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ABSTRACT

Video captioning aims to understand the spatio-temporal semantic
concept of the video and generate descriptive sentences. The de-
facto approach to this task dictates a text generator to learn from
offline-extracted motion or appearance features from pre-trained vi-
sion models. However, these methods may suffer from the so-called
"couple” drawbacks on both video spatio-temporal representation
and sentence generation. For the former, "couple” means learning
spatio-temporal representation in a single model(3DCNN), resulting
the problems named disconnection in task/pre-train domain and hard
for end-to-end training. As for the latter, "couple” means treating
the generation of visual semantic and syntax-related words equally.
To this end, we present D? - a dual-level decoupled transformer
pipeline to solve the above drawbacks: (i) for video spatio-temporal
representation, we decouple the process of it into "first-spatial-
then-temporal” paradigm, releasing the potential of using dedicated
model(e.g. image-text pre-training) to connect the pre-training and
downstream tasks, and makes the entire model end-to-end train-
able. (ii) for sentence generation, we propose Syntax-Aware Decoder
to dynamically measure the contribution of visual semantic and
syntax-related words. Extensive experiments on three widely-used
benchmarks (MSVD, MSR-VTT and VATEX) have shown great po-
tential of the proposed 9? and surpassed the previous methods by
a large margin in the task of video captioning.

1 INTRODUCTION

Video captioning, which aims to understand spatio-temporal relation
inside the video and describe it with natural language sentences, is
a fundamental research task for multi-modal video-and-language
understanding. It becomes an emerging requirement with the rapid
emergence of videos in our lives. To generate good captions for
videos, it involves not only the understanding of spatio-temporal
semantics in videos but also expressing these factors into a natu-
ral language. Existing works [1, 46-48] mainly adopt a two-stage
framework for video captioning: firstly extracting visual representa-
tion of the video using offline feature extractor (3}DCNN and object
detector), and then decode natural sentences based on these fixed
features (Fig 1 (top)).

Despite being reasonable, these methods still suffer from the so-
called "couple” drawbacks on both video spatio-temporal represen-
tation and sentence generation process. For video spatio-temporal
representation, "couple” means that the learning process of spatio-
temporal semantic is restricted in a single model(Fig 1), i.e., 3D CNN,
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Figure 1: Top: The 3D-CNN or the 2D variant with complex
temporal fusion block , along with an detection module to
focus on the interested objects, in conventional two-stage
video captioning model is generally infeasible for end-to-
end finetuning due to the memory constraint on long video.
Bottom: The proposed D? model overcomes this limit with
the unified attention modules to align the language informa-
tion and the decoupled spatial and temporal features which
are represented by the residual coding. Benefiting from the
modularized design, we can instantiate each block with ded-
icated pre-trained model and jointly optimize the entire sys-
tem. Please refer to Fig 2 for the detailed design.

which brings two main limitations: (i) disconnection in task/pre-
train domain: offline feature extractors are often trained on tasks
and domains different from the target tasks. For example, 3D CNN
is generally trained from pure video data without any textual input
on action recognition task, while being applied to video captioning.
Large-scale video-text pre-training offers a way to mitigate this
issue. However, compared with its image counterpart, the collection
of the video-text dataset is much more complex and its noise is also
much larger [26]. This makes the video-text pre-trained models are
difficult to play a big role in the video captioning tasks. Besides,
convolutional kernels are specifically designed to capture short-
range spatio-temporal information, they cannot model long-range



dependencies that extend beyond the receptive field. (ii): end-to-
end training: due to the memory and computation limitation, it is
also infeasible to directly plug these feature extractors into a video
captioning framework for end-to-end fine-tuning, causing the dis-
connection between pre-trained feature and downstream tasks;
For sentences generation, "couple” means that existing decoding
methods pay equal attention to visual semantic("woman" in Fig 1)
and syntax-related words("are” in Fig 1) during the whole sentence
generation process, making the generation process unreasonable.

To tackle the above drawbacks, we propose D?, a dual-level de-
coupled pure transformer pipeline for end-to-end video captioning.
In terms of video spatio-temporal representation, we decouple the
learning process into "first-spatial-then-temporal” paradigm. tech-
nically, we firstly use a 2D vision transformer to generate a spatial
representation for each frame, then, we propose a Residual-Aware
Temporal Block(RATB) to build the temporal relationship between
each frame. This brings us two main advantages over the two limi-
tations mentioned above: (i): compared to the video-text dataset,
image-text dataset is easy to access, releasing the potential of apply-
ing image-text pre-training to our 2D vision transformer, which is
more suitable to multimodal tasks like video captioning. (i) due to
the lightweight nature of the 2D model (as opposed to 3D CNN), we
can easily perform end-to-end training, building the connection be-
tween pre-trained feature and downstream video captioning tasks.
In terms of sentence generation, we decouple the generation process
of visual semantic and syntax-related words. Concretely, using the
syntactic prior provided by the pre-trained language model, our
Syntax-Aware Decoder(SAD) dynamically measures the contribution
of visual features and syntactic prior information for the generation
of each word, facilitating a more reasonable and fine-grained video
captioning generation.

Experimentally, we conduct a series of ablation studies on differ-
ent modules for decouple spatio-temporal representation learning,
as well as modules for decoupling visual semantic and syntax-related
words generation, gaining insights on the performance of our novel
decouple pipeline in video captioning task. Our D?, when tested
on the three benchmarks(MSRVTT, MSVD and VATEX), outper-
forms existing methods on all metrics by a large margin. Our main
contributions are summarized as follows.

e We propose D?, a novel transformer pipeline, which de-
couple the process of video spatio-temporal representation
learning and sentence generation. For video spatio-temporal
representation learning, our pipeline decouple the previous
offline spatio-temporal representation learning into "first
spatial then temporal” paradigm, addressing the problems
of disconnection in task/pre-train domain and end-to-end train-
ing.

e For caption generation, our model decouples the generation
of visual semantic and syntax-related words, adaptively mea-
suring its contribution, resulting in a more reasonable and
fine-grained video captioning generation process.

e We show that D? surpasses all previous methods for video
captioning, achieving a new state-of-the-art on MSVD, MSR-
VTT and VATEX benchmarks.

2 RELATED WORK

2.1 Image and Video Representation Learning
With Transformer

Inspired by the development of natural language processing, the
proposed ViT [12] firstly introduces transformer into image classi-
fication and achieves surprising performance. This motivates many
researchers to conduct a more in-depth study of the transformer as
the backbone network. Different from CNNs, transformers are not
limited by the receptive field and can obtain more comprehensive
contextual information. Meanwhile, due to the characteristics of
the attention mechanism to dynamically generate attention coeffi-
cients for different instances, the expressive ability of transformers
is also stronger. Considering the above advantages, researchers are
increasingly applying transformers to extract feature representa-
tions, both in the field of images and videos. For the image domain,
multi-scale features [24, 39, 44] are expanded by introducing pyra-
mid structure into the transformer, allowing the transformer-based
backbone to better adapt to the downstream vision tasks. Several
work [9, 24, 45] also focuses on the balance between attention span
and computational overhead by adding local windows or filtering
high-value patches.

When considering the video domain, timing information should
be added. TimeSformer [4] studies five different variants of space-
time attention and suggests a factorized space-time attention for
its strong speed-accuracy trade-off. ViViT [2] examines four factor-
ized designs of spatial and temporal attention for the pre-trained
ViT model. Similar to our work, they adopt divided attentions on
spatial and temporal with two-path transformer models. However,
they focus on patch-level attention for video action recognition.
We mainly investigate frame-level spatio-temporal semantic repre-
sentation for video captioning tasks. Video Swin-Transformer [25]
designs a video recognition framework by transferring the thought
of swin-transformer from space domain to space-time domain. Al-
though this method has achieved certain results, the design of 3D
local window still makes the overall framework complex.

The training of backbone networks often needs to be driven by
a large amount of data, which usually consumes a lot of computing
resources. In this paper, we design an end-to-end framework to
avoid the problem of offline characterization, making the pipeline
more concise.

2.2 Video Captioning

Over the past years, we have witnessed the great development
of video captioning. Before the emergence of neural networks,
template-based methods that used the concepts of Verb, Subject
and Object (SVO) [3, 20] have become dominant. While in the era
of deep learning, a broad collection of methods have been pro-
posed [33, 35] which mainly adopt an encoder-decoder framework.
These works tend to extract images’ features with CNNs and adopt
RNNSs to generate descriptions. Venugopalan [35] firstly introduces
an LSTM to generate the mean pooled representations over all
frames. Wang [37] tries to enhance the quality of generated cap-
tions by reproducing the frame features from decoding hidden
states. And Buch [5] connects the same output from the two hidden



layers of the opposite direction at a particular time step to fur-
ther refine the descriptions. However, the original implementation
equipped with RNN is difficult to capture long-term dependencies
since only the last hidden state takes part in the final generation.
The proposed attention mechanism [14, 17, 34, 43] alleviates this
deficiency. For each output that the decoder generates, it has access
to the entire input sequence at the temporal level. Note that differ-
ent regions of each video frame also have different contributions
to the prediction of the final word. For example, the description
object is more important than the background. Therefore, it is also
necessary to introduce spatial attention. Li [22] adopts two layers
of spatio-temporal dynamic attention for video subtitles. When
calculating the spatial attention weight of a specific frame, it will
also consider the attention weight of the previous frame. In this
way, the spatial attention map is linked across time. Wang [38]
tries to learn a model to distinguish the foreground from the back-
ground in the video without explicit supervision, and calculates the
significance score from the spatial feature map to separate the fore-
ground and background according to the threshold. Recent work
typically follows the pipeline where off-the-shelf 2D and 3D is used
to extract spatio-temporal feature for video representation. Unlike
previous works, we mainly focus on decouple the spatio-temporal
representation learning process for better learning.

3 OUR APPROACH

In this section, we introduce the proposed video captioning frame-
work D?, which is illustrated in Figure 2. Compared with existing
method, D? decouple the video captioning process both in video
representation and caption generation phase. We begin with intro-
ducing the spatial encoder. And then, the Residual-Aware Temporal
Block(RATB) and the Syntax-Aware Decoder(SAD) are elaborated.
The training details will be given at the end of this section.

3.1 Spatial Encoder

Given a video V, the video captioning task aims to generate a cap-
tiony = {yi,-- -, yr} to describe semantic concepts in V, where y;
denotes the ¢-th word in the caption. In the following, we introduce
how a frame representation is obtained through a spatial encoder.

The video clips v; € V are represented as a sequence of frames
(images) in our paper. Specifically, the video clip v; is composed
of |v;| sampled frames such that |v;| = {vil,vl.z, . ..,vl!vil}A Unlike
previous methods [36, 46-48] which extract clip features using pre-
trained CNN [6, 16] or object detector [31]. Our D? model is trained
on pixels directly via taking the frames as input in an end-to-end
manner.

In order to get the video representation, we first extract the
frames from each video clip and then encode them through our
spatial encoder to get a sequence of frame features. In this paper,
we adopt a 2D ViT-B/16 [12] as our spatial encoder and mainly
consider using a sequence of frame representation as video repre-
sentation. The ViT first extracts non-overlapping image patches,
then performs a linear projection to project them into 1D tokens.
The transformer architecture is used to model the interaction be-
tween each patch of the input frame to get the final representation.
We use the output from the [CLS] token as the frame representation.

. . ('
For the input frame sequence of video v; = {vll viz, e vl! ‘l}, the

i
efiting from the modularized design of model, we can instantiate
our spatial encoder with dedicated image-text pre-trained model.
specifically, we utilize the recent one-stage image-text pre-trained
model ALBEF [21] to initialize our spatial encoder. The impact of
different weight initialization strategies is examined in our ablation.

generated representation can denote as Z; = {z}, 2. .., zlvi \ } Ben-

3.2 Residual-Aware Temporal Block

Considering that viewing video representation as a sequence of
frame representations may ignore temporal dependency, we pro-
pose Residual-Aware Temporal Block(RATB) to build both long-
range and Residual level temporal dependency between each frame.
Since two successive frames contain content displacement, which
reflects the actual actions, we explicitly propose a Residual At-
tention Mechanism to extend the input frame representation and
guide the temporal transformer to encode more motion-related rep-
resentations. Specifically, we adopt transformed residual of frame
representation between adjacent time stamps to describe the motion
change, which is formulated as:

Z4=5 ({Z} ~ZZE -7k 2 - Z;H} +P) (1)

where P is the positional embedding, Z~! and Z'" are two adja-

f f

cent frame representations, J is 1-layer transformer encoder layer,
and Z4 is the difference representations. We insert difference repre-
sentations between every frames as below:

Za= 202520 2578 2P 20T 4P T @)

where Zj, is the output of our RATB, P is the positional embedding,
T is the type embedding. With the design of residual-level attention
and frame-level temporal attention, atomic actions in short term
segments can be contextualized with the rest of the video, thus to
be fully disambiguated.

Compared with the 3D-CNN counterpart, which is inherently
limited in capturing long-range dependencies by means of aggre-
gation of shorter-range information, our RATB built temporal de-
pendency at both shorter-range and long-range levels.

3.3 Syntax-Aware Decoder

Existing decoding methods in video captioning were suffering from
the semantics and syntax coupling drawback. D2 solve this problem
by dynamic fusing semantic features and syntactic features during
decoding. We begin with the syntactic feature extraction and then
introduce the semantic and syntactic decoding method.

3.3.1 Syntactic Feature Extraction. Unlike previous works using
part-of-speech(POS) [36] tagging tools, we choose a pre-trained lan-
guage model to provide syntactic prior information. To be specific,
in order to get syntactic features during the decoding stage, we
build a pretrained 12-layers GPT-based language model to extract
syntactic features. The language model was first pre-trained by
using a large corpus of documents, and then fine-tuned by using
captions sentences only. Some previous works [10] have proven
that the pre-trained language model could retain syntactic informa-
tion inside some of their attention heads. So in that way, we could
obtain dense syntactic features containing not only POS tagging
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Figure 2: The overall architecture of our proposed D?. D? decouples the learning process in both video and caption side. On
the video side, spatial representation is obtained using Spatial Transformer(ViT). With a carefully designed Residual-Aware
Temporal Block, temporal dependency is built both on residual and long-range level. On the caption generation side, D? decou-
ple the generation of visual semantic and syntax-related words by a Syntax-Aware Decoder, in which semantic and syntactic
feature is fused dynamically during the whole generation process. Benefiting from the neat and modularized design, we can
instantiate each module with dedicated pre-trained model and jointly optimize the entire system for task-specific fine-tuning.

information but also the whole syntactic information by using the
pretrained language model.

Specifically, given the word sequence Y = (<bos >, y1,y2, ..., yN),
our syntax-aware encoder is asked to predict this offset sequence

Y = (91,92 . .., N, <eos>) by one forward process. This entire
process can be expressed as follows:

sf = GPT(Y + pos) 3)

Y =log_ softmax(FF(sf)) (4)

where pos is position embedding, FF is feedforward network, ¥
is the output distribution of predicted words, sf is our syntactic
feature. This language model is trained with XE loss. This can be
expressed as:

sfy « SAE (Y<;),sf; € R%model (5)
where SAE is our Syntax-Aware Encoder.

3.3.2  Visual Semantic and Syntactic Decoding. After extracting
syntactic features, we combine it with the output of our RATB as
our candidates during decoding. In our opinion the visual encoder
could provide more semantic information, so the decoder could
choose semantic or syntactic clues flexibility by using the attention
mechanism. Besides, we combine the visual encoder output features,
the pretrained language model output features and the current word
embedding together as the query vector of the attention module.
By this way, we hope the decoder could avoid generating trivial

words. This can be formulated as follows:
h; = Decoder ([Zn;sfi], Y<t) (6)
qie = W2 kip = [Zassfil WK 0 = [Zassfil WY (7)
head;; = softmax (qi)kat) Vit (8)
head; = Concate (head; 1, . .., head; ) 9)

att = Concate (heady, . .., heady) wo (10)

where Z, is the output of our RATB, sf; is the output of syntactic
encoder, g; ¢, ki ¢, v;; are the query, key matrix and value matrix for
the t time step word in head i respectively, head; ; is the attention
result at t-th timestep, head; is the attention result in head i, att is
the final attention coefficient for sequence generation.

3.4 Training details

The captioning model is typically trained by the cross-entropy loss
(XE) given the ground-truth pair (V,y*).

log (po (7 | Y1.4-1-V)) (11)
t=1
where 0 is the parameters of our model, y] ;. is the target ground
truth sequence.
To address the exposure bias and target mismatch problem in XE,
we directly optimize the non-differentiable metric with Self-Critical
Sequence Training [32]:

T
Lxg(0) = -



Lrr(0) = —Eyyrpo [r (y1:7)], (12)
where the reward r(-) is the CIDEr-D score.
Besides, following [11], we use the mean of rewards rather than
greedy decoding to baseline the reward. The gradient expression
for one sample is formulated as:

1 k
b= (Z r (yi)), (13)

k
1 . .
Volr(0) ~ =7 > ((r (vhr) ~b) Vologpo (vis)).  (19)
—
where k is the number of the sampled sequences, yi:T is the i-th, and
b is the mean of the rewards obtained by the sampled sequences.

4 EXPERIMENTS

In this section, we conduct experiments to verify the effectiveness
of the proposed methods. Firstly, We introduce three widely-used
datasets: MSVD [7], MSRVTT [42] and recent VATEX [40]. Then
implementation details including hyper-parameters and techniques
are illustrated. After that, we make comparisons between our meth-
ods and the state-of-the-arts. More ablation studies are also dis-
cussed in the final part.

4.1 Datasets

4.1.1  MSVD. The MSVD dataset contains 1970 video clips and
roughly 80000 English sentences. It was firstly developed in 2010
and used to test and train the translational and paraphrase algo-
rithms. Similar to the prior work [36], we separate the dataset into
1,200 train, 100 validation ,and 670 test videos.

4.1.2 MSR-VTT. The MSR-VTT dataset contains 10,000 video clips
from the YouTube website. we follow the standard splits in [42] for
fair comparison which separates the dataset into 6,513 training, 497
validation and 2,990 test videos.

4.1.3 VATEX. The VATEX dataset is the most recently released
large-scale dataset that contains 41,269 videos. Each video is anno-
tated with 10 English and 10 Chinese descriptions. We utilize Eng-
lish corpora in our experiments. According to the official splits [40],
the dataset is divided into 25,991 training, 3,000 validation, and
6,000 public testing.

4.2 Implementation Details.

For the sentences longer than 30 words are truncated (50 for VA-
TEX); the punctuations are removed (for VATEX are retained); all
words are converted into lower case.

Our model is trained on pixels directly via taking the frames as
input. We divide video into 12 clips. If not otherwise stated, we
randomly sample a single frame from each clip for training, and
use the middle frame for inference. The impact of different number
of clips is examined in ablation. The whole framework is optimized
with ADAM [19] optimizer. We set the initial learning rate of the
RATB and SAD to 1074, the spatial encoder to 1075, We pre-train
our 2D visual encoder with the similar spirit as [21]. For the other
components, the parameters are randomly initialized with Xavier
init. Our training is started with cross entropy optimization. If the
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Figure 3: (a): Validation loss during Syntax-Aware Encoder
fine-tuning. (b): Accuracy on validation set.

cider value drops for 5 consecutive epochs, it will turn to self-critical
sequence training. The training process stops when the cider value
drops for 5 consecutive epochs in self-critical sequence training.

We use input image size 256 X 256. Our model is implemented
in PyTorch [28] and transformers [41]. We set the batch size to 48.
The dimension of our spatial encoder is 768. We set the dimension
of Residual-Aware Temporal Block and Syntax-Aware Decoder to
512. To avoid over-fitting, we exploit dropout operation after the
multi-head self-attention layer and the FFN of each transformer
encoder layer. The dropout ratio is set to 0.1 by default.

To guarantee the quality of generated "syntax realted features”,
we build our Syntax-Aware Encoder based on GPT-Base provided
by pytorch-transformers [41]. We then fine-tune our Syntax-Aware
Encoder on caption sentences to obtain syntactic information. Fig 3
shows the validation loss and validation accuracy on VATEX datasets,
demonstrating the ability of our Syntax-Aware Encoder to encode
syntactic information.

4.3 Comparison to State-of-the-Arts

We compare our model with the following state-of-the-art method,
which all use offline feature-extractor (either 3DCNN or object
detector) for spatio-temporal representation.

e MGSA [? ]: LSTM-based model for motion-guided caption
generation.

e FCVC [13]: Fully convolutional network for coarse-to-fine
caption generation.

e POS-CG [36]: Part-of-speech guided caption generation.

e POS-VCT [18]: This method takes pos for caption generation.

e MARN [29]: This method leverages memory network to
capture cross-video contents.

e PMI-CAP [8]: This method learns pairwise modality interac-
tions to better exploit complementary information for each
pair of modalities in video.

e SGN [33]: This method uses a semantic grouping network
to capture the most discriminating word phrases.

o NACF [?]: This method uses a coarse-to-fine decoding method
to better capture visual words in video.

e OA-BTG [46]: This method uses a object-aware aggregation
bidirectional temporal graph (OA-BTG) to capture detailed
temporal dynamics for salient objects in video.

e GRU-EVE [1]: A LSTM based model which capture spatial-
temporal dynamics by Short Fourier Transform.

e STG-KD [27]: This method distills the knowledge of spatial-
temporal object interactions from a spatial-temporal graph.



Model Ref 3DCNN Detector MSVD MSRVTT
B@4 M R C B@4 M R C

MGSA [?] AAAT19 v X 534 350 - 867 454 286 -  50.1
FCVC [13] AAAT19 v X 53.1 348 718 798 - - - -
POS-CG [36] ICCV19 v X 525 341 713 887 420 282 61.6 487
POS-CG+RL [36] ICCV19 v X 53.9 349 721 910 413 287 621 534
POS-VCT [18] ICCV19 v X 528 361 718 878 423 297 628 49.1
MARN [29] CVPR19 v X 486 351 719 922 404 281 60.7 47.1
PMI-CAP [8] ECCV20 v X 547 364 - 952 421 287 - 494
PMI-CAP+Audio [8] ECCV20 v X - - - - 439 295 - 506
SGN [33] AAAI21 v X 528 355 729 943 408 283 60.8 495
NACF [?] AAAI21 v X 556 362 - 963 420 287 - 514
OA-BTG [46] CVPR19 v v 569 362 -  90.6 414 282 - 469
GRU-EVE [1] CVPR19 v v 479 350 715 781 383 284 607 48.1
STG-KD [27] CVPR20 v v 522 369 739 93.0 405 283 609 47.1
SAAT [49] CVPR20 v v 465 335 694 810 405 282 609 49.1
ORG-TRL [48] CVPR20 v v 543 364 739 952 436 288 621 509
OPEN-BOOK [47] CVPR21 v v - - - - 428 293 617 529
02NA [23] ACL21 v v 554 374 745 964 416 285 624 511
D? - X X 56.9 384 751 99.2 445 30.0 633 56.3

Table 1: Performance comparisons on MSVD and MSRVTT benchmarks. B@4,C,M,and R denote BLEU@4, CIDEr-D, METEOR,

and ROUGE_L, respectively. - means not available.

o SAAT [49]: This method learns actions by simultaneously
referring to the subject and video dynamics.

e ORG-TRL [48]: This method uses a object relation graph to
build the object interactions.

e OPEN-BOOK([47]:They use “retrieval and copy" pipeline to
help caption generation.

e O2NA [23]: This method uses a Object-Oriented Non-
Autoregressive approach (O2NA).

Model B@4 M R C

VATEX (ICCV19) [40] 287 219 472 456
ORG-TRL (CVPR20) [48] 321 222 489 497
NSA (CVPR20) [15] 31.0 227 490 57.1
OPENBOOK (CVPR21) [47] 33.9 237 502 57.5
D? 351 25.1 51.3 60.9

Table 2: Performance comparisions on VATEX benchmark.
B@4, C, M, R denote BLEU@4, CIDEr-D, METEOR, and
ROUGE_L, respectively.

Table 1 reports the video caption performances of different mod-
els on the MSVD and MSR-VTT datasets. We can see that our D?
consistently exhibits better performance than the others. To be spe-
cific, on MSVD, our D? surpasses all the other methods for all met-
rics by a large margin even for the strongest competitor O2NA [23].
The CIDEr-D score of our method reaches 99.2%, which advances
O2NA [23] by 2.9%. As for MSRVTT, our D? achieves better per-
formance than all the other methods for all metrics. Compared
with the strongest competitor OPENBOOK [47], we advance it by
6.4%(56.3 vs. 52.9). The boost of performance on both MSVD and

MSRVTT demonstrates the advantages of our D? which uses decou-
pled pipeline on both video spatio-temporal representation learning
and sentence generation. Importantly, since CIDEr-D weights the
n-grams that are relevant to the video content, demonstrating that
our model generates more video-relevant captions.

Besides, we also report the results of our model on the public
test set of the recent published VATEX dataset as shown in Table 2.
Compared with these SOTA methods, our model achieves the best
performance on all metrics. Specifically, our D? reaches 60.9% in
terms of CIDEr-D, which advances the strongest competitor OPEN-
BOOK [47] by 5.9%, proving the effectiveness of our decoupled
pipeline.

4.4 Ablation Analysis

In this section, we conduct several ablation studies on the VATEX
and MSRVTT datasets to determine some hyper-parameter and
demonstrate the effectiveness of our proposed module. Since our
method directly takes video frame as input and does end-to-end
training; before doing the experiments about the main module, in
section 4.4.1, we first give the experiments about sample rates of
input clips. Then, we give the main ablation experiments in sec-
tion 4.4.2 about our proposed Residual-Aware Temporal Block(RATB)
and Syntax-Aware Decoder(SAD). To fully exploit the effectiveness
of the module in Residual-Aware Temporal Block(RATB), we did
some experiments and give results in section 4.4.3. Finally, we give
the ablation experiments results about image-text pre-training and
end-to-end training in section 4.4.4 and section 4.4.5 respectively.

4.4.1 Ablation on number of input clips. In order to investigate the
impact of the different number of input clips, as shown in Table 3,
we set the number of clips to 8, 12, 16 for our model respectively.



GT: a train is traveling through the european country side

Baseline: a train is moving on the field

Ours: a train is moving on the road in the forest

GT: a pair of young people play a challenging game of ping pong GT: a woman mixing various ingredients in a bow] together

Baseline: two people are playing games
Qurs: two people are playing ping pong on the table

GT: ablack suit man is speaking from a studio
Baseline: a man is talking to someone
Ours: a man in a suit is talking on the news

4

Baseline: a woman is cooking
Ours: a woman is mixing ingredients into a bowl

Figure 4: Visualization of generations on MSR-VTT with GT and our D?. Compraed with baseline, our D? can generate more
richer and descriptive captions.

Number of clips MSRVTT VATEX Method | Module | MSRVTT | VATEX
BLEU@4 CIDEr-D BLEU@4 CIDEr-D |RA TA |B@4 C |B@4¢ C
182 ::; 222 ;:i 23'2 Baseline 428 521|339 552
16 44'3 56.5 34'3 60'9 Baseline | v/ 433 532 | 343 56.1
y y y . Baseline v/ | 431 535 | 340 564

Table 3: Ablation on number of input clips.

The performance cannot increase with more clips and we use 12

for our experiments.

Baseline | v/ v | 439 54.2 | 342 57.3

Table 5: Ablation of Residual-Aware Temporal Block. RA, TA
denote Residual-Level Attention, Temporal-Level Attention,
respectively. Spatial encoder together with vanilla decoder
is selected as our baseline.

Method | Module | MSRVIT | VATEX — SRVTT ro—
nr etno
| RATB SAD |B@4 C |B@4 C BLEU@4 CIDEr-D BLEU@4 CIDEr-D
Baseline 433 521 | 339 552 Resnet152(cls) 27.4 22.6 17.8 17.2
Baseline | v/ 439 542 | 342 573 ViT-B/16(cls) 40.2 49.2 29.1 51.4
Baseline v | 441 539 | 344 571 ViT-B/16(image-text) ~ 43.3 52.1 33.9 55.2
Baseline | v | 445 563|351 609

Table 4: Ablation of main design of our D?. Spatial encoder
together with vanilla decoder is selected as our baseline.

4.4.2  Ablation of main design of our D?. We study the benefits of
RATB and SAD of our method. Specifically, the spatial encoder with
image-text pre-training and vanilla transformer-based decoder are
combined as our baseline model. As shown in Table 4, our Residual-
Aware Temporal Block(RATB) boost CIDEr score by 1.9%(2.1%) on VA-
TEX(MSRVTT) dataset, demonstrating the importance of building
temporal dependency for video frames. Compared Row 1 and Row
3 in Table 4, we observe that our Syntax-Aware Decoder(SAD) boost
CIDEr-D score from 55.2(52.1) to 57.1(53.9) on VATEX(MSRVTT)
dataset, proving the effectiveness of decouple the sentence genera-
tion. Combining the above two modules, the best performance(60.9
on VATEX; 56.3 on MSRVTT) is achieved on both VATEX and
MSRVTT datasets.

Table 6: Ablation study on different type of spatial encoder
and different init method.

4.4.3 Ablation of Residual-Aware Temporal Block. Compared with
existing methods, our Residual-Aware Temporal Block builds tempo-
ral dependency between frames in both short-range and long-range.
Specifically, Residual-Level Attention(RA)is adopted to encode short-
range(atomic action) relation. Together with Temporal-Level Atten-
tion, atomic actions in short-range segments can be contextualized
with the rest of the video. Table 5 presents the effect of two sub-
modules. The results show that RA or TA is available as an effective
sub-module and combining these two sub-modules boost the CIDEr-
D score by 0.9 or 1.2(1.1 or 1.4) on VATEX(MSRVTT).

4.4.4 Ablation of image-text pre-training. Due to the better acces-
sibility of image-text datasets (as opposed to the video-text dataset,



which is noisy and hard to collect), it is trivial for our spatial en-
coder to enrich visual semantics via pre-training on image-text
pairs(e.g., MSCOCO). In this section, we study the effect of different
types of spatial encoder and its init method. Results are summa-
rized in Table 6. We observed that there is a huge performance
boost(row1 and row2) when replacing resnet152(cls) with ViT(cls),
demonstrating that ViT has much more frame representation abil-
ity than the resnet. We hypothesize that it is mostly because the
information loses via meanpooling operation [30]. Besides, when
we conduct image-text pre-training on image-text dataset to our
spatial encoder, the performance continues boosting, demonstrat-
ing that image-text pre-trained model benefits the video captioning
task for its semantic spatial representation.

Method MSRVTT VATEX

BLEU@4 METEOR CIDEr BLEU@4 METEOR CIDEr
fix 43.6 29.2 54.8 34.3 24.4 58.6
e2e 44.5 30.0 56.3 35.1 25.1 60.9

Table 7: Ablation of the benefit of end-to-end training.

4.4.5 Ablation of End-to-End Training. One of the main difference
between our method and previous is that we decouple the process
of spatio-temporal learning: we use a 2D transformer to obtain
the spatial contextual information then build temporal correlation
using our designed module, giving us the benefit of end-to-end
training(as opposed to 3DCNN which is hard to fine-tune). We
conduct the ablation on both MSRVTT and VATEX datasets with
cross-entropy loss. As it can be seen from Tab 7, end-to-end training
boosts all metrics on MSRVTT(1.5 CIDEr score) and VATEX(2.3
CIDEr score), proving the effectiveness of our pipeline.

4.5 Qualitative Analysis

We show some examples in Fig. 4. It can be seen, the content of cap-
tions generated by our model is richer than the baseline model, and
more activity associations are involved. For instance, the example
at down-left shows that the baseline model can only understand the
general meaning of the video. By contrast, our model can recognize
more detailed activities(e.g. playing ping pong). The rest of the
examples have similar characteristics.

5 CONCLUSION

In this paper, we propose D?, a dual-level decoupled pure trans-
former pipeline for end-to-end video captioning. We address the
"couple” drawbacks on both video spatio-temporal representation
learning and sentence generation. For video spatio-temporal repre-
sentation, we present "first-spatial-then-temporal” paradigm. tech-
nically, we use a 2D vision transformer to generate a spatial rep-
resentation for each frame and build both short and long range
temporal dependency with our proposed Residual-Aware Temporal
Block(RATB). For sentence generation, we decouple the generation
process of visual semantic and syntax-related words. Specifically,
utilizing the syntactic prior provided by pre-trained language model,
our proposed Syntax-Aware Decoder(SAD) dynamically measures
the contribution of visual features and syntactic prior information

for the generation of each word, obtaining a more reasonable and
fine-grained video captioning generation. We evaluate our methods
on MSVD, MSR-VTT and VATEX, all leading to the best perfor-
mance on all metrics. This sets the new state-of-the-art and our
model could be the new backbone model for video captioning.
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