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ABSTRACT

The compact genetic algorithm (cGA) is a non-elitist estimation of distribution algorithm which
has shown to be able to deal with difficult multimodal fitness landscapes that are hard to solve by
elitist algorithms. In this paper, we investigate the cGA on the CLIFF function for which it has been
shown recently that non-elitist evolutionary algorithms and artificial immune systems optimize it
in expected polynomial time. We point out that the cGA faces major difficulties when solving the
CLIFF function and investigate its dynamics both experimentally and theoretically around the CLIFF.
Our experimental results indicate that the cGA requires exponential time for all values of the update
strength K. We show theoretically that, under sensible assumptions, there is a negative drift when
sampling around the location of the cliff. Experiments further suggest that there is a phase transition
for K where the expected optimization time drops from nΘ(n) to 2Θ(n).

Keywords Estimation-of-distribution algorithms, compact genetic algorithm, evolutionary algorithms, running time
analysis, theory.

1 Introduction

Runtime analysis of evolutionary algorithms and other randomized search heuristics has provided a deep understand-
ing of many working principles of these algorithms [15, 5]. The goal of these studies is to provide rigorous results
of randomized search heuristics by analyzing them as a special class of randomized algorithms. This allows to use a
wide range of tools such as concentration bounds and random walk arguments. A wide range of new methods for ana-
lyzing randomized search heuristics have been developed over the last 20 years. Starting with methods such as fitness
based partitions for simple problems and elitist algorithms, more complex combinatorial optimization problem [22]
(including NP-hard ones) and non elitist algorithms have been investigated.

Estimation of distribution algorithms (EDAs) [24] are a special class of randomized search heuristics that work with
a probability distribution at each stage of the algorithm (instead of a set of solutions). This probability distribution
is updated by reinforcing components that have shown to lead to solutions of good quality. EDAs have found a wide
range of applications to problems such as military antenna design, multiobjective knapsack, and quadratic assignment
(see [11] for an introduction and overview).
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The theoretical runtime analysis concentrates on simple EDAs that capture their basic algorithmic properties [17].
The compact genetic algorithm (cGA) is such a simple EDA which has been studied in different runtime analyses.
Following the seminal work by Droste [7] for the cGA in the mid 2000s, there has been a growing interest in studying
the cGA and other EDAs over the last 8 years [2, 27, 18]. We refer the reader to Krejca and Witt [17] for a recent survey.
These theoretical results focus on the working principles of the considered EDAs and especially discuss their difference
to simple evolutionary algorithms such as the (1+1) EA. Several studies have shown that the update strength K, which
determines the magnitude of changes to the probabilistic model, has a crucial impact on performance [26, 6, 20].
In [20] it was shown that the cGA optimizes ONEMAX efficiently, in expected time O(

√
nK), if the update strength

is sufficiently large, i. e. K = Ω(
√
n log n). For K = Θ(

√
n log n) this yields an upper bound of O(n log n) function

evaluations. In [19, 20], the authors showed that for smaller values of K in Ω(log3 n) and O(
√
n/(log(n) log log n)),

the expected optimization time on ONEMAX is Ω(K1/3n) in expectation and with high probability. Thus, in this so-
called medium parameter regime the expected optimization time increases withK before dropping down toO(n log n)
for K ≥ Ω(

√
n log n).

Other studies have unveiled remarkable advantages of EDAs. Their ability to learn good solution components, cou-
pled with a slow adaptation of the probabilistic model, makes EDAs higly robust with respect to noisy fitness evalua-
tions [9]. Furthermore, their ability to sample with a large sampling variance implies that they are good at exploring
the search space. This has been shown rigorously for the JUMP function, a multimodal function of unitation (i. e. the
fitness only depends on the number of ones) where evolutionary algorithms typically need to make a large jump. With
the right choice of the update strength, the cGA is able to optimize JUMP efficiently, if the size of the jump is not too
large [4, 28, 10].

In this work we consider the runtime of the cGA on a multimodal function. CLIFF is a function of unitation with
the difficulty that inferior solutions need to be accepted in order to advance towards the global optimum (unless the
algorithm jumps to the optimum directly). In other words, algorithms need to be able to “jump down” a cliff in the
fitness landscape (see Section 2 for a definition and Figure 1 for an illustration of CLIFF). It was originally proposed
by Jägersküpper and Storch [14] to show the advantages of non-elitism in evolutionary algorithms. They showed that
a simple (1,λ) EA that generates λ offspring independently and picks the best offspring to replace the parent optimizes
CLIFF in expectedO(n25) evaluations. Hevia Fajardo and Sudholt [12] showed that this time is in fact inO(nη log2 n)
and ω(nη−ε) for every constant ε > 0, where η ≈ 3.976770136.

The same paper [12] also showed that a (1,λ) EA with a self-adjusting offspring population size λ can optimize
CLIFF in expected O(n) generations and O(n log n) expected function evaluations. The same time bound O(n log n)
was shown earlier for other non-elitist algorithms: hyperheuristics that have a certain probability of accepting every
offspring [21] and for evolutionary algorithms using ageing [1].

The CLIFF function has a similar structure to JUMP with a jump length of n/3 and the sets of local optima are identical
for both functions. However, when overcoming those local optima, CLIFF shows a gradient pointing towards the global
optimum whereas JUMP has a gradient leading back towards local optima. The gradient structure for CLIFF is hence
more benign than that for JUMP.

Based on the aforementioned positive results for non-elitist evolutionary algorithms on CLIFF, and the positive results
for the cGA on JUMP, one might expect that the non-elitist cGA is also effective on CLIFF, if the update strength is
chosen just right.

The main contribution of this paper is to show, theoretically and empirically, that this is not the case. In particular, the
cGA does not seem to benefit much from the benign gradients past the set of local optima, that is, past the top of the
cliff.

By examining the behavior of the cGA when sampling around the cliff, we show in Section 3 that, under some
conditions, the probabilistic model experiences a negative drift and tends to move away from the optimal distribution.
This happens when the cGA tends to sample one offspring at the top of the cliff and one offspring at the bottom of
the cliff, and the former offspring is reinforced. This negative drift prevents the probabilistic model to overcome the
region around the cliff, leading to exponential times.

Our negative drift bound uses novel arguments for the analysis of the cGA by approximating conditional sampling
distributions in the cGA, conditional on whether the offspring lie on the same side or on different sides of the cliff, by
truncated normal distributions. However, this novel approach is not fully rigorous as it is based on the assumption that
the sampling variance is always super-constant.

We conjecture that the variance typically stabilizes to super-constant values and continue to prove exponential lower
bounds on the expected optimization time in Section 5 under conjectured lower and upper bounds on the variance. We
justify our conjecture in Section 4 by reviewing related work by Lengler et al. [20] on ONEMAX, where such variance
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bounds were proven rigorously, and explain which parts of their analysis can be translated to CLIFF and where this
approach breaks down. We instead present empirical data on the sampling variance to support our conjecture.

In Section 6 we provide experiments on the runtime of the cGA on CLIFF. The parameter landscape for the update
strength K shows a highly complex behavior. Our data suggests that the expected optimization time slowly increases
from 2Θ(n) to nΘ(n) as K grows, before dropping sharply to 2Θ(n) again. We give possible explanations for these
effects and finish with a list of open problems.

2 Preliminaries

The cGA is defined in Algorithm 1. It uses a univariate probabilistic model of frequencies pt,1, pt,2, . . . , pt,n ∈ [0, 1],
which is used to sample new search points. The i-th frequency pt,i represents the probability of setting the i-th bit to 1
in iteration t. In every iteration, the cGA samples two search points x and y in this way. We shall refer to these as
offspring, using the language of evolutionary computation. It then sorts x and y such that f(x) ≥ f(y) and reinforces
x in the probabilistic model. This is done by inspecting the bits at position i and increasing pt,i if xi = 1 and yi = 0
and decreasing pt,i if xi = 0 and yi = 1. The aim is to increase the likelihood of sampling the bit value of the better
offspring in the future. If both offspring have the same bit value, the frequency pt,i is unchanged. Frequencies are
changed by ±1/K and K is called the update strength of the cGA. Small values of K imply large values of 1/K
and hence large changes. This means that novel information has a large impact on the probabilistic model. Large
values of K imply small changes to the probabilistic model, such that the probabilistic model is adapted gradually,
and information from many past samples is stored in the frequencies.

Frequencies are always capped to the interval [1/n, 1 − 1/n] such that the probability of sampling any particular
search point is always at least (1/n)n > 0. We refer to 1/n as the lower border and to 1 − 1/n as the upper border.
Throughout the paper we tacitly assume that K is in the set K := {i(1/2 − 1/n) | i ∈ N} so that the state space of
frequencies is restricted to pi,t ∈ {1/n, 1/n+ 1/K, . . . , 1/2, . . . , 1− 1/n− 1/K, 1− 1/n}.
As common in theoretical runtime analysis, we define the optimization time as the number of function evaluations
required to sample a global optimum for the first time. Since the cGA makes two evaluations in every iteration, the
optimization time is twice the number of iterations needed to sample a global optimum.

Algorithm 1: Compact Genetic Algorithm (cGA)
t← 0;
pt,1 ← pt,2 ← · · · ← pt,n ← 1/2;
while termination criterion not met do

for i ∈ {1, . . . , n} do
xi ← 1 with prob. pt,i, xi ← 0 with prob. 1− pt,i;

for i ∈ {1, . . . , n} do
yi ← 1 with prob. pt,i, yi ← 0 with prob. 1− pt,i;

if f(x) < f(y) then swap x and y;
for i ∈ {1, . . . , n} do

if xi > yi then pt+1,i ← pt,i + 1/K;
if xi < yi then pt+1,i ← pt,i − 1/K;
if xi = yi then pt+1,i ← pt,i;
pt+1,i ← max{min{pt+1,i, 1− 1/n}, 1/n};

t← t+ 1;

The function CLIFF is a function of unitation, that is, it only depends on the number of ones in a bit string x, denoted
as |x|1. Then CLIFF is defined as:

CLIFF(x) :=

{|x|1 if |x|1 ≤ 2n/3

|x|1 − n/3 + 1/2 otherwise

See Figure 1 for an illustration. We refer to the region of search points with at most 2n/3 ones as the first slope, and
all remaining search points as the second slope. The only global optimum is the all-ones string 1n with a fitness of
2n/3 + 1/2. All search points with 2n/3 ones are local optima at the top of the cliff. Note that all search points on the
second slope are strictly worse than all search points at the top of the cliff, except for the global optimum.

When analyzing the cGA on functions of unitation (e. g., ONEMAX as analyzed in [26, 20] and JUMP as analyzed in [4,
28]), one is interested in the number of one-bits sampled in an offspring. This random value follows a Poisson-binomial
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0 2n/3 n |x|1

CLIFF(x)

Figure 1: Illustration of CLIFF

distribution with the frequencies (pt,1, . . . , pt,n) as underlying success probabilities. In particular, the following two
quantities play a key role in bounding the progress of the cGA towards the optimum:

1. the potential Pt :=
∑n
i=1 pt,i equals the expected value of the Poisson-binomial distribution, i. e., the ex-

pected number of one-bits sampled in an offspring,
2. the sampling variance Vt :=

∑n
i=1 pt,i(1− pt,i) is the variance in the number of one-bits.

The following negative drift theorem will be used in Section 5 to analyze the one-step change of potential ∆t :=
Pt+1 − Pt.
Theorem 1 (Negative Drift with Scaling, cf. [23]). Let (Xt)t≥0 be a stochastic process, adapted to a filtration Ft,
over some state space S ⊆ R. Suppose there exist an interval [a, b] ⊆ R and, possibly depending on ` := b−a, a drift
bound ε := ε(`) > 0 as well as a scaling factor r := r(`) > 0 such that for all t ≥ 0 the following three conditions
hold:

1. E(Xt+1 −Xt | Ft ; a < Xt < b) ≥ ε,
2. Pr(|Xt+1 −Xt| ≥ jr | Ft ; a < Xt) ≤ e−j for j ∈ N0,

3. 1 ≤ r2 ≤ ε`/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0: Xt ≤ a | X0 ≥ b} it holds that Pr
(
T ∗ ≤ eε`/(132r2) | F0

)
=

O(e−ε`/(132r2)).

To verify the second condition of the negative drift theorem in our concrete analysis, we will use the following lemma
dealing with Chernoff-type bounds depending on the variance. The lemma goes back to [13]. We present a version
given in [3, Theorem 1.10.14].
Lemma 1. LetX1, . . . , Xn be independent random variables. Let b be such thatXi ≤ E(Xi)+b for all i = 1, . . . , n.
Let X =

∑n
i=1Xi. Let σ2 =

∑n
i=1 Var(Xi) = Var(X). Then, for all λ ≥ 0,

Pr(X ≥ E(X) + λ) ≤ e−(1/3) min{λ2/σ2,λ/b}.

As a simple consequence, we obtain the following corollary:
Corollary 1. Consider the cGA on an arbitrary fitness function Then for all t ≥ 0 and λ > 0 it holds that

Pr(|Pt+1 − Pt| ≥ λ/K) ≤ 2e−(1/3) min{λ2/Vt,λ}.

To see that the corollary follows, we argue in the same way as in [28], where jump functions were considered: the
absolute value of the one-step change in potential is no larger than the absolute difference in the number of one-bits
of the two individuals sampled, scaled down by 1/K. This holds since each bit sampled 1 in the fitter offspring and 0
in the other offspring contributes a +1/K to the change of potential (or nothing, in case the frequency is capped at
the upper border) and no less than −1/K in the opposite case. The factor 2 accounts for the two possible orderings of
offspring.

3 Negative Drift Around the Cliff

We will under certain assumptions prove that the potential of the cGA cannot overcome the cliff region efficiently
since there is a negative drift in the potential. The intuition is as follows:
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The initial potential is n/2 and, as long as the potential is significantly less than 2n/3, the cGA is very unlikely to
sample search points on the second slope of CLIFF. If that does not happen, the fitness landscape is the same as on
ONEMAX. Hence, using the results from [26], the potential Pt will steadily increase towards the location of the cliff,
i. e. 2n/3.

However, when the potential Pt has increased to roughly 2n/3, i. e., the expected number of ones sampled is close
to the cliff, it is relatively likely that the cGA samples search points on both the first slope and the second slope
of cliff. In particular, if the sampling variance Vt is large and Pt = 2n/3, the sampling distribution is similar to
a normal distribution with mean 2n/3 and the given variance. Hence, we are confronted with an approximately
symmetric distribution. Then the probability of sampling the two offspring on both sides of the cliff becomes roughly
(1/2) ·(1/2)+(1/2) ·(1/2) = 1/2 by counting the two opposite events of sampling the first offspring on the first slope
and the second one on the second slope and vice versa. By a similar argumentation, also the probability of sampling
both offspring on the same slope will approach 1/4 + 1/4 = 1/2.

We will analyze the drift, i. e., expected change of potential, under event M of sampling on two different slopes
and its complement. The key observation is that under M , the offspring with the smaller number of one-bits will
have roughly 2n/3 − √Vt one-bits in expectation and the other offspring will have roughly 2n/3 +

√
Vt one-bits

in expectation by properties of truncated normal distributions that arise under M . Since the offspring on the first
slope will be fitter and reinforced in the frequency update, this corresponds to an expected decrease in potential of
(2n/3−√Vt − (2n/3 +

√
Vt))/K = −2

√
Vt/K.

Under M , both offspring are on the same slope and their expected difference in one-bits is no larger than the vari-
ance

√
Vt, again by simple analyses of truncated normal distributions. Taking these two cases of roughly identical

probability together, the total drift becomes (1/2)(−2
√
Vt +

√
Vt)/K = −√Vt/(2K). This argumentation can be

made rigorous not only when Pt = 2n/3, but for roughly all Pt ∈ [2n/3−√Vt, 2n/3+
√
Vt], as the following lemma

shows. We will use this result when applying a negative drift theorem (Theorem 1) in Section 5.
Theorem 2. Assume Vt = ω(1). Let ε > 0 be an arbitrary constant. Then conditioned on Pt ∈ [2n/3 −
(α(n))1/2−ε, 2n/3], it holds that E(∆t | Pt) = −Ω(

√
Vt/K).

Before we proceed with the proof, we collect well-known properties of the expected value E(X | X ≤ t) of a truncated
normal distribution and show that t − E(X | X ≤ t), i. e., the distance of this expected value from the truncation
parameter t, increases when the truncation condition becomes weaker, i. e., when t grows.
Lemma 2. Given a normally distributed random variable X with mean µ and variance σ, we have for all t ∈ R that

E(X | X ≤ t) = µ− σ φ((t− µ)/σ)

Φ((t− µ)/σ)

and E(X | X ≥ t) = µ+ σ
φ((t− µ)/σ)

Φ((t− µ)/σ)
,

where φ and Φ denote the density and cumulative distribution function of the standard normal distribution, respec-
tively. Moreover, the function t− E(X | X ≤ t) is monotone increasing in t.

Proof. The first two claims relate to the expected value of the so-called truncated normal distribution and are well
known in the literature (e. g., p. 156 in [16]).

For the final claim, we consider w. l. o. g. a standard normally distributed random variable Z and write for arbitrary
x ∈ R

x− E(Z | Z ≤ x) = x+
φ(x)

Φ(x)
(1)

The function φ(x)
Φ(x) is known as the inverse Mills ratio in the literature and known to have a derivative of at least −1

(see [25], who shows that the derivative of φ(x)
1−Φ(x) = φ(−x)

Φ(−x) is at most 1). Hence, the derivative of (1) is at least 0 and
the final claim follows.

Proof of Theorem 2. By assumption, we have that Vt = ω(1) for all t ≥ 0. Hence, by the generalized central limit
theorem (Chapter XV.6 in [8]) the number of one-bits sampled in each offspring, which follows a Poisson-binomial
distribution with mean Pt and variance Vt, converges in distribution to a normal distribution with mean Pt and variance
Vt. More precisely, let X = |x|1 for an arbitrary offspring sampled with current frequency vector of potential Pt and
variance Vt and let X ′ ∼ N(Pt,

√
Vt). Then for all t ∈ R, Pr(X ≤ t) = (1 ± o(1))Pr(X ′ ≤ t). Often, we will

pretend that X ∼ N(Pt,
√
Vt) and omit 1− o(1) factors stemming from the normal approximation.
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We will decompose the drift according to three events for the location of the two offspring of the cGA:

L) Both offspring have at most 2n/3 one-bits, i. e., lie both on the first (left) slope.

R) Both offspring have at least 2n/3 + 1 one-bits, i. e., lie both on the second (right) slope.

M) One offspring has at most 2n/3 one-bits and one at least 2n/3 + 1 one-bits, i. e., there is an offspring on each
slope (the mixed case).

Obviously, by the law of total probability,

E(∆t | Pt) = E(∆t | Pt;L)Pr(L | Pt) + E(∆t | Pt;R)Pr(R | Pt) + E(∆t | Pt;M)Pr(M | Pt).
For readability, we may omit the condition on the random Pt in the following. Let pR := Pr(X > 2n/3 | Pt), then
Pr(R) = p2

R,Pr(L) = (1− pR)2 and Pr(M) = 2pR(1− pR). Hence,

E(∆t | Pt) = E(∆t | L)(1− pR)2 + E(∆t | R)p2
R + E(∆t |M)2pR(1− pR). (2)

Let us consider the generation of one offspring more closely, assuming a fixed Pt. A crucial insight, implied by
the normal approximation, is that pR = Pr(X > 2n/3) is monotone increasing in Pt (up to multiplicative errors of
1− o(1)) and approaches 1/2. Even more, already if Pt = 2n/3− (Vt)

1/2−ε for some constant ε > 0, the probability
Pr(X > 2n/3) becomes at least 1/2− o(1) using the normal approximation. This follows since the density is at most
e−1/2
√
Vt

√
2π

= O(1/
√
Vt) so that Pr

(
2n/3− (Vt)

1/2−ε ≤ X ≤ 2n/3
)
≤ V 1/2−ε

t ·O(1/
√
Vt) = o(1).

Let us now fix c > 0 such that Pt ∈ [2n/3 − c(Vt)1/2−ε, 2n/3] and pR = Pr(X > 2n/3) ≥ 1/2 − 1/(Vt)
1/2−ε =

1/2− o(1). Since Pt ≤ 2n/3, we also have pR ≤ 1/2 and therefore

• Pr(R) = p2
R ≤ 1/4

• Pr(M) = 2pR(1− pR) ≥ 2(1/2− o(1))(1/2) = 1/2− o(1)

• Pr(L) = (1− pR)2 ≤ (1/2 + o(1))2 = 1/4 + o(1).

We next estimate the drift under the three events. To this end, we need bounds on the two conditional expectations
E(X | X ≤ 2n/3) and E(X | X ≥ 2n/3 + 1) since the conditions specify that an offspring is on the first and second
slope, respectively. Using Lemma 2 with µ = Pt, σ = Vt and t = 2n/3, we have

E(X | X ≤ 2n/3) = Pt −
√
Vt ·

φ((2n/3− Pt)/
√
Vt)

Φ((2n/3− Pt)/
√
Vt)

We note that (2n/3− Pt)/
√
Vt = O(1/V εt ) = o(1) by our choice of Vt. Hence, we have

φ((2n/3− Pt)/
√
Vt)

Φ((2n/3− Pt)/
√
Vt)

=
φ(o(1))

Φ(o(1))
=

(1± o(1))φ(0)

(1± o(1))Φ(0)
= (1± o(1))

√
2

π
, (3)

using the continuity of the density and distribution functions in the second step and the well-known equality φ(0)
Φ(0) =√

2/π stemming from the half-normal distribution in the third step. Together,

E(X | X ≤ 2n/3) = Pt − (1 + o(1))
√

2/π
√
Vt.

In the very same way, we derive

E(X | X > 2n/3) = Pt − (1− o(1))
√

2/π
√
Vt.

Under the event M defined above, we have one offspring with at most 2n/3 one-bits and another one with strictly
more one bits. The update will reinforce the individual on the left slope and change the potential by the difference in
the number of one-bits, divided by K, assuming no frequencies at the border. To correct this for the boundary effects,
we apply Lemma 8 in [4] and obtain an error term of at most 2/K in the expected change of potential. (Roughly
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speaking, this accounts for the fact that every frequency at the border flips with probability at most 2(1/n)(1 − 1/n)
and that capping reduces its change by at most 2/K.) Hence, we obtain

E(∆t |M) ≤ − 1

K

(
E(X | X > 2n/3)− E(X | X ≤ 2n/3)

)
+

2

K

= − 1

K

((
Pt + (1− o(1))

√
2

π
Vt

)
−
(
Pt − (1 + o(1))

√
2

π
Vt

))
+

2

K

= −(2− o(1))
1

K

√
2

π
Vt,

where we have used that Vt = ω(1).

We are left with the drift under L and R; we only analyze L since both cases are analogous. Here we sample two
offspring conditional on both having at most 2n/3 one-bits. Let X1 and X2 denote the random number of one-bits of
two offspring and assume w. l. o. g. that X1 ≤ X2. Similarly as for E(∆t |M), the potential drift is then

E(∆t | L) ≤ 1

K
· E(X2 −X1 | X1 ≤ X2 ≤ 2n/3) +

2

K
.

Compared to the case M analyzed above, the difference X2 −X1 in the number of one-bits tends to be smaller since
the two offspring are sampled on the same slope, whereas under M the offspring are on different slopes and X2 −X1

is typically larger. Using that X1 is normally distributed with variance Vt, Lemma 2 implies

E(X1 | X1 ≤ s) = Pt −
√
Vt ·

φ((s− Pt)/
√
Vt)

Φ((s− Pt)/
√
Vt)

,

where we identify s = X2, assuming X2 ≤ 2n/3. Hence,

E(s−X1 | s; X1 ≤ s) = s− Pt +
√
Vt ·

φ((s− Pt)/
√
Vt)

Φ((s− Pt)/
√
Vt)

As shown in Lemma 2, the right-hand side of the last equation is monotone increasing in s. Hence,

E(X2 −X1 | X1 ≤ X2 ≤ 2n/3) ≤ E(2n/3−X1 | X1 ≤ 2n/3)

= 2n/3− Pt +
√
Vt ·

φ((2n/3− Pt)/
√
Vt)

Φ((2n/3− Pt)/
√
Vt)

(simplifying the fraction using (3))

≤ 2n/3− Pt + (1 + o(1))
√

(2/π)Vt

= (1 + o(1))
√

(2/π)Vt

so, since Vt = ω(1), we have both

E(∆t | L) ≤ (1 + o(1))

K

√
2

π
Vt and E(∆t | R) ≤ (1 + o(1))

K

√
2

π
Vt.

Plugging the above bounds in (2), we obtain

E(∆t | Pt) ≤
1

K

(
(p2
R + (1− pR)2) · (1 + o(1))

√
(2/π)Vt + 2pR(1− pR)(−(2− o(1))

√
(2/π)Vt)

)

=
1

K

(
(1/2 + o(1))

√
(2/π)Vt − (1/2− o(1)) · 2

√
(2/π)Vt)

)
= − (1/2− o(1))

1

K

√
(2/π)Vt.

as claimed.

4 Justifying the Assumption of Super-Constant Sampling Variance

The approximation with (truncated) normal distributions used in the proof of the drift estimate from Theorem 2 hinges
on the sampling variance being ω(1). We now try to convince the reader why we believe that the sampling variance is
ω(1), for interesting K.
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4.1 Rigorous Variance Bounds for ONEMAX

To this end, we first discuss the variance on ONEMAX, for which rigorous bounds of ω(1) have been shown by Lengler
et al. [20] in a medium parameter regime for K (as will be defined below). The following statement was implicitly
shown in [20] and can be deduced from [20, Lemma 18] and its proof. A discussion will follow.
Theorem 3. Consider the cGA on ONEMAX with K = Ω(log3 n) and K = O(n1/2/(log(n) log log(n))). With
probability 1− e−Ω(K1/4), there exist times t1 = O(K2 log2 n), t2 = O(K2 log2(n) log logK) and t3 > t2 such that
the following statements hold.

1. For all t ∈ [t1, t2], Vt ≥ Ω(K1/2).

2. The number of frequencies at the lower border at time t2 is Ω(n). For all t3 > t2 such that there are Ω(n) fre-
quencies at the lower border at all times in (t2, t3), with probability 1−O(t3/(K

2 log2 n))·exp(−Ω(K1/3)),

Vt ∈ Ω(K2/3) ∩O(K4/3).

There is an initial phase of the firstO(K2 log2 n) = o(n) iterations for which no lower bound on the variance is shown
in [20]. After this phase, we have a lower bound of Ω(K1/2) on the variance that quickly improves to a lower bound
of Ω(K2/3). The latter bound applies with good probability as long as there are still Ω(n) frequencies at the lower
border.

We describe the main idea behind the analysis in [20], and the proof of Theorem 3. First we observe that a frequency
at a border contributes only 1/n · (1 − 1/n) to the variance, while frequencies that are off their borders contribute
a much larger amount. Hence bounding the variance is achieved by studying the number and position of off-border
frequencies.

Lemma 18 in [20] considers the situation after the first O(K2) iterations, when a linear number of frequencies has
reached the lower border, with probability 1−e−Ω(K1/2). Then the authors consider periods of Θ(K2 log2 n) iterations
and show that in a period, frequencies tend to leave their borders to perform a random walk. This random walk ends
when a border is reached. (The frequency may then start another random walk during the period.) Frequencies that
perform a random walk contribute a term of pi,t(1 − pi,t) to the sampling variance. Hence the variance in future
iterations can be bounded by analyzing these random walks. The dynamics are intricate since the random walks show
a positive drift that depends on the current sampling variance. The drift has a potentially significant impact on the
random walks; for instance, it can decide whether a random walk started at the lower border crosses the whole range
[1/n, 1− 1/n] and ends up at the upper border, or whether it returns to the lower border. Lengler et al. [20] argue that
the cGA experiences a feedback loop since the current sampling variance influences future sampling variances. This
feedback loop has a considerable lag as the effects of a small or large sampling variance are felt at later stages of the
frequencies’ random walks.

One idea from [20] is to assume that we have lower and upper bounds on the sampling variance during a period as
this can then be used to bound the drift for the frequencies’ random walks from above and below, and to establish
bounds for the sampling variance in the next period. This is formalized in the so-called stabilization lemma, Lemma 7
in [20], in which lower and upper bounds on the variance in one period are used to show tighter lower and upper
bounds in the next period. Part (a) of Lemma 7 in [20] assumes trivial bounds on the sampling variance and applies
after the short, initial phase of O(K2) steps, when Θ(n) frequencies have reached the lower border. Part (a) of the
stabilization lemma then yields that after a further period of CK2 log2 n iterations, C > 0 a sufficiently large constant,
the variance is guaranteed to be at least Ω(K1/2) for the next at least period of CK2 log2 n steps, with probability at
least 1 − e−Ω(K1/2). Lemma 18 in [20] then applies Part (b) of the stabilization lemma iteratively to obtain tighter
lower and upper bounds. More specifically, after O(log logK) periods, the variance is guaranteed to be in Ω(K2/3)
and O(n4/3). Since the number of frequencies at the lower border only changes very slowly (in comparison to the
length of a period), we still have Θ(n) frequencies at the lower border at this point in time. While this is the case,
the stabilization lemma can still be applied to show that these variance bounds are maintained. Each application
of the stabilization lemma has a failure probability of exp(−Ω(K1/3)), thus a union bound over t3/(CK2 log2 n)
applications of the lemma yields the probability bound stated in Theorem 3.

4.2 Trying to Translate Results to Cliff

We conjecture that Theorem 3 also holds when replacing ONEMAX with CLIFF. We do not have a proof for this
statement, but we will argue why this conjecture seems plausible, and what the challenges are in translating results
from [20] on ONEMAX to CLIFF.
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Both CLIFF and ONEMAX are functions of unitation, hence on both functions the dynamics can be analyzed by
considering individual frequencies. On both functions, frequencies are likely to reach borders withinO(K2) iterations
and then frequencies may detach from their borders to perform a random walk. Thus, the approach from [20] that
leads to the stabilization lemma can also be applied to CLIFF.

These random walks are similar for both functions. If we pick an arbitrary but fixed frequency i then, for both
functions, there are steps in which that frequency has no effect on the selection of the fitter offspring and then increasing
the frequency has the same probability as decreasing it. These steps were called random walk steps in [26]. There
are other steps, called biased steps in [26], in which a frequency can only increase on ONEMAX. This happens,
for instance, when all other bits have the same number of ones in both samples x and y and then the i-th frequency
determines which search point is reinforced. If exactly one of xi and yi is 1, that solution is reinforced and the i-th
frequency increases. The probability of a biased step is Θ(1/

√
Vt) and the expected drift of the i-th frequency is

Θ
(
pi,t(1−pi,t)
K
√
Vt

)
if no border is hit.

On CLIFF, the situation is similar. If the i-th frequency has no impact on selection, a random walk step occurs. Biased
steps may occur when all other bits have the same number of ones on both samples or when the number of ones on
all other bits is precisely 2n/3. In the latter case, the i-th frequency may decide whether a sample has 2n/3 ones (i. e.
is on top of the cliff) or 2n/3 + 1 ones (i. e. is at the bottom of the second slope). It is not difficult to show that the
probability of a biased step is Θ(1/

√
Vt) as for ONEMAX.

One key difference is that on CLIFF the drift can be either positive or negative. It is positive when the cGA focuses
its search on one particular slope. However, the drift can be negative when sampling close to the cliff and the two
offspring lie on different slopes.

A central argument from [20] is that the variance can be accurately described by studying the so-called lifetime contri-
bution of one frequency, which is the total contribution that the frequency makes to the variance while the frequency
does not reach any border. The lifetime contribution is then bounded from above and below by using a worst-case
perspective for the drift: in each iteration, the drift may be chosen arbitrarily from a range between 0 and a maximum
value that depends on Vt (cf. Lemma 11 and 12 in [20]). This worst-case view was necessary to deal with depen-
dencies between frequencies and the intricate feedback loops. For these bounds it is crucial that the drift is always
non-negative. To translate this approach to CLIFF, one would have to allow negative drift values in addition to positive
ones. This means that sudden changes between positive and negative drift values are possible and, ultimately, the
worst-case bounds on the lifetime contribution become too weak to prove that the variance stabilizes to super-constant
values. We conjecture that the worst-case view is too pessimistic here as the real dynamics are unlikely to rapidly
switch between regimes where the drift is noticeably positive and noticeably negative. Providing rigorous arguments
remains a challenge for future work.

4.3 Empirical Evidence
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Figure 2: Variance after 100
√
nK + 100K2 iterations, averaged over 100 runs, for increasing n and different values

of K. The black line indicates the minimum variance of 1 − 1/n. The plot on the right-hand side shows the same
curves divided by K1/2.

We provide empirical evidence to support our belief that the variance is super-constant for interesting ranges of K,
including the ones from Theorem 3. We recorded the variance after 100

√
nK + 100K2 iterations and report averages

taken over 100 runs, for increasing n and K chosen as different functions of n. The time bound is motivated by the
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upper bound of O(
√
nK) for the expected optimization time of the cGA on ONEMAX for K = Ω(

√
n log n) [26] and

the upper bound of O(K2) for the expected time for random walks reaching a border (see [26] and Lemma 4 in [20]).
Both results do not specify constants, hence we put a generous constant of 100 to enable the cGA to reach a state
where the variance has stabilized.

The values ofK are chosen from {log n, n0.45,
√
n, n0.75, n}. The valueK = n0.45 is captured by Theorem 3 whereas

K = log n and K =
√
n are just outside the medium parameter regime.

On the left-hand side of Figure 2 we can see the variance scaling with n. For K = log n, the variance seems to remain
constant. Runs for K = n were only performed up to n = 340 and the variance does not seem to increase, apart from
a spike for small values of n. (This spike persisted when increasing the time limit to 100K2 log2 n.) All other values
of K yield curves that have a clear upward trend. The right-hand side shows the same data, normalized by dividing by
K1/2 and for all K except K = n, the normalized values are strikingly close to 1. All curves but K = log n appear to
be stable, suggesting that a variance lower bound of Ω(K1/2) might apply for medium K.

5 A Semi-Rigorous Exponential Lower Bound

As explained in Section 4, we believe that the sampling variance of the cGA with potential Pt around the cliff is ω(1)
and tends to lie stable for a long time. Under these assumptions, we can formally prove that the potential cannot
efficiently cross the interval of negative drift around 2n/3, which was established above in Theorem 2.

The following lemma assumes a variance in an interval [v`, vu] while the potential is in the drift interval [2n/3 −
(v`)

1−ε, 2n/3]. Under conditions on K, v` and vu, discussed after the proof, the time to pass the drift interval is
exponential, with high probability.

Lemma 3. Assume that there are a constant ε′ > 0, functions v` = v`(n) = ω(1), vu = vu(n) ≤ n and a constant
c > 1 such that the property Vt ∈ [v`, vu] holds for all points in time t where Pt ∈ [a′, b′] := [2n/3− v1/2−ε′

` , 2n/3].
Assume K ≥ nε

′
vu/v

1−ε′
` and K = O(

√
n) and define the hitting time T := min{t ≥ 0 | Pt ≥ b′}. Then there is a

constant c′ > 0 such that given P0 ≤ a′, it holds that Pr
(
T ≤ ec′Kv1−ε′

` /vu
)

= 2−Ω(Kv1−ε′
` /vu).

Proof. We verify the three conditions of the negative drift theorem with scaling (Theorem 1). Its parameters are
chosen as Xt = −KPt, a = −Kb′ and b = −Ka′.
For the first item, which deals with a lower bound on the drift, we use Theorem 2 to obtain (for Xt = −KPt) the drift
bound ε = ε(n) = c1

√
v` for a constant c1 > 0 within the interval [a, b] of length ` = b− a = Kv

1/2−ε′
` .

To verify the second condition, we use Corollary 1 dealing with the concentration of the one-step change |Pt+1 − Pt|
depending on the variance. Since we apply it to the scaled process Xt = −KPt, the parameter λ is implicitly
multiplied by K. Hence, there is an r = c2

√
vu for some sufficiently large constant c2 > 0 such that

Pr(|Xt+1 −Xt| ≥ jr | F ; a < Xt) ≤ 2e−min{j2c22,jc2
√
vu}/3 ≤ e−j

for j ∈ N0, using that
√
vu ≥

√
v` ≥ 1. Note that the condition a < Xt is equivalent to Pt < b′ and |Xt+1 −Xt| =

|K(Pt+1 − Pt)|.
We now analyze the exponent in the final bound on T . We have r2 = c22vu and therefore

ε`

132r2
≥ c1

√
v`Kv

1/2−ε′
`

132c22vu
=
c1Kv

1−ε′
`

132c22vu
,

which immediately leads to the exponent claimed in the statement of this lemma by setting c′ = c1/(132c22). Note that
the exponent becomes Ω(nε

′
) if K ≥ nε

′
vu/v

1−ε′
` . However, we still have to verify the third condition of the drift

theorem.

First of all, we have r = c2
√
vu ≥ 1 by choosing c2 large enough and thus satisfy the lower bound on r2 in the

third condition. Next, we note that r/ε ≤ c2
√
vu

c1
√
v`

= O(
√
n) since vu ≤ n and therefore log(r/ε) = O(log n).

Hence, we can use the bound ε`
132r2 = Ω(nε

′
), assuming K ≥ nε

′
vu/v

1−ε′
` and K = O(

√
n), from the previous

paragraph to show that ε`
r2132 log(r/ε) ≥ 1, which is equivalent to the upper bound on r2 in the third condition of the

drift theorem.
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Figure 3: Box plots for the number of evaluations in 1000 runs on CLIFF with n = 15 (left) and n = 18 (right) and
exponentially increasing values of K. The plots also show values of (3/2)n, 2n and nn/3 for comparison.

To apply Lemma 3, we need bounds on the variance while Pt is in the drift interval. From the discussions above, we
conjecture that the variance stabilizes around a value v∗ = Ω(K1/2), which would allow us to have vu/v` = Θ(1),
hence Kv1−ε′

` /vu = K(v`/vu)1−ε′/vε
′

u = Ω(Kn−ε
′
) (since vu ≤ n). In this case, we obtain an exponential bound

already for K = Ω(n2ε′). If the variance is allowed to oscillate between v` and vu that are not of the same asymptotic
order, we can still apply the lemma under reasonable assumptions. If the variance is allowed to oscillate between a
lower bound v` and an upper bound vu such that vu/v` ≤ K1−δ for a constant δ > 0 (like, e. g., with the bounds
Ω(K2/3) and O(K4/3) appearing in Theorem 3), then Kv1−ε′

` /vu ≥ (K/K1−δ)v−ε
′

u = Kδ/vε
′

u ≥ Kδ/nε
′
, which is

still polynomially growing in K if, e. g., K ≥ n2ε′/δ . Here ε′ > 0 can be chosen arbitrarily small.

The potential does not jump over the negative drift interval. To rule out that the cGA optimizes CLIFF efficiently,
we also have to prove it unlikely that the potential changes drastically in one step and “jumps over the drift interval”
[2n/3−V 1/2−ε

t , 2n/3]. However, it is not difficult to prove that the following event is unlikely: there is a point of time t
where Pt < 2n/3− (Vt)

1/2−ε but Pt+1 > 2n/3. Since Vt+1 ≥ (1− 1/K)Vt ≥ Vt/2, the length of the drift interval
stemming from Theorem 2 is at most halved in the transition from time t to t+1. Hence, if Pt+1 ≤ Pt+(Vt/2)1/2−ε/2,
then Pt+1 ≤ 2n/3− (Vt+1)1/2−ε/2, i. e., the process has not jumped over the interval. For simplicity, we work with
the lower bound (Vt)

1/2−ε/4 on the potential difference in the following. We can then easily apply Corollary 1 to
show that the variance does not change by at least (Vt)

1/2−ε/4 in a step with overwhelming probability. We choose
λ = K(Vt)

1/2−ε/4 and obtain a failure probability of e−Ω(min{λ2/Vt,λ}) = e−Ω(min{K2/V 2ε
t ,KV

1/2−ε
t }). If we have

K ≥ n2ε then the probability of increasing the potential by V 1/2−ε
t /4 ≤ (Vt/2)1/2−ε/2 in one step has probability

e−Ω(K), using Vt ≤ n.

Altogether, the analyses presented in this section show that the potential, under reasonable assumptions on the sam-
pling variance, takes exponential time to exceed the value 2n/3. If Pt ≤ 2n/3, sampling the optimum of cliff, i. e.,
the all-ones string, has probability at most (3/4)n/9 = 2−Ω(n) since at least n/9 frequencies have to be below 3/4.
Hence, the optimum is not sampled in this situation with overwhelming probability. We have proven the following
theorem.

Theorem 4. Assume the setting of Lemma 3. Then the optimization time of the cGA on CLIFF is 2Ω(nε′ ) with proba-
bility 1− 2−Ω(nε′ ).

6 Empirical Runtimes & Open Problems

Figure 3 shows boxplots highlighting the median runtimes and their distributions for n = 15 and n = 18 and K being
set to a power of 2 from 1 to 219. Note that the y axis uses a logarithmic scale.

As can be seen, the parameter K has a significant impact on the runtime and its parameter landscape seems complex.
For both problem sizes, the median runtime for small K is close to 2n. We suspect that, for extreme updates, the cGA
shows a chaotic behavior resembling random search (cf. Theorem 17 in [20] for ONEMAX). This is caused by extreme
genetic drift [26, 6].
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As K grows, the median runtime increases considerably, with some runs exceeding nn/3 evaluations. For medium
values of K, the frequencies tend to reach their borders quickly due to genetic drift. If most of the frequencies remain
at their borders and the potential is close to 2n/3, roughly n/3 frequencies must be at the lower border and the
probability of sampling the optimum from there is at most n−n/3.

This regime is followed by a sudden and steep drop at K = 26 = 64 for n = 15 and K = 28 = 256 for n = 18,
respectively. When doublingK one more time, the distribution is highly concentrated around the median, and runtimes
are close to (3/2)n. We suspect that in this parameter range, where K is exponential in n, the frequencies increase
slowly and evenly. When the potential reaches 2n/3 and all frequencies are similar to 2/3, the cGA would have
a probability of roughly (2/3)n to sample the optimal solution. This would explain the phase transition where we
suspect the expected optimization time to drop from nΩ(n) to 2O(n) and possibly even to at most cn · poly(n) for a
constant 3/2 ≤ c < 2.

When increasing K even further, the frequencies remain so close to their initial values of 1/2 that the cGA behaves
like random search again. Indeed, the median runtime seems to approach 2n for the largest values of K examined.

So, the best choice ofK seems to be in the sweet spot where the frequencies are able to rise equally towards a potential
of 2n/3 and stay there for long enough to sample the optimum.

We finish with some open problems related to these observations.

Open Problem 1. Sharpen the variance bounds from [20] on ONEMAX, Theorem 3, and add variance bounds for
times in [0, t1].

Open Problem 2. Prove rigorously that for the cGA on CLIFF, with high probability, the variance is super-constant
throughout an exponential period of time, for appropriate update strengths K = nΩ(1).

Open Problem 3. Prove a lower bound of nΩ(n) for the cGA on CLIFF for appropriate values ofK below the observed
phase transition.

Open Problem 4. Prove an upper bound of cn · poly(n) for a constant c < 2 for exponential K beyond the observed
phase transition.

In order to address the open problem 4, it might be necessary to prove that the frequencies tend to increase evenly.

Open Problem 5. Prove that, for the cGA on ONEMAX or CLIFF with large values of K, the frequencies tend to
increase evenly from their initial value of 1/2, and that they remain concentrated around the expectation for a period
of time.

Solving open problem 5 may not be as easy as it looks. Many standard concentration bounds do not apply since the
frequencies are not independent and each step may have a large knock-on effect on future frequency dynamics, as
discussed for the powerful method of bounded martingale differences in [3, Section 10.3].
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