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ABSTRACT
Dynamicmulti-objective optimization problems (DMOPs) arewidely
accepted to be more challenging than stationary problems due to
the time-dependent nature of the objective functions and/or con-
straints. Evaluation of purpose-built algorithms for DMOPs is often
performed on narrow selections of dynamic instances with differing
change magnitude and frequency or a limited selection of prob-
lems. In this paper, we focus on the reproducibility of simulation
experiments for parameters of DMOPs. Our framework is based on
an extension of PlatEMO, allowing for the reproduction of results
and performance measurements across a range of dynamic settings
and problems. A baseline schema for dynamic algorithm evaluation
is introduced, which provides a mechanism to interrogate perfor-
mance and optimization behaviours of well-known evolutionary
algorithms that were not designed specifically for DMOPs. Impor-
tantly, by determining the maximum capability of non-dynamic
multi-objective evolutionary algorithms, we can establish the mini-
mum capability required of purpose-built dynamic algorithms to
be useful. The simplest modifications to manage dynamic changes
introduce diversity. Allowing non-dynamic algorithms to incorpo-
rate mutated/random solutions after change events determines the
improvement possible with minor algorithm modifications. Future
expansion to include current dynamic algorithms will enable re-
production of their results and verification of their abilities and
performance across DMOP benchmark space.
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1 INTRODUCTION
Optimisation of competing goals is the basis of multi-objective
optimization. This is made more difficult when a time-dependent
component is introduced, creating a dynamic multi-objective opti-
mization problem (DMOP). There has been considerable work in
the past two decades focused on the design of benchmark prob-
lems, the development of algorithms, performance measurements
and visualization, however, there is limited understanding of the
parameters controlling the dynamics. Existing works promote the
use of a diverse problem set but carry out experiments for a limited
range of the parameters controlling dynamic changes - restricting
the true scope of any conclusions made.

Some of the principal benchmark dynamic multi-objective opti-
mization problems (DMOPs) were defined nearly two decades ago
by Farina et al. [12]. Since then, a plethora of benchmark problems
have been proposed [8, 13, 17, 19, 20, 22, 32, 33, 36–38], allowing
for the testing of different characteristics of real world systems in a
controllable environment. Dynamic Optimization Problem (DOP)
generators such as Moving Peaks [4, 36] and the Dynamic XOR
[35] and others are well-known single-objective environments in
which the difficulty of a problem instance can be controlled by
increasing the number of peaks or bits respectively. Comprehen-
sive surveys of methods, measurements and problems are given in
[1, 5, 6, 17, 18, 28, 30].

In existing dynamic multi-objective benchmarks, defining the
‘difficulty’ of a particular problem or instance can be linked to
characteristics of the dynamics in the problem. Farina et al. [12]
defined a four-type system according to whether the dynamics alter
the: (I) Pareto-Optimal Set (POS), (III) Pareto-Optimal Front (POF),
both (II) or neither (IV). Meanwhile, Nguyen et al. [28] suggests a
broader framework for DOPs to classify problems based on whether
they have the following properties: Time-linkage; predictability
of changes; visibility of dynamics to the optimization algorithm;
constraints or dynamic constraints; single or multiple objectives;
periodical, recurrent or cyclic dynamics and type and factor of
dynamic changes (e.g. objective functions, decision variable domain
or number). Azzouz et al. [2] suggests a streamlined version of this
for DMOPs that, in addition to the POS/POF observations, problems
can be grouped based on the frequency, severity or predictability
of changes.

Nevertheless, despite these frameworks for classifying the pro-
posed benchmarks, there is little associated literature outlining the
consistency of parameter settings and reproducibility of results on
DMOPs. For researchers attempting to find a DMOP benchmark
suite with characteristics similar to a real world problem under
investigation, the baseline ‘difficulty’ of the parameters pertaining
to the dynamics and the problem are under-documented. Whilst
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the recently proposed comprehensive benchmark sets SDP [20],
RDP [32] and JY [22], offer a multitude of well-designed and di-
verse benchmarks, the results presented examine a limited ranges of
dynamic parameters in terms of severity and frequency of changes.

Many works use non-dynamic MOEAs (designed originally for
static problems) to compare and contrast the performance of their
proposed DMOEA [8, 13, 20, 25, 37]. Some of these feature simple
modifications to handle dynamic changes such as restarting or
introducing random solutions. However the detriment or benefit
of such modifications relative to the standard implementation of
these MOEAs is unknown. Understanding the capability of MOEAs
for DMOPs in a fine-grained experimentation of frequency and
severity will allow us to determine the validity of prior application.

In order to determine a baseline difficulty for existing dynamic
multi-objective benchmarks there are some key parameters, on
which we can determine the baseline performance of state of the
art static MOEAs. We argue, that it is essential a systematic exami-
nation of the dynamic problem parameters – severity and frequency
– is carried out. Such an examination would provide insights into
how specific algorithms and simple response mechanisms can cope
with the changing dynamics, thus allowing for a definition of a base-
line range of parameters for a given DMOPs that cannot effectively
be handled by existing MOEAs. Here, using a subset of established
DMOPs, we illustrate the importance of the frequency and severity
parameters through a fine-grained experimental protocol across
ranges of these parameters that encompass the commonly used
values in the literature. There exists a framework called PlatEMO
[34] which gathers a comprehensive library of multi-objective op-
timization problems and Evolutionary Algorithms (EAs) designed
to solve them. This provides the inspiration for the collation of
DMOPs, and in further work, the collation of the vast range of
DMOEAs currently in the literature. By providing the tools we
employ to generate our results, we facilitate future consistency
and therefore verification, corroboration and comparison of results.
The proposed schema for determining the maximum capability of
MOEAs on DMOPs provides the framework for determining the dy-
namic instances of problems that novel DMOEAs should be tested
on to determine meaningful improvements over existing methods.

To summarise the contributions of this paper:

• Firstly, we provide an experimental schema allowing for the
reproducibility of results for DMOPs, including the DPTP,
a platform allowing for fine-grained experimentation of
DMOP parameters.

• Additionally, we perform for a selection of typical benchmark
DMOPs, an investigation of parameters values commonly
used in the literature that govern the frequency and severity
of changes.

• We examine the performance of non-dynamic MOEAs on
these parameters to ascertain a minimum recommended
experimental range for frequency and severity, below which
good performance can be achieved by non-dynamic MOEAs.

• The utility of commonly used simple modifications to static
MOEAs (random and mutated solution additions) is con-
trasted to the random restart methodology which is widely
used as baseline comparison for novel algorithm perfor-
mance.

The remainder of the paper is organized as follows. Section 2
contains a summary of DMOP definitions including the frequency
and severity parameters, together with their usage and the usage of
MOEAs on DMOPs in the literature. Section 3 gives an overview of
the experimental platform and the problems, algorithms, responses
and parameter ranges used. Section 4 details the key results per-
taining to each of the contributions listed above. Conclusions are
drawn in Section 5.

2 BACKGROUND
2.1 Dynamic multi-objective Optimization

Problems
Dynamicmulti-objective optimization problems extendmulti-objective
problems to include time-variant terms or components, often to
incorporate behaviours of a real-world system. Equation 1 gives one
formulation of a bi-objective DMOP with time-dependent objective
functions.

®x = [𝑥1, 𝑥2, . . . 𝑥𝑛]
®F(®x, 𝑡) =[𝑓1 (®x, 𝑡), 𝑓2 (®x, 𝑡), . . . 𝑓𝑀 (®x, 𝑡)]

ℎ1 (®x) ≤ 0, ℎ2 (®x) = 0
(1)

Dynamics can also present in the decision variables or constraints
(e.g. 𝑥 (𝑡) or ℎ(®x, 𝑡)) and in the number (e.g. 𝑥𝑛 (𝑡) or 𝑓𝑀 (𝑡 ) ) of any
of these.

The first DMOP benchmarks suite proposed [12] included some
aspects of the above possible dynamics. The FDA suite has been
widely used and modified as explained by Helbig and Engelbrecht
[17]. However, in the vast literature concerning the testing of algo-
rithms on these problems, the experimentation and understanding
of the dynamics parameters is limited.

Other dynamic multi-objective benchmarks have been proposed
since, also detailed in [17]. Complex and comprehensive suites
have been recently proposed that cover a vast range of problem
characteristics in terms of the POS and POF and their changes over
time. Namely the SDP[20], RDP[32] and JY[22] suites.

2.2 Severity and Frequency
Examination of the frequency and severity has been conducted
in terms of run time and hitting time for single objective bench-
marks [31], instead here we determine the veracity of the collective
adoption of a limited range of values for these parameters in multi-
objective benchmarks. The time-dependency of components in
DMOPs is controlled by two factors, the severity and frequency of
changes. The reciprocal of the severity, commonly denoted as 1

𝑛𝑡
,

controls the magnitude of changes in the value of 𝑡 . For example,
for 𝑛𝑡 = 20, the value of 𝑡 increases by 0.05 at each change event.
Within our results we illustrate the severity as its reciprocal to more
easily visualize an increasing magnitude of change. The frequency
of the changes is controlled by 𝜏𝑡 and is measured in generations; a
value of 𝜏𝑡 = 20 means that each dynamic interval (period between
changes) lasts for 20 generations before the value of 𝑡 changes again.
Whilst other parameters, such as the number of decision variables
(𝑛), can alter the difficulty of a problem, this challenge is not unique
to DMOPs and so is not considered here.
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Various recommendations are made in the literature as to the
values of 𝑛𝑡 and 𝜏𝑡 that should be investigated. For example, Helbig
& Engelbrecht [17] suggest values of 𝑛𝑡 = {1, 10, 20} and values of
𝜏𝑡 = {5, 10, 25, 50, 100} to be used in various combinations. The pa-
rameters combinations in these ranges enable the investigation of al-
gorithms in environments with fast-changing and high-magnitude
changes or in those with slower changes and smaller magnitude
changes, where effective change detection may be a motivator. In
contrast, Farina et al [12] when defining the fundamental FDA suite
suggest only parameter settings of 𝑛𝑡 = 10, 𝜏𝑡 = 5 with 𝑛 = 20.

Despite the recommendations, the range of severity values and
frequencies are investigated are inconsistent, incomplete and some-
times unjustified. We consider two measures of experimental com-
prehensiveness: the number of combinations and the range of each
parameter. The number of examined 𝑛𝑡–𝜏𝑡 pairings is varied in re-
cent works including one [20, 32], two [23, 36], three [13, 22, 38, 43]
and five [21]. Only the recent work by Zhang et al. [37] considers
a more diverse set with six different frequency-severity pairings:
𝑛𝑡—𝜏𝑡 = {5− 5, 5− 10, 5− 20, 10− 5, 10− 10, 10− 20}. These settings
are applied to a novel set of proposed ZDT-based functions with
time windows rather than any existing DMOP benchmarks.

Within the available literature, the values of examined severity
values are limited to 𝑛𝑡 = {5, 10, 20} and the most commonly evalu-
ated frequencies are 𝜏𝑡 = {5, 10, 20}. There are few papers that con-
sider frequencies outside of this range despite the aforementioned
recommendations; Chen et al. [8] explores changing the number of
objectives by one at four change frequencies 𝜏𝑡 = 25, 50, 100, 200.
Other works on single-objective problems consider pairings of fre-
quency and severity that do not easily translate to the 𝑛𝑡–𝜏𝑡 system
[36]. The work of Mehnen et al. [25] considers different frequencies
for each of the considered DMOP benchmarks (a variety of FDA
and DTF problems) with minimum 𝜏𝑡 = 1 and a maximum 𝜏𝑡 = 50.
In other cases, the severity and frequency is matched to observa-
tions from real world systems and does not easily compare with
the typical severity or frequency definitions [15].

In brief, the range of frequencies and severity parameter val-
ues used in the literature is limited and the same for all DMOP
benchmark studies. The aforementioned papers use these parame-
ter values in mixed sets of problems selected from many of the well
known and recent benchmark sets including FDA [12], DIMP [24],
dMOP [14], DSW [25], T [19], HE [17], ZJZ [41], UDF [3], SDP [20],
RDP [32], JY [22], DF [23] and GTA [13].

2.3 Use of non-dynamic MOEAs for DMOPs
Many articles from the related literature that propose novel algo-
rithms for solving DMOPs use the performance of well-known
MOEAs (and simple modifications of them) as baselines for com-
parison. These ‘static’ or generic MOEAs have not been designed
specifically for DMOPs. The NSGA-II [10] has seen comparisons
[8, 25] and simple modifications to include random or mutated so-
lutions in response to changes (DNSGA-II algorithm types A and B
respectively [11]) are also used [8, 13, 17, 20, 22, 37]. The NSGA-III
algorithm is also used and modified for performance comparisons
[37], as is the SPEA2 [42] algorithm [21, 22, 25]. The non-dynamic
MOEA/D algorithm [39] is also compared [8, 20, 22] and augmented
with Kalman Filter prediction [8, 13], reinforcement learning [43],

intensity of environmental change handling [32, 43] & a first order
difference model [37].

Widespread use of non-dynamic MOEAs in DMOP experiments
is intuitive; these are the algorithms that provide the best perfor-
mance on static problems and this may extend to dynamic problems
too. However it is common that MOEAs are given a ‘random restart’
response where they are forced to reinitialize in response to dy-
namic changes [13, 21, 22, 32]. We compare the simple modification
to add random and mutated solutions in response to a change, a ‘do
nothing’ approach and contrast it to the poor performance when
restarting generic MOEAs for DMOPs.

We focus on the use of non-dynamic MOEAs here rather than
the plethora of detailed and complex dynamic methods. There are
many purpose-built methods for DMOP that include prediction
mechanisms [16, 24, 29, 40, 41], multiple archive based methods [8]
and ensemble methods [2, 27] among others [6, 17, 18, 28].

3 METHODS
3.1 Platform specification
Of the surveyed literature, only the works proposing the GTA [13]
and SDP [20] suites provided code to replicate the problem imple-
mentations. Given that the equations defining the FDA problems
are inconsistent in the literature [12, 17] provision of the code used
to generate the results is a simple but important way to ensure the
reproducibility of experiments and results by others.

We therefore construct a framework to demonstrate MOEA per-
formance on DMOPs. Inspired by the existing PlatEMO MATLAB
implementation, our platform is adapted to include DMOPs and
allow for experimentation on dynamic frequency and severity. The
class structures and main running functions of the framework used
here are distinct from those used in PlatEMO and we name our
platform DMOP Parameter Testing Platform (DPTP). Here we doc-
ument four MOEAs and four DMOPs, however the platform so
far contains the problems from the following suites: FDA [12],
dMOP [14], DIMP [24], ZJZ [41] & HE [17]. Through the GUI,
experimentation on any of the problem parameters is possible,
including the number of decision variables and their ranges, the
number of objectives. The selected algorithm can be augmented
with any of the simple response mechanisms and additional pa-
rameters controlling the dynamics including the range of 𝑡 , cycling
behaviour and delay onset can be controlled. DPTP allows for fine-
grained examination for ranges for two parameters to produce
heatmaps like those presented in this paper. A variety of metrics
can be recorded as in PlatEMO, including GD, IGD, HV and oth-
ers. The well-designed and comprehensive JY [22], RDP [32], GTA
[13] and SDP [20] benchmark sets will be added in future in addi-
tion to a number of dynamic algorithms. The DPTP is available at
https://github.com/DPTP2022/DPTP.

3.2 Problems, Algorithms & Measurements
As recent DMOP benchmark suites such as the SDP, RDP and JY
sets have not yet been used in many works, we instead choose to
provide insights on a subset of the commonly used benchmarks.
Further works will extend this methodology to as much of the
DMOP space as possible.
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Table 1: DMOP benchmark problems. Based on literature values for all problems, the number of objectives is limited to 2 and
the number of decision variables is fixed at 20.

Name Objective Functions Decision Variables Type Reference

dMOP1

𝑓1 (xI) = 𝑥1; 𝑓2 = 𝑔ℎ

𝑔(xII) = 1 + 9
∑

𝑥𝑖 ∈xII (𝑥𝑖 )2; ℎ = 1 −
(
𝑓1
𝑔

)𝐻 (𝑡 )

𝐻 (𝑡) = 0.75𝑠𝑖𝑛(0.5𝑡) + 1.25

𝑥𝑖 ∈ [0, 1]
xI = (𝑥1); xII = (𝑥2, . . . , 𝑥𝑛)

III [14]

dMOP2

𝑓1 (xI) = 𝑥1; 𝑓2 = 𝑔ℎ

𝑔(xII) = 1 + 9
∑

𝑥𝑖 ∈xII (𝑥𝑖 −𝐺 (𝑡))2; ℎ = 1 −
(
𝑓1
𝑔

)𝐻 (𝑡 )

𝐻 (𝑡) = 0.75𝑠𝑖𝑛(0.5𝑡) + 1.25; 𝐺 (𝑡) = 𝑠𝑖𝑛(0.5𝜋𝑡)

𝑥𝑖 ∈ [0, 1]
xI = (𝑥1); xII = (𝑥2, . . . , 𝑥𝑛)

II [14]

DIMP2
𝑓1 (xI) = 𝑥1; 𝑓2 = 𝑔ℎ

𝑔(xII) = 1 + 2(𝑛 − 1) +∑
𝑥𝑖 ∈xII [(𝑥𝑖 −𝐺 (𝑡))2 − 2𝑐𝑜𝑠 (3𝜋 (𝑥𝑖 −𝐺𝑖 (𝑡)))]

ℎ = 1 −
√︃

𝑓1
𝑔 ; 𝐺𝑖 (𝑡) = 𝑠𝑖𝑛(0.5𝜋𝑡 + 2𝜋 𝑖

𝑛+1 )
2

𝑥𝐼 ∈ [0, 1]; 𝑥𝐼 𝐼 ∈ [−2, 2]
xI = (𝑥1); xII = (𝑥2, . . . , 𝑥𝑛)

I [24]

HE1
𝑓1 (xI) = 𝑥1; 𝑓2 = 𝑔ℎ

𝑔(xII) = 1 + 9
𝑛−1

∑
𝑥𝑖 ∈xII𝑥𝑖 ; ℎ = 1 −

√︃
𝑓1
𝑔 − 𝑓1

𝑔 𝑠𝑖𝑛(10𝜋𝑡 𝑓1)
𝑥𝑖 ∈ [0, 1]

xI = (𝑥1); xII = (𝑥2, . . . , 𝑥𝑛)
III [17]

The problems featured in these experiments are given in Table
1, together with their objective functions, type classification and
references. The number of decision variables is fixed to 20 for these
problems as this is the value almost unanimously used in literature
studying DMOPs.

Four well-known algorithms designed for non-dynamic MOOPs
are employed here. The first is NSGA-II [10], a population based
algorithm that uses non-dominated sorting Pareto ranking based se-
lection from a population doubled by crossover and mutation opera-
tors, and replacement based on crowding distance. Secondly, NSGA-
III [9], another Pareto-dominance based algorithm, improves over
the previous algorithm by replacing crowding distance based re-
placement with a distributed and maintained set of reference points.
Thirdly, MOEA/D is a decomposition based algorithm, which uses
a series of reference vectors to guide search towards the Pareto
Set. Finally, SPEA2 is another Pareto-dominance based algorithm
that maintains an external archive of solutions in addition to an
exploratory population of solutions. In addition to this generic
dynamic response mechanisms are incorporated for comparison
to the default algorithms. These are based on the commonly used
diversity introduction mechanisms as utilised by the DNSGA-II
algorithm; replacement of solutions with random or mutated solu-
tions. A random restart (re-initialization of the population) method
is also commonly used in the literature and therefore is included
too. A population size of 100 is the most commonly used across the
surveyed literature and we adopt this value also.

In terms of performance measurement, a variety of methods have
been documented [7, 18] and these are largely used as summary sta-
tistics for DMOEAs. As the motivation of this work is to ascertain
the minimum DMOPs parameters that require dedicated algorithm
design beyond the capabilities of existing MOEAs, we require only
simple measurements. Whilst the proposed platform can record a
range of measurements, we report results limited to the commonly
used Mean Hypervolume Difference, detailed in Eq. 2. We take the
difference of the hypervolume and the optimal hypervolume (using
the same number of solutions) at the generation before a dynamic
change, representing the minimum error to the best hypervolume

achieved in each time interval. As we investigate MOEA perfor-
mance rather than mechanisms to detect dynamic changes [26],
dynamic responses are prompted for these experiments.

𝐻𝑉𝐷𝑛 = (𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝐻𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒)𝑛 − (𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑𝐻𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒)𝑛
(2)

where𝑛 is the number of solutions used in the optimal calculation
and as the population size for the algorithms. The optimal value
for this is 0, meaning that the solutions found by the algorithm
perfectly match the optimally distributed Pareto Front sample. The
magnitude of any deviation from true hypervolume is specific to
the problem and so we forego normalization in this instance.

3.3 Dynamic Changes
Our experiments focus on determining the limitations of MOEAs
for DMOPs according to the commonly used problem parameters
in the literature. Therefore we investigate effects of different fre-
quencies and severity values of changes on the benchmark DMOPs.
As detailed, to cover the commonly used values in the literature;
21 values of 1/𝑛𝑡 ∈ [0.010.5] and 30 values of 𝜏𝑡 ∈ [1, 30]. This
means the most rapid change frequency is every generation (𝜏𝑡 = 1)
and the least rapid every 30 generations. As mentioned, some have
suggested 𝜏𝑡 = 50 [8, 25], however for data collection feasibility we
limit our investigation to commonly used values.

3.4 Experimental plan
Using our streamlined experimental DPTP platform, we gather
the HVD data for a number of DMOP benchmarks, the results
presented here correspond to the problems in Table 1. For each
problem we examine every pairwise combination of change fre-
quency and severity parameters in the examined ranges detailed
above. For each combination of change frequency and severity each
of the four algorithms detailed in 3.2 with each of the four baseline
response mechanisms (DR0: none, DR1: random solution addition,
DR2: mutated solution addition and DR3: random restart) is applied
to the problem. This results in 21x30x4x4=10,080 algorithm runs per
repeat, per problem, which we summarise in a series of heatmaps
for clarity.
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Figure 1: Frequency and severity heatmaps of HVD on dMOP2 for each response type (DR0: none, DR1: random solution
addition, DR2: mutated solution addition, DR3: random restart). A zero-value shows optimal hypervolume attainment and
higher values show poorer performance.

Figure 2: Frequency and severity heatmaps of HVD on HE1 for each algorithm and each response type (DR0: none, DR1:
random solution addition, DR2: mutated solution addition, DR3: random restart). A zero-value shows optimal hypervolume
attainment, higher values show poorer performance.
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Figure 3: Heatmaps of HVD on the dMOP1 benchmark
for each algorithm with no dynamic response mechanism.
A zero-value shows complete attainment of optimal hy-
pervolume. Combinations of frequency (x-axis) and sever-
ity (y-axis) are examined in ranges that include the com-
monly used values in the literature. Each cell represents the
mean of 30x5 change events (150 pre-change-eventmeasure-
ments).

4 RESULTS
Given that a limited range of parameters for the change severity and
change frequency are investigated in the literature, the following
results highlight the difficulty of the most popularly used change
severity and frequency instances in terms of their ability to be
solved by generic MOEAs.

We recognise that problems have different difficulty in spite of
dynamics and by showing only select problems we narrow our
conclusions. However, we aim to determine a sensible range of
dynamic parameters for the presented DMOP benchmarks and
provide a methodology such that the performance of newly devised
algorithms is tested in a meaningful way. Moreover, we provide
insights on baseline algorithm comparison and selecting dynamics
parameters that novel algorithms should be tested on to show a
meaningful development and contribution to the field.

4.1 Justifying baseline dynamic responses for
comparison

The ‘random restart’ mechanism is used in conjunction with a
simple MOEA as a baseline for comparison in many papers that
propose novel dynamic algorithms, however we demonstrate here
through the hypervolume attainment, that it is not useful to use
such a method for comparison. Figure 1, illustrates that of the
considered simple baseline responses investigated here, restarting
the algorithm (DR3 subplot) is clearly the worst. The hypervol-
ume attainment is poor across the range of change severity values

Figure 4: Heatmaps of HVD for the DIMP2 benchmark
for each algorithm with no dynamic response mechanism.
A zero-value shows complete attainment of optimal hy-
pervolume. Combinations of frequency (x-axis) and sever-
ity (y-axis) are examined in ranges that include the com-
monly used values in the literature. Each cell represents the
mean of 30x5 change events (150 pre-change-eventmeasure-
ments).

and frequencies compared with no response (DR0), and the ran-
dom (DR1) and mutated (DR2) solution responses. Furthermore,
little improvement is seen by purely addition of 20% mutated or
randomised solutions; the DIMP2 problem appears difficult with
literature-standard dynamics parameters for non-dynamic MOEAs.
Figure 2 illustrates the performance of each response type in each
algorithm for the HE1 problem. There is a more complex pattern of
hypervolume attainment in the parameter space, with two bands
of better performance at high severity ( 1

𝑛𝑡
= 0.5) and mid-severity

( 1
𝑛𝑡

= 0.25), but immediately worse performance vertically adjacent
to these regions at ( 1

𝑛𝑡
= 0.4) and ( 1

𝑛𝑡
= 0.2). These patterns are

consistent across the DR0, DR1 & DR2 response for the NSGA-II,
NSGA-III & SPEA2 algorithms. The performance of MOEA/D al-
gorithm is more homogeneous across the parameter combinations
with these patterns less clearly defined. One possibility for this is
the drastic and non-uniform change in POF shape the problem ex-
periences with changing values of 𝑡 . The non-uniform performance
patterning means that for some values of the severity parameter,
these specific successive changes in the problem’s POF are more
easily handled. This implies that the 𝑛𝑡 parameter does not, for all
problems, correspond to a series of change events of equal mag-
nitude in terms of their difficulty for algorithms. This reinforces
the need for careful selection of severity and frequency parameter
values when benchmarking algorithms on DMOPs. All algorithms
performance with the random restart response are also shown in
the right most column of the grid in Figure 2. The negative im-
pacts on algorithm performance are less severe at lower change
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Figure 5: Frequency and severity heatmaps of HVD for the NSGA-II algorithm with no dynamic response mechanism on
problemswith Type I(DIMP2), II (dMOP2) and III (dMOP1/HE1) dynamics. A zero-value shows complete attainment of optimal
hypervolume, higher values indicated poorer performance. Each cell represents the mean of 30x5 change events (150 pre-
change-event measurements).

frequencies (𝜏𝑡 = 30), however the hypervolume difference remains
high when compared with the other response types, as in Figure
1. This strengthens the evidence against using random restart in
algorithms as a baseline for performance comparison.

4.2 Determining baseline parameters for
dynamics in DMOPs

Figure 3 illustrates a key motivation of this work in providing in-
sights into the capability of MOEA performance on DMOPs with
commonly used values for the frequency and severity of changes.
The dMOP1 problem poses little difficulty at any of the severity
or frequency settings, with the exception of a change frequency
of 1, where it can be expected that a generic algorithm might lose
performance. Change severity had little impact, whilst smaller fre-
quencies (more rapid changes) somewhat reduced the hypervolume
attainment of the algorithms. Notably, this performance degrada-
tion occurs sooner for NSGA-III than for NSGA-II or the other
algorithms. Our recommendation for dMOP1 is that most of the
studied dynamics ranges in the literature can be effectively handled
by generic MEOAs and therefore should not be used to test more
complex novel dynamic algorithms.

Conversely, the DIMP2 problem poses a challenge to all the
algorithms across most of the severity and frequency ranges. Figure
4 illustrates that for all algorithms, it is only for small severity
and the least rapid changes that minimal HVD is possible, with
MOEA/D having the best performance area. For the majority of
the parameter ranges these generic DMOEAs cannot provide good
results. Therefore our recommendation is that DIMP2 is suitable
for benchmarking novel dynamic methods.

4.3 Algorithm performance on different
dynamics types

We illustrate the variable performance of the NSGA-II algorithm
on the problem subset in Figure 5. The difference in performance
of a single algorithm on multiple problems is to be expected, how-
ever, more importantly these heatmaps illustrate the impact of
dynamic parameter choices. Using the same values of change sever-
ity and frequency for different problems without justification can
weaken conclusions on algorithm performance. For example, the
NSGA-II algorithm, not designed for DMOPs, provides competitive

performance on dMOP1 across all but the lowest frequency changes.
Comparison of a novel DMOEA on this problem is effectively mean-
ingless, other than to ensure a basic capability. Other existingDMOP
benchmarks however, pose significant challenges for the examined
MOEAs. For example, NSGA-II struggles on DIMP2 for most com-
binations of 𝑛𝑡 and 𝜏𝑡 . It is these problems that should therefore be
the focus when testing the efficacy of novel DMOEA constructions.

Furthermore, our results stress the importance of both select-
ing the parameters of the frequency and severity of changes and
determining their importance in a problem’s difficulty. Conclud-
ing the effectiveness of a novel dynamic method on, for example,
the dMOP2 problem with 𝑛𝑡 = 20 and 𝜏𝑡 = 25 is misleading. This
combination of dynamic frequency and severity can effectively be
handled by a generic MOEA.

4.4 Recommendations for Future
Investigations

For each of the examined problems, we provide a summary of
the minimum parameters we recommend to ensure a challenging
problem set when evaluating algorithms.

dMOP1 - This problem did not provide a challenge for any of
the MOEAs tested. A drop off in performance occurs when the
change frequency 𝜏𝑡 = 1, however this would also be challenging
for most DMOEAs except those specifically designed for problems
with rapid changes. Our recommendation is therefore to avoid this
problem except for ensuring fundamental capability compared to
the MOEAs.

dMOP2 - The results on this problem indicate it is a good candi-
date for evaluating DMOEAs since the majority of the parameter
space cannot effectively be handled by the MOEAs. Reciprocal
severity values of at least 1

𝑛𝑡
= 0.05 are recommended in conjunc-

tion with most change frequencies. If 𝜏𝑡 is less than 15, smaller
severity values can be considered.

DIMP2 - This problem was the most challenging for the MOEAs
of the problems examined. Using 1

𝑛𝑡
= 0.01 was challenging at

frequencies below 20 generations, and at all frequencies for greater
severity values. The MOEA/D algorithm achieved slightly better
performance at low frequencies (slower changes) and low severity
values, however the overall HVD is poor.
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HE1 - The results indicate a complex range of performance
across the frequency and severity parameter space, perhaps due to
the complex PF shape this problem has and the change that happens
with different intervals of 𝑡 . Careful selection of parameters may
allow challenging instances, however the HV attainment is good for
the MOEAs generally and therefore other problems may be better
to evaluate DMOEAs.

We have evaluated the simplest modifications to MOEAs that
are often used as baseline comparisons when evaluating novel
DMOEAs. The results show that the commonly used ‘random
restart’ response, where the entire population is re-initialized at ev-
ery change event provides poor performance across the examined
parameter space. In terms of function evaluations, an equivalent
number would be used in a ‘do nothing’ approach, the DR0 response
here. We therefore recommend that the random restart responses
should not be used in conjunction with the examined parameter
ranges. If there is justification that re-initialization may be ben-
eficial, for example on problems with deceptive, multi-modal or
many local optima, it should not be the only baseline considered -
a passive approach may provide better results in many cases.

For the examined algorithms, the passive approach (DR0), the
mutated solution addition (DR1), random solution addition (DR2)
have relatively similar impacts on the HVD measurements, even on
the HE1 problem which had a more complex performance pattern
across the dynamic parameter space (as in Figure 2)

Ultimately, we echo the statements of many when we conclude
that a diverse set of benchmarks should be used to examine al-
gorithm performance [1, 17, 28, 30]. However we build on this to
include that the parameters governing the frequency and severity
of changes must be carefully selected such that the resulting in-
stances are sufficiently challenging and cannot be handled by static
MOEAs.

5 CONCLUSION
Within this work, we have demonstrated the range of change fre-
quency and severity parameter usage in the literature is unguided
and for some dynamic multi-objective benchmarks does not result
in challenging instances. Understanding the impacts of the param-
eters that control the dynamics in a set of selected benchmarks
used to evaluate novel algorithms should be an important consid-
eration in future works. Secondly we have evaluated the maximal
performance of typical MOEAs not designed for DMOPs within the
frequency and severity parameter range to provide an experimental
schema to find recommendations for challenging instances that
novel DMOEAs should consider in order to provide meaningful im-
provement. Our results elucidate the utility of different commonly
used simple modifications to MOEAs in the literature which are
often used as a baseline comparison for a proposed algorithm. We
highlight the minimal impact on the considered subset of prob-
lems that mutated and random solutions provide and condemn the
usage of the random restart response without valid justification.
Finally, we share the DPTP with which we produced these results
and declare the intention to expand upon its capability in terms
of the scope of DMOPs and dynamic algorithms. Our motivation
is to make experimentation on DMOPs more streamlined, repro-
ducible and verifiable to facilitate comparison such that progress

towards more effective algorithms and more challenging problems
can occur.

REFERENCES
[1] Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. 2016. Dynamicmulti-objective

optimization using evolutionary algorithms: a survey. 31–70.
[2] Radhia Azzouz, Slim Bechikh, and Lamjed Ben Said. 2017. A dynamic multi-

objective evolutionary algorithm using a change severity-based adaptive popula-
tion management strategy. Soft Computing 21, 4 (2017), 885–906.

[3] Subhodip Biswas, Swagatam Das, Ponnuthurai N. Suganthan, and Carlos A
Coello Coello. 2014. Evolutionary Multi-Objective Optimization in dynamic
environments:a set of benchmarks. Proc.2014 IEEE Congress on Evolutionary
Computation 1 (2014), 74–88.

[4] Jürgen Branke. 1999. Memory enhanced evolutionary algorithms for changing
optimization problems. Proceedings of the 1999 Congress on Evolutionary Computa-
tion, CEC 1999 3, 721 (1999), 1875–1882. https://doi.org/10.1109/CEC.1999.785502

[5] J. Branke. 2002. Evolutionary optimization in dynamic environments. Vol. 1.
[6] Jürgen Branke and Hartmut Schmeck. 2003. Designing Evolutionary Algorithms

for Dynamic Optimization Problems. (2003), 239–262.
[7] Mario Cámara, Julio Ortega, and Francisco De Toro. 2009. Performance measures

for dynamic multi-objective optimization. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 5517 LNCS, PART 1 (2009), 760–767.

[8] Renzhi Chen, Ke Li, and Xin Yao. 2018. Dynamic Multiobjectives Optimization
with a Changing Number of Objectives. IEEE Transactions on Evolutionary
Computation 22, 1 (2018), 157–171. https://doi.org/10.1109/TEVC.2017.2669638
arXiv:1608.06514

[9] Kalyanmoy Deb and Himanshu Jain. 2014. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on
Evolutionary Computation 18, 4 (2014), 577–601. https://doi.org/10.1109/TEVC.
2013.2281535

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[11] Kalyanmoy Deb, N Udaya Bhaskara Rao, and Sindhya Karthik. 2007. Dynamic
Multi-Objective Optimization and Decision-Making Using Modified NSGA-II:
A Case Study on Hydro-Thermal Power Scheduling. EMO’07 Proceedings of the
4th international conference on Evolutionary multi-criterion optimization (2007),
803–817.

[12] M Farina, K Deb, and P Amato. 2003. Dynamic Multiobjective Optimization
Problems: Test Cases Approximation and Applications. Evolutionary Multi-
Criterion Optimization. Second International Conference EMO 2003 8, 5 (2003),
311–326.

[13] Sen Bong Gee, Kay Chen Tan, and Hussein A. Abbass. 2017. A Benchmark Test
Suite for Dynamic Evolutionary Multiobjective Optimization. IEEE Transactions
on Cybernetics 47, 2 (2017), 461–472. https://doi.org/10.1109/TCYB.2016.2519450

[14] Chi Keong Goh and Key Chen Tan. 2009. A competitive-cooperative coevolu-
tionary paradigm for dynamic multiobjective optimization. IEEE Transactions on
Evolutionary Computation 13, 1 (2009), 103–127. https://doi.org/10.1109/TEVC.
2008.920671

[15] Md Mahmudul Hasan, Khin Lwin, Maryam Imani, Antesar Shabut, Luiz Fernando
Bittencourt, and M. A. Hossain. 2019. Dynamic multi-objective optimisation
using deep reinforcement learning: benchmark, algorithm and an application to
identify vulnerable zones based on water quality. Engineering Applications of
Artificial Intelligence 86, 2013 (2019), 107–135. https://doi.org/10.1016/j.engappai.
2019.08.014

[16] Iason Hatzakis and David Wallace. 2006. Dynamic multi-objective optimization
evolutionary algorithms: a Forward-Looking approach. Proceedings of ACM
GECCO 4 (2006), 1201–1208.

[17] Marde Helbig and Andries P. Engelbrecht. 2013. Benchmarks for dynamic multi-
objective optimisation. Proceedings of the 2013 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments, CIDUE 2013 - 2013 IEEE
Symposium Series on Computational Intelligence, SSCI 2013 46, 3 (2013), 84–91.

[18] Mardé Helbig and Andries P. Engelbrecht. 2013. Performance measures for
dynamic multi-objective optimisation algorithms. Information Sciences 250 (2013),
61–81.

[19] Liang Huang, Il Hong Suh, and Ajith Abraham. 2011. Dynamic multi-objective
optimization based on membrane computing for control of time-varying unstable
plants. Information Sciences 181, 11 (2011), 2370–2391. https://doi.org/10.1016/j.
ins.2010.12.015

[20] Shouyong Jiang, Marcus Kaiser, Shengxiang Yang, Stefanos Kollias, and Natalio
Krasnogor. 2019. A Scalable Test Suite for Continuous Dynamic Multiobjective
Optimization. IEEE Transactions on Cybernetics (2019), 1–13. https://doi.org/10.
1109/tcyb.2019.2896021 arXiv:arXiv:1903.02510v1



Reproducibility and Baseline Reporting for Dynamic Multi-objective Benchmark Problems GECCO ’22, July 9–13, 2022, Boston, USA

[21] Shouyong Jiang and Shengxiang Yang. 2014. A Benchmark Generator for Dy-
namic Optimization. Proceedings of the 2014 UK Workshop on Computational
IntelligenceAt: University of Bradford, UK (2014).

[22] Shouyong Jiang and Shengxiang Yang. 2017. Evolutionary Dynamic Multiobjec-
tive Optimization: Benchmarks and Algorithm Comparisons. IEEE Transactions
on Cybernetics 47, 1 (2017), 198–211.

[23] Shouyong Jiang, Shengxiang Yang, Xin Yao, Kay Chen Tan, and Marcus Kaiser.
2018. Benchmark Problems for CEC2018 Competition on Dynamic Multiobjective
Optimisation. CEC2018 Competition (2018), 1–18.

[24] Wee Tat Koo, Chi Keong Goh, and Kay Chen Tan. 2010. A predictive gradient
strategy for multiobjective evolutionary algorithms in a fast changing environ-
ment. Memetic Computing 2, 2 (2010), 87–110. https://doi.org/10.1007/s12293-
009-0026-7

[25] J. Mehnen, Tobias Wagner, and G. Rudolph. 2006. Evolutionary Optimization
of Dynamic Multiobjective Functions. Technical Report CI-204/06 Dortmund
University (2006).

[26] R.W. Morrison. 2013. Designing Evolutionary Algorithms for Dynamic Environ-
ments. Springer Berlin Heidelberg.

[27] Arrchana Muruganantham, Kay Chen Tan, and Prahlad Vadakkepat. 2016. Evo-
lutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
IEEE Transactions on Cybernetics 46, 12 (2016), 2862–2873.

[28] T.T. Nguyen, S. Yang, and J. Branke. 2012. Evolutionary dynamic optimization: A
survey of the state of the art. Swarm and Evolutionary Computation 6 (2012).

[29] Xingguang Peng, Shengxiang Yang, Demin Xu, and Xiaoguang Gao. 2013.
Evolutionary Algorithms for theMultiple Unmanned Aerial Combat Vehicles
Anti-ground Attack Problem in Dynamic Environments. 490 (2013), 403–431.
https://doi.org/10.1007/978-3-642-38416-5

[30] Carlo Raquel and Xin Yao. 2013. Dynamic Multi-objective Optimization: A Survey
of the State-of-the-Art. 85–106.

[31] Philipp Rohlfshagen, Per Kristian Lehre, and Xin Yao. 2009. Dynamic evolu-
tionary optimisation: an analysis of frequency and magnitude of change. Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary computation
(GECCO∼2009) (2009), 1713–1720. https://doi.org/10.1145/1569901.1570131

[32] Gan Ruan, Jinhua Zheng, Juan Zou, Zhongwei Ma, and Shengxiang Yang. 2021. A
random benchmark suite and a new reaction strategy in dynamic multiobjective
optimization. Swarm and Evolutionary Computation 63, December 2020 (2021),

100867. https://doi.org/10.1016/j.swevo.2021.100867
[33] Min Tang, Zhangcan Huang, and Guangxi Chen. 2007. The Construction of

Dynamic Multi-objective Optimization Test Functions. Advances in Computation
and Intelligence. Second International Symposium (ISICA’2007) (2007), 72–79.

[34] Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin. 2017. PlatEMO: A MATLAB
Platform for Evolutionary Multi-Objective Optimization. IEEE Computational
Intelligence Magazine 12, 4 (2017), 73 – 87.

[35] Shengxiang Yang. 2003. Non-stationary problem optimization using the primal-
dual genetic algorithm. In The 2003 Congress on Evolutionary Computation, 2003.
CEC ’03., Vol. 3. 2246–2253 Vol.3. https://doi.org/10.1109/CEC.2003.1299951

[36] Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke,
Trung Thanh Nguyen, and Xin Yao. 2020. Benchmarking Continuous Dynamic
Optimization: Survey and Generalized Test Suite. IEEE Transactions on Cybernetics
(2020).

[37] Haijuan Zhang, Gai Ge Wang, Junyu Dong, and Amir H. Gandomi. 2021. Im-
proved nsga-iii with second-order difference random strategy for dynamic multi-
objective optimization. Processes 9, 6 (2021), 1–23. https://doi.org/10.3390/
pr9060911

[38] Qingyang Zhang, Shouyong Jiang, Shengxiang Yang, and Hui Song. 2021. Solv-
ing dynamic multi-objective problems with a new prediction-based optimization
algorithm. Vol. 16. 1–39 pages. https://doi.org/10.1371/journal.pone.0254839

[39] Qingfu Zhang and Hui Li. 2008. MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition. Evolutionary Computation, IEEE Transactions on
11 (01 2008), 712 – 731. https://doi.org/10.1109/TEVC.2007.892759

[40] Aimin Zhou, Yaochu Jin, and Qingfu Zhang. 2014. A Population prediction
strategy for evolutionary dynamic multiobjective optimization. IEEE Transactions
on Cybernetics 44, 1 (2014), 40–53.

[41] Aimin Zhou, Yaochu Jin, Qingfu Zhang, Bernhard Sendhoff, and Edward Tsang.
2007. Prediction-Based Population Re-initialization for Evolutionary Dynamic
Multi-objective Optimization. Proceedings of EMO,LNCS4403 (2007), 832–846.

[42] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2002. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization.
Tehcnical Report.

[43] Fei Zou, Gary G. Yen, and Chen Zhao. 2021. Dynamic multiobjective optimization
driven by inverse reinforcement learning. Information Sciences 575 (2021), 468–
484. https://doi.org/10.1016/j.ins.2021.06.054


