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ABSTRACT
Building a retrieval system with lifelogging data is more compli-
cated than with ordinary data due to the redundancies, blurriness,
massive amount of data, various sources of information accompa-
nying lifelogging data, and especially the ad-hoc nature of queries.
The Lifelog Search Challenge (LSC) is a benchmarking challenge
that encourages researchers and developers to push the boundaries
in lifelog retrieval. For LSC’22, we develop FIRST 3.0, a novel and
flexible system that leverages expressive cross-domain embeddings
to enhance the searching process. Our system aims to adaptively
capture the semantics of an image at different levels of detail. We
also propose to augment our system with an external search en-
gine to help our system with initial visual examples for unfamiliar
concepts. Finally, we organize image data in hierarchical clusters
based on their visual similarity and location to assist users in data
exploration. Experiments show that our system is both fast and
effective in handling various retrieval scenarios.
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• Information systems→ Search interfaces;Multimedia databases;
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1 INTRODUCTION
In 2021, we witnessed the rising popularity of video content on
platforms such as TikTok, Instagram Reels, and YouTube Shorts.
Alongwith the promise about themetaverse, they show that content
is moving from simple images to more complex forms, such as video
and virtual reality. A system that can handle these new forms of
data, which is more costly computational and storage-wise, can
undoubtedly provide great value. While the LSC’22 dataset[8] is not
a video dataset on its own, it is similar to one, in terms of size and
temporal meaning. It is greater than the previous edition (roughly
725,000 images compared to 183,299 [7]) and poses a significant
challenge to system developers [8].

In recent years, Transformer [26] has become the prevalent ar-
chitecture in both text and image domains. They have inspired
the use of large collections of unlabeled data in training, which is
easier to obtain. The approach is sometimes called self-supervised
learning. When large image-text or video-text datasets become
available, they give rise to vision-language pre-training. This ap-
proach creates large multi-purpose image-text models pre-trained
on matching images to their captions instead of performing a spe-
cific task such as classification. These models are applicable to
many downstream tasks such as Video-Text Retrieval [6], or even
zero-shot Video Retrieval [16]. With the nature of being trained
on image-text data, we believe that they are especially suitable for
a cross-domain image-text retrieval task, which turns out to be
exactly what LSC is.

Since the LSC competition centers around interactivity, this
means that good systems also have practical value. In addition,
they also hold a novice session to make sure the systems are easy to
use, even for non-expert users. With that in mind, we seek to use the
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large vision-language pre-trained models’ representational strength
and versatility to empower our search engine while at the same
time simplifying user interaction through a better understanding
of image sequence semantics.

Based on FIRST 2.0 [25], we revise and improve the functionali-
ties and performance of our retrieval system, as well as integrate
new components to FIRST 3.0. First, we enhance the semantic en-
coding for an image using CLIP [17]. We propose representing an
image by a set of adaptive semantic embedding vectors, each corre-
sponding to either the whole image or various regions of interest in
different sizes. In this way, our system is expected to better capture
the semantics of an image to search for concepts at varying levels
of granularity. Second, we propose augmenting our system with
an external search engine, such as Google, to find visual examples
corresponding to unfamiliar concepts for our system to retrieve
visually similar moments in the collection of images. Third, because
of the vast amount of images, we utilize the clustering of images
to shots, i.e. sequence of contiguous similar images, and scenes, i.e.
similar shots in the same place at different time instants, to organize
images in hierarchical clusters for efficient exploration.

The content of this paper is as follows. In Section 2, we briefly
summarize existing approaches and systems for lifelog search chal-
lenge. Then, we present the overview and principal components of
our retrieval system FIRST 3.0 in Section 3. Next, we illustrate sev-
eral typical scenarios of usage for our system in Section 4. Finally,
the conclusion and future work are discussed in Section 5.

2 RELATEDWORK
Since the competition is in its fifth year, many systems have been
proposed and improved over the years. Many of the systems also
participate in other retrieval competitions such as Visual Browser
Showdown [20] or ImageCLEF [4], each having a unique aspect in
which they shine. Because our work focuses on the representation
of image and text data, we also review other methods regarding
that aspect.

In the LSC dataset, various tags (time, GPS location, visual con-
cepts) are provided in the form of metadata. Most, if not all teams
index these tags due to their availability and the intuitive method
of querying based on tag. Methods such as [11] rely solely on this
information, while [5] projects them onto a 3D cube, and [19] orders
them into a graph and traverses it during the searching process.
Some authors seek to generate additional tags using a pre-trained
object detector, for example LifeSeeker [15] using ResNet101 [9],
Myscéal 2.0 [22] utilizing DeepLabV3+ [3], and some ([10], [2])
used online API such as Microsoft Cognitive Service. While con-
verting all information to tags makes them effective for indexing
and searching, lifelogging data often contains errors that make it
hard for task-specific detectors to work accurately.

Another common approach is to project the text and/or the
image onto a common embedding space and use their distance as
the relevance metric for retrieval. They can be used as local features
in addition to tags in the case of Myscéal 2.0 [22] and LifeSeeker
[15], or they can base their pipeline on it, such as Memento [1]. This
idea is also adopted by SOMHunter [14] who uses the W2VV++
[12] model, combined with the recent CLIP [17]. [25] uses Faster

R-CNN [18] as the image feature extractor, RoBERTa [13] as the
text feature extractor, and they use custom layers to map them to a
joint space. Since training a joint-embedding model is much more
challenging than training a classifier and detector, large well-tested
models are hard to find. However, recently such amodel has become
available [17]. We believe that many participants may switch to or
incorporate CLIP [17] in their pipeline due to its strengths and ease
of usage.

The two mentioned approaches often complement each other,
so we make use of both: we use tags when we are confident about
their correctness (e.g., time and location) so we can quickly narrow
down the search space, and we leverage the joint embedding to
navigate through the remaining candidates with query expansion
techniques that we describe later.

3 METHOD
Our system is designed with simplicity in mind. We leverage the
strong representation learning capabilities of recent large models
such as CLIP[17] to reduce the complexity of user interactions re-
quired. Furthermore, we make use of the common embedding space
to find similar examples to our queries to speed up the searching
process. This is similar to "exploring" the embedding space, and
through this process we also have an idea of the quality of the space
that the model has learned.

3.1 System Design Principles
Being a multi-module system, the design and inclusion of compo-
nents in FIRST are influenced by the following principles:

• Flexibility: As the F in FIRST, we place flexibility at a high
priority in our design. With the goal of becoming a general
system that can support various user needs, we develop our
system in amanner such that the componenets are not tightly
coupled and can be easily swapped in-and-out in cases where
an upgrade or replacement is desired. This structure also al-
lows us to quickly evaluate and test the various components
to find the best combination for a particular use case.

• Scalability: As the size of the dataset will only grow over
years, for a system to remain relevant, it has to be able to
scale. There are three aspects of scaling that we consider in
our system: storage efficiency, retrieval performance, and ease
of browsing. It is easy to see that these factors can influence
each other, for example, effective retrieval might require
additional information saved along with each image, which
reduces storage efficiency. To achieve this, we use scalable
databases as the backbone of our retrieval system, in addition
to data structures that implement hierarchical indexes for
browsing.

• Openness: As much as we want it to be, our system can
never cover all existing concepts. However, by allowing the
retrieval process to be guided by external knowledge, we can
have an effectively unlimited pool of understood concepts,
while leveraging the effectiveness of our searching tool. We
obtain this by modelling similarity and dissimilarity between
images/texts; this feature enables the possibility of using of
an external example as a prototype, then performing query
expansion based on it. We also seek to advance further from
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simply defining concepts to be objects that appear in an
image, instead we look to model higher semantic meaning
such as events (e.g., birthday party), emotions, activities, and
more. We present more examples of this feature later on in
the paper.

3.2 System overview
Figure 1 demonstrates the overview architecture of our retrieval
system FIRST 3.0. The current system is developed from FIRST 2.0
[25]. The top and bottom layers are the platforms that allow the
flexible integration of different modules for query processing, query
expansion, visualization and interaction [24, 25].

User-Interface and Interaction Platform

System Integration Platform

Query by 
Metadata

Query by Text  
Description

Shot and Scene 
Clustering

Query 
Expansion with 
Visual Examples

Query Expansion 
with External 
Search Engine

Flexible Temporal 
Events Navigation

Map-based 
Visualization

Filter by 
Date-Time

Filter by 
Location

Query 
Expansion 

with Sketch

Figure 1: Overview of retrieval system.

Our system supports users to filter moments by date-time and
location, and retrieve images by metadata and text description. For
a text description query, we propose the mechanism for attention-
based embedding enrichment (see Section 3.4) to capture interesting
semantic features of an image in different image regions at vari-
ous levels of granularity. We also support nested queries and the
combination of different queries. We provide several query expan-
sion modules to further assist users. The query expansion with
visual examples [25] allows users to search for visually similar
moments from a given image. We propose a new idea for query
expansion with the assistance of external search engine to find
unknown/unfamiliar concepts (see Section 3.5). We also provide a
simple sketch-based retrieval [23] so that users can quickly sketch
out the scene of interest.

Besides the regular retrieval interfaces, we revise and enhance
three modules for user interface and interaction, including a flexible
temporal events navigation,map-based visualization, and shot/scene
clustering.

3.3 Pre-processing and indexing
As the lifelogging data is a large collection of images with low
information density, we seek to efficiently reduce its size prior
to constructing an index. We achieve this by applying a few pre-
processing steps, as illustrated in Figure 2:

• Filtering: We filter out images that are blurry due to motion
or obstruction, as they do not contain useful information.

• Normalization: Sometimes the images can be rotated by
multiples of 90 degrees, so we normalize them to ensure our
next processing steps work correctly.

Filtering

Normalization

Grouping Sequence of contiguous 
similar images

Image sequence clustering

Location-based clustering

Figure 2: Pre-proceessing and clustering.

• Grouping:We group segments of very similar images caused
by stationary viewpoint (which occurs very frequently) into
one so they do not overcrowd the search results.

The pre-processing steps are implemented using both embedding-
based comparison and simple computer vision techniques, yet they
greatly reduce the number of images left and make sure they are
meaningful, converting raw data to information-packed data.

In Figure 2, we also demonstrate the main steps in grouping
images into more meaning groups. For grouping images, we first
gather contiguous images that are visually similar into a shot, i.e. a
sequence of similar images. For each shot, we select a key frame,
usually the first image in that sequence, to represent that shot and
assign the GPS information to that shot from its images. We can
also select multiple key frames if we enlarge the shot with several
contiguous similar sub-shots. Then we cluster key frames of all
shots to link shots taken at the same scene in different time instants.
Finally, thanks to the GPS information of images and shots, we can
group images in shots based on their locations. We also exploit the
hierarchical relationships of locations and places, such as buildings,
cities, or countries, to enhance the functionality of our retrieval
solution.

In LSC’22, each image is also accompanied with metadata such
as time and location, texts present in the image, and visual concepts.
As with previous years, these information are vital to finding the
required shots, therefore we indexed them in our database. We also
enrich the concepts associated with each image using the CLIP
model[17] and Conceptual Captions [21] tags.

3.4 Attention-based embedding enrichment
A traditional approach for lifelog retrieval is to extract concepts
from an image so that it can be indexed. The extracted concepts
can be entities appearing in the image, type of place, type of action,
etc. However, this approach depends on the concept detectors for
known concepts in a pre-defined dictionary . Therefore, this method
is not appropriate to search for new concepts that are not available
in that dictionary.

Keep in mind the openness for our retrieval system, we aim to
represent an image with feature vectors that can be used to match
with new concepts. For each image in the dataset, we extract a
high-dimensional representation using CLIP [17]. This embedding
is a good general descriptor of the image, and it is close to the
main features (concepts) of the image. In this way, our system can
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Adaptive Semantic Embedding Set

Semantic 
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Figure 3: Image decomposition and Adaptive semantic em-
bedding set.

support users search for simple concepts related to entities in an
image (such as chair, TV, sandwich, etc) as well as more abstraction
concepts (such as a lecture class, a wedding ceremony, etc).

However, the lifelogging data contains very similar scenes, in
which a subtle change in the content of the image can differentiate
one image from hundreds of similar ones (e.g., the content of the
TV at that time). Therefore, apart from the general concepts in the
image, we are also interested in more subtle and local features.

Furthermore, since the original size of the images is 1024 × 768
and the CLIP model encodes images of size 224 × 224 or 336 × 336
depending on the model used, they have to be down-sampled in
order to be encoded by CLIP, which can cause loss of information.
Furthermore, it would not be sufficient to query, i.e. to match, an
object or concept appearing in a small portion of an image from
the global embedding vector of that image. Hence, it should be nec-
essary to encode various important regions of an image at different
levels of details to assist retrieving different concepts at various
levels of granularity in an image.

Due to the above reasons, we seek to add additional information
besides the overall image’s embedding. To achieve this, we select
smaller crops of the image and encode them along with the original
image. This is similar to the attention mechanic in the sense that
we focus on "interesting" regions in the image. The regions to be
selected are usually the ones that contain salient objects that can
define the scene. In this way, we can represent an image with an
adaptive semantic embedding set.

Figure3 demonstrates our idea to decompose an image into multi-
ple patches, corresponding to different levels of detail, and generate
an adaptive semantic embedding set corresponding to that image.
In our implementation for FIRST 3.0, for simplicity, we represent
an image (with the aspect ratio of 4:3) as a grid with 4 × 3 square
cells. Then we construct multiple patches with the size of 1 × 1 and
2 × 2 cells, which can be overlapped. Finally, we remove unimpor-
tant patches and encode information-rich patches into semantic
embedding vectors. The adaptive semantic embedding set is the
collection of semantic embedding vectors of the full-size image and
its exciting patches.

3.5 Visually-similar image searching
As stated in Section 3.1 in the principle of Openness, we use simi-
larity modelling to extend the capabilities of our system. This is a
feature that many other methods also seek due to its usefulness in
the retrieval setting [15] [14]. In our system, we leverage the strong
representational capability of CLIP [17], which is demonstrated
to be effective even in the zero-shot setting [16]. Because CLIP
was trained on image-caption classification task which is a form
of contrastive training, we believe it has learned to differentiate
between images based on the concepts existing in the images, and
so it can encode the image regardless of the content. More impor-
tantly, this allows us to simply define the distance between two
images as the cosine distance between their embeddings. With this
definition, we can quickly find an image that is similar to a given
image in a database. This gives rise to the ability to search using
visual examples.

In multiple cases, there are some concepts cannot be well de-
scribed using words, are unknown for the user, or are unavailable
in the training corpus for the text encoder. Such instances are
present in previous editions of the LSC. While trying to expand
the pre-defined dictionary helps in all cases, it requires much effort
to identify the needed concepts and also comes with storage and
computing costs. We deviate from this paradigm by two means:
utilizing external systems and modelling deep image semantic.

With the ubiquitous amount of data available on the Internet, we
believe that any possible concept, possibly along with an image-text
correspondence, exists and can be found with an appropriate tool,
such as Google Search. We can query those tools to find an example
of such concept, and use it as a starting point for our retrieval
process. With our visual comparison capabilities mentioned earlier,
we support the use of an external image as a prototype for query, as
demonstrated in Figure 4.We can look for coffee machinewith visual
examples suggested by an external search engine. This approach
allows us to broaden the scope of searching beyond our existing
concepts, and utilizing the strengths of other systems, while also
producing a natural and intuitive searching process. This feature
works well with our adaptive embedding described in Section 3.4, as
the particular unknown/unfamiliar concept usually only occupies
a portion, or even a tiny bit of an image, and therefore focusing on
it greatly helps with "matching" it to the available prototype.

Unfamiliar 
concept

Top k visual examplesSearch engine

Visual 
Query Expansion

Result

Figure 4: Retrieval of an unfamiliar concept with the assis-
tance of visual search engine.
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Figure 5: The interface of our system.

The interface of our system can be seen in Figure 5. In sum-
mary, our system is based on FIRST 2.0 [25], with the following
enhancements:

• Better scene clustering. Despite having implemented scene
clustering, our previous version suffers from repetitive scenes.
In our new version, we improve this by using CLIP features
and using heuristics to merge scenes. The grouping can be
collapsed/expanded as needed to make sure browsing is fast
by default, while additional details can still be obtained in
case of a need for high recall.We also support other strategies
for clustering such as geographical proximity.

• Flexible temporal navigation. We support quickly brows-
ing through the photos of a day with an adjustable level of
details, and with an enhanced user interface. We also support
browsing through moments before and after a moment in a
specific results, so that users can check for related activities
or places of a query.

• Local/prototype visual search. With the ability to search
using external examples and the ability to focus on local
regions described in Sections 3.4 and 3.5 respectively, visual-
based searches have become more useful than ever. The idea
of googling an unknown concept is also logical to a novice
user. The search bar accepts URL of images, so the process
is quick and convenient.

• Better representation. With the adoption of CLIP instead
of ResNet [9] and the shift in paradigm mentioned in Section
3.5, the representation quality has increased significantly
and search quality has improved, as well as enabling a host
of other features. Since we use both image encoder and text
encoder from CLIP, the joint embedding is more aligned and
easier to work with.

4 CASE STUDY

In this section, we describe some specific usage scenario to demon-
strate how to best use our system, as well as its strengths.

Scenario 1: I was looking at a lead soldier in a mall, next to some
clothes.

We think of two strategies to approach this query, either directly
searching for "lead soldier", or imagine a typical lead soldier and
try to describe it. For the second strategy, we might attempt to look
for a standing man, wearing red shirt and a top hat.

Figure 6: The first scenario. The target image is on the left,
while the image on the right is the prototype we took from
Pinterest.

The results of both approaches are shown below.
a lead soldier standing ✗

a lead soldier wearing red shirt ✗

a lead soldier wearing red suit ✓

a man wearing red suit ✗

We observe that searching for "man" or "red suit" yields too much
results and not the one we are looking for, and even in the query
that successfully found the target image, the results are inconsistent.
Instead, we can search for a concrete example on the Internet and
use it directly for our search, as shown in Figure 6. This gives the
target image as the top-2, and at the same time yield 2 other images
with a lead soldier in it in the top-15, which none of the shown
queries were able to. As mentioned above, we only need the URL of
the image, so the process itself is fairly quick, and it is much faster
than the try-and-error approach of query engineering.

Scenario 2: I was taking a photo of a man sitting at a table. I took
a flight to this city 3 days ago. I was in Greece then.

In this example, we would like to illustrate our system’s capa-
bility to retrieve a moment with the activity or story in an image,
instead of looking for only entities/objects appearing in it. With

Oral Paper Session

Many works [22], [25] enrich images with metadata tags from 
pre-trained state-of-the-art object detectors. While this is intuitive 
and effective and we do this ourselves too, we propose a further 
advancement by modelling more abstract concepts from the image, 
such as events. This can be achieved through a number of ways, 
one of them is breaking down or associate an abstract concept with 
simple concepts or objects that can be searched for. An example of 
this is instead of searching for "teaching" which is difficult to define, 
we can try to look for whiteboards, people in a room, desks, etc. 
As another avenue, we note that recent advances in representation 
learning have make this more possible than ever; we show that 
since CLIP was trained on image-caption pairs, it has some (limited) 
ability to understand a scene in the same way a human does, and we 
can directly leverage this to empower our searches. By leveraging 
general representations instead of task-specific representations, 
advances to these models also empower our search engine without 
intervention. We believe this direction may prove useful and make 
future search engines simpler yet more powerful.

3.6 System interface and navigation
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Target image

(3 days ago)

Filter by location

Query by 
description

Take a flight Take a photo of a man 
sitting at a table

Prior event verification

Figure 7: The second scenario. The target image can be iden-
tified from description, location filtering, and prior event
verification.

the first sentence in the query description, rather than looking for
the moment when we can see a smartphone or camera in a photo,
we can simply search with the text description "I was taking a photo
of a man sitting at a table".

If there are multiple moments, we can verify the event of interest
using the second sentence in the query. Three days can be a long
duration and it would be inconvenient and inefficient for a user
to navigate through a long sequence of images just to verify the
previous event of taking flight and arriving at a new city. Our
system assists users with a flexible navigation mechanism and
grouping similar images into shots, thus the system helps users
quickly confirm the moment happening 3 days ago.

Finally, if we wait until the last minute to exploit the last sen-
tence in the query description, we can narrow down the moments
occurring in Greece. We can simply set the filter on the location
("in Greece") and query with the description from the first sentence,
and we can successfully identify the target moment, as illustrated
in Figure 7.

Scenario 3: I was in a shop, talking to a woman in front of some
purses. One of them was purple and the other one was white.

For this query, we could try to locate the shop through geolocat-
ing or finding other shopping moments and browse for a fashion
shop that sells purses. We believe that there are few images of a
purple purse, so we focus on this information. However, from the
description, we know that the purse does not occupy the whole
image, this can make it difficult to find it if we only encode the
whole image.

Indeed, the local features mentioned in section 3.4 help us in
this case, as the correct crop can better highlight the purse. Note
that the varying sizes matter, as the 1× 1 patches fail to capture the
purse, and only the 2× 2 patch is able to fully capture it. Being able
to centralize on the purse while ignoring other objects pushes it
closer to the "purse" concept and allows it to be found. The scenario
is depicted in Figure 8. The scores represent in the figure are the

Figure 8: The third scenario. The target image is shown at the
top, following by a 2 × 2 patch and a 1 × 1 patch containing
the purse. The images are not scaled equally.

similarity (higher is better) to the query phrase "purple purse". In
this case, only the 2 × 2 patch is close enough to make it to the top
results, the other images are too far down the ranklist.

5 CONCLUSION
In this paper, we present FIRST 3.0, a newly rebuilt version of our
previous systems [24, 25]. Our intention is to ensure that our sys-
tem can handle large data while retaining its flexible architecture.
Furthermore, we propose to use CLIP [17] in a novel way so that
our system can adaptively capture semantics at different levels of
detail in an image. Each image is associated with a set of semantic
embedding vectors to represent the image at various levels of granu-
larity, from the whole picture to patch sizes. To deal with unfamiliar
concepts, we propose an augmentation for our system by using an
external search engine to find initial visual examples corresponding
to a new concept. Furthermore, the user interface of our system
allows interaction with an adjustable level of granularity.

To assess whether users can use our tool easily and logically, we
need to conduct further novice and expert evaluation. To achieve
our goals, our system also needs further realization and revisions,
which can take advantage of the flexibility architecture. We hope
that our ideas lead to better search engines, both in terms of per-
formance and accessibility.
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