained Optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2011, Natalio Krasnogor and Pier Luca Lanzi (Eds.). ACM Press, New York, NY, 1971--1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Richard Allmendinger and Joshua D. Knowles. 2013. On Handling Ephemeral Resource Constraints in Evolutionary Search. Evolutionary Computation 21, 3 (Sept. 2013), 497--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L. Hopkins. 2012. Quantifying the Chemical Beauty of Drugs. Nature Chemistry 4, 2 (Feb. 2012), 90--98. Google ScholarGoogle ScholarCross RefCross Ref
  6. Jürgen Branke and C. Schmidt. 2005. Faster Convergence by Means of Fitness Estimation. Soft Computing 9, 1 (Jan. 2005), 13--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. A. DeRousseau, J. R. Kasprzyk, and W. V. Srubar. 2018. Computational Design Optimization of Concrete Mixtures: A Review. Cement and Concrete Research 109 (July 2018), 42--53. Google ScholarGoogle ScholarCross RefCross Ref
  8. Douglas H. Fisher. 2016. Recent Advances in AI for Computational Sustainability. IEEE Intelligent Systems 31, 4 (July 2016), 56--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv:1807.02811Google ScholarGoogle Scholar
  10. Carla Gomes, Thomas Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Fern, Daniel Fink, Douglas Fisher, Alexander Flecker, Daniel Freund, Angela Fuller, John Gregoire, John Hopcroft, Steve Kelling, Zico Kolter, Warren Powell, Nicole Sintov, John Selker, Bart Selman, Daniel Sheldon, David Shmoys, Milind Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, and Mary Lou Zeeman. 2019. Computational Sustainability: Computing for a Better World and a Sustainable Future. Commun. ACM 62, 9 (Aug. 2019), 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Carla P. Gomes. 2009. Computational Sustainability: Computational Methods for a Sustainable Environment, Economy, and Society. The Bridge 39, 4 (2009), 5--13.Google ScholarGoogle Scholar
  12. Carla P. Gomes, Daniel Fink, R. Bruce van Dover, and John M. Gregoire. 2021. Computational Sustainability Meets Materials Science. Nature Reviews Materials 6, 8 (Aug. 2021), 645--647. Google ScholarGoogle ScholarCross RefCross Ref
  13. Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. 2018. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 4, 2 (Feb. 2018), 268--276. arXiv:1610.02415 Google ScholarGoogle ScholarCross RefCross Ref
  14. Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. 2020. Constrained Bayesian Optimization for Automatic Chemical Design Using Variational Autoencoders. Chemical Science 11, 2 (2020), 577--586. Google ScholarGoogle ScholarCross RefCross Ref
  15. Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr Pošík. 2010. Comparing Results of 31 Algorithms from the Black-Box Optimization Benchmarking BBOB-2009. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO Companion 2010, Martin Pelikan and Jürgen Branke (Eds.). ACM Press, New York, NY, 1689--1696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Yaochu Jin. 2011. Surrogate-Assisted Evolutionary Computation: Recent Advances and Future Challenges. Swarm and Evolutionary Computation 1, 2 (June 2011), 61--70. Google ScholarGoogle Scholar
  17. Terry Jones and Stephanie Forrest. 1995. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In ICGA, Larry J. Eshelman (Ed.). Morgan Kaufmann Publishers, San Francisco, CA, Pittsburgh, PA, 184--192.Google ScholarGoogle Scholar
  18. M. C. Kennedy and A. O'Hagan. 2000. Predicting the Output from a Complex Computer Code When Fast Approximations Are Available. Biometrika 87, 1 (March 2000), 1--13. Google ScholarGoogle ScholarCross RefCross Ref
  19. Ross D. King, Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser, Christopher H. Bryant, Stephen H. Muggleton, Douglas B. Kell, and Stephen G. Oliver. 2004. Functional Genomic Hypothesis Generation and Experimentation by a Robot Scientist. Nature 427, 6971 (Jan. 2004), 247--252. Google ScholarGoogle ScholarCross RefCross Ref
  20. Joshua D. Knowles. 2009. Closed-loop evolutionary multiobjective optimization. IEEE Computational Intelligence Magazine 4 (2009), 77--91. Issue 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff Schneider, and Eric Xing. 2020. ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. PMLR, Online, 3393--3403.Google ScholarGoogle Scholar
  22. Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. 2017. Grammar Variational Autoencoder. In International Conference on Machine Learning. PMLR, Sydney, Australia, 1945--1954.Google ScholarGoogle Scholar
  23. Greg Landrum, Paolo Tosco, Brian Kelley, Ric, Sriniker, Gedeck, Riccardo Vianello, NadineSchneider, Andrew Dalke, Eisuke Kawashima, Dan N, Brian Cole, Matt Swain, Samo Turk, David Cosgrove, AlexanderSavelyev, Alain Vaucher, Gareth Jones, Maciej Wójcikowski, Daniel Probst, Vincent F. Scalfani, Guillaume Godin, Axel Pahl, Francois Berenger, JLVarjo, Strets123, JP, DoliathGavid, Gianluca Sforna, and Jan Holst Jensen. 2021. Rdkit/Rdkit: 2021_03_5 (Q1 2021) Release. Zenodo. Google ScholarGoogle ScholarCross RefCross Ref
  24. Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. 2020. Cost-Aware Bayesian Optimization. Google ScholarGoogle ScholarCross RefCross Ref
  25. Manuel López-Ibáñez and Thomas Stützle. 2014. Automatically Improving the Anytime Behaviour of Optimisation Algorithms. European Journal of Operational Research 235, 3 (2014), 569--582. Google ScholarGoogle ScholarCross RefCross Ref
  26. K. F. Man, K. S. Tang, and S. Kwong. 1996. Genetic Algorithms: Concepts and Applications [in Engineering Design]. IEEE Transactions on Industrial Electronics 43, 5 (Oct. 1996), 519--534. Google ScholarGoogle ScholarCross RefCross Ref
  27. Harry L. Morgan. 1965. The Generation of a Unique Machine Description for Chemical Structures-a Technique Developed at Chemical Abstracts Service. Journal of chemical documentation 5, 2 (1965), 107--113.Google ScholarGoogle ScholarCross RefCross Ref
  28. Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. David Rogers and Mathew Hahn. 2010. Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling 50, 5 (May 2010), 742--754. Google ScholarGoogle ScholarCross RefCross Ref
  30. Philip A. Romero, Andreas Krause, and Frances H. Arnold. 2013. Navigating the Protein Fitness Landscape with Gaussian Processes. Proceedings of the National Academy of Sciences 110, 3 (2013), E193--E201.Google ScholarGoogle ScholarCross RefCross Ref
  31. Philippe Schwaller, Théophile Gaudin, Dávid Lányi, Costas Bekas, and Teodoro Laino. 2018. "Found in Translation": Predicting Outcomes of Complex Organic Chemistry Reactions Using Neural Sequence-to-Sequence Models. Chemical Science 9, 28 (2018), 6091--6098. Google ScholarGoogle ScholarCross RefCross Ref
  32. Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In 26th Annual Conference on Neural Information Processing Systems (Advances in Neural Information Processing Systems, Vol. 4). Morgan Kaufmann Publishers, Inc., Lake Tahoe, USA, 2951--2959.Google ScholarGoogle Scholar
  33. Thomas Spangenberg, Jeremy N. Burrows, Paul Kowalczyk, Simon McDonald, Timothy N. C. Wells, and Paul Willis. 2013. The Open Access Malaria Box: A Drug Discovery Catalyst for Neglected Diseases. PLOS ONE 8, 6 (June 2013), e62906. Google ScholarGoogle ScholarCross RefCross Ref
  34. Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. 2021. Black-Box Optimization for Automated Discovery. Accounts of Chemical Research 54, 6 (March 2021), 1334--1346. Google ScholarGoogle ScholarCross RefCross Ref
  35. David Weininger. 1988. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. Journal of chemical information and computer sciences 28, 1 (1988), 31--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Dawei Zhan and Huanlai Xing. 2020. Expected Improvement for Expensive Optimization: A Review. Journal of Global Optimization 78, 3 (Nov. 2020), 507--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shlomo Zilberstein. 1996. Using Anytime Algorithms in Intelligent Systems. AI Magazine 17, 3 (1996), 73--83. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Expensive optimization with production-graph resource constraints: a first look at a new problem class

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference
        July 2022
        1472 pages
        ISBN:9781450392372
        DOI:10.1145/3512290

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 July 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia
      • Article Metrics

        • Downloads (Last 12 months)13
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader