
Co-evolutionary Probabilistic Structured Grammatical Evolution
Jessica Mégane

jessicac@dei.uc.pt

University of Coimbra

Coimbra, Portugal

Nuno Lourenço

naml@dei.uc.pt

University of Coimbra

Coimbra, Portugal

Penousal Machado

machado@dei.uc.pt

University of Coimbra

Coimbra, Portugal

ABSTRACT
This work proposes an extension to Structured Grammatical Evolu-

tion (SGE) called Co-evolutionary Probabilistic Structured Gram-

matical Evolution (Co-PSGE). In Co-PSGE each individual in the

population is composed by a grammar and a genotype, which is a

list of dynamic lists, each corresponding to a non-terminal of the

grammar containing real numbers that correspond to the proba-

bility of choosing a derivation rule. Each individual uses its own

grammar to map the genotype into a program. During the evolu-

tionary process, both the grammar and the genotype are subject to

variation operators.

The performance of the proposed approach is compared to 3

different methods, namely, Grammatical Evolution (GE), Proba-

bilistic Grammatical Evolution (PGE), and SGE on four different

benchmark problems. The results show the effectiveness of the

approach since Co-PSGE is able to outperform all the methods with

statistically significant differences in the majority of the problems.

CCS CONCEPTS
• Computing methodologies → Heuristic function construction.

KEYWORDS
probabilistic algorithms, grammar-based, Gaussian mutation, co-

evolution

ACM Reference Format:
JessicaMégane, Nuno Lourenço, and PenousalMachado. 2022. Co-evolutionary

Probabilistic Structured Grammatical Evolution. In Genetic and Evolutionary
Computation Conference (GECCO ’22), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.3528833

1 INTRODUCTION
Evolutionary Algorithms (EAs) is the name given to a set of stochas-

tic search procedures that are loosely inspired by the principles of

natural selection and genetics. These methods iteratively improve

a set of candidate solutions, usually referred to as the population,

guided by a fitness function. The improvement is obtained by select-

ing the most promising solutions (taking into account the objective

function), and applying some stochastic variations using opera-

tors similar to mutations and recombinations that take place in

biological reproduction. Individuals with higher fitness are more

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00

https://doi.org/10.1145/3512290.3528833

likely to survive and reproduce. The application of these elements

is repeated for several generations and it is expected that, over time,

the quality of individuals improves.

Grammars are used by many EAs to define the search space

and impose limitations on the solutions. The same syntax can be

represented by an infinite amount of grammars, so a good gram-

mar design may impact on the effectiveness of the optimization

by converging to better solutions faster. Context-Free Grammar

Genetic Programming (CFG-GP) [36] and Grammatical Evolution

(GE) [26, 33, 34] are the most popular grammar-based Genetic Pro-

gramming (GP) algorithms. Both these methods use grammars to

introduce syntactic constraints, but the way individuals are repre-

sented differs. Individuals in CFG-GP are derivation trees that start

with the axiom of the grammar. In GE, individuals have a genotype,

which is a vector of integers, that with the help of the Context-Free

Grammar (CFG), is used to expand a derivation rule to form the

solution (i.e., phenotype).

GE has grown in popularity over time, although it does have

some drawbacks, such as low locality and high redundancy [29, 30].

When several genotypes map to the same phenotype, a representa-

tion is said to have high redundancy. Locality has to do with how

variations in the genotype cause phenotypic alterations. The best

scenario, i.e. high locality, would be such that a small change in the

genotype would result in a small change in the phenotype. Because

of these two issues, exploitation is often changed by exploration, be-

having similarly as random search in some problems [35]. However,

some GE alternatives have developed in the literature that have

improved results by introducing differentmechanisms for represent-

ing individuals [11, 12, 14, 15, 19, 25, 31], population initialization

[6, 17, 20, 22, 32] and grammar design [1, 8, 21, 23, 24, 27].

In the literature it has been shown that adjusting the biases of the

grammar productions based on individuals in the population can

improve the results [12, 19], as can co-evolving the grammar with

the genetic code [27]. Due to the impact that grammars can have

on the quality and variability of the generated solutions, the goal

of this work was to create a method that evolves the probabilities

of the grammar, also introducing some randomness to prevent it

from converging to local optima solutions.

In this work we propose Co-evolutionary Probabilistic Struc-

tured Grammatical Evolution (Co-PSGE), an extension of Structured

Grammatical Evolution (SGE) [13, 15], in which each individual is

composed of its genotype and a grammar. SGE is a method that

besides presenting better performance than GE, it also overcomes

its issues, presenting high locality and low redundancy [16]. The

genotype of the Co-PSGE individuals is a set of lists, one for each

non-terminal of the grammar, and each element of the list cor-

responds to the probability of choosing a production rule of the

respective non-terminal. The grammar of each individual can be

991

https://orcid.org/0000-0001-6697-5423
https://orcid.org/0000-0002-2154-0642
https://orcid.org/0000-0002-6308-6484
https://doi.org/10.1145/3512290.3528833
https://doi.org/10.1145/3512290.3528833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3512290.3528833&domain=pdf&date_stamp=2022-07-08

GECCO ’22, July 9–13, 2022, Boston, MA, USA Jessica Mégane, Nuno Lourenço, and Penousal Machado

subject to variation operators, and at the end of each generation it

is used to update its phenotype.

The proposed method was compared with standard GE [26, 33,

34], Probabilistic Grammatical Evolution (PGE) [19] and SGE [13,

15] on four different benchmark problems [18]. Statistical tests show

that Co-PSGE is better than GE, outperforming it with significant

differences on all problems. PGE was outperformed in three of

the four problems analyzed, while SGE was outperformed in two

problems.

The remainder of this work is structured as follows: Section 2

presents the background necessary to understand the work pre-

sented, introducing GE as well as related work. Section 3 present

the proposed method, detailing the representation and mapping

method used. Section 4 details the experimentation framework used

and Section 5 the experimental results regarding performance. Sec-

tion 6 gathers the main conclusions and provides some insights

regarding future work.

2 GRAMMATICAL EVOLUTION
GE [26, 33, 34] is a grammar-based EA in which individuals are

represented as a list of integers. The elements of the list (i.e., codons)

aremapped creating the phenotype of the individual (i.e., solution to

the problem), using production rules defined by a CFG. A grammar

is a tuple 𝐺 = (𝑁𝑇,𝑇 , 𝑆, 𝑃) where 𝑁𝑇 and 𝑇 represent the non-

empty set of Non-Terminal (NT) and Terminal (T) symbols, 𝑆 is an

element of 𝑁𝑇 in which the derivation sequences start, called the

axiom, and 𝑃 is the set of production rules. The rules in 𝑃 are in the

form 𝐴 ::= 𝛼 , with 𝐴 ∈ 𝑁𝑇 and 𝛼 ∈ (𝑁𝑇 ∪𝑇)∗. The 𝑁𝑇 and 𝑇 sets

are disjoint. Each grammar defines a language 𝐿(𝐺) = {𝑤 : 𝑆
∗⇒

𝑤, 𝑤 ∈ 𝑇 ∗}, that is the set of all sequences of terminal symbols that

can be derived from the axiom. The symbol ∗ represents the unary
operator Kleene star.

The genotype of individuals is a list of integer values (i.e., codons)

randomly generated in the interval [0, 255]. The genotype-phenotype
mapping starts with the axiom of the grammar, and the expansion

is always made from the leftmost non-terminal. Each codon is

mapped into a production rule by applying the modulo operator

(𝑚𝑜𝑑) between the codon and the number of expansion options of

the non-terminal to expand.

<expr> ::=<expr><op><expr>

| <var>
<op> ::=+

| −
| ∗
| /

<var> ::= x

| y
| 1.0

Figure 1: Example of grammar.

An example of this process is shown in Fig. 2, using the example

of grammar presented in Fig. 1. The mapping begins with <expr>,

the grammar’s axiom, which has two expansion alternatives, and

the genotype’s first unused value, 54. Applying the mapping func-

tion, 54𝑚𝑜𝑑 (2) = 0, we obtain the index of the rule to be selected,

Genotype
[54, 7, 83, 237, 71, 123, 67, 142, 25, 195, 202, 153]

<expr> →<expr><op><expr> 54𝑚𝑜𝑑2 = 0

<expr><op><expr> →<var><op><expr> 7𝑚𝑜𝑑2 = 1

<var><op><expr> → 1.0<op><expr> 83𝑚𝑜𝑑3 = 2

1.0<op><expr> → 1.0 -<expr> 237𝑚𝑜𝑑4 = 1

1.0 -<expr> → 1.0 -<var> 71𝑚𝑜𝑑2 = 1

1.0 -<var> → 1.0 - x 123𝑚𝑜𝑑3 = 0

Phenotype: 1.0 − 𝑥

Figure 2: Example of the genotype-phenotype mapping of GE.

<expr><op><expr>. This process is performed until there are no

more non-terminal symbols to expand or there are no more integers

to read from the genotype. In this last case and if we still have non-

terminals to expand, a wrapping mechanism can be used, where

the genotype will be re-used until it generates a valid individual or

the predefined number of wraps is over. If after all the wraps we

still have not mapped all the non-terminals, the mapping process

stops, and the individual will be considered invalid. The phenotype

of each individual is evaluated with the fitness function and then

the population goes through the selection mechanisms.

2.1 Related Work
GE is one of the most used GP variants, and over the years it has

been subject of several improvements to address some of of its

main criticisms, namely the high redundancy and low locality. Both

properties are related to the impact of genetic operators on an indi-

vidual’s phenotype, with low locality referring to small genotype

changes that make big changes in the phenotype, while high redun-

dancy means that there are many genotypes corresponding to the

same phenotype. The majority of these proposed solutions include

changes to grammars [2, 8, 21, 23, 24, 27], individual representation

[11–13, 19, 25, 31], or population initialization [6, 17, 20, 22, 32].

SGE [13] is a recent proposal that tackles the locality and re-

dundancy issues of GE [15], at the same time achieving better

performance results [14]. In SGE the genotype is a set of dynamic

lists of ordered integers, with one list for each non-terminal of

the grammar. Each value in the list represents which production

rule to choose from the respective non-terminal. In [14] different

grammar-based GP approaches were compared, and the authors

showed that SGE achieved a good performance when compared

with several grammar-based GP representations.

Position Independent Grammatical Evolution (𝜋GE) [25] is a

method that introduces a different representation and mapping

mechanism, in which the order of expansion of the non-terminals

is determined by the genotype of the individual, removing the posi-

tional dependency that exists in GE. The genotype of the individuals

is composed of two values (nont, rule), where nont used to select

the next non-terminal to be expanded, and rule selects which rule

to derive from that non-terminal. This method proved to be better

than GE on several problems, showing statistical differences [7].

Chorus [31] is another method in which there is positional in-

dependence, with each gene specifically encoding one production

of the grammar. However, this approach has not been shown to be

better than the GE standard.

992

Co-evolutionary Probabilistic Structured Grammatical Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

The design of the grammars is another aspect that has had some

attraction for researchers, since they define the search space, and

so the choice of grammar can influence the speed of convergence to

the best solution [23]. Some studies have been conducted to analyze

the performance of GE with different types of grammars, such as

the use of recursively balanced grammars [8, 23] and the reduction

of non-terminal symbols [21, 23].

Harper et al. [8] showed that the grammar chosen at the begin-

ning of the evolutionary process can have a large impact on the

solutions, such as generating many invalid individuals when us-

ing recursive grammars. It has also been shown that there is more

variety in the size of solutions when using a balanced grammar.

Nicolau et al. [23] tested GE using different types of grammars,

which included, balanced grammars, grammars with corrected bi-

ases, and grammars with unlinked productions. The tests using

recursively balanced grammars, in which for every recursive pro-

duction there is a non-recursive one, showed improved results over

the original grammar. However it resulted in a larger number of

individuals consisting of a non-terminal symbol. Nicolau [21] pro-

posed a method to reduce the number of non-terminal symbols,

replacing them by their productions, which despite showing a slight

increase in performance, it has the disadvantage of generating very

complex grammars that are difficult to read.

Another line of study has been the evolution of grammar during

the evolutionary process [1, 11, 12, 19, 27].

Grammatical Evolution by Grammatical Evolution ((GE)
2
) [27]

is an approach in which there is co-evolution of grammar and

genetic code. The method uses two distinct grammars, the universal

grammar and the solution grammar. The universal grammar dictates

the structure of the solution grammar, that is used to map the

individuals. This method has shown to be effective in evolving

biases towards some non-terminal symbols. Later, was implemented

into a new algorithm, meta-Grammar Genetic Algorithm (mGGA)

[24], which obtained performance improvements.

Automatic Grammatical Evolution (AutoGE) [1] is a tool de-

signed to help define the structure of the grammar and fitness

function to be used by GE. This tool introduces a Production Rule

Pruning (PRP) algorithm, which assigns ranks to productions to de-

tect the least valuable ones. This strategy was tested on real-world

symbolic regression problems [2], and obtained significant perfor-

mance improvements in 3 of the 10 problems analyzed. Although

in all problems there were improvements in genotype size, these

were significant in 7 of the 10 problems.

PGE [19] is a recent variant of GE, in which a Probabilistic

Context-Free Grammar (PCFG) is used to map the individuals

and the genotype is a list of real numbers. A PCFG is a quintu-

ple 𝑃𝐺 = (𝑁𝑇,𝑇 , 𝑆, 𝑃, 𝑃𝑟𝑜𝑏𝑠) where NT and T represent the non-

empty set of Non-Terminal (NT) and Terminal (T) symbols, 𝑆 is an

element of 𝑁𝑇 called the axiom, 𝑃 is the set of production rules, and

𝑃𝑟𝑜𝑏𝑠 is a set of probabilities associated with each production rule.

The mapping is done from the leftmost non-terminal, and for each

non-terminal to be expanded, the rule whose probability interval

includes the codon is selected. At the end of each generation, the

PCFG probabilities are updated based on the expansion rules used

to create the best individual of the current generation alternating

with the best individual overall. PGE proved to be better than GE

with statistical differences in the two problems analysed.

Kim et al. [11] have proposed a Probabilistic Model Building

Grammatical Evolution (PMBGE) in which the mapping uses a

PCFG to the probabilistic technique Estimation Distribution Al-

gorithm (EDA), which also replaces the mutation and crossover

operators. This technique at each generation generates a new pop-

ulation from the new grammar, whose probabilities are generated

based on the frequency of the rules expanded by the best indi-

viduals. The proposed approach had a similar performance when

compared with GE. Later, Kim et al. [12] adapted Conditional De-

pendency Tree (CDT) to the mechanism of updating the grammar,

in which dependencies between production rules are considered.

This method outperformed GE with statistical differences in two of

the four problems analysed. The major distinction between these

two methods and PGE [19] is in the method of adjusting the proba-

bilities of the grammar over the evolutionary process and that PGE

considers the genetic operators while the two other methods uses

EDA.

The main difference between these two methods and PGE [19]

is in the mechanism of altering the grammar’s probability over the

evolutionary process, as well as the fact that PGE considers genetic

operators, whilst the other two methods employ EDA.

3 CO-EVOLUTIONARY PROBABILISTIC
STRUCTURED GRAMMATICAL EVOLUTION

In this paper we propose Co-PSGE
1
, an extension to SGE that adapts

its representation and mapping mechanism to use a PCFG, which,

like the individuals in the population, can be subject to variation

operators.

Each individual in the population is composed of a grammar

and its genotype, which is a set of dynamical lists, each list being

associated with a non-terminal of the grammar. Each list contains

an ordered sequence of real numbers, bounded to the interval [0,

1], that corresponds to the probability of selecting a derivation rule.

Each individual uses its own grammar to map the genotype into a

program. During the evolutionary process both the grammar and

the genotype are subject to variation operators. At the end of each

generation, the phenotype is updated using the new genotype and

its updated grammar.

At initialisation, a genotype is generated for each individual as

well as a PCFG. The grammar assigned to the individual at ini-

tialization has the same probability for each production rule of

each non-terminal. Individuals are initialized recursively, with a

codon generated randomly and added to the genotype list of the

non-terminal that is being expanded at each iteration (Alg. 1, lines

2-3). The genotype (which starts empty for each non-terminal), the

non-terminal symbol to expand (in the first iteration, the axiom

of the grammar), the current depth (which starts at 0), the max-

imum depth limit and the individual’s grammar are all given as

parameters to the algorithm. The function simulates the mapping

process, which will be described in detail further on (Alg. 1, line 4)

to determine which non-terminals should be expanded next. When

all non-terminals symbols have been expanded (i.e., only terminals

remain) the algorithm terminates with a valid individual.

1
The implementation of Co-PSGE is available at: https://github.com/jessicamegane/co-

psge

993

https://github.com/jessicamegane/co-psge
https://github.com/jessicamegane/co-psge

GECCO ’22, July 9–13, 2022, Boston, MA, USA Jessica Mégane, Nuno Lourenço, and Penousal Machado

Algorithm 1 Random Candidate Solution Generation of Co-PSGE

1: procedure createIndividual(genotype, symb, current_depth,

max_depth, pcfg)

2: codon = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

3: genotype[symb].append(codon)

4: selected_rule =𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(symb, codon, pcfg, cur-

rent_depth, max_depth)

5: expansion_symbols = pcfg[symb][selected_rule]

6: for sym in expansion_symbols do
7: if not 𝑖𝑠_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (sym) then
8: 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 (genotype, sym, current_depth + 1,

max_depth, pcfg)

9: end if
10: end for
11: end procedure

The genotype-phenotype mapping process is presented in Alg. 2.

The algorithm receives as arguments the genotype, a counter called

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠_𝑡𝑜_𝑚𝑎𝑝 (which is used to store the genotype position of

each non-terminal list at the current iteration, initialized with 0 for

each non-terminal), the symbol to expand (starts in the axiom), the

current depth, the maximum depth limit and the grammar. If, during

mapping, more codons are needed to create a valid individual, they

will be randomly generated and added to the genotype (Alg. 2,

lines 3-6). The dynamic genotype is one of the advantages of the

representation proposed by SGE [13]. With the depth limit, it is

possible to add productions whenever necessary, without the risk

of bloat (a considerable growth in the size of the solutions [5]),

always creating valid individuals.

Algorithm 2 Genotype-Phenotype Mapping Function of Co-PSGE

1: procedure mapping(genotype, positions_to_map, symb, depth,

max_depth, pcfg)

2: phenotype = ""

3: if positions_to_map[symb] >= 𝑙𝑒𝑛(genotype[symb]) then
4: codon = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

5: genotype[symb].append(codon)

6: end if
7: codon = genotype[symb][positions_to_map[symb]]

8: selected_rule =𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(symb, codon, pcfg, cur-

rent_depth, max_depth)

9: expansion = pcfg[symb][selected_rule]

10: positions_to_map[symb] += 1

11: for sym in expansion do
12: if 𝑖𝑠_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙(sym) then
13: phenotype += sym

14: else
15: phenotype += 𝑚𝑎𝑝𝑝𝑖𝑛𝑔(genotype, posi-

tions_to_map, sym, depth + 1, max_depth, pcfg)

16: end if
17: end for
18: return phenotype

19: end procedure

The process of choosing a derivation rule from a codon of the

genotype using a PCFG is similar to that proposed by PGE [19]

(Alg. 3, lines 15-21), except that there is a distinction when the

maximum depth limit is exceeded, in which only non-recursive pro-

ductions can be chosen (Alg. 3, lines 4-13). The function receives as

parameters the non-terminal symbol to be expanded, the codon, the

grammar, the current depth and the maximum depth established.

When the defined maximum tree depth limit is exceeded (Alg. 3,

lines 4-13), the algorithm considers only non-recursive rules, and

adjusts the probabilities of each of them, so that the sum is 1. To

accomplish this, we first sum the value of the current probabilities

of the non-recursive rules, which is used to perform the adjustment.

Using the new probabilities, the production rule is chosen with the

normal procedure: It is verified whether the codon belongs to the

probability range of each production rule of the non-terminal to be

expanded and when this condition is verified, the rule is chosen.

Algorithm 3 Co-PSGE function to select an expansion rule

1: procedure generate_expansion(symb, codon, pcfg, depth,

max_depth)

2: cum_prob = 0.0

3: if depth >= max_depth then
4: nr_prods = 𝑔𝑒𝑡_𝑛𝑜𝑛_𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒_𝑝𝑟𝑜𝑑𝑠(pcfg[symb])

5: total_nr_prods = 𝑠𝑢𝑚(nr_prods.𝑔𝑒𝑡𝑃𝑟𝑜𝑏())

6: for prod in non_recursive_prods do
7: new_prob = prod.𝑔𝑒𝑡𝑃𝑟𝑜𝑏() / total_nr_prods

8: cum_prob = cum_prob + new_prob

9: if codon ≤ cum_prob then
10: selected_rule = prod

11: break
12: end if
13: end for
14: else
15: for prod in pcfg[symb] do
16: cum_prob = cum_prob + prod.𝑔𝑒𝑡𝑃𝑟𝑜𝑏 ()
17: if codon ≤ cum_prob then
18: selected_rule = prod

19: break
20: end if
21: end for
22: end if
23: return selected_rule

24: end procedure

The mapping process in Co-PSGE is illustrated in Fig. 4, using

the PCFG shown on Fig. 3. The mapping begins with the grammar’s

axiom, <expr> and the first entry in the genotype’s respective

list, 0.29. The probabilities of the rules of the non-terminal are

compared to the value of the codon. In this scenario, we have two

equally probable possibilities. The non-terminal will be expanded

to <expr><op><exp> because 0.29 falls within the range of prob-

abilities of the initial production.

The next non-terminal to expand, according to the leftmost

derivation rule, is <expr>. The process is repeated, this time with

the codon 0.73, which corresponds to the second derivation rule,

<var>. This non-terminal is the next to be expanded, and it has

994

Co-evolutionary Probabilistic Structured Grammatical Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

three derivation rules. 0.41 is the first codon available in the list of

the non-terminal <var>. The codon falls within the range of the

second rule, 𝑦, when we look at the probabilities of the derivation

rules. The procedure is repeated until a valid individual is formed.

<expr> ::=<expr><op><expr> (0.5)
| <var> (0.5)

<op> ::=+ (0.25)
| − (0.25)
| ∗ (0.25)
| / (0.25)

<var> ::= x (0.33)
| y (0.33)
| 1.0 (0.33)

Figure 3: PCFG example.

Genotype

< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.29,0.73,0.52] [0.86] [0.41, 0.15]

<expr> →<expr><op><expr> (0.29)
<expr><op><expr> →<var><op><expr> (0.73)
<var><op><expr> → y<op><expr> (0.41)

y<op><expr> → y /<expr> (0.86)
y /<expr> → y /<var> (0.52)
y /<var> → y / x (0.15)
Phenotype: 𝑦/𝑥

Figure 4: Example of the genotype-phenotype mapping of Co-PSGE
with a PCFG.

At the end of each generation the PCFG of each individual is it-

self subject to variation through mutations on its probabilities. This

process is demonstrated in Alg. 4. The algorithm takes as parame-

ters the individual whose grammar is to be mutated, the probability

of mutation occurring (between 0 and 1) and the float correspond-

ing to the standard deviation to use in a normal destribution. The

mutation probability is used to check for each non-terminal pro-

duction rule whether mutation should occur (Alg. 4, line 5). When

a production is selected for mutation, a generated value is added to

it with a Gaussian distribution of mean 0 and the standard devia-

tion previously defined, keeping the new value in the range [0,1]

(Alg. 4, lines 6-8). Gaussian mutations have been widely used in

the literature and have showed to be a good approach to make

small changes in the search space [3, 4, 10]. In this method only

one mutation can occur per non-terminal, so after a production

is mutated, the probabilities of the remaining productions of the

respective non-terminal are updated until their sum equals 1, and

can only be changed again in the next generation (Alg. 4, line 9).

The grammar of the parent with the best fitness is passed on to the

offspring during crossover. The individual’s phenotype is updated

at the end of each generation using the new grammar and genotype.

Fig. 5 shows an example of the grammar of Fig. 3 after suffering

a mutation. Assuming that the non-terminal < 𝑒𝑥𝑝𝑟 > production

rule < 𝑣𝑎𝑟 > has been randomly selected to be mutated, and that

Algorithm 4 Co-PSGE algorithm to mutate PCFG’s probabilities.

1: procedure mutateGrammar(individual, prob_mutation,

sd_normal_dist)

2: 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 = 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 .𝑔𝑒𝑡𝐺𝑟𝑎𝑚𝑚𝑎𝑟 ()
3: for NT, prods in grammar do
4: for each production rule i of prods do
5: if 𝑟𝑎𝑛𝑑𝑜𝑚() < prob_mutation then
6: value = 𝑟𝑎𝑛𝑑𝑜𝑚_𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0, sd_normal_dist)

7: 𝑝𝑟𝑜𝑏𝑖 =𝑚𝑖𝑛(𝑝𝑟𝑜𝑏𝑖 + value, 1.0)

8: 𝑝𝑟𝑜𝑏𝑖 =𝑚𝑎𝑥 (𝑝𝑟𝑜𝑏𝑖 , 0.0)
9: adjust_probabilities(prods)
10: break
11: end if
12: end for
13: end for
14: end procedure

<expr> ::=<expr><op><expr> (0.73)
| <var> (0.27)

<op> ::=+ (0.25)
| − (0.25)
| ∗ (0.25)
| / (0.25)

<var> ::= x (0.45)
| y (0.27)
| 1.0 (0.27)

Figure 5: PCFG grammar after mutation.

the random number generator of a Gaussian distribution of mean 0

and standard deviation 0.50 (𝑁 (0, 0.50)) has generated the number

−0.23, the new probability of that production becomes 0.27 (0.50 −
0.23). The probability of the other production of the non-terminal

< 𝑒𝑥𝑝𝑟 > is adjusted to 0.73. As a maximum of one mutation can

occur in one production of each non-terminal, other mutations can

occur in other non-terminals, for example, if the production rule

𝑥 of the non-terminal < 𝑣𝑎𝑟 > suffers a mutation of +0.12, it will
have a value of 0.45, and the remaining outputs need to be adjusted,

having a probability of 0.27.

3.1 Variation Operators
Mutation and crossover are two genetic operators that can be used

to change individuals. The mutation operator modifies randomly

chosen codons. The codons are subjected to a Gaussian mutation,

with the resultant value falling within the range [0,1].

Fig. 6 shows an example of Gaussian mutation in an individual.

Assuming that randomly only the first codon in the list of the

non-terminal <var> was selected for mutation and that the value

generated with a Gaussian distribution of mean 0 and standard

deviation 0.50 (𝑁 (0, 0.50)) was 0.23, the codon will be changed to

0.64 (0.41 + 0.23).

The crossover operator is the same as the SGE’s and uses two

parents to generate the offspring. A binary mask of the size of the

number of lists of the genotype (the same number of non-terminals

995

GECCO ’22, July 9–13, 2022, Boston, MA, USA Jessica Mégane, Nuno Lourenço, and Penousal Machado

Genotype before mutation:
< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.29, 0.73, 0.52] [0.86] [0.41, 0.15]

Genotype after mutation:
< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.29, 0.73, 0.52] [0.86] [0.64, 0.15]

Figure 6: Example of Co-PSGE’s mutation on one codon of the geno-
type.

of the grammar) is randomly generated and the genotype of the

offspring is created according to the values of the mask.

Fig. 7 shows an example of a crossover between two individuals,

generating one offspring and the randomly generated mask for the

procedure. In the example shown, the descendant inherits the non-

terminal <expr> list from the second parent, and the remaining

ones from the first. In case two descendants are generated, the other

would get the opposite lists.

Parents genotype:
Parent 1:

< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.29, 0.73, 0.52] [0.86] [0.41, 0.15]

Parent 2:

< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.16,0.71,0.48] [0.23] [0.19,0.86,0.56]

Mask and offspring after crossover:
Mask:

< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

0 1 0

Offspring:

< 𝑒𝑥𝑝𝑟 > < 𝑜𝑝 > < 𝑣𝑎𝑟 >

[0.29, 0.73, 0.52] [0.23] [0.41, 0.15]

Figure 7: Example of Co-PSGE’s crossover between two individuals,
generating one offspring.

4 EXPERIMENTAL SETUP
The performance of Co-PSGE will be compared with the results of

GE [26, 33, 34], PGE [19] and SGE [13, 15], analyzing the evolution

of the mean best fitness in 100 independent runs. The framework

of Whigham et al. [35] is followed, and four problems of different

scopes are considered taking into account the recommendations of

McDermott et al. [18]. Table 1 presents the parameters used by all

the approaches.

Regarding theGE and PGE variation operators, one-point crossover

is used. The GE mutation replaces the selected codons with new

ones randomly generated on the interval [0, 255] and in the case of

PGE a float mutation is used in which the codons are replaced with

new ones generated on the interval [0, 1]. Neither of these methods

uses a wrap mechanism. Regarding the operators used by SGE and

Co-PSGE, these methods use the same crossover, which is the SGE

crossover [13]. The mutation operator, in the case of SGE, replaces

the selected codon with another valid option, that is, the index of

another production of the same non-terminal, and in the case of

Co-PSGE a Gaussian mutation is performed with N(0, 0.5) on the

value of the selected codon, keeping the new value in the range [0,

1].

Additionally, in PGE a learning factor of 1% was used, and in

Co-PSGE a 5% probability of a mutation occur in each non-terminal

of the grammar, with a random value drawn from a 𝑁 (0, 0.50).

Table 1: Parameters used in the experimental analysis for GE, PGE,
SGE and Co-PSGE.

GE PGE SGE Co-PSGE

Population Size 1000

Generations 50

Elitism Count 100

Mutation Rate 0.05

Crossover Rate 0.90

Tournament 3

Size of Genotype 128 -

Max Depth - 10

The fitness functions used to evaluate the individuals were de-

signed with the objective of minimizing the error. In the case of

Symbolic Regression and classification problems, the fitness is the

Root Relative Squared Error (RRSE) between the individual’s so-

lution and the target on a data set. For the Boolean functions, the

error is the number of incorrect predictions, and for the Path find-

ing problem, the fitness is the number of pieces remaining after

exceeding the step limit. All the problems are detailed bellow as

well as the grammars used.

4.1 Symbolic Regression
Popular benchmark problem for testing GP algorithms, with the

objective of finding the mathematical expression that best fits a

given dataset. The Pagie polynomial was selected as it is a chal-

lenging symbolic regression problem [28], that has the following

mathematical expression:

1

1 + 𝑥 [1]−4
+ 1

1 + 𝑥 [2]−4
. (1)

The function is sampled with x[1], x[2] ∈ [-5, 5] with a step of

0.4. The solutions are generated using the following grammar:

⟨start ⟩ ::= ⟨expr ⟩

⟨expr ⟩ ::= ⟨expr ⟩ ⟨op⟩ ⟨expr ⟩ | (⟨expr ⟩ ⟨op⟩ ⟨expr ⟩)
| ⟨pre_op⟩ (⟨expr ⟩) | ⟨var ⟩

⟨op⟩ ::= + | - | * | /

⟨pre_op⟩ ::= sin | cos | exp | log | inv

⟨var ⟩ ::= x[..] | 1.0

where 𝑖𝑛𝑣 = 1

𝑓 (𝑥) . The division and logarithm functions are

protected, i.e., 1/0 = 1 and 𝑙𝑜𝑔(𝑓 (𝑥)) = 0 𝑖 𝑓 𝑓 (𝑥) ≤ 0.

996

Co-evolutionary Probabilistic Structured Grammatical Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

4.2 Boston Housing
This is a famous Machine Learning problem to predict the prices of

Boston Houses. The dataset comes from the StatLib Library [9] and

has 506 entries, with 13 features. It was divided in 90% for training

and 10% for testing. The grammar used for the Boston Housing

regression problem is the same as the Symbolic Regression (Section

4.1).

4.3 5-bit Even Parity
The objective of this problem is to evolve a boolean function that

takes as input a binary string with length 5, and returns 0 if the

string is even or 1 if it is odd. Considering 𝑏0, 𝑏1, 𝑏2, 𝑏3, and 𝑏4 the

input bits, the following grammar is used:

⟨start ⟩ ::= ⟨B⟩

⟨B⟩ ::= ⟨B⟩ and ⟨B⟩ | ⟨B⟩ or ⟨B⟩
| not (⟨B⟩ and ⟨B⟩) | not (⟨B⟩ or ⟨B⟩)
| ⟨var ⟩

⟨var ⟩ ::= b0 | b1 | b2 | b3 | b4

4.4 11-bit Boolean Multiplexer
The aim of the 11-bit Multiplexer is to decode a 3-bit binary address

and return the value of the corresponding data register (𝑑0 to 𝑑7).

The function receives as input three addresses (𝑠0 to 𝑠2) and eight

data registers (𝑖0 to 𝑖7). For this problem we used:

⟨start ⟩ ::= ⟨B⟩

⟨B⟩ ::= ⟨B⟩ and ⟨B⟩ | ⟨B⟩ or ⟨B⟩ | not ⟨B⟩
| ⟨B⟩ if ⟨B⟩ else ⟨B⟩ | ⟨var ⟩

⟨var ⟩ ::= s0 | s1 | s2 | i0 | i1 | i3 | i4| i5 | i6 | i7

5 RESULTS
To be able to support our study and compare the different ap-

proaches, a statistical analysis was conducted. Since the populations

were independently initialized and the results do not meet the crite-

ria for the parametric tests, the Kruskal-Wallis non-parametric test

was employed to check for meaningful differences between the dif-

ferent methods. When this happened the Mann-Whitney post-hoc

test with Bonferroni correction was performed to verify in which

pairs the differences exist, with a level of significance of 𝛼 = 0.05.

Table 2 shows the statistical results, and values in bold indicate

that Co-PSGE outperforms the other approaches with statistical

differences.

Table 2: Results of the Mann-Whitney post-hoc statistical tests. The
Bonferroni correction is used considering a significance level of 𝛼 =
0.05. Values in bold mean that Co-PSGE is statistically better than
GE, PGE or SGE.

Problems GE PGE SGE

Pagie Polynomial 0.003 0.023 0.155

Boston Housing Train 0.000 0.000 0.223

Boston Housing Test 0.000 0.045 0.000
5-bit Even Parity 0.000 0.000 0.000
11-bit Multiplexer 0.000 0.000 0.000

Additionally, the effect size 𝑟 was calculated in order to deter-

mine how significant the differences are, and shown in Table 3.

The following notation was used: "~" was used when there are

no significant differences between samples, the "+" sign was used

when the effect size is small (𝑟 <= 0.3), "++" was used when the

effect size is medium (0.3 < 𝑟 <= 0.5), and "+++" was used when

the effect size is large (𝑟 > 0.5).

Table 3: Effect size between Co-PSGE and GE, PGE and SGE.

Problems GE PGE SGE

Pagie Polynomial + - ~
Boston Housing Train +++ ++ ~
Boston Housing Test +++ + ++

5-bit Even Parity +++ +++ +++

11-bit Multiplexer +++ +++ - - -

The evolution of the mean best fitness over the 50 generations

for the symbolic regression problem is represented in Fig. 8. In

this method PGE stands out by finishing with better fitness. These

results are in line with what was observed in the work of Mégane

et al. [19], in which PGE presented no statistical differences when

compared with SGE. We see that although they all start with ap-

proximately the same fitness, PGE takes a few generations to keep

up with the faster decrease of Co-PSGE and SGE, however, it out-

performs them after 20 and 30 generations, respectively. Co-PSGE

is significantly different from PGE on this problem, with a small

effect size. Comparing the performance of Co-PSGE with that of GE,

we see that Co-PSGE shows better results, presenting statistically

significant differences with a large effect size. Compared to SGE we

see that there are no significant differences between the methods.

Figure 8: Performance results for the Pagie polynomial. Results are
the mean best fitness of 100 runs.

The results in Fig. 9 show the evolution of mean best fitness for

the Boston Housing test data. For this problem we can see that the

best performing method is Co-PSGE, having a steeper decrease than

the other approaches. Looking at the statistical test results in Table

2 and effect size in Table 3, we can see that Co-PSGE is statistically

better than all methods, showing a large effect size relative to GE,

a small effect size relative to PGE, and a medium effect size relative

to SGE. The training data is interesting to analyze, since in training

SGE and Co-PSGE do not show significant differences, however in

997

GECCO ’22, July 9–13, 2022, Boston, MA, USA Jessica Mégane, Nuno Lourenço, and Penousal Machado

Figure 9: Testing results for the Boston Boston Housing problem.
Results are the mean best fitness of 100 runs.

Figure 10: Performance results for the 5-Bit Even Parity problem.
Results are the mean best fitness of 100 runs.

testing they do exist with a medium effect size, which shows that

Co-PSGE creates a more generalized model for the unseen data.

Looking at the results in Fig. 10 for the 5-bit parity problem, we

observe that SGE and Co-PSGE start the evolutionary process with

better average fitness when compared to GE and PGE. However, the

decrease slope of Co-PSGE is much steeper, distancing itself quickly

from the curve of SGE, and in a few generations it manages to reach

a better error more than twice as much as the other approaches.

Co-PSGE shows significant differences from all methods, with a

large effect size. Analyzing the performance of GE and PGE, we

see that PGE has a more pronounced decrease, however in the

analyzed generations it does not reach the behavior of SGE. An

analysis was performed on the average probability of the grammars

of the best individuals in each generation of all the runs, and we

observed that the probability of the NOR production rule ends with

probability greater than 90%. Since this is a universal gate, through

it we can reach the remaining productions and consequently the

best solution.

The results for the 11-bit multiplexer are shown in Fig. 11. We

see that GE and PGE start with worse fitness compared to SGE and

Co-PSGE, and maintain throughout the evolutionary process, with

Co-PSGE showing statistically significant differences with a large

Figure 11: Performance results for the 11-bit Boolean Multiplexer
problem. Results are the mean best fitness of 100 runs.

effect size for both methods. Although they start with the same

fitness, SGE has a larger decrement, which makes it statistically

different on this problem compared to Co-PSGE.

6 CONCLUSION
In this paper we proposed Co-PSGE, a method that adapts the

representation and mapping of SGE by assigning each individual a

grammar that, like the individual, is subjected to variation operators.

The genotype is a list of dynamic lists, each of which corresponds to

a non-terminal of the grammar and contains real numbers, which

correspond to the probability of choosing a derivation rule.

The proposed method was compared with standard GE, PGE and

SGE on four different benchmark problems. Statistical tests showed

that Co-PSGE is better than GE, outperforming it with significant

differences on all problems. PGE was outperformed in three of

the four problems analyzed, while SGE was outperformed in two

problems. The co-evolution of the grammar with the genotype of

the individuals allowed guiding the evolutionary process to better

solutions faster, as shown by the performance analysis, supporting

the work presented by O’Neill et al. [27]. Further experimentation

will be necessary to gain more insight into the advantages of the

proposed method.

As future work it will be interesting to study different metrics,

such as locality and redundancy of Co-PSGE, in order to be able

to analyze the impact that mutated grammars have on the repre-

sentation of individuals and compare it with the results of GE and

SGE. Another line of work will be to analyze the evolution of the

grammars by initializing them with different probabilities for each

individual, but also test different grammars, following the work

of Nicolau et al. [23]. It would also be interesting to test problems

from different scopes, including multi-optimization problems.

ACKNOWLEDGMENTS
This work is funded by national funds through the FCT - Foun-

dation for Science and Technology, I.P., within the scope of the

project CISUC - UID/CEC/00326/2020 and within the scope of the

project A4A: Audiology for All (CENTRO-01-0247-FEDER-047083)

financed by the Operational Program for Competitiveness and In-

ternationalisation of PORTUGAL 2020.

998

Co-evolutionary Probabilistic Structured Grammatical Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] M. S. Ali, M. Kshirsagar, E. Naredo, and C. Ryan. 2021. AutoGE: A Tool for

Estimation of Grammatical Evolution Models.. In ICAART (2). 1274–1281.
[2] M. S. Ali, M. Kshirsagar, E. Naredo, and C. Ryan. 2021. Towards Automatic

Grammatical Evolution for Real-world Symbolic Regression. (2021).

[3] H. Beyer and H. Schwefel. 2004. Evolution strategies – A comprehensive intro-

duction. Natural Computing 1 (2004), 3–52.

[4] T. Bäck, G. Rudolph, and H. Schwefel. 1997. Evolutionary Programming and

Evolution Strategies: Similarities and Differences. In In Proceedings of the Second
Annual Conference on Evolutionary Programming. 11–22.

[5] A. E. Eiben and J. E. Smith. 2015. What Is an Evolutionary Algorithm? In Natural
Computing Series. Springer Berlin Heidelberg, 25–48. https://doi.org/10.1007/978-

3-662-44874-8_3

[6] D. Fagan, M. Fenton, and M. O'Neill. 2016. Exploring position independent

initialisation in grammatical evolution. In 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 5060–5067. https://doi.org/10.1109/cec.2016.7748331

[7] D. Fagan, M. O’Neill, E. Galván-López, A. Brabazon, and S. McGarraghy. 2010.

An Analysis of Genotype-Phenotype Maps in Grammatical Evolution. In Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 62–73. https://doi.org/10.

1007/978-3-642-12148-7_6

[8] R. Harper. 2010. GE, explosive grammars and the lasting legacy of bad initiali-

sation. In IEEE Congress on Evolutionary Computation. IEEE. https://doi.org/10.

1109/cec.2010.5586336

[9] D. Harrison and D. Rubinfeld. 1993. Boston Housing Data. http://lib.stat.cmu.

edu/datasets/boston. [Online; accessed 27-December-2020].

[10] R. Hinterding. 1995. Gaussian mutation and self-adaption for numeric genetic

algorithms. In Proceedings of 1995 IEEE International Conference on Evolutionary
Computation, Vol. 1. 384–. https://doi.org/10.1109/ICEC.1995.489178

[11] H. Kim and C.W. Ahn. 2015. ANewGrammatical Evolution Based on Probabilistic

Context-free Grammar. In Proceedings in Adaptation, Learning and Optimization.
Springer International Publishing, 1–12. https://doi.org/10.1007/978-3-319-

13356-0_1

[12] H. Kim, H. Kang, and C. W. Ahn. 2016. A Conditional Dependency Based Proba-

bilistic Model Building Grammatical Evolution. IEICE Transactions on Informa-
tion and Systems E99.D, 7 (2016), 1937–1940. https://doi.org/10.1587/transinf.

2016edl8004

[13] N. Lourenço, F. Assunção, F. B. Pereira, E. Costa, and P. Machado. 2018. Structured

Grammatical Evolution: A Dynamic Approach. In Handbook of Grammatical
Evolution. Springer International Publishing, 137–161. https://doi.org/10.1007/

978-3-319-78717-6_6

[14] N. Lourenço, J. Ferrer, F. B. Pereira, and E. Costa. 2017. A Comparative Study

of Different Grammar-Based Genetic Programming Approaches. In Lecture
Notes in Computer Science. Springer International Publishing, 311–325. https:

//doi.org/10.1007/978-3-319-55696-3_20

[15] N. Lourenço, F. B. Pereira, and E. Costa. 2016. SGE: A Structured Representa-

tion for Grammatical Evolution. In Lecture Notes in Computer Science. Springer
International Publishing, 136–148. https://doi.org/10.1007/978-3-319-31471-6_11

[16] N. Lourenço, F. B. Pereira, and E. Costa. 2016. Unveiling the properties of struc-

tured grammatical evolution. Genetic Programming and Evolvable Machines 17, 3
(Feb. 2016), 251–289. https://doi.org/10.1007/s10710-015-9262-4

[17] S. Luke. 2000. Two fast tree-creation algorithms for genetic programming. IEEE
Transactions on Evolutionary Computation 4, 3 (2000), 274–283. https://doi.org/

10.1109/4235.873237

[18] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W.

Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U. O’Reilly. 2012. Genetic

Programming Needs Better Benchmarks. In Proceedings of the 14th Annual Con-
ference on Genetic and Evolutionary Computation (Philadelphia, Pennsylvania,

USA) (GECCO ’12). Association for Computing Machinery, New York, NY, USA,

791–798. https://doi.org/10.1145/2330163.2330273

[19] J. Mégane, N. Lourenço, and P. Machado. 2021. Probabilistic Grammatical Evolu-

tion. In Genetic Programming, Ting Hu, Nuno Lourenço, and Eric Medvet (Eds.).

Springer International Publishing, Cham, 198–213.

[20] E. Murphy, E. Hemberg, M. Nicolau, M. O’Neill, and A. Brabazon. 2012. Grammar

Bias and Initialisation in Grammar Based Genetic Programming. In Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 85–96. https://doi.org/10.1007/

978-3-642-29139-5_8

[21] M. Nicolau. 2004. Automatic Grammar Complexity Reduction in Grammatical

Evolution. (2004).

[22] M. Nicolau. 2017. Understanding grammatical evolution: initialisation. Genetic
Programming and Evolvable Machines 18, 4 (July 2017), 467–507. https://doi.org/

10.1007/s10710-017-9309-9

[23] M. Nicolau and A. Agapitos. 2018. Understanding Grammatical Evolution: Gram-

mar Design. In Handbook of Grammatical Evolution. Springer International
Publishing, 23–53. https://doi.org/10.1007/978-3-319-78717-6_2

[24] M. O’Neill and A. Brabazon. 2005. mGGA: Themeta-Grammar Genetic Algorithm.

In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 311–320. https:

//doi.org/10.1007/978-3-540-31989-4_28

[25] M. O’Neill, A. Brabazon, M. Nicolau, S. McGarraghy, and P. Keenan. 2004.

πGrammatical Evolution. In Genetic and Evolutionary Computation – GECCO
2004. Springer Berlin Heidelberg, 617–629. https://doi.org/10.1007/978-3-540-

24855-2_70

[26] M. O’Neill and C. Ryan. 2003. Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Springer US. https://doi.org/10.1007/978-
1-4615-0447-4

[27] M. O’Neill and C. Ryan. 2004. Grammatical Evolution by Grammatical Evolution:

The Evolution of Grammar and Genetic Code. In Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 138–149. https://doi.org/10.1007/978-3-540-

24650-3_13

[28] L. Pagie and P. Hogeweg. 1997. Evolutionary Consequences of Coevolv-

ing Targets. Evolutionary Computation 5, 4 (12 1997), 401–418. https:

//doi.org/10.1162/evco.1997.5.4.401 arXiv:https://direct.mit.edu/evco/article-

pdf/5/4/401/1366039/evco.1997.5.4.401.pdf

[29] F. Rothlauf and D. E. Goldberg. 2003. Redundant Representations in Evolutionary

Computation. Evolutionary Computation 11, 4 (Dec. 2003), 381–415. https:

//doi.org/10.1162/106365603322519288

[30] F. Rothlauf and M. Oetzel. 2006. On the Locality of Grammatical Evolution. In

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 320–330. https:

//doi.org/10.1007/11729976_29

[31] C. Ryan, A. Azad, A. Sheahan, and M. O’Neill. 2002. No Coercion and No Prohi-

bition, a Position Independent Encoding Scheme for Evolutionary Algorithms

– The Chorus System. In Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 131–141. https://doi.org/10.1007/3-540-45984-7_13

[32] C. Ryan and R. M. A. Azad. 2003. Sensible Initialisation in Grammatical Evolution.

In GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and
Evolutionary Computation Conference, Alwyn M. Barry (Ed.). AAAI, Chigaco,

142–145.

[33] C. Ryan, J.J. Collins, and M. O Neill. 1998. Grammatical evolution: Evolving

programs for an arbitrary language. In Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 83–96. https://doi.org/10.1007/bfb0055930

[34] C. Ryan, M. O'Neill, and J.J. Collins (Eds.). 2018. Handbook of Grammatical
Evolution. Springer International Publishing. https://doi.org/10.1007/978-3-319-

78717-6

[35] P. A. Whigham, G. Dick, J. Maclaurin, and C. A. Owen. 2015. Examining the "Best

of Both Worlds" of Grammatical Evolution. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation (Madrid, Spain) (GECCO
’15). Association for Computing Machinery, New York, NY, USA, 1111–1118.

https://doi.org/10.1145/2739480.2754784

[36] P. A. Whigham and Department Of Computer Science. 1995. Grammatically-

based Genetic Programming.

999

https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1007/978-3-662-44874-8_3
https://doi.org/10.1109/cec.2016.7748331
https://doi.org/10.1007/978-3-642-12148-7_6
https://doi.org/10.1007/978-3-642-12148-7_6
https://doi.org/10.1109/cec.2010.5586336
https://doi.org/10.1109/cec.2010.5586336
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
https://doi.org/10.1109/ICEC.1995.489178
https://doi.org/10.1007/978-3-319-13356-0_1
https://doi.org/10.1007/978-3-319-13356-0_1
https://doi.org/10.1587/transinf.2016edl8004
https://doi.org/10.1587/transinf.2016edl8004
https://doi.org/10.1007/978-3-319-78717-6_6
https://doi.org/10.1007/978-3-319-78717-6_6
https://doi.org/10.1007/978-3-319-55696-3_20
https://doi.org/10.1007/978-3-319-55696-3_20
https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/s10710-015-9262-4
https://doi.org/10.1109/4235.873237
https://doi.org/10.1109/4235.873237
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1007/978-3-642-29139-5_8
https://doi.org/10.1007/978-3-642-29139-5_8
https://doi.org/10.1007/s10710-017-9309-9
https://doi.org/10.1007/s10710-017-9309-9
https://doi.org/10.1007/978-3-319-78717-6_2
https://doi.org/10.1007/978-3-540-31989-4_28
https://doi.org/10.1007/978-3-540-31989-4_28
https://doi.org/10.1007/978-3-540-24855-2_70
https://doi.org/10.1007/978-3-540-24855-2_70
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-1-4615-0447-4
https://doi.org/10.1007/978-3-540-24650-3_13
https://doi.org/10.1007/978-3-540-24650-3_13
https://doi.org/10.1162/evco.1997.5.4.401
https://doi.org/10.1162/evco.1997.5.4.401
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/5/4/401/1366039/evco.1997.5.4.401.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/5/4/401/1366039/evco.1997.5.4.401.pdf
https://doi.org/10.1162/106365603322519288
https://doi.org/10.1162/106365603322519288
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/3-540-45984-7_13
https://doi.org/10.1007/bfb0055930
https://doi.org/10.1007/978-3-319-78717-6
https://doi.org/10.1007/978-3-319-78717-6
https://doi.org/10.1145/2739480.2754784

	Abstract
	1 Introduction
	2 Grammatical Evolution
	2.1 Related Work

	3 Co-Evolutionary Probabilistic Structured Grammatical Evolution
	3.1 Variation Operators

	4 Experimental Setup
	4.1 Symbolic Regression
	4.2 Boston Housing
	4.3 5-bit Even Parity
	4.4 11-bit Boolean Multiplexer

	5 Results
	6 Conclusion
	Acknowledgments
	References

