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ABSTRACT
We prove some new results that simplify termination proofs
for non-overlapping term rewriting systems. The �rst one
is a re�ned modularity result (for not necessarily disjoint
systems). The second, more important one, gives condi-
tions under which the simpli�cation of right-hand sides (us-
ing rules of the original system) is a sound preprocessing
step, in the sense that termination of the original system
is equivalent to termination of the simpli�ed system, and
that the equational theory is preserved. The proofs are
based on some powerful structural properties known for non-
overlapping systems. Finally, we show how to (partially)
extend these results, in particular, to the case of conditional
rewrite systems where we additionally treat simpli�cation
of conditions of rules. The presented results provide the
theoretical basis for sound (and automatic) preprocessing
steps when proving termination of (possibly conditional)
non-overlapping rewrite systems and equational programs
de�ned by such systems.

1. INTRODUCTION AND OVERVIEW
In this paper we concentrate on termination (and conu-

ence) properties of non-overlapping term rewriting systems
(TRS's for short). Using some powerful structural proper-
ties that are well-known for this class of TRS's we show how
to simplify termination proofs in di�erent settings. First, in
Section 3, we consider a known modularity result for non-
overlapping TRS's from [7] and show how to generalize it in
various ways, by exploiting the structural properties men-
tioned above. Then, in the main Section 4, we investigate
under which conditions a natural preprocessing step, where
right-hand sides of the TRS under consideration are sim-
pli�ed (using rules of the original system), is sound w.r.t.
proving termination. In other words, the question is, given
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a TRS R, under which conditions is termination of the sim-
pli�ed version R0 equivalent to termination of R. This ques-
tion is practically relevant, because eliminating redundancy
(here: reducible right-hand sides) may considerably simplify
the task of termination. Of course, the problem with such a
preprocessing step is that in general it is not sound. There
exist non-terminating TRS's where simpli�cation of right-
hand sides yields a terminating system. However, it turns
out that for non-overlapping TRS's, there exist easily check-
able syntactical criteria which indeed guarantee soundness.
Again, this analysis heavily relies on the structural prop-
erties mentioned above. Finally, in Section 5 we investi-
gate possible generalizations and extensions of the previ-
ously presented results. In 5.1 this is done by weakening the
no-overlap requirement, and in 5.2 we consider conditional
TRS's (CTRS's for short). In 5.2.1 we investigate the case
of non-overlapping join CTRS's and discuss additional com-
plications.For the slightly more special and practically rele-
vant case of orthogonal normal (join) CTRS's, we are able
in 5.2.2 to partially extend these results as well as to cover
additionally arbitrary simpli�cation of the conditions of con-
ditional rules. In all cases, the corresponding generalization
of the underlying structural properties for non-overlapping
TRS's to the new setting is a technical key to prove these re-
sults. For CTRS's, however, there are | as usual | various
rather subtle complications that have to be dealt with.

2. PRELIMINARIES
We assume familiarity with the basic no(ta)tions, termi-

nology and theory of term rewriting (cf. e.g. [8], [20], [4]).
The set of terms over some given signature F and some (dis-
joint) denumerable set V of variables is denoted by T (F ;V).
For substitutions we use post�x notation. The `empty' root
position is denoted by �. For the set of all variables oc-
curring in a term s we write V ar(s). The subterm of s at
some position p 2 Pos(s) is denoted by sjp. The result of
replacing in s the subterm at position p by t is denoted by
s[t]p.
For rewrite rules l! r of a term rewriting systemRF = R

(over T (F ;V)) we require that l is not a variable, and that all
variables of r occur in l (this excludes only degenerate cases).
For left- and right-hand side of a rewrite rule we also use
the abbreviations lhs and rhs, respectively. For reduction
steps with the rewrite relation !R = ! induced by R we
sometimes add additional information as in s !p;�;l!r t
with the obvious meaning. A rewrite rule l ! r is said to
be non-erasing if V ar(l) = V ar(r). A TRS is non-erasing
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(denoted by NE) if all its rules are. For the set of normal
forms of a TRS R we write NF(R) or simply NF when
R is clear from the context. The innermost reduction (or
rewrite) relation !i (induced by R) is given by: s !i t
if s = s[l�]p !l!r s[r�]p = t for some l ! r 2 R, some
position p in s and some substitution � such that no proper
subterm of l� is reducible.
A TRS is non-overlapping if it has no critical pairs. It

is weakly non-overlapping if all its critical pairs are trivial,
i.e., of the form (s; s). A non-overlapping left-linear TRS is
orthogonal. A TRS R is an overlay system if critical over-
laps between rules of R occur only at the root position. For
the properties termination (equivalently: strong normaliza-
tion), weak termination (equivalently: weak normalization),
conuence, local conuence and uniform conuence (i.e.,
 Æ! � (id[!Æ ), with id being the identity relation) we
also use the abbreviations SN, WN, CR, WCR and WCR1,
respectively. Innermost termination, i.e., termination (or
strong normalization) of the innermost reduction relation
!i, is also abbreviated by SIN, weak innermost termination
(or weak innermost normalization) by WIN. Furthermore,
we also use local versions (`below' some term) of these prop-
erties like SN(s) (meaning that there is no in�nite derivation
issuing from s) and CR(s) (i.e., if s!� t1 and s!� t2, then
there exists t with t1 !

� t and t2 !
� t). To ease readabil-

ity, for a non-terminating term t, i.e., with :SN(t) we also
write 1(t) or 1R(t) (to indicate the corresponding rewrite
relation involved).

3. COMBINED NON-OVERLAPPING SYS-
TEMS

In contrast to orthogonal TRS's, non-overlapping (pos-
sibly non-left-linear) ones are in general not conuent (cf.
[18], [19]). In fact, very few results are known about con-
uence (and normal form) properties of non-terminating,
non-left-linear, non-overlapping TRS's. However, concern-
ing termination properties (and combinations of termination
and conuence properties) the situation is much better.
To start with, let us present the structural properties of

non-overlapping TRS's that we referred to above.

Theorem 1. ([13, cf. Theorem 3.13, Lemma 3.11], [15,
Lemma 3.2.8, Corollary 3.2.9, Theorem 3.2.11]) Let RF be
a TRS and t 2 T (F ;V). If R is non-overlapping then the
following properties hold:

(1) SIN(t) () SN(t).

(2) WIN(t) () SIN(t).

(3) If s!i t and :1(t), then :1(s).

(4) If s !p;�;l!r t with l ! r 2 R, 1(s) and :1(t),
then sjp = l� contains some proper subterm x� with
x 2 V ar(l) n V ar(r) and 1(x�).

(5) WIN(t) =) [SN(t) ^ CR(t)].

(6) NE =) [WN(t) () SN(t)].

One easy consequence of Theorem 1, more precisely of (6)
above, is the following termination property. To state it, we
�rst need an additional de�nition.

De�nition 1. Given two TRSRF11 ,RF22 (withRF = (R1[
R2)

F1[F2), we say that R1 preserves R2-normal forms if,
whenever s !R1

t for s 2 T (F ;V) with s 2 NF(RF2 ), then
t 2 NF(RF2 ).

For suÆcient conditions guaranteeing preservation of nor-
mal forms and related questions we refer to [24], [5], [11].

Theorem 2. (cf. [7, Theorem 23, p. 101]) Let RF11 , RF22
be TRS's and RF = (R1[R2)

F1[F2 be their (not necessarily
disjoint) union. Suppose the following:

(1) R1 and R2 are terminating.

(2) R1 preserves R2-normal forms.

(3) R is non-overlapping.

(4) R is non-erasing.

Then R is terminating.

Proof. (See [7] for the idea.) For any term s 2 T (F ;V),
we can obtain by (1) an R-normal form by �rst normalizing
s to some s0 2 NF(R2) using R2, and then normalizing
s0 to some s00 2 NF(R1) using R1. By (2), s00 is an R-
normal form. And by (3), (4) and Theorem 1(6) this yields
termination of s w.r.t. R.

In [7, page 101], N. Dershowitz mentions that, though the
non-erasing property is needed for the equivalence of weak
and strong termination, i.e., for Theorem 1(6) above, \an ex-
ample of non-termination for non-overlapping (normal form)
preserving systems is lacking". Actually, this lack is not re-
ally surprising since such a counterexample cannot exist as
we show next.

Theorem 3. (Theorem 2 generalized) Let RF11 , RF22 be
TRS's and RF = (R1 [ R2)

F1[F2 be their (not necessarily
disjoint) union. Suppose the following:

(1) R1 and R2 are weakly innermost terminating.

(2) R1 preserves R2-normal forms.

(3) R is non-overlapping.

Then R is terminating.

Proof. Essentially the proof works by re�ned repeated
applications of the structural properties of Theorem 1.
For a proof by contradiction suppose there exists s 2
T (F ;V) with 1R(s). By (1) (and the preservation of WIN
under signature extension) we can reduce s byR2-innermost
R2-steps to an R2-normal form s0, and furthermore s0 by
R1-innermost R1-steps to an R1-normal form s00. In the
resulting derivation

D : s!�
R2

s
0 !�

R1
s
00

we obviously have 1R(s) (by assumption) and :1R1
(s00).

Since s0 is in normal form w.r.t. R2, we conclude by (2),
that every term in the sub-derivation

D2 : s
0 !�

R1
s
00

is in normal form w.r.t. R2, hence s00 is in R-normal form.
Thus :1R(s

00) holds. Now, all steps inD2 areR1-innermost
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R1-steps and all terms in D2 are in R2-normal form. Hence,
all these steps are R-innermost R1 (and R-)steps. But by
(3) and using Theorem 1(3) this implies :1R(s

0), i.e., D2

doesn't contain a step which is critical (w.r.t. termination).
The same argument would apply to the sub-derivation

D1 : s!
�
R2

s
0

provided the R2-innermost R2-steps there were also R1-
innermost (and consequently R-innermost). However, this
need not be the case, because an R1-innermost R1-redex
of some term in D1 may well contain R2-redexes as proper
subterms! Instead we can argue as follows: Due to 1R(s)
and :1R(s

0), there must exist some �rst (R2-innermost)
critical step in D1, i.e., D1 is of the form

D1 : s!
�
R2

u!R2
v !�

R2
s
0

with1R(u) and :1R(v). But by Theorem 1(4) this is only
possible if in the R2-innermost step u!R2

v, let's say using
rule l2 ! r2 2 R2 at position p, the contracted redex ujp =
l� contains a proper subterm x� with x 2 V ar(l) n V ar(r)
that is non-terminating (w.r.t. R) and erased in this step.
Since u!R2

v is R2-innermost, the non-terminating proper
subterm t := x� of ujp = l� is in R2-normal form. But
now, by (1) (more precisely, weak innermost termination of
R1) and (2), and using the same argument as for D2 above,
this would imply the existence of an R1-innermost and also
R-innermost normalizing derivation t !�

R1
t0 with t0 in R-

normal form, hence with :1R(t
0) and :1R(t) by Theorem

1 (2) and (1)
But this contradicts the non-termination of t. Conse-

quently, there can be no critical step in D1, too, which �n-
ishes the overall proof.

Remark 1. Interestingly, and in contrast to most of the re-
sults on non-overlapping TRS's in [15], it is unclear1 whether
the strengthened localized version of Theorem 3 (where pre-
condition (1) and the conclusion only refer to a particular
term s) also holds or not. However, replacing (1) by

(10) R1 is weakly innermost terminating, and s is weakly
innermost R2-terminating, and the conclusion by \s is
R-terminating"

leads to a valid generalization.

Let us �nally give a simple example where Theorem 3 is
applicable, but not the weaker version, Theorem 2.

Example 1. Consider the two TRS's

R1 = ff(a; b; x)! f(x; x; g(x))g

and

R2 = fh(x; x)! g(a)g

over non-disjoint signatures. Clearly, both R1 and R2 are
non-overlapping as well as the combined system R = R1 [
R2. Furthermore both systems are (easily shown to be)
weakly innermost terminating. And, moreover,R2 preserves

1A closer inspection of the proof shows that the weakened
assumptions WIN(s;R1), WIN(s;R2) do not suÆce to make
the correspondingly modi�ed proof go through (since, using
the notations from above the properties WIN(s0;R1) and
WIN(t;R1) are needed, too). In fact, I would conjecture
that it is possible to �nd counterexamples for this case.

R1-normal forms by [24, Theorem 7] (which provides a de-
cidable criterion for preservation of normal forms) since R1

is left-linear and for all (R2
�1;R1)-critical pairs

2 (s1; t1),
i.e., with corresponding critical peak s1 !R2

t1 !R1
t2, the

term s1 is R1-reducible. Here the only such critical peak is
f(a; b; h(x; x))!R2

f(a; b; g(a))!R1
f(g(a); g(a); g(g(a))).

Clearly f(a; b; h(x; x)) is R1-reducible. Hence, by Theorem
3 R is terminating, whereas Theorem 2 is not applicable,
since R2 is erasing.

Yet, it should be noted that preservation of normal forms
is a rather restrictive property which in many cases does not
hold. Hence, the practical bene�ts from Theorem 3 seem to
be limited. Much more practically relevant is another type
of termination results derived from the mentioned structural
properties that we are going to present next.

4. SIMPLIFYING TERMINATION PROOFS
FOR NON-OVERLAPPING SYSTEMS

When trying to prove termination of a TRSR, one tempt-
ing preprocessing step is to simplify the right-hand sides of
R-rules (using R-rules), i.e., to consider

R0 = fl! r
0 j l! r 2 R; r!�

R r
0g

instead of R, because proving termination of R0 might be
considerably simpler than proving termination of R.
Clearly, due to !R0 � !+

R, termination of R implies
termination of R0. But how about the (interesting) reverse
implication: Does termination of R0 imply termination of
R?
Let us consider some examples.

Example 2. Addition over the natural numbers with p(re-
decessor) and s(uccessor) might be (completely, though a bit
awkwardly) speci�ed by the TRS

R =

8>><
>>:

p(0)! 0
p(s(x))! x

add(0; y)! y
add(s(x); y)! s(add(p(s(x)); y))

9>>=
>>;

Proving termination of R is not entirely trivial, since for
instance no simpli�cation ordering is applicable (because the
last rule is self-embedding). However, the simpli�ed version

R0 =

8>><
>>:

p(0)! 0
p(s(x))! x

add(0; y)! y
add(s(x); y)! s(add(x; y))

9>>=
>>;

is easily proved to be terminating, e.g. via an appropriate
recursive path ordering.

Example 3. Another, more interesting, example from an
industrial context, due to Arts & Giesl ([2]), roughly is as
follows: To verify (some aspects of) correctness of the Er-
lang3 implementation (w.r.t. to some given speci�cation) of
some process in a network that receives and sends messages,
a speci�cation S in Erlang is translated into an oriented

2See [24] for a precise de�nition of (R2
�1;R1)-critical pairs.

3Erlang is a functional programming language developed by
Ericsson Telecom that is, among others, particularly suited
for concurrent processes, networking, scheduling, etc., cf.
http://www.erlang.org/.
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non-overlapping conditional TRS (CTRS) RS , such that
left-right decreasingness, a kind of strengthened termination
property of RS (under reasonable assumptions) implies the
above correctness property (cf. [2] for more details). In-
stead of dealing with left-right decreasingness we focus here
on the problem of proving ordinary termination of RS . This
is non-trivial (for instance, simpli�cation orderings are not
applicable). In [2] the (left-right decreasingness) problem is
treated by further transforming the CTRS RS into an un-
conditional TRS Ru

S (using a variant of standard techniques
for this purpose), such that the transformation preserves
termination. Finally, termination of the resulting system
Ru

S is tackled via the dependency pair approach4 of Arts &
Giesl, and | with some e�ort | solved using some newly
developed re�nements of their basic method.
What is interesting about this example, besides stemming

from a \real world application", is that proving termination
of the CTRS RS would be considerably simpler after a pre-
processing step that simpli�es the right-hand sides and some
condition in the conditional rules involved. However, it is
unclear whether termination of the simpli�ed system would
also imply termination of the original CTRS RS (cf. [2] for
details).
The mentioned CTRS RS consists of the two conditional

rules5

proc(store;m)! proc(app(map f(self;nil); sndsplit(m; store));m)

(= leq(m; length(store))!� true,

empty(fstsplit(m; store))!� false (1)

proc(store;m)! proc(sndsplit(m; app(map f(self;nil); store));m)

(= leq(m; length(store))!� false,

empty(fstsplit(m; app(map f(self; nil); store)))!� false (2)

and the following unconditional ones (apart from some ad-
ditional library functions):

length(nil)! 0
length(cons(h; t))! s(length(t))

fstsplit(0; x)! nil
fstsplit(s(n); nil)! nil

fstsplit(s(n); cons(h; t))! cons(h; fstsplit(n; t))
sndsplit(0; x)! x

sndsplit(s(n); nil)! nil
sndsplit(s(n); cons(h; t))! sndsplit(n; t)

app(nil; x)! x
app(cons(h; t); x)! cons(h; app(t; x))

map f(pid; nil)! nil
map f(pid; cons(h; t))! app(f(pid; h);map f(pid; t))

empty(nil)! true
empty(cons(h; t))! false

leq(0; n)! true
leq(s(m); 0)! false

leq(s(m); s(n))! leq(m;n)

The rhs of (1) can be simpli�ed as follows:

proc(app(map f(self; nil); sndsplit(m; store));m)

! proc(app(nil; sndsplit(m;store));m)

! proc(sndsplit(m;store);m)

4This approach by Arts & Giesl originates in [1], and sub-
sequently was further generalized, extended and re�ned (cf.
[3] for a recent survey).
5The function symbol \process" in [2] is abbreviated here
by \proc".

using the rules map f(pid; nil) ! nil and app(nil; x) ! x.
Similarly, for the rhs of (2) we obtain

proc(sndsplit(m; app(map f(self; nil); store));m)

! proc(sndsplit(m; app(nil; store));m)

! proc(sndsplit(m; store);m)

using the same rules. Furthermore the second condition of
(2) can also be rewritten, again using the same rules:

empty(fstsplit(m; app(map f(self; nil); store)))

! empty(fstsplit(m; app(nil; store)))

! empty(fstsplit(m; store))

This �nally yields the two simpli�ed conditional rules

proc(store;m)! proc(sndsplit(m; store));m)
(= leq(m; length(store))!� true,

empty(fstsplit(m; store))!� false (10)

and

proc(store;m)! proc(sndsplit(m; store));m)
(= leq(m; length(store))!� false,

empty(fstsplit(m; store))!� false (20)

Proving termination of the resulting system is signi�cantly
easier than for the original system (but still non-trivial).
In fact, the only problematic rules are the two simpli�ed
conditional rules. Intuitively, these rules terminate because
the precondition empty(fstsplit(m;store)) !� false implies
jsndsplit(m;store)j < jstorej (where jlj denotes the length of
the list l). Using this semantic argument the overall termi-
nation proof for the resulting CTRS R0S is not very diÆcult.
The remaining problem, however, is to justify that such a
termination proof forR0S also guarantees termination for the
original system RS . We will come back to this example in
5.2, after having developed enough theory, and show there
that it is indeed possible to justify the above simpli�cations.

Let us next consider examples where termination of R0

does not imply termination of R.

Example 4. A very simple counterexample is the non-ter-
minating TRS

R =

�
a! f(a)

f(a)! b

�

where (a one-step) simpli�cation of the rhs of the �rst rule
yields the terminating system

R0 =

�
a! b

f(a)! b

�

Hence, without imposing additional conditions on the shape
of R and / or on the simpli�cation steps allowed in r!�

R r0,
preservation of termination is not guaranteed.
Intuitively, in Example 4 non-termination of R is elimi-

nated since the (non-terminating) redex a in the rhs f(a)
is destroyed by applying the overlapping second rule. But
even if the rules are non-overlapping, non-termination may
be eliminated in some simpli�cation step of some rhs.

Example 5. (cf. e.g. [2]) For the non-terminating TRS

R =

�
a! f(a)

f(x)! b

�
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simpli�cation of the rhs of the �rst rule yields

f(a)!�;f(x)!b b

with x� = a such that the resulting system

R0 =

�
a! b

f(x)! b

�
is obviously terminating. According to Theorem 1(4) this is
only possible because in the above step the non-terminating
redex a = x� is erased by applying the rule f(x)! b (with
x occurring in the lhs, but not in the rhs).

The observation in this example, that for non-overlapping
TRS's simpli�cation steps on rhs's can only be critical (w.r.t.
termination) if a non-terminating proper subterm is elimi-
nated by applying some erasing rule (according to Theorem
1(4)), can easily be generalized as follows.

Let R, R0 be TRS's satisfying

(*) R0 is obtained from R by replacing some rule l! r 2
R by a rule l ! r0 with r !�

R r0 where all R-rules
applied in r!�

R r0 are non-erasing.

Theorem 4. Suppose R is non-overlapping, and R, R0

satisfy (*). Then R is terminating i� R0 is terminating.

Proof. First we observe that R0 is obviously non-over-
lapping, too, by construction, and that the normal forms of
R and R0 coincide, i.e., NF(R) = NF(R0). For a proof by
contradiction (of the non-trivial implication) suppose R0 is
terminating, but R is not. Thus there must exist some term
s with 1R(s) and some normalizing (R0-)derivation such
that

s =: s0 !R0 s1 !R0 : : :!R0 sn 2 NF(R) = NF(R0) :

By sn 2 NF(R) we know :1R(sn). Hence some step in the
expanded (R-)derivation, where every single step sj !l!r02R0

sj+1 with l! r 2 R is expanded into a sequence of R-steps
sj !l!r2R s0j !

�
R sj+1, the latter part s

0
j !

�
R sj+1 of which

corresponds to the sequence of R-steps in r!�
R r0, must be

critical (w.r.t. termination of R). But this is impossible due
to assumption (*) by Theorem 1(4).

This result suÆces to justify the simpli�cation in the in-
troductory Example 2 that makes the termination proof con-
siderably easier.
Next we show how this result can be re�ned and extended.

A �rst observation is that the termination statement in The-
orem 4 can be localized in the following sense: For any term
t, t is R-terminating i� t is R0-terminating. This is obvious
by the assumptions and Theorem 1(4). Secondly, we can
also relax the condition (*) a little bit, by allowing the ap-
plication of erasing R-rules under certain conditions when
simplifying r (with l ! r 2 R) into r0 (with l ! r0 2 R0).
To see what we need, consider a normalizing (R0-)derivation

D : u0 !R0 u1 !R0 : : :!R0 un 2 NF(R) = NF(R0) :

which w.l.o.g. may be assumed to be R0-innermost, and
suppose that 1R(u0) holds. As above let us expand ev-
ery single step uj !p;�;l!r02R0 uj+1 (0 � j � n) (where
� is irreducible since the step is R0-innermost) in D into6

6When writing s !�p t or s !�p;R t, the notation is to
indicate that the (R-)step takes place at some position q � p
(of s).

uj !p;�;l!r2R u0j !
�
�p;R uj+1 where u0j !

�
�p;R uj+1 corre-

sponds to r !�
R r0, and let D0 denote the resulting deriva-

tion. The step uj !p;�;l!r2R u0j cannot be critical by The-
orem 1(3), because it is innermost (by assumption). Now
E : uj !p;�;l!r2R u0j !

�
�p;R uj+1 at position p is just an

instance of the derivation from l via r to r0,
l! r =: v0 !q1;�1;l1!r12R v1 !q2;�2;l2!r22R v2

� � � vk�1 !qk ;�k;lk!rk2R vk := r0,
i.e.:

E : uj jp = l� !�;�;l!r r� = u
0
j jp =

v0�!q1;�1�;l1!r12R v1� !q2;�2�;l2!r22R � � �

vk�1� !qk ;�k�;lk!rk2R vk� = r
0
� = uj+1jp :

Since we have 1R(u0) and :1R(un), this implies that
for some j with 0 � j � n there exists some (�rst) R-step in
u0j !

�
�p;R uj+1 which is critical (w.r.t. termination). Hence,

the corresponding step in E,

vi� !qi;�i�;li!ri2R vi+1�

where 0 � i � k � 1, is also critical. But, by Theorem 1(4)
this is only possible if the latter step is non-innermost and
if there exists some x 2 V ar(li) n V ar(ri) with 1R(x�i�).
Summarizing these observations, we see that in D no step
can be critical (hence contradicting 1R(u0)) provided that
the following condition holds:

(+) For every j, 1 � j � n, if uj !p;�;l!r2R u0j !
�
�p;R

uj+1 via

uj jp = l� ! r� = u
0
j jp =

v0�!q1;�1�;l1!r12R v1� !q2;�2�;l1!r22R � � �

vk�1� !qk ;�k�;lk!rk2R vk� = r
0
� = uj+1jp

and if for all m, 0 � m � k � 1, the step

vm� !qm;�m�;lm+1!rm+12R vm+1�

is such that, for all x 2 V ar(lm+1),

(1) x 2 V ar(rm+1) holds, or

(2) x�m� is (R-)terminating.

Part (1) can easily be checked, but (2) cannot be e�ectively
veri�ed (and is undecidable in general). However, we can
give suÆcient syntactical (and decidable) conditions for (2),
namely by requiring x�m� to be even irreducible: By as-
sumption, � is irreducible. Furthermore we require that �m
is irreducible. Nevertheless, this does not yet guarantee that
x�m� is irreducible. To obtain this, we additionally require
that

(20) no non-variable subterm of x�m uni�es with some (re-
named) lhs of R.

Indeed, (20) and irreducibility of � guarantee that x�m� is
irreducible, too. In the special case that x�m is an irre-
ducible ground term, (20) (and (2)) are automatically and
trivially satis�ed. The resulting weakening of condition (*)
now looks as follows:

Let R, R0 be TRS's such that

(**) R0 is obtained from R by replacing some rule l! r 2
R by a rule l ! r0 with D : r !�

R r0 where for every
rule instance l̂� ! r̂� (with l̂! r̂ 2 R) used in D and

for every variable x 2 V ar(l̂), we have that
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{ x 2 V ar(r̂) holds, or

{ no non-variable subterm of x� is uni�able with
some lhs of R.

In other words, we may simplify r not only using non-erasing
R-rules, but also using erasing rules l̂ ! r̂ with x� irre-
ducible for x 2 V ar(l̂)nV ar(r̂), provided that we can exclude
a priori that any further instantiation by some irreducible
substitution � makes some proper subterm of x�� reducible.
Thus we have proved the following generalization of The-

orem 4.

Theorem 5. Suppose R is non-overlapping, and R, R0

satisfy (**). Then, for any term t, t is R-terminating i� t

is R0-terminating.

Observe that in Example 5 condition (**) is violated, be-
cause when simplifying R = fa ! f(a); f(x) ! bg into
R0 = fa ! b; f(x) ! bg via f(a) !�;�;f(x0)!b b with
x0� = a, the substitution � is reducible. To see that irre-
ducibility of � is not suÆcient, consider the following coun-
terexample.

Example 6. The non-terminating non-overlapping TRS

R =

8<
:

h(x; a)! f(h(a; x))
f(x)! b

h(a; b)! c

9=
;

simpli�es via f(h(a; x))!�;f(x0)!b c with x0� = h(a; x) into

R0 =

8<
:

h(x; a)! b

f(x)! b
h(a; b)! c

9=
;

which is terminating. Here (**) is violated because x0� =
h(a; x) uni�es with the lhs h(x; a) of the �rst rule.

Finally, let us give a simple example where Theorem 5 is
applicable, but not Theorem 4.

Example 7. The non-overlapping TRS

R =

�
f(a; b; x)! f(x; x; x)
f(x; x; x)! c

�

simpli�es via f(x; x; x)!�;f(x0;x0;x0)!c c with x0� = x into

R0 =

�
f(a; b; x)! c
f(x; x; x)! c

�

which is trivially terminating. Here the applied rule is eras-
ing, hence Theorem 4 is not applicable. But (**) is still
satis�ed which proves termination of R by using Theorem
5.7 The point here is that, independently of the termination
proof method being used (like precedence-based syntactical
reduction orders or dependency pairs), Theorem 5 allows
for a preprocessing step that is sound in the sense that it
guarantees equivalence of termination.

7Of course, termination of R can also be proved by many
other known methods (this kind of TRS's, including in par-
ticular the rule f(a; b; x)! f(x; x; x), has been well investi-
gated due to Toyama's famous counterexample to modular-
ity of termination ([26]) that includes this rule, too).

Of course, when simplifying systems as above in order to
facilitate termination proofs, one would expect (and require)
also logical soundness, i.e., preservation of the equational
theory under such transformations. If a TRS R is trans-
formed into R0 by simplifying rhs's of R (using R-rules),
this clearly implies !R0 �!�

R. Yet, the other inclusion,
!R�$

�
R0 is non-trivial, and does not hold in general as

the following simple example demonstrates.

Example 8. One-step simpli�cation of the rhs of the only
rule of the TRS R = fa ! f(a)g yields R0 = fa !
f(f(a))g. Obviously, a $�

R0 f(a) does not hold. Hence
we have $�

R0 !�
R.

We observe that in the counterexample above R0 (as well
as R) is not weakly terminating. This is essential as shown
in the next result (which is related to [16, Lemma 4.1]).

Lemma 1. Let R be a TRS and suppose R0 is obtained
from R by arbitrarily simplifying some rhs's of R (using
R-rules).8 Then the following properties hold:

(1) !R0 � !+
R.

(2) A term is R-irreducible i� it is R0-irreducible, i.e.,
NF(R) = NF(R0).

(3) If R is conuent and R0 weakly terminating, then R0

is also conuent, and R, R0 are logically equivalent.

Proof. (1) and (2) are obvious by the assumptions on
R and R0. Concerning (3), we �rst prove conuence of R0.
Suppose t!�

R0 t1 and t!�
R0 t2. By weak termination of R0

there exist bt1; bt2 2 NF(R0) with t1 !
�
R0
bt1, t2 !�

R0
bt2. By

(1), (2) and conuence of R we get that bt1 and bt2 coincide,
hence bt1 = bt2 is a common R0-reduct of t1 and t2 as desired.
For logical equivalence of R andR0, by (1) it suÆces to show
!R�$

�
R0 , or, equivalently: l$�

R0 r for all l! r 2 R. By
weak termination of R0 both l and r have R0-normal forms,
say l̂ and r̂, respectively: l !�

R0 l̂, r !�
R0 r̂. Now (1), (2)

and conuence of R yield l̂ = r̂, hence l$�
R0 r.

Lemma 1 implies in particular that in the cases we are
interested in, namely in Theorems 4 and 5, the simpli�ed
TRS R0 is logically equivalent to the original system R,
provided R0 is terminating. Note that conuence (of R) is a
consequence of non-overlappingness and termination (of R).

5. GENERALIZATIONS
In this section we shall investigate two kinds of general-

izations. Firstly, we ask whether Theorems 3 and 5 can be
generalized by weakening the required non-overlapping as-
sumption. Secondly, and more importantly, we discuss to
what extent these results also hold for conditional TRS's
(CTRS's).
More details and missing proofs of some needed auxiliary

lemmas can be found in [15] and, partially, also in [14].

8More precisely, R0 contains for every l! r 2 R one(!) rule
l! r0 where r!�

R r0, and nothing else.
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5.1 Weakening the No-Overlap Requirement
Regarding Theorem 1, inspection of its proof(s) reveals

where the non-overlapping property is really used. The
proof of Theorem 1(2), namely: WIN(t) () SIN(t),
is only based on uniform conuence of innermost reduction,
i.e., WCR1(!i), which is needed to apply the following re-
sult on abstract reduction systems (which are just binary
relations ! on some set A), due to Newman.

Lemma 2 ([23]). Let A = (A;!) be an abstract reduc-
tion system, and a 2 A. Suppose WN(a) and WCR1(G(a))
hold.9 Then SN(a) holds, too.10

With!i as! in Lemma 2, WCR1(G(a);!i) andWN(a;!i)
yield SN(a;!i) as desired. Now it is easy to see that
WCR1(G(a);!i) does not only hold for non-overlapping
TRS's, but also for the slightly more general class of sys-
tems satisfying the following critical peak condition CPC0

depending on R (cf. [15]):11

CPC0: For every critical peak t1  p s!� t2 we have:

(1) If p = � and both steps are innermost, then
t1 = t2, and

(2) if p > � and the inside step t1  p s is inner-
most, then t1 = t2.

Observe that, in particular, weakly non-overlapping TRS's
satisfy CPC0.
CPC0 also implies the following property: Whenever we

have a reduction step s !p;�;l!r t that is not innermost,
then either all innermost redexes of l� are within the \vari-
able parts" of l�, or else there exists another reduction step
from s to t that is innermost, i.e., s !i t.12 This means
in particular that when considering in�nite derivations issu-
ing from some term t (in TRS's satisfying CPC0), one may
w.l.o.g. assume that every step tk !p;�;l!r tk+1 therein is
either innermost, or else all innermost redexes properly be-
low l� are \within �".
These two consequences of CPC0 are the essential ingre-

dients needed for proving

Theorem 6. (generalized version of Theorem 1, cf. The-
orem 3.4.33 in [15]) Let RF be a TRS and t 2 T (F ;V). If
R satis�es the critical peak condition13 CPC0 then all prop-
erties (1)-(6) of Theorem 1 hold here, too.

Proof. See [15].

Using this generalized result we are now also able to gener-
alize the soundness of the preprocessing approach expressed
by Theorem 5 from non-overlapping systems to systems sat-
isfying CPC0.

9G(a) is the reduction graph of a generated by !.
10By Newman's Lemma this further implies CR(a).
11Actually, there also exist properties guaranteeing
WCR1(!i) that are slightly more general than CPC0,
cf. [14, 15].
12This is a special case of a property called avoidability of
innermost-critical reduction steps and denoted by AICR (cf.
[14, 15]).
13To preserve compatibility with the notations from [15], we
use here CPC0, which is a specialized version of a more gen-
eral critical peak condition called CPC (cf. [15, Def.3.2.29]).

Theorem 7 (generalized version of Theorem 5).
Suppose R satis�es CPC0, and (**) holds for R, R0. Then,
for any term t, t is R-terminating i� t is R0-terminating.

Proof. Analogous to the reasoning that allowed us to
generalize Theorem 4 to Theorem 5. All properties needed
for this reasoning are also satis�ed for TRS's with CPC0,
because of Theorem 6 above.

Similarly, and for the same reasons, Theorem 3 can be
generalized from non-overlapping TRS's to TRS's satisfying
CPC0.

Theorem 8 (generalized version of Theorem 3).

Let RF11 , RF22 be TRS's and RF = (R1 [R2)
F1[F2 be their

(not necessarily disjoint) union. Suppose the following:

(1) R1 and R2 are weakly innermost terminating.

(2) R1 preserves R2-normal forms.

(3) R satis�es CPC0.

Then R is terminating.

Proof. The proof is analogous to the proof of Theorem
3 relying on Theorem 6 instead of Theorem 1.

Finally, we observe Lemma 1 also holds for the current
setting. This shows that if R0 is terminating according to
Theorem 5, then the original system R is terminating and
logically equivalent to the simpli�ed version R0. Note that
here conuence of R (which is needed to apply Lemma 1(3))
follows from CPC0 and termination of R (cf. [15, Theorem
16]).

5.2 Conditional Term Rewriting Systems
Finally, we shall investigate whether the presented results

also extend to the case of conditional rewrite systems. Here
we shall concentrate on those results that allow for simpli�-
cation of termination proofs by preprocessing (simpli�cation
of rhs's). Furthermore we shall study to what extent simpli-
�cation of conditions (besides simpli�cations of rhs's) is also
possible such that (non-)termination and logical equivalence
are preserved.
In 5.2.1 we consider CTRS's under a join semantics, i.e.,

where equality in the conditions is recursively interpreted
as joinability (w.r.t. the rewriting relation being de�ned).
Extra variables in conditions are allowed, but not in rhs's.
As a practically important special case of join CTRS's we
will also consider normal (join) CTRS's in 5.2.2.
Conditional rules are of form

l! r(= c

where c is a conjunction of condition literals si = ti, 1 �
i � n, written just as a list s1 = tn; : : : ; sn = tn. If equality
in the conditions is to be related to (de�ned simultaneously
with) the reduction relation induced by a set of such rules,
one has to be more precise about which operational seman-
tics is meant. Common cases are semi-equational seman-
tics, where equality is interpreted as convertibility ($�), and
join semantics, where equality is interpreted as joinability
(# =!� Æ � ). A special case of join systems, where a rule
as above is denoted by l ! r (= s1 # tn; : : : ; sn # tn, are
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normal (join) CTRS's, where all rhs's ti of condition liter-
als are required to be ground terms that are Ru-irreducible.
Ru is the unconditional version of a join CTRS R, i.e.,
Ru := fl ! r j l ! r (= c 2 Rg. Since in a normal
CTRS, by de�nition joinability of conditions can only be
from left to right, we denote rules of normal CTRS also by
l ! r (= s1 !

� tn; : : : ; sn !
� tn. The reduction relation

induced by some (join) CTRS R is recursively de�ned as
follows:
R0 := ;,
Rn+1 := Rn [ f(l�; r�) j l! r(= s1 # t1; : : : ; sn# tn 2 R;

si�#Rn ti� for all 1 � i � ng,
!R :=

S
i�0 !Ri

.

Observe that Rn � Rn+1 for all n � 0. The depth of
rewriting step(s) s !�

R t is the minimal n with s !�
Rn

t.
R is said to be shallow-conuent if whenever s !�

Rm
t1

and s !�
Rn

t2 then there exists a term u with t1 !
�
Rn

u
and t2 !

�
Rm

u (for all m;n � 0). R is level-conuent if
every TRS Rn (n � 0) is conuent. A (conditional) critical
pair between two rules li ! ri (= ci, i = 1; 2 (having
disjoint variables), is de�ned as in the unconditional case
but adding the conjunction of the corresponding conditions,
i.e., by unifying some non-variable subterm of l1 with l2, let's
say at position p with mgu �, yielding l1�[r2�]p = r1� (= c

with c = c1�; c2�. A condition c : s1# t1; : : : ; sn# tn is said
to be infeasible or unsolvable if there is no substitution �
satisfying c : si�#R ti� for all i; 1 � i � n. A (conditional)
critical pair s = t (= c is infeasible if its condition c is
infeasible.
A CTRSR is non-overlapping, left-linear, orthogonal, non-

erasing ifRu is non-overlapping, left-linear, orthogonal, non-
erasing, respectively.
In the remainder of this section, we always assume that

for any conditional rule l ! r (= c, extra variables occur
at most in c (i.e., V ar(r) � V ar(l))
For further basic terminology and results about CTRS's

we refer to e.g. [6], [10], [9], [20].
In general, conditional rewriting is known to be much

more complicated and intricate than unconditional rewriting
(cf. e.g. [6], [10], [22], [17]).

5.2.1 Join CTRS’s
In this subsection we always assume, if not explicitly oth-

erwise stated, CTRS's to be join ones.
Many properties of TRS's do not hold for CTRS's (or

only under additional assumptions). However, it is also well-
known that special classes of CTRS's like non-overlapping
ones or conditional overlay systems behave more nicely. And,
in fact, this is also the case for (at least some of) the the-
orems presented in the previous sections. Again the struc-
tural properties expressed by Theorem 1 are essential ones
for making certain proofs in the conditional case go through.
The crucial structure Theorem 1 does indeed extend to

the conditional case.

Theorem 9 (Theorem 1 extended to CTRS's). Let
RF be a CTRS and t 2 T (F ;V). If R is non-overlapping
then the properties (1)-(3) and (5)-(6) of Theorem 1 hold
here, too. (4) holds also, but in its adapted (to conditional
rules) version:

(4) If s !p;�;l!r(=c t with l ! r (= c 2 R, 1(s) and
:1(t), then sjp = l� contains some proper subterm
x� with x 2 V ar(l) n V ar(r) and 1(x�).

Proof. See [15] for a detailed proof. Actually, in contrast
to the unconditional case, this proof makes use of another
crucial result for CTRS, namely, that for conditional overlay
systems with joinable critical pairs, innermost termination
of some term t implies termination (and conuence) of t ([15,
Theorem 3.6.10]).

For trying to extend (the global version of) Theorem 5 to
CTRS's we �rst need to adapt condition (**) to the condi-
tional setting:
Let R, R0 be CTRS's such that

(#) R0 is obtained from R by replacing some rule l !
r (= c 2 R by a rule l ! r0 (= c with D : r !�

R r0

where for every rule instance l̂� ! r̂� (= ĉ� (with

l̂ ! r̂ (= ĉ 2 R) used in D and for every variable

x 2 V ar(l̂), we have that

{ x 2 V ar(r̂) holds, or

{ no non-variable subterm of x� is uni�able with
some lhs of R.

Note that in general reducibility of terms (here: of rhs's of
R) is undecidable, even for terminating CTRS's. However,
it is clear that decidable incomplete versions of reducibility
checks can be used, too. One such incomplete version is
to look just for reducibility w.r.t. some unconditional rule.
Moreover, the variable conditions in (#) are easily decidable
because they are purely syntactic and ignore the conditions.
Now, in analogy to the unconditional case, we would like

to prove the following:

� If R is a non-overlapping CTRS, R0 is terminating and
R, R0 satisfy (#), then R is terminating and logically
equivalent to R0.

Unfortunately, and this is quite typical in conditional rewrit-
ing, the proof from the unconditional case does not extend
to the conditional setting in an obvious way. There are sev-
eral major problems. First of all, one might tacitly expect
the analogue of the basic (and, in the unconditional case,
easy to prove) Lemma 1 for the conditional case to hold,
too.
Suppose R is a CTRS and R0 is obtained from R by

arbitrarily simplifying some rhs's of R (using R-rules), more
precisely:

R0 contains for every l ! r (= c 2 R one(!) rule
l! r0 (= c where r!�

R r0, and nothing else.

Then the statements corresponding to Lemma 1,

(1) !R0 � !+
R.

(2) A term is R-irreducible i� it is R0-irreducible.

(3) If R is conuent and R0 weakly terminating, then R0

is also conuent, and R, R0 are logically equivalent.

are no longer trivial. In fact, (1) still holds (as can be shown
via proving

!R0

n
� !+

R

by induction on n). However, the validity of the crucial
property (2), i.e., the preservation of normal forms, on which
the proof of (3) essentially relies, becomes unclear. The
reason is that in contrast to unconditional rewrite systems,
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simplifying some rhs may have global(!) e�ects on reducibil-
ity. Observe moreover that in the proof of Theorem 4 (and
of generalized versions thereof) the preservation of normal
forms was also essential!
Actually, for proof-technical reasons we will need conu-

ence of the considered CTRS's R without assuming its ter-
mination, in order to establish the preservation of normal
forms when considering R0 instead of R. In the uncon-
ditional case it is well-known that any orthogonal TRS is
conuent. However, orthogonal join CTRS's need not be
conuent (cf. [6]).

Example 9. The orthogonal join CTRS

R =

�
b! f(b)

f(x)! a (= f(x) # x

�

is not (weakly) conuent. We have f(b)! a and f(f(b))!
a, hence a local divergence

f(a) f(f(b))! a

where both a and f(a) are distinct normal forms.

Imposing additionally that conditions are normal however
suÆces for recovering conuence.

5.2.2 Extensions for Normal Join CTRS’s

Theorem 10 (cf. [6]). Any orthogonal normal CTRS
R is conuent.

In fact, as remarked in [12] (cf. also [25]) the proof in [6]
even yields shallow- and hence level-conuence of R. For
this practically important subclass of join CTRS's we will
now investigate the preservation of normal forms under a
restricted version of the mentioned preprocessing operation
for rhs's. More precisely, instead of

(A) R0 contains for every l ! r (= c 2 R one(!) rule
l! r0 (= c where r!�

R r0, and nothing else

we require

(B) R0 contains for every l ! r (= c 2 R one(!) rule
l! r0 (= c where r!�

R1
r0, and nothing else.

In other words, in essence simpli�cation of rhs's of condi-
tional (normal) rules is only allowed using unconditional
rules.

Theorem 11. Let R be an orthogonal normal CTRS such
that R, R0 satisfy (B) and R0 is terminating. Then the fol-
lowing properties hold:

(1) R0 is also an orthogonal normal CTRS.

(2) !R0

k
� !+

Rk
for all k � 0.

(3) !R0 � !+
R.

(4) NF(R0k) = NF(Rk) for all k � 0.

(5) NF(R0) = NF(R).

(6) R and R0 are logically equivalent.

Proof. (1) is obvious by the assumptions (and also holds
with (A) instead of (B)).
Next we prove (2) by induction on k. The case k = 0 is

trivial due R00 = R0 = ;. In the induction step consider
a reduction s = s[l�] !R0

k+1
s[r0�] = t using some rule

l ! r0 (= c 2 R0 with l ! r (= c 2 R and r !�
R1

r0,
because of (B). For every condition u!� v in c we must have
u� !�

R0

k
v� = v (by normality), hence by induction u� !�

Rk

v� = v. Consequently, l ! r (= c is also applicable to s

yielding s = s[l�] !Rk+1
s[r�] !�

R1
s[r0�] = t. Due to

1 � k + 1 and Rm � Rn for all m � n this implies
s!+

Rk+1
t as desired.

(3) is a trivial consequence of (2).
For proving (4), we �rst observe that NF(Rk) � NF(R0k)

holds for all k � 0 by (2). Hence it suÆces to show NF(R0k) �
NF(Rk) for all k � 0. Again we proceed by induction on
k. The base case k = 0 is trivial due to R00 = R0 = ;. In
the induction step suppose for a proof by contradiction that
there exists s 2 NF(R0k+1) n NF(Rk+1). Hence there is a
reduction s!Rk+1

t of the form s = s[l�]!Rk+1
s[r�] = t

with l ! r (= c 2 R such that for every condition u!� v
in c we have u� !�

Rk
v. Now, termination of R0 clearly im-

plies termination of R0k for all k � 0. Hence we may reduce
(in R0k) u� to some R0k-normal form �u, which by induction
hypothesis is also an Rk-normal form. By (2) this implies
u� !�

Rk
�u. Hence we have u� !�

Rk
v and u� !�

Rk
�u with

both v and �u beingRk-normal forms (note that v is a ground
term that is even Ru-irreducible by normality of R). But
now level-conuence of R implies v = �u and consequently
u� !�

R0

k
v. Since the above reasoning holds for all condi-

tions u !� v in c, we conclude that s is R0k+1-reducible.
But this is a contradiction to s 2 NF(R0k+1). Hence we are
done.
The preservation property (5) now is an obvious conse-

quence of (4).
Finally, for proving (6), by (3) it suÆces to show that

whenever s !R t then there exists some u with s !�
R0 u,

t!�
R0 u. By termination ofR0 we can (R0-)reduce s and t to

R0-normal forms �s and �t. By (5), �s and �t are also R-normal
forms. And from (3) we get s !�

R �s and s !R t !�
R

�t,
respectively. Since R is an orthogonal normal CTRS, it is
conuent by Theorem 10. This implies �s = �t. Choosing
u = �s = �t we are done.

Next we consider a version of preprocessing by simplifying
rhs's that is compatible with Theorem 11 above.
Let R, R0 be CTRS's such that

(##) R0 is obtained from R by replacing some rule l !
r (= c 2 R by a rule l ! r0 (= c with D : r !�

R1
r0

where for every rule instance l̂� ! r̂� (= ĉ� (with

l̂ ! r̂ (= ĉ 2 R) used in D and for every variable

x 2 V ar(l̂), we have that

{ x 2 V ar(r̂) holds, or

{ no non-variable subterm of x� is uni�able with
some lhs of R.

Now we can prove an extended version of Theorem 5 (more
precisely of its global version), where, however, simpli�ca-
tion of rhs's of conditional rules can only be performed by
using unconditional rules (of the original system).
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Theorem 12. Suppose R is an orthogonal normal join
CTRS, R0 is terminating and R, R0 satisfy (##). Then R
is terminating and logically equivalent to R0.

Proof. The proof that R is terminating is analogous to
the one of Theorem 4, taking into account the subsequent
re�nements. Instead of Theorem 1 (for non-overlapping
TRS's) now Theorem 9 (for non-overlapping CTRS's which
covers the special case of orthogonal normal CTRS's) is
used. The crucial preservation of normal forms which was
trivial in the unconditional case is now guaranteed by The-
orem 11(5). Similarly, Theorem 11(3) replaces the corre-
sponding trivial observation in the unconditional case. And
�nally, logical equivalence of R and R0 is guaranteed by
Theorem 11(6).

Unfortunately, we have not been able to allow simpli�ca-
tion of rhs's by arbitrary conditional rewriting (yet obeying
the non-erasingness restrictions). It remains open whether
the more liberal and natural condition (#) would also suf-
�ce for proving the preservation of non-termination ofR and
the logical equivalence of R and R0. Technically, the main
problem here seems to be how to guarantee the preservation
of normal forms, NF(R) = NF(R0).
However, Theorem 12 above is suÆcient to justify the sim-

pli�cation steps of rhs's in Example 3 as presented in Section
4. What remains to be done, in particular for justifying our
reasoning in Example 3, is to take into account the simpli-
�cation of conditions in conditional rules. This is tackled
next.
Suppose R is an orthogonal normal CTRS and R0 is ob-

tained from R by arbitrarily simplifying some conditions of
R (using R-rules), more precisely:

(cs) R0 contains for every

l! r(= s1 !
�
t1; : : : ; sn !

�
tn 2 R

one(!) rule

l! r(= s
0
1 !

�
t1; : : : ; s

0
n !

�
tn 2 R ;

with si !
�
R s0i (1 � i � n), and nothing else. More-

over, suppose that all simplications of conditions for all
modi�ed conditional rules of R are !�

Rm
-reductions,

for some �xed m.14

Theorem 13. Let R be an orthogonal normal join CTRS,
and suppose that R0 is obtained from R by simplifying some
conditions according to (cs) above. Then the following prop-
erties hold:

(a) R0k � Rm+k for all k � 0.

(b) Rk � R
0
k for all k � 0.

(c) !R =!R0 .

Proof. We prove (a) by induction on k. The base case
k = 0 is trivial due to R00 = ;. For the induction step
consider an R0k+1-reduction s = s[l�]!R0

k+1
s[r�] = t using

an R0-rule l ! r (= s01 !
� t1; : : : ; s

0
n !

� tn that has been
obtained from an R-rule l ! r (= s1 !

� t1; : : : ; sn !
� tn

14This is e.g. automatically guaranteed if R is �nite.

via si !
�
Rm

s0i (1 � i � n). Thus we have s0i� !
�
R0

k
ti and

si� !
�
Rm

s0i� for all 1 � i � n. By induction hypothesis
we get s0i� !

�
Rk+m

ti, hence si� !
�
Rm

s0i� !
�
Rm+k

ti and

si� !
�
Rm+k

ti for all 1 � i � n. But this implies s =

s[l�]!Rm+k+1
s[r�] = t as desired.

Next we show (b), also by induction on k. The base
case k = 0 is again trivial. In the induction step con-
sider an Rk+1-reduction s = s[l�] !Rk+1

s[r�] = t using
an R-rule l ! r (= s1 !

� t1; : : : ; sn !
� tn, i.e., with

si� !
�
Rk

ti (for all 1 � i � n). The corresponding R0-
rule is l ! r (= s01 !

� t1; : : : ; s
0
n !

� tn with si !
�
Rm

s0i,
hence also si� !

�
Rm

s0i� (for all 1 � i � n). Now, t is
a ground Ru-normal form, hence in particular also R- and
Rn-irreducible. Together with shallow-conuence ofR (note
that R is orthogonal and normal) this gives s0i� !

�
Rk

t
(for all 1 � i � n). By induction hypothesis this implies
s0i� !

�
R0

k
t (for all 1 � i � n). But this means that the

R0-rule l! r (= s01 !
� t1; : : : ; s

0
n !

� tn is also applicable
to s yielding the same result: s = s[l�] !R0

k+1
s[r�] = t.

Hence we are done.
Now (c) is an easy consequence of (a) and (b) as follows:
!R =

S
i�0 !Ri

�
S

i�0 !R0

i
=!R0 �

S
i�0 !Rm+i

=S
i�0 !Ri

= !R, hence !R = !R0 . The �rst inclusion

above is by (b), the second one by (a), and the last one is
due to

S
0�j�m !Rj

=!Rm .

Corollary 1. Let R be an orthogonal normal join CTRS,
and suppose that R0 is obtained from R by simplifying some
conditions according to (cs) above. Then R0 is terminating
i� R is terminating, and the equational theories of R and
R0 coincide.

This means that simpli�cation of conditions as prepro-
cessing step (for orthogonal normal CTRS's) is harmless (it
even preserves the induced reduction relation).
Finally, to be able to justify the simpli�cations in Example

3, we have to allow for left-linear normal join CTRS's R
that are not (syntactically) non-overlapping (according to
our De�nition via Ru), but still have essentially the same
properties. In particular, one would like to allow infeasible
critical pairs because they do not give rise to any critical
peaks (since, by infeasibility, such one-step divergences do
not really occur). This motivates the following de�nition.

De�nition 2. A normal join CTRS is said to semantically
non-overlapping if all its critical pairs are infeasible.

All results presented for non-overlapping (normal) CTRS's
do indeed also hold for semantically non-overlapping (nor-
mal) CTRS's. However, in general it is undecidable whether
a CTRS is semantically non-overlapping, since infeasibility
is undecidable. Hence, in practice such a generalization is
only useful if decidable criteria for infeasibility are provided.
One such criterion deals with the practically very important
special case of de�nition by (mutually exclusive) case anal-
ysis, in the following sense.

De�nition 3. Let R be a normal CTRS. A conjunction c
of normal conditions s1 !

� t1; : : : ; sn !
� tn (i.e., with tk

Ru-irreducible) is said to be complementary if there exist
i; j with 1 � i; j � n such that si = sj and ti 6= tj (this
implies in particular i 6= j).
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Clearly, this notion of complementarity of conditions is
easily decidable, since it is purely syntactical.

Lemma 3. Let R be a left-linear normal CTRS such that
for every conditional critical pair s1 = s2 (= c of R the
condition c is complementary. Then all these critical pairs
are infeasible (hence R is semantically non-overlapping) and
R is (shallow) conuent.

Proof. Again basically by using the proof technique of
[6] to establish shallow-(level-)conuence of R. The infeasi-
bility of the critical pairs then is a by-product of the overall
conuence proof.

Actually, our notion of complementarity above can be seen
a special case of a more general complementarity notion
considered in [21] within the extended framework of posi-
tive/negative CTRS's where also extended versions of de-
cidable infeasibility checks are discussed.

Example 10. (Example 3 revisited) The presented results
(for left-linear, semantically non-overlapping, normal
CTRS's) now suÆce for justifying all simpli�cations we had
performed in this example in order to signi�cantly facili-
tate the termination proof of the original system. RS is
left-linear, and semantically non-overlapping, because the
condition of the only (conditional) critical pair is comple-
mentary. Furthermore, we observe there that for the simpli-
�cation of rhs's we had used not only the non-erasing rule
app(nil; x) ! x, but also the erasing one map f(pid;nil) !
nil, where, however, the variable pid was substituted by the
RSu-irreducible ground term self. Both rules used here for
simpli�cation of rhs's are unconditional (as we required in
(##)). And moreover, we had also performed simpli�cation
of a condition.
Actually, as already mentioned the approach pursued in

[2] for treating Example 3 di�ers from our presentation here
in the sense that there, instead of termination of RS , left-to-
right decreasingness is the goal that is tried to be achieved
(cf. [2] for more details). It remains open whether prepro-
cessing techniques along the lines of the approach presented
here can also be conceived and used for simplifying (left-
right) decreasingness proofs.

6. CONCLUSIONS
We have shown how powerful structural properties for

non-overlapping TRS's give rise to re�ned and new results
on termination (proofs) of such systems. Moreover, we have
investigated how to obtain generalized versions of these re-
sults by weakening the non-overlapping requirement, and
for the case of conditional rewriting. These generalizations
heavily depend on the correspondingly generalized struc-
tural properties. What remained open is whether for the
case of orthogonal normal CTRS's simpli�cation of rhs's us-
ing conditional rules can also be handled appropriately.
From a practical point of view we think that, in particular,

Theorem 5 and the conditional extensions of its global ver-
sion, Theorems 12, 13 and Corollary 1 (together with their
generalization for left-linear, semantically non-overlapping
normal CTRS's), may be very useful in practice, because
the corresponding transformations can always be savely ap-
plied as a preprocessing step to simplify termination proofs.
Natural cases of rewrite systems / programs where such pre-
processing steps may be quite useful are e.g.

� unfolding of de�ned function calls in rhs's (i.e., the
body of the de�nition),

� automatically generated systems, and

� non-optimized rewrite systems arising from direct mod-
elling of problems or original (declarative) speci�ca-
tions.

An obvious question (which is of natural interest in a pro-
gramming context where let- and where-constructs are ad-
missible) concerning the latter results for CTRS's is whether
they can also be extended to some class of CTRS's allowing
for extra variables not only in conditions, but also in rhs's,
cf. e.g. [25], [27]. This remains to be investigated.
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