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ABSTRACT
Evolutionary Algorithms have been regularly used for solving multi
and many objectives optimization problems. The effectiveness of
such methods is determined generally by their ability to generate
a well-distributed front (diversity) that is as close as possible to
the optimal Pareto front (proximity). Analysis of current multi-
objective evolutionary frameworks shows that they are still sub-
optimal and present poor versatility on different geometries and
dimensionalities. For that, in this paper, we present AGE-MOEA++,
a new Multi and Many Objective Evolutionary Algorithm that:
(1) incorporates the principle of Pareto Front (PF) shape fitting
to enhance the convergence in different shaped high dimensional
objective spaces, and (2) adapts K-means ++ fundamentals in order
to best manage the diversity in non-uniform distributed PF. The
empirical study shows that our proposal has better results than the
state-of-the-art approaches in terms of IGD and is competitive in
terms of GD.
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1 INTRODUCTION
A multi-objective optimization (MOP) problem withM objectives
to be minimized can be written as follows [10]:
∗Also with BDTLN - LIFAT, University of Tours.
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 ( ®𝑥) = [𝑓1 ( ®𝑥), 𝑓2 ( ®𝑥), . . . , 𝑓M ( ®𝑥)]𝑇 , (1)
𝑆𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 ®𝑥 ∈ U ⊂ R𝑛 (2)

where 𝑓𝑖 (𝑥) is the 𝑖𝑡ℎ objective function (i ∈ J1;MK), ®𝑥 is an n-
dimensional decision vector, and U is the feasible region of ®𝑥 . The
objective function vector 𝑓 maps a solution ®𝑥 in an n-dimensional
decision space to a point ([𝑓1 ( ®𝑥), 𝑓2 ( ®𝑥), . . . , 𝑓M ( ®𝑥)]𝑇 ) in anM-
dimensional objective space. Amulti-objective problemwithM > 3
is often referred to as many-objective problem.

In general, a MOP does not have one single optimal solution
since objectives are conflicting with each other. Therefore, no single
solution simultaneously optimizes all objectives. Thus, solutions
are compared using the Pareto dominance principle. A solution
®𝑥 dominates another solution ®𝑦 (denoted by ®𝑥 ≻ ®𝑦), if 𝑓𝑖 ( ®𝑥) ≤
𝑓𝑖 ( ®𝑦) ∀𝑖 ∈ J1;MK and there exists at least one index 𝑗 ∈ J1;MK
such that 𝑓𝑗 ( ®𝑥) < 𝑓𝑗 ( ®𝑦). If a solution ®𝑥∗ is not dominated by any
other solutions, ®𝑥∗ is said to be Pareto optimal solution. The set of
all Pareto optimal solutions is the Pareto optimal solution set (PS).
The projection of PS in the objective space is called the Pareto front
(PF) or Pareto frontier.

A large number of evolutionary algorithms (EAs) have been pro-
posed in the literature [4, 5, 13, 14, 18, 22, 24, 27–29] to solve Multi
and Many Objective optimization problems. The goal of each algo-
rithm is to approximate the optimal Pareto front with a set of non-
dominated solutions that are as close as possible to PF (proximity),
and that is well-distributed over the optimal PF (diversity).

Multi Objective Evolutionary Algorithms (MOEAs) are often cat-
egorized into three classes based on their fitness evaluation mecha-
nisms [20]. First, decomposition-based algorithms such as MOEA/D
[28], NSGA- III [13] and [18, 27], where a MOP is decomposed into
a number of single-objective problems. Each single-objective prob-
lem has the same scalarizing function and a different weight vector.
A single solution is assigned to each single-objective problem. All
single- objective problems are optimized in a cooperative manner
towards different directions in the objective space along the weight
vectors. However such methods rely on multiple parameters (e.g.,
setup of the reference lines) which is not adequate for a decision
maker in an industrial context.

Second, Pareto dominance-based algorithms such as SPEA [29]
and NSGA-II [14], where the Pareto dominance relation among solu-
tions is used as the primary fitness evaluation criterion and a crowd-
ing distance to promote diversity. However, it was reported in many
studies [12, 21, 23] that the performance of Pareto dominance-based
severely degrades with the increase in the number of objectives.
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This is because almost all solutions become non-dominated with
each other in very early generations. As consequence, solutions are
not comparable with each other, the same fitness value is assigned
to all solutions by the Pareto dominance criterion. Thus, no strong
selection pressure is generated to push the population towards the
PF. Finally, Indicator-based algorithms, such as HV-based methods
[4], work well on many-objective problems. However, they have a
large computation load for calculating the HV contribution of each
solution.

Another problem with a number of MOEAs mentioned above
is that they are built upon the implicit assumption that the PF (or
its approximation) has an Euclidean geometry. For example, in
NSGA-III the reference points are generated using Das and Den-
nis’s systematic approach [9], which places points on a flat hyper-
surface. However, in many MOPs, the PF is convex (i.e., hyperbolic
geometry) or concave (i.e., spherical geometry). As consequence,
this impacts greatly the convergence and diversity of the obtained
solutions.

To overcome such limitations, a new MOEA has been proposed
recently, called AGE-MOEA [22] (Adaptive Geometry Estimation
based MOEA), for evolutionary multi and many-objective optimiza-
tion. The idea consists in fitting the geometry of the PF in order to
adapt diversity and convergence mechanisms on the Pareto Front
shape. AGE-MOA is the best in terms of convergence and diversity
of solutions on the Pareto Front. However, it has a very time con-
sumingmechanism to promote diversity (a high computational com-
plexity O(M𝑁 2 +𝑁 3)). This is due to the use of deterministic-based
diversity promoting mechanism that penalizes the performance of
the algorithm greatly.

The problem of data selection in a non-uniform distribution in
order to guarantee certain diversity has been widely discussed in
several data mining tasks. In particular, in clustering methods like k-
means, where it has been demonstrated that the quality of clustering
is extremely sensitive to initial centroids selection. To remedy to
this problem, there has been an extremely efficient and simple
algorithm for selecting data in a non-uniform distribution called
k-mean++ [2]. Augmenting k-means with this stochastic approach
(k-means++) has shown that the obtained initial set of centers is
provably competitive with the optimal solution. Consequently, the
obtained performance is O(log k)-competitive with the optimal
clustering.

For that, in this work, we propose AGE-MOEA++, a new Multi
and Many Objective Evolutionary Algorithm that: (1) incorporates
the principle of PF shape Fitting to enhance the convergence in
different shaped high dimensional objective spaces, and (2) adapts
K-means ++ fundamentals in order to best manage the diversity in
non-uniform distributed PF. Our contributions are the following:
(i) we formalize the problem of diversity maximization in MOP, (ii)
we propose a simple, parameter-less, Multi and Many Objective
Evolutionary Algorithm with a fast and simple stochastic diver-
sity mechanism (𝑂 (M𝑁 2)[3]), and (iii) we describe experiments
that show to which extent the proposal is able to balance between
convergence and diversity in different shaped and dimensional test
problems.

The remainder of the paper is organized as follows: Section 2
describesL𝑝 norms and their relationwith curvatures and shapes of

the hyper-surfaces. Section 3 details the proposed framework AGE-
MOEA++ while Section 4 describes the empirical study and results.
Finally, Section 5 concludes and opens future work perspectives.

2 PRELIMINARIES: L𝑝 NORMS AND
NON-EUCLIDEAN GEOMETRY

A norm on a real linear space X is a mapping ∥.∥ from X into R+
that satisfy the following axioms:

(i) ∥ ®𝑥 ∥ ≥ 0 with equality if and only if 𝑥 = 0,
(ii) ∥𝛼 ®𝑥 ∥ = |𝛼 |.∥ ®𝑥 ∥ (𝛼 ∈ R),
(iii) ∥ ®𝑥 + ®𝑦∥ ≤ ∥®𝑥 ∥ + ∥®𝑦∥
In an M-dimensional Euclidean space R𝑀 , the norm (the length)

of a vector ®𝜐 = (𝜐1, . . . , 𝜐𝑀 ) is defined by:

∥®𝜐∥2 = (𝜐21 + 𝜐
2
2 + · · · + 𝜐

2
𝑀 )

1/2 (3)

In the Euclidean geometry, the distance between two points 𝐴
and 𝐵 is the length (norm) of the straight line segment connecting
the two points, i.e., 𝑑 (𝐴, 𝐵) = ∥𝐴 − 𝐵∥2. However, it is a well
known fact that the higher the dimensionality of a space, the more
sparse the space is. Here, one of the concerns is that the Euclidean
distance loses its ability to depict spacing in high dimensions. As
a consequence, the Euclidean norm does not necessarily provide
the most accurate measure of the distance between two points in
a high dimensional space [25]. A generalization of the Euclidean
norm is the L𝑝 norm, given by:

∥®𝜐∥𝑝 = (𝜐𝑝1 + 𝜐
𝑝

2 + · · · + 𝜐
𝑝

𝑀
)1/𝑝 (4)

In fact, the set of points equidistant from a reference point (e.g.,
the origin of the axes) varies depending on the used L𝑝 norm.
The set of all points with a distance ∥ .∥𝑝 = 1 to the origin of
the axes forms a unit hyper-surface. The curvature of the hyper-
surface strictly depends on the value of the exponent 𝑝 . To better
understand this aspect, let us consider a bi-dimensional space. For
𝑝 = 1, the unit curve is flat and corresponds to the straight line
connecting the point (0,1) and (1,0). Therefore, all points that are
equidistant to the origin of the axes lie on that straight line. For
𝑝 > 1, the unit curve is concave and when 𝑝 = 2 it corresponds to
the unit circle, i.e., a circle with a radius equal to one. Instead, for
𝑝 < 1, the equidistant points lie on a hyperbolic curve. Therefore,
the value of p determines the curvature of the unit hyper-surface
associated with the norm.

In this work, we propose to adapt the norm used to evaluate the
distance between solutions and the Pareto front to converge more
efficiently towards optimal solutions.

3 PROPOSED ALGORITHM
With the aim of developing a tool that should be able to (i) converge
to solutions optimizing a large number of objectives simultaneously,
(ii) assist the Decision Maker (DM) in choosing the most suitable
configurations by providing a diverse set of solutions, and (iii) be
fast in order to obtain efficient solutions within a limited computa-
tional time budget.

The proposed framework, called AGE-MOEA++, inherits from
the computational fast and elitist framework NSGA-II, as illustrated
in Algorithm 1. It incorporates K-means++ initialization heuristic
in order to serve the DM with a well distributed and diverse set of
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solutions and uses the AGE-MOEA Pareto Front geometry estima-
tion technique to be adapted to different shapes of the Pareto Front.
The objective is to have an efficient management for both of the
diversity and convergence towards the Pareto Optimal Front.

Algorithm 1: AGE-MOEA++ Framework.
Input: Number of ObjectivesM, Size of the Population N;
Output: Final population P;

1 begin
2 P ←− Generate-Initial-Population(N);
3 while not (Stopping-Criterion) do
4 Q ←− Generate-Offspring(P);
5 P ←− P ∪ Q;
6 F ←− Evaluate(P);// with M objectives

7 P ←− Select-Survival(P, F, N);
8 end
9 return P;

10 end

A general description of the proposed framework is presented
in Section 3.1.

3.1 Overview

Algorithm 2: AGE-MOEA++ Selection Mecanism.
Input: Population P, Target population size N;
Output: Next generation population P𝑛𝑒𝑤 ;

1 begin
2 F←− Fast-Non-Dominated-Sort(P);
3 F←− Normalize(F);
4 𝑝 ←− Fit-P-Norm(F1);
5 P𝑛𝑒𝑤 ←− ∅;
6 Calculate-Survival-Score(F1, 𝑝 , 1);
7 𝑟 ←− 1;
8 while |P𝑛𝑒𝑤 | + |F𝑟 | ≤ N do
9 P𝑛𝑒𝑤 ←− P𝑛𝑒𝑤 ∪ F𝑟 ;

10 𝑟 ←− 𝑟 + 1;
11 Calculate-Survival-Score(F𝑟 , 𝑝 , 𝑟 );
12 end
13 Sort(F𝑟 );
14 P𝑛𝑒𝑤 ←− P𝑛𝑒𝑤 ∪ F𝑟 [1 : (N − |P𝑛𝑒𝑤 |) ];
15 return P𝑛𝑒𝑤 ;
16 end

As outlined in Algorithm 1, the framework starts with an initial
set ofN solutions (line 2 in Algorithm 1). This initial population of
solutions could be randomly generated or empty solutions. Then
an exploration mechanism is executed based on proper crossover
and mutation operators, depending on the problem, to produce new
offsprings (line 4). The offspring populationQ is therefore combined
with the current population P forming a new population P ∪ Q
of size 2 × 𝑁 (line 5). After that, an evaluation process is executed
to evaluate for each solution candidate the set of M objective
functions (line 6). Once the evaluation process is terminated, a
survival selection process is done to ensure that unfit solutions are

eliminated from the population and reduce it back toN individuals
(line 7). The steps 4-7 in Algorithm 1, are repeated until a stop
condition (e.g., number of generations) is satisfied.

The selection process, as shown in Algorithm 2, starts by divid-
ing the population into different levels of non-dominated fronts
using the fast-non-dominated sorting (NDS) algorithm [14] (line 2
Algorithm 2). Then, the non-dominated fronts are normalized (line
3) using the normalization procedure defined in Section 3.2. Once
the solutions are normalized, the first front F1 is used to estimate
the L𝑝 norm that best fits the geometry of approximated PF (line
4) (More details are described in Section 3.3).

The new population for the next generation is created in lines
5-14 of Algorithm 2. As long as the size of the new population
is not reached. Non-dominated Fronts’ individuals are assigned a
survival score based on the level of the non-dominated front and
the estimated 𝑝 norm. Survival score computation procedure is
defined in Algorithm 3.

Solutions from the best non-dominated levels are chosen front-
wise (lines 8-11). The goal of this step is to keep good performance
solutions (the most advanced solutions). This elitist strategy will
allow to converge faster towards the Pareto-optimal Front. However,
it is commonly the case that the last front could not be entirely
maintained to fit the size (N ) of the next generation population.
As a consequence, the remaining solutions are chosen according to
the descending order of their survival scores (lines 13-14).

We have to mention here that the survival score is computed
for the first non-dominated-fronts even though they are chosen
front wise. The idea behind is to use survival scores during the
reproduction process. In fact, parents are selected for reproduction
using the binary tournament selection mechanism: a pair of indi-
viduals is randomly selected from the population; the winner of the
tournament is the solution with the best non-dominated level or the
solution with the largest survival score and the smallest constraints
violation at the same level of non-dominated rank.

Details about the principle components of AGE-MOEA++ are
described in Sections 3.2, 3.3, and 3.4.

3.2 Normalization
Normalizing the objective space is an important step in multi-
objective optimization problems. In fact, objective functions may
have different scales, which leads to neglecting one or more objec-
tive functions. As a consequence, this impacts how diversity and
performance measures of solutions are compared when dominance
relations are not sufficient. For that, we suggest normalizing our
objective functions by applying the same formula used in [13] and
also used in AGE-MOEA:

𝑓𝑖 (𝑆) =
𝑓𝑖 (𝑆) − 𝐼𝑑𝑒𝑎𝑙𝑖

𝑎𝑖
,∀𝑆 ∈ F,∀𝑖 ∈ J1;𝑀K (5)

𝐼𝑑𝑒𝑎𝑙𝑖 = min
∀𝑆 ∈F1

𝑓𝑖 (𝑆),∀𝑖 ∈ J1;𝑀K (6)

[𝑧1, . . . , 𝑧𝑖 , . . . , 𝑧M ]𝑇 × [1/𝑎1, . . . , 1/𝑎𝑖 , . . . , 1/𝑎M ]𝑇 = 1M (7)

𝑧𝑖 = 𝑎𝑟𝑔max
𝑆 ∈F1
(𝑓𝑖 (𝑆) − 𝐼𝑑𝑒𝑎𝑙𝑖 ),∀𝑖 ∈ J1;𝑀K (8)
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Where 𝑓𝑖 (𝑆) denotes the objective 𝑓𝑖 for the solution 𝑆 and 𝐼𝑑𝑒𝑎𝑙𝑖
is 𝑖𝑡ℎ component of the ideal point. The ideal point represents
the minimum value of the 𝑖𝑡ℎ objective across all solutions in the
first front F1. The objectives are translated to have the ideal point
equals to the origin of the axes. Thereafter, aM-dimensional lin-
ear hyperplane 𝑍𝑚𝑎𝑥 is constructed based on the extreme points
(𝑧𝑖 , 𝑖 ∈ J1;𝑀K) in each objective axis of the first Front F1. The de-
nominator 𝑎𝑖 is the intercept of the M-dimensional hyperplane with
the objective axis 𝑓𝑖 , and it is obtained by solving the linear system
in equation (7). In case that the system is indefinite or leading to
abnormal normalization (e.g., 𝑎𝑖 = 0), the min-max normalization
is used (i.e., 𝑎𝑖 is replaced by 𝑧𝑖

𝑖
− 𝐼𝑑𝑒𝑎𝑙𝑖 ).

3.3 Geometry Fitting
To determine the norm L𝑝 such that the corresponding unit hyper-
surface best fits the geometry of normalized objectives, we need to
find the value of 𝑝 that makes all points in F1 equally distant to the
ideal point, which coincides with the origin of the axes ®0 after the
normalization.

The fitting process consists in solving the following system of
non-linear equations:

(𝑓1 (𝑆1)𝑝 + 𝑓2 (𝑆1)𝑝 + · · · + 𝑓𝑀 (𝑆1)𝑝 )
1
𝑝 = 1

(𝑓1 (𝑆2)𝑝 + 𝑓2 (𝑆2)𝑝 + · · · + 𝑓𝑀 (𝑆2)𝑝 )
1
𝑝 = 1

. . .

(𝑓1 (𝑆𝑞)𝑝 + 𝑓2 (𝑆𝑞)𝑝 + · · · + 𝑓𝑀 (𝑆𝑞)𝑝 )
1
𝑝 = 1

(9)

where 𝑞 is the number of points in the front F1.
Several numerical analysis methods have been proposed to re-

solve such systems of nonlinear equations (e.g., Newton’s iterative
method [16], Levenberg- Marquardt algorithm). However, such
methods are computationally expensive and not suitable for com-
puting the value of 𝑝 in each iteration with negligible overhead.

For that reason, we approximate the value of 𝑝 using the method
proposed in [22]. It consists in using the central point of the front F1
for which the corresponding L𝑝 exponential equation can be easily
computed with an exact method. Moreover, the overall complexity
of this method is 𝑂 (𝑀 × 𝑁 ), which makes it a fast procedure to
estimate the geometry of the non-dominated front and can be easily
incorporated in the cycle of evolutionary algorithms.

3.4 Survival Score
To select the best individuals that will participate in the next genera-
tion, a survival score based on proximity and diversity is calculated
as the following:

𝑆𝑐𝑜𝑟𝑒 (𝑆)𝑆 ∈F𝑟 =

{
𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑆) × 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑆), 𝑖 𝑓 𝑟 = 1
𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑆) Otherwise

(10)

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 (𝑆) = 1
∥ 𝑓 (𝑆)∥𝑝

(11)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑆) = min
𝑆,𝑇 ∈F1,𝑆≠𝑇

∥ 𝑓 (𝑆) − 𝑓 (𝑇 )∥𝑝 (12)

In fact, for each generic solution 𝑆 ∈ F𝑟 , the survival score is
defined based on the rank of its non-dominated front as illustrated

in equation (10). For solutions of the first non-dominated front F1,
the survival score is defined by the combination of the proximity
and the diversity scores. While for solutions of the other fronts,
the proximity score only is used. The idea behind is to enhance the
convergence to the optimal PF by increasing the chance of survival
of the most advanced solutions in the rest of the fronts.

For the proximity measure defined in (Eq. (11)), it is evaluated as
the inverse of the distance between the solution and the ideal point
(see Eq. (6)). The diversity of the solutions 𝑆 ∈ F𝑟 is computed as the
p-norm distance to the nearest adjacent solutions in the front F1.
Algorithm 3 details the procedure that assigns survival scores. The
survival scores for the first non-dominated front F1 are computed
in lines 2-21, while the score for the other non-dominated fronts
F𝑟 (𝑟 > 1) are computed in lines 21-26.

For what concerns F1, first, all extreme points are assigned the
maximum possible survival score (+∞) with the purpose to preserve
them in the next generation’s population (lines 3-4). This allows to
maintain the curvature of the PF during the process of convergence.
Then, two sets are initialized: (i) Ω containing all solutions yet to
score (line 5), and (ii) Ω keeps track of already scored solutions (line
6). After that, the proximity score for the solutions in Ω is computed
according to (Eq.11) (lines 7-9), and the pairwise L𝑝 distances
between all solutions in F1 are computed in lines 10-14. The survival
score is computed within the loop in lines 16-20. In each loop, the
method computes the diversity score for a random solution selected
based on a stochastic diversity mechanism inspired by K-means++
initialization heuristic (line 17). More details about the method are
described in Algorithm 4.

Finally, Survival scores for the solutions in (F𝑟 , 𝑟 > 1) are calcu-
lated as proximity scores (lines 27-30). Hence, solutions closer to
the hypersurface generated by L𝑝 have larger scores.

3.5 Diversity: Problem Formalization and
Stochastic Resolution

The problem of diversity promoting in MOP and MaOP, in which
the objective is to have a well distributed and a good dispersion of
solutions over the obtained PF, can be seen as an instance of the
NP-Hard Max-Min dispersion maximization problem [17]. In fact,
Max-Min dispersion maximization problem considers a set 𝑃 of 𝑛
elements, and a function 𝑑 that assigns a non-negative real number
𝑑 (𝑝, 𝑞) for each pair of elements 𝑝, 𝑞 ∈ 𝑃 . The objective is to find
a subset 𝐺 ⊆ 𝑃 such that the cost(G) = 𝑚𝑖𝑛{ 𝑑 (𝑝, 𝑞) | 𝑝, 𝑞 ∈ 𝐺}
is maximized [1]. As consequence, our sub-problem of diversity
promoting can be formulated as finding the subset Ω ⊆ Ω such
that:

Ω = argmax
𝐺⊆Ω

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝐺) (13)

with:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝐺) = 𝑚𝑖𝑛 | |𝑆𝑖 , 𝑆 𝑗 | |𝑝 ∀ 𝑆𝑖 , 𝑆 𝑗 ∈ 𝐺 (14)

To deal with such problems, we suggest to use the fast and simple
k-means++ initialization heuristic. The idea consists in building the
subset Ω incrementally by choosing random individuals with very
specific probabilities. Basically, each solution is selected with prob-
ability proportional to its contribution to the overall cost function.
Noticeably, we have to mention here that in the specific context of
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Algorithm 3: AGE-MOEA++ Survival Score Procedure.
Input: Pool of Non-Dominated-Front F𝑟 , Exponent 𝑝 of estimated

𝑛𝑜𝑟𝑚 , 𝑟 rank of the non-dominated-front;
1 begin
2 if r == 1 then
3 Γ←− Extreme-Points(F𝑟 );
4 Survival-Score[Γ]←− +∞;
5 Ω←− F𝑟 \Γ;
6 Ω←− Γ;
7 foreach S ∈ Ω do
8 Proximity[S]←− 1

| |𝑓 (𝑆 ) | |𝑝 ;

9 end
10 foreach 𝑆1 ∈ Ω do
11 foreach 𝑆2 ∈ Ω do
12 D[𝑆1, 𝑆2]←− | |𝑓 (𝑆1) − 𝑓 (𝑆2) | |𝑝 ;
13 end
14 end
15 W←− ∅;
16 while |Ω | > 0 do
17 W, 𝑆∗, Value, Ω, Ω←− Stochastic-Diversity(W, Ω, Ω,

D);
18 Diversity[𝑆∗]←− Value;
19 Survival-Score[𝑆∗]←− Diversity[𝑆∗] × Proximity[𝑆∗];
20 end
21 else
22 foreach 𝑆 ∈ F𝑟 do
23 Survival-Score[𝑆]←− 1

| |𝑓 (𝑆 ) | |𝑝 ;

24 end
25 end
26 end

MOEA, we need to score all the individuals of the population. As
a consequence, the problem could be reformulated as finding the
best selection order that maximizes the overall cost function.

For what concerns diversity score evaluation, Algorithm 4 details
the mechanism used to assign diversity score for each individual
(solution) of the initial population Ω. In fact, for the first individual,
a uniform probability (lines 2-6 of Algorithm 4) is used to choose a
point at random from Ω (line 7). After that, the procedure defines
its diversity score as the minimum L𝑝 distance with regards to the
solutions in Ω (line 9). Ω is the set of scored solutions seted initially
with extreme points. For the next individuals’ selection, we choose
a solution based on a probability proportional to its contribution to
the overall diversity by calculating the ratio between the diversity
gain for each solution and the sum of the gains (lines 11-13). Each
time, the diversity of a solution 𝑆 is computed with regards to solu-
tions that have already been selected (Ω) in the previous iterations
rather than considering all solutions in F1. As consequence, this
allows to well characterize the diversity of solutions.

4 EMPIRICAL STUDY
This section reports the conducted experiments to show the effec-
tiveness and validity of AGE-MOEA++ to solve multi and many
objective optimization problems based on different literature test
problems.

Algorithm 4: AGE-MOEA++ Stochastic Diversity Mecha-
nism.
Input: Points Sampling Probabilities𝑊 , Set of initial solutions Ω,

Set of selected solutions Ω, L𝑝 Pairwise distance 𝐷 ;
Output: Updated sampling probabilities weights W, Selected

solution 𝑆∗, Diversity value, Updated set of initial
solutions Ω, Updated set of selected solutions Ω;

1 begin
2 if𝑊 = ∅ then // Case Weights Not Initialized
3 foreach 𝑆 ∈ Ω do // Uniform Probability Weights
4 W[𝑆]←− 1

|Ω | ;
5 end
6 end
7 𝑆∗ ←− Random-Solution(Ω, W[Ω]);
8 Ω←− Ω\𝑆∗;
9 Diversity[𝑆∗]←− min D[𝑆∗, Ω];

10 Ω←− Ω ∪ {𝑆∗ };
11 foreach 𝑆 ∈ Ω do

12 W[𝑆]←−
min

𝑉 ∈Ω 𝐷 [𝑉 ,𝑆 ]∑
𝑇 ∈Ω min

𝑉 ∈Ω 𝐷 [𝑉 ,𝑇 ] ;

13 end
14 return𝑊 , 𝑆∗, Diversity, Ω, Ω;
15 end

In order to evaluate our approach, we answer the following
questions:

(1) How does AGE-MOEA++ balance between convergence
and diversity in multiobjective optimization context?
To investigate this, we propose experiments where state-
of-the-art methods NSGA-II [14], NSGA-III [13], MOEA/D
[28], AGE-MOEA [22] are compared to AGE-MOEA++ using
literature based multiobjective test problems.

(2) How does our approach scale in terms of the number
of objectives? To find out, we conduct experiments on high
dimensional objective spaces to assess the scalability of our
approach.

4.1 Experimentation Environment Settings

Table 1: Experiments shared parameters. n denotes number
of decision variables.

Parameters M = 3 M = 5 M = 10

Population Size [13] 91 210 275

Number of fitness evaluation [22] 27300 63000 82500

PF Evaluation (IGD, GD) Size 2016 4845 5005

Number of Generations 300

Polynomial Mutation Probability [22] 𝑝𝑚 = 1/𝑛

Mutation Distributed Index [22] 𝜂𝑚 = 20

SBX Probability [11] 𝑝𝑐 = 1

SBX Distributed Index [11] 𝜂𝑐 = 30



GECCO ’22, July 9–13, 2022, Boston, MA, USA Benali, et al.

We implemented AGE-MOEA++1 in Python using Pymoo [6].
Pymoo provides the source code for all benchmark problems as
well as the algorithms we use as baselines in our study. For all
MOEAs, we used the same parameter setting reported in the related
literature [13, 14, 22, 28]. Table 1 shows all parameters’ values for
the evaluatedMOEAs. For all the other parameters we use the values
suggested by their developers. To ensure a fair comparison, we use
the same population size, the same number of fitness evaluations,
and the same size of optimal PF for all algorithms in our study. In
particular, we set the population size N=91, 210, and 275 for the
number of objectives M=3, 5, and 10 respectively. The number of
fitness evaluations is set to 𝑁 × 300 iterations.

To assess the effectiveness of AGE-MOEA++ in Multi and Many-
Objective Problems (MaOPs) context, we considered DTLZ [15]
test benchmarks, with the number of objectivesM= 3, 5, and 10.
It contains several test problems with different properties, such as
concave (e.g., DTLZ2), convex (e.g., Convex DTLZ2), disconnected
(e.g., DTLZ7), and degenerate [19] (e.g., DTLZ5) PFs. Therefore,
such a suite is a good representation of various real-world scenarios.
Fig. 1 illustrates the curvature of some DTLZ test problems used in
our experiments.

For each test problem, we run each algorithm 30 times to account
for their non deterministic nature. In each independent run, we
collected the solutions produced by a given algorithm at the end of
the search and computed:
• The inverted generational distance (IGD) [7] to measure its
overall quality. In fact, the IGD measures the distance from
any point in optimal PF to the closest point in obtained PF.
As consequence, it provides a single scalar value measuring
both proximity and diversity of the obtained solutions.
• The GD performance indicator [26] to evaluate the conver-
gence of the algorithms because it measures the distance
from obtained solutions to the optimal PF. The smaller the
IGD and GD values, the better the performance of the algo-
rithm.

To evaluate the significance of the differences among the differ-
ent MOEAs, we use the Wilcoxon rank-sum test [8] with signifi-
cance level 𝛼 = 0.05. A significant p-value ( p-value < 𝛼) indicates
that an algorithm A achieves significant performance in terms of
indicator measures than another algorithm B across 30 runs for a
given test problem.

4.2 Empirical Results
In this subsection, we present and discuss the results of the compar-
ison between AGE-MOEA++ and the four MOEAs baselines. Table
2 and 3 summarize the number of benchmark problems for which
AGE-MOEA++ significantly outperforms a baseline MOEA and
vice versa based on the IGD and GD measures respectively. Table
4 provides the average (mean) and the standard deviation (shown
between parentheses) of the IGD achieved by each MOEA across
30 independent runs. The table also reports whether a baseline (e.g.,
MOEA/D) statistically outperforms (denoted with ↑), or is statisti-
cally equivalent (≈) to AGE-MOEA++ according to the Wilcoxon
rank-sum test. Each time, the best performance is highlighted in
blue color.
1The source codes are available at https://github.com/AdwLab/AGE-MOEA-plus-plus

(a) Concave DTLZ 2. (b) Linear DTLZ 1. (c) Convex DTLZ 2.

(d) Disconnected DTLZ 7. (e) Degenerate DTLZ 5.

Figure 1: Curvature of Used DTLZ test problems.

From Tables 2-3, AGE-MOEA++ performs significantly better
than AGE-MOEA in 14 out of 18 DTLZ test problems based on the
IGD and the GD measures. Table 4 illustrates that the IGD values
achieved by AGE-MOEA ++ are sometimes one order of magnitude
smaller than the IGD values achieved by AGE-MOEA. For exam-
ple, for Convex DTLZ 2 andM = 5, AGE-MOEA++ obtains an
average IGD value equal to 7.354e(-2) compared to an IGD value of
7.703e(-1) achieved by AGE-MOEA. On the other hand, AGE-MOEA
is statistically equivalent to AGE-MOEA++ in two test problems
(DTLZ3 and DTLZ7 withM = 3 ). For the 2 remaining tests, no
significant difference is observed. This is due to the fact that AGE-
MOEA++ stochastic method has the capacity to correct bad choices,
especially in the first EA generations, which gives it an advantage
over AGE-MOEA deterministic approach.

For what regards NSGA-II, we can notice that AGE-MOEA ++
outperforms NSGA-II in 13 out of 18 problems based on the IGD and
14 out of 18 problems based on the GDmeasure. For some problems,
the differences between the two MOEAs are above two orders of
magnitude. For example, for DTLZ2 test problem and M = 10
(Many Objective Problems), AGE-MOEA ++ obtains an average IGD
value equals to 6.156e(-1) compared to an IGD value of 1.25e(+1) for
NSGA-II. On the other side, NSGA-II performs significantly better
than AGE-MOEA ++ in one test problem: DTLZ 4 forM = 3. For
the remaining 3 test problems, there is no significant difference.
This confirms the result which shows that NSGA-II is not suitable
for many objective optimization problems.

From Tables 2-3, AGE-MOEA++ achieves significantly lower
(better) values than NSGA-III in 14 out of 18 problems based on IGD
indicator and 12 out of 18 based on the GD measure. In particular,
NSGA-III produces globally significantly higher (worst) IGD values
for the majority of test problems. The most significant difference is
observed for DTLZ 4 withM = 10 where AGE-MOEA++ obtains
an average IGD value equals to 4.913e(-1) while NSGA-III achieves
an IGD value of 1.71e(+0). This is owing to the fact that the method
used to generate reference lines is NSGA-III is not adaptable to the
shape of the PF.

Finally, from the comparison between AGE-MOEA++ and
MOEA/D, we can observe from Tables 2-3, the former significantly
outperforms the latter in the majority of test problems (13/18 based

https://github.com/AdwLab/AGE-MOEA-plus-plus
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on IGD and 11/18 based on the GD). The largest difference between
the two MOEAs is observed for the concave DTLZ 2 test problem
withM = 3. In this case, AGE-MOEA++ has an average IGD value
equals to 8.472e(-2) while MOEA/D has an IGD value of 7.397e(-1).
In particular, forM = 10, MOEA/D outperforms AGE-MOEA++
based on DTLZ1, DTLZ2, and DTLZ3 test problems. This is due to
the shape of these Pareto fronts (Continuous linear and concave PF)
which makes it advantageous through the use of reference lines.

Table 2: Number of DTLZ benchmarks [15] in which an algo-
rithmA (e.g., AGE-MOEA++) statistically outperforms (<) an-
other algorithm B (e.g., MOEA/D) according to the Wilcoxon
test (p-value ≤ 0.05) Based On the IGD measure.

Comparaison M = 3 M = 5 M = 10

AGE-MOEA++ < AGE-MOEA 5 5 4
AGE-MOEA < AGE-MOEA++ 0 0 0

AGE-MOEA++ < NSGA-III 5 5 4
NSGA-III < AGE-MOEA++ 0 0 0

AGE-MOEA++ < MOEA/D 7 4 2
MOEA/D < AGE-MOEA++ 0 0 3

AGE-MOEA++ < NSGA-II 4 5 4
NSGA-II < AGE-MOEA++ 1 0 0

5 CONCLUSION
In this paper, we propose a new MOEA, called AGE-MOEA++,
that inherits from the computational fast and elitist framework
NSGA-II, incorporates K-means++ initialization heuristic to obtain
distributed and diverse set of solutions while reducing the diver-
sity process complexity and uses the AGE-MOEA Pareto Front
geometry estimation technique to be adapted to different shapes of
the PF. Our solution shows better results than the state-of-the-art
approaches in terms of IGD and is competitive in terms of GD. As fu-
ture works, we aim to work on the integration of DM’s preferences
in terms of different subsets of the PF in order to build an efficient
optimization/recommendation system for different combinatorial
problems such as Advertising Campaigns Allocation Problem.

Table 3: Number of DTLZ benchmarks [15] in which an algo-
rithmA (e.g., AGE-MOEA++) statistically outperforms (<) an-
other algorithm B (e.g., MOEA/D) according to the Wilcoxon
test (p-value ≤ 0.05) Based On the GD measure.

Comparaison M = 3 M = 5 M = 10

AGE-MOEA++ < AGE-MOEA 5 5 4
AGE-MOEA < AGE-MOEA++ 0 0 0

AGE-MOEA++ < NSGA-III 4 4 4
NSGA-III < AGE-MOEA++ 0 1 0

AGE-MOEA++ < MOEA/D 8 2 1
MOEA/D < AGE-MOEA++ 0 3 4

AGE-MOEA++ < NSGA-II 5 5 4
NSGA-II < AGE-MOEA++ 1 0 0
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