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ABSTRACT
With AI-based decisions playing an increasingly consequential role

in our society, for example, in our financial and criminal justice

systems, there is a great deal of interest in designing algorithms

conforming to application-specific notions of fairness. In this work,

we ask a complementary question: can AI-based decisions be de-

signed to dynamically influence the evolution of fairness in our

society over the long term? To explore this question, we propose a

framework for sequential decision-making aimed at dynamically

influencing long-term societal fairness, illustrated via the problem

of selecting applicants from a pool consisting of two groups, one

of which is under-represented. We consider a dynamic model for

the composition of the applicant pool, in which admission of more

applicants from a group in a given selection round positively re-

inforces more candidates from the group to participate in future

selection rounds. Under such a model, we show the efficacy of the

proposed Fair-Greedy selection policy which systematically trades

the sum of the scores of the selected applicants (“greedy”) against

the deviation of the proportion of selected applicants belonging to

a given group from a target proportion (“fair”). In addition to ex-

perimenting on synthetic data, we adapt static real-world datasets

on law school candidates and credit lending to simulate the dy-

namics of the composition of the applicant pool. We prove that the

applicant pool composition converges to a target proportion set by

the decision-maker when score distributions across the groups are

identical.
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1 INTRODUCTION
In this paper, we seek to develop a framework for sequential de-

cision making aimed at influencing long-term societal fairness.

Machine learning models are being increasingly applied in making

critical decisions that affect humans, such as recidivism predic-

tion [8], mortgage lending [3], and recommendation systems [25].

While the algorithms offer increased efficiency, speed, and scala-

bility in the decision-making process, they could introduce bias

leading to the decisions being unfair towards certain groups of the

population. There is a rich and rapidly growing literature on “fair”

strategies that mitigate bias in algorithmic decision making, includ-

ing pre-processing the labels or data and reweighting costs based

on groups [16], adversarial de-biasing [28], introducing regulariz-

ers based on mutual information [17], addition of constraints that

satisfy fairness criteria [26], learning representations that obfuscate

group information [27] and many more.

Most of the above studies focus on a static framework where the

long-term effects of decisions on the population are not explored.

However, in many practical applications, decisions may affect the

feature distributions across groups and influence the future rewards,

that will eventually affect the dynamics of the decision-making

loop [19].

The long-term dynamic study of such systems can be modeled

through a reinforcement learning framework based on Markov De-

cision Process (MDP) as considered in our work. Our framework is

motivated by real-world examples such as the following. Consider

a company receiving applications every month, which wants to

hire good candidates in an unbiased manner (e.g., by ultimately

selecting equal numbers of male and female applicants). With the

total monthly intake fixed based on a budget, the company selects

a certain proportion of candidates from each group. The hiring

decisions affect the subsequent pool of applicants: admitting more

candidates from a particular group might encourage more such

candidates to apply, or successful candidates from a group might

inspire other such candidates, providing positive feedback into

the decision-making loop. Such a strategy could not only enhance

diversity and equity, but also enable the company to learn more

about a minority group so as to eventually have a richer pool of

well-qualified applicants. Another motivating example is college

admissions, where the goal may be to admit students with the best

academic records, while accounting for socio-economic background

and reducing bias based on sensitive attributes such as race or gen-

der. Could one, for example, reverse the trend in the decrease in

the proportion of women in science, technology, engineering and

mathematics (STEM) as documented in [5]? It reported that 18% of

bachelor’s degrees in computer science were awarded to women

in 2010, down from 37% in 1985. Studies also point out that fewer
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women choose to apply to such fields as result of societal influ-

ences. We suggest here a structured framework for fair selection

aimed at combating such systemic imbalances by encouraging a

larger number of people from minority groups to participate in the

selection process.

Contributions. Based on a simple model for evolution of the

composition of the applicant pool, we develop a framework for fair

selection by formulating the problem as a Markov Decision Process

(MDP) with two objectives – maximizing the utility by admitting

candidates with the highest scores, and minimizing the disparity

between the proportions of selected candidates from each group.

We present two policies for fair selection: an optimal policy based

on value-iteration that maximizes the utility accumulated over

multiple rounds, where the utility comprises of a greedy term that

maximizes sum of scores of selected applicants and a fair-only term

that minimizes disparity; and second, a computationally simple and

effective policy, which we term the Fair-Greedy (FG) policy, that

optimizes for instantaneous utility. We characterize the structure

of the FG policy and show convergence and also prove that the

applicant pool proportion approaches the target proportion that

is desired by the system under identical score distributions across

the two groups. We provide experimental results on interesting

scenarios with synthetic data, as well as with dynamic data created

from the static law school [23] and German credit [9] datasets.

2 RELATEDWORK
Recent work on fairness in sequential decision making includes set-

tings such as online classification [2], Bayesian decision making [7]

and predictive policing [10]. Several works address the notion of

imposing fairness in multi-armed bandit and online learning prob-

lems [6, 12, 13, 15, 21]. This body of work focuses on the design of

policies and the effects of fairness constraints on them. However,

in these frameworks, decisions do not affect future samples.

The importance of introducing dynamics into notions of fairness

is highlighted by studies indicating that static fairness criteria may

lead to undesired long-term effects on minority groups [18], [29].

While we focus in this paper on the participation rates of different

groups in the selection process, prior work on fairness in sequential

decision making has focused, either explicitly or implicitly, on the

impact of decisions on the qualifications or score distributions of

the different groups.

In particular, [18] models the effect of fairness-aware decisions

via a one-step feedback model: for example, they might model

the mean change in credit score in a disadvantaged segment of

the population as a function of the rate at which bank loans are

granted. It is shown in [18] that, depending on the specific model

for the change, “fair” policies (e.g,. equalizing selection rates or

true positive rates across disadvantaged and advantaged groups)

may sometimes lead to negative outcomes. The work [29] studies

how the imposition of hard fairness constraints leads to changes in

the underlying feature distributions and the group representation.

In particular, they show that imposing typical notions of fairness

such as statistical parity or equality of opportunity could lead to

exacerbation of the disparity between the group proportions of

samples, and the disadvantaged group may even exit the system.

Modeling the long-term impact in the sense of the updated pop-

ulation distributions feeding into the subsequent examples seen

by the system and studying such feedback effects have been tra-

ditionally investigated using reinforcement learning frameworks

via Markov Decision Processes (MDPs), and introducing fairness

constraints in the reward functions [11, 14, 22]. Departing from

conventional statistical notions of fairness based on independence

or separation, [14] adopts a ‘weakly meritocratic’ notion where they

devise policies such that, their algorithm never (probabilistically)

prefers an action over another, if the latter has larger long-term

utility, which for example in a hiring process, can be viewed as the

selction process cannot target one group over another if selection

from either groups leads to similar long-term utility or benefit to

the institution.

Recent works such as [20, 24, 30] examine the long-term im-

pact of decisions on the features of the population. Building on the

work of [18], the authors of [24] propose a dynamic model with the

motivation of loan lending decisions. They model the group-wise

distributions of the likelihood of loan repayment (analogous to

score distributions in our framework), termed the payback probabil-

ities, and consider dynamics governed by the hypothesis: granting

loans produces upward mobility for a population when they are

repaid. Along with examining the impact of fair decisions on the

likelihood of loan repayment, they also highlight the detrimental

effects of unequal misestimation of the payback probabilities across

groups under their model, even under fair decisions. A fundamental

notion of fairness is that of ‘affirmative action’, which is viewed

in [20] as balancing the long-term qualification across groups. The

authors in [20] study the evolution of qualification rates while at-

tempting to maintain the social equity of selecting an equal number

of applicants from both groups. They assume that the selection

decisions could act as either an incentive or impediment, causing a

change in the proficiency of a group: for example, systemic rejec-

tion of a particular group may cause the group’s population to lose

the interest to participate altogether. The long-term dynamics of

group wise qualification rates are also investigated in [30]. Under a

partially observable MDP setting, they introduce a myopic policy,

characterize the equilibrium of dynamics and study their effects on

population under two regimes: one where accepted individuals feel

less motivated to remain qualified, and another where accepted in-

dividuals get access to better resources and hence remain or become

more qualified.

We adopt an outlook complementary to the preceding body of

work, seeking to influence the participation of under-represented

groups in the selection process. We do not assume that the score

distributions change as a consequence of our decisions, but our

model can be extended to accommodate such changes, as long as we

can estimate them. Rather than studying the impact of fair policies

as in [20, 24, 30], we provide a generic framework for achieving

long-term fairness dynamically. While we also consider a score-

based selection problem as in [18], our notion of fairness is that the

proportion of applicants and also that of admissions is equitable

across groups or approaches a target set by the policy-maker. We

adopt the MDP framework as well, but instead of imposing fair-

ness as a hard static constraint at every round in the sequential

decision-making process, we define our reward as a composition of
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two-fold objectives of maximization of scores of accepted individu-

als and minimizing disparity between the proportion of accepted

individuals from a target set by the decision-maker. We model the

proportion of applicants as states of the MDP, thus the state space

is different from that considered in other works.

3 PROBLEM SETTING
Given that there are two groups 𝑢 and 𝑣 within the population,

based on a binary valued sensitive attribute, we denote the total

number of applicants in round 𝑡 by 𝑁𝑡 , out of which 𝑁𝑢
𝑡 belong to

group 𝑢 and 𝑁 𝑣
𝑡 = 𝑁𝑡 − 𝑁𝑢

𝑡 belong to group 𝑣 . We wish to admit

a fixed proportion 𝑎 of the total applicants, leading to 𝐴𝑡 = 𝑎𝑁𝑡

number of total applicants accepted in round 𝑡 . We denote by 𝐴𝑢
𝑡

and 𝐴𝑣
𝑡 = 𝐴𝑡 − 𝐴𝑢

𝑡 the number of applicants selected in round 𝑡

from groups 𝑢 and 𝑣 respectively.

Score distributions. The qualification of an applicant is mea-

sured by the score, assumed to be an increasing function of the

proficiency of a candidate. Let P𝑢 and P𝑣 denote the score distri-

butions of the two groups. Thus the scores for groups 𝑢 and 𝑣 are

{𝑋𝑢
𝑖
}𝑁

𝑢
𝑡

𝑖=1
and {𝑋 𝑣

𝑗
}𝑁

𝑣
𝑡

𝑗=1
, generated from P𝑢 and P𝑣 respectively. We

denote the ordered scores by {𝑋𝑢
(𝑖) }

𝑁𝑢
𝑡

𝑖=1
and {𝑋 𝑣

( 𝑗) }
𝑁 𝑣
𝑡

𝑗=1
, where 𝑋𝑢

(𝑖)
and 𝑋 𝑣

( 𝑗) denote the 𝑖
𝑡ℎ

and 𝑗𝑡ℎ largest scores out of 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡

respectively.

Fairness-aware utility. The goal is to optimize the utility,
which comprises of two parts: a greedy term (to be maximized)

which is the expected sum of scores of selected candidates, and a

fair term (to be minimized) measuring disparity between groups

based on a target proportion.

MDP formulation. We define the MDP state 𝑠𝑡 ∈ [0, 1] as the
proportion of applicants from group 𝑢 out of the total, and the

action 𝑎𝑡 ∈ [0, 1] as the proportion of selected candidates from

group 𝑢 out of the total selected candidates:

𝑠𝑡 =
𝑁𝑢
𝑡

𝑁𝑡
, 𝑎𝑡 =

𝐴𝑢
𝑡

𝐴𝑡
.

We denote by 𝑠 ∈ (0, 1) the long-term target of the proportion of

group 𝑢 among the selected applicants. For example, if group 𝑢

is under-represented in the applicant pool, we may set 𝑠 as the

proportion of group 𝑢 in society at large. Instead, if our long-term

goal is to admit equal number from both groups, we set 𝑠 = 0.5. Note

that formulating the states and actions as proportions of group 𝑢 is

sufficient since the proportion of applicants and admitted candidates

from group 𝑣 is naturally 1 − 𝑠𝑡 and 1 − 𝑎𝑡 respectively. The overall

utility or reward is:

𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝑅G (𝑠𝑡 , 𝑎𝑡 ) − _𝐿F (𝑎𝑡 ), (1)

where the greedy reward term is the expected sum of scores of

admitted candidates, given by:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) =
1

𝐴𝑡
E

[ 𝐴𝑢
𝑡∑︁

𝑖=1

𝑋𝑢
(𝑖) +

𝐴𝑣
𝑡∑︁

𝑖=1

𝑋 𝑣
(𝑖)

]
=

1

𝐴𝑡
E

[ 𝑎𝑡𝐴𝑡∑︁
𝑖=1

𝑋𝑢
(𝑖) +

(1−𝑎𝑡 )𝐴𝑡∑︁
𝑖=1

𝑋 𝑣
(𝑖)

]
,

and the fairness loss term is

𝐿F (𝑎𝑡 ) = (𝑎𝑡 − 𝑠)2 . (2)

Since the accepted candidates are the ones with the largest scores,

the ordered statistics of the score distributions come into play. In (1),

_ ≥ 0 is a parameter used to control the weight given to the fairness

objective relative to the greedy objective. The greedy objective pro-

motes the admission of good candidates, while the fairness objective
promotes fairness in selection proportion. The fairness objective is

balanced: it pushes the selection proportion towards 𝑠 regardless of

whether group 𝑢 is under-represented or over-represented among

the selected applicants. Note that the dependence of the greedy

reward on state 𝑠𝑡 is through 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡 , where the ordered scores

for groups 𝑢 and 𝑣 are specifically out of 𝑁𝑢
𝑡 and 𝑁 𝑣

𝑡 applicants for

groups 𝑢 and 𝑣 respectively.

Applicant pool evolution. We illustrate our ideas with a simple

linear model for positive reinforcement. The effect of decisions on

subsequent applicant pools would, in reality, be far more complex;

we hope that our work stimulates the major effort in experimenta-

tion and data collection required to build such models. We model

the positive reinforcement provided by decision-making as a set

of transition probabilities P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). The total number of appli-

cants 𝑁𝑡 to the system at round 𝑡 can be any sequence of numbers

and the number of applicants from group 𝑢 to the system is sam-

pled from a Poisson distribution based on the mean parameter and

overall number of applicants (which is variable) as

𝑁𝑢
𝑡 ∼ 𝑃𝑜𝑖𝑠 (\𝑡𝑁𝑡 ), (3)

where 𝑃𝑜𝑖𝑠 (·) is the Poisson distribution with mean \𝑡𝑁𝑡 . Thus, \𝑡
is the mean proportion of group 𝑢 in the applicant pool in round 𝑡 .

We consider the following model for positive reinforcement:

\𝑡+1 = [\𝑡 + [ (𝑎𝑡 − 𝑠𝑡 )]C, (4)

where [ is a step-size parameter and []C is the projection on the

convex set C = [0, 1]. Thus the update is such that when the

admission rate 𝑎𝑡 of the group 𝑢 is higher than the application rate

𝑠𝑡 , more applicants from the group are encouraged in future rounds,

and vice versa. The state then evolves as

𝑠𝑡+1 =
𝑁𝑢
𝑡+1

𝑁𝑡+1

.

The model for positive reinforcement is relevant to many real-

world selection systems and is inspired by the social behavior that

the successful admission of candidates from a particular group

encourages more such candidates to apply to the institution. For

instance, a large number of female college graduates in society

serve as role-models, encouraging the future generations of women

to go to college. However, if a particular program is known for

admitting women at a rate smaller than the application rate, lesser

women might consider the institution as worth applying to.

Optimal Policy. The maximum long-term reward accumulated

by the system through the horizon 𝐻 is given by

max

𝜋
E
[ 𝐻∑︁
𝑡=0

𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝜋
]

(5)

where 𝜋 is the policy or mapping from the set of states to the set of

actions. The optimal policy 𝜋∗ (𝑠) can be found by exact methods
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such as value iteration [4], where the optimal value function is

defined as:

𝑉 ∗ (𝑠) = max

𝜋
E
[ 𝐻∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝜋, 𝑠0 = 𝑠
]
, (6)

which is the cumulative reward earned by playing policy 𝜋 , and

starting from initial state 𝑠 , with 0 < 𝛾 < 1 being the discount

factor. The optimal policy 𝜋∗ (𝑠) is found by iteratively solving the

Bellman equation:

𝑉 ∗
𝑘
(𝑠) = max

𝑎

∑︁
𝑠′

P(𝑠 ′ |𝑠, 𝑎) [𝑅(𝑠, 𝑎) + 𝛾𝑉 ∗
𝑘−1

(𝑠 ′)],∀𝑠 (7)

and the optimal policy is computed iteratively as below:

𝜋∗
𝑘
(𝑠) = arg max

𝑎

∑︁
𝑠′

P(𝑠 ′ |𝑠, 𝑎) [𝑅(𝑠, 𝑎) + 𝛾𝑉 ∗
𝑘−1

(𝑠 ′)], (8)

until the optimal policy converges to 𝜋∗ (𝑠). It is also known that

the value iteration algorithm converges as long as the reward is

bounded in magnitude [4]. However, analyzing the equilibrium

state of the MDP under this optimal policy is intractable.

We observe through simulations that the structure of the optimal

policy 𝜋∗ (𝑠) is similar to that of the simpler Fair-Greedy policy

proposed next, and that the applicant pool evolution converges to

an equilibrium point.

4 FAIR-GREEDY POLICY
Finding an optimal policy is computationally expensive as the state

space grows larger. We therefore propose a simple, yet effective,

Fair-Greedy policy that optimizes the instantaneous overall utility

in (1):

𝜋∗𝐹𝐺 (𝑠𝑡 ) = arg max

𝑎𝑡
𝑅(𝑠𝑡 , 𝑎𝑡 ). (9)

We provide insight into this policy by considering its performance

for a large applicant pool (𝑁𝑡 large) with identical score distribu-

tions across the two groups. In this regime, we first prove that the

greedy reward term is optimized when the admission proportion

is the same as the applicant proportion. We then derive some key

properties of the FG policy, and provide theoretical guarantees for

the convergence of the applicant pool to the target proportion.

Theorem 4.1. If the score distributions P𝑢 and P𝑣 of the two
groups are identical, the greedy reward 𝑅G (𝑠𝑡 , 𝑎𝑡 ) is optimized by the
action:

𝑎∗G = arg max

𝑎𝑡
𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑠𝑡 . (10)

Proof. Recall that the greedy reward is given by:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) =
1

𝐴𝑡
E

[ 𝐴𝑢
𝑡∑︁

𝑖=1

𝑋𝑢
(𝑖) +

𝐴𝑣
𝑡∑︁

𝑖=1

𝑋 𝑣
(𝑖)

]
(11)

Since we assume the space of actions as 𝑎𝑡 ∈ [0, 1], the number

of admitted candidates from each group, more formally, are 𝐴𝑢
𝑡 =

⌊𝑎𝑡𝐴𝑡 ⌋ and 𝐴𝑣
𝑡 = ⌊(1 − 𝑎𝑡 )𝐴𝑡 ⌋. For simplicity of presentation, we

omit the ‘floor’ without loss of generality of our results since we

are interested in the regime that 𝑁𝑡 is large. Therefore, we write:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑎𝑡E

[∑𝑎𝑡𝐴𝑡

𝑖=1
𝑋𝑢
(𝑖)

𝑎𝑡𝐴𝑡

]
+ (1 − 𝑎𝑡 )E

[∑(1−𝑎𝑡 )𝐴𝑡

𝑖=1
𝑋 𝑣
(𝑖)

(1 − 𝑎𝑡 )𝐴𝑡

]

By the law of large numbers, the collection of score variables

{𝑋𝑢
𝑖
}𝑁

𝑢
𝑡

𝑖=1
and {𝑋 𝑣

𝑖
}𝑁

𝑣
𝑡

𝑖=1
converge to their respective distributions P𝑢

and P𝑣 as 𝑁𝑡 increases. Choosing the top 𝐴𝑢
𝑡 = 𝑎𝑡𝐴𝑡 candidates

out of 𝑁𝑢
𝑡 (similarly top 𝐴𝑣

𝑡 out of 𝑁 𝑣
𝑡 ) is equivalent to setting a

threshold 𝑡𝑢 (similarly, 𝑡𝑣 ) and admitting all candidates with scores

above the threshold. This holds for generic score distributions and

they need not necessarily be identical across the groups. Thus for

large 𝑁𝑡 , the average score of the admitted candidates from each

group approaches its expected value as:

lim

𝑁𝑡−→∞

∑𝑎𝑡𝐴𝑡

𝑖=1
𝑋𝑢
(𝑖)

𝑎𝑡𝐴𝑡
= E[𝑋𝑢 |𝑋𝑢 ≥ 𝑡𝑢 ] (12)

lim

𝑁𝑡−→∞

∑(1−𝑎𝑡 )𝐴𝑡

𝑖=1
𝑋 𝑣
(𝑖)

(1 − 𝑎𝑡 )𝐴𝑡
= E[𝑋 𝑣 |𝑋 𝑣 ≥ 𝑡𝑣] (13)

Rewriting the greedy reward in terms of the above conditional

expectations leads to the following equation:

𝑅G (𝑠𝑡 , 𝑎𝑡 ) = 𝑎𝑡

∫ ∞
𝑡𝑢

𝑢P𝑢 (𝑢)𝑑𝑢∫ ∞
𝑡𝑢

P𝑢 (𝑢)𝑑𝑢
+ (1 − 𝑎𝑡 )

∫ ∞
𝑡𝑣

𝑣P𝑣 (𝑣)𝑑𝑣∫ ∞
𝑡𝑣

P𝑣 (𝑣)𝑑𝑣
(14)

with the additional constraint being that the thresholds 𝑡𝑢 and 𝑡𝑣
are such that the total number of admitted candidates is equal to

𝐴𝑡 = 𝑎𝑁𝑡 . Note that 𝑡𝑢 and 𝑡𝑣 depend on the current state 𝑠𝑡 and

action 𝑎𝑡 .

Since the acceptance is decided by a group-wise threshold, the

fraction of applicants from a group who are admitted is precisely

determined by the area under its score distribution beyond the

threshold. Formalizing the above, for large 𝑁𝑡 , we have:∫ ∞

𝑡𝑢

P𝑢 (𝑢)𝑑𝑢 = 1 − 𝐹𝑢 (𝑡𝑢 ) =
𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡∫ ∞

𝑡𝑣

P𝑣 (𝑣)𝑑𝑣 = 1 − 𝐹𝑣 (𝑡𝑣) =
(1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡
.

and the constraint on the total number of candidates admitted can

now be expressed through the following equivalent statements:

𝑎𝑡𝐴𝑡 + (1 − 𝑎𝑡 )𝐴𝑡 = 𝑎𝑁𝑡

𝑠𝑡𝑁𝑡 (1 − 𝐹𝑢 (𝑡𝑢 )) + (1 − 𝑠𝑡 )𝑁𝑡 (1 − 𝐹𝑣 (𝑡𝑣)) = 𝑎𝑁𝑡 ,

and finally, we have:

𝑠𝑡𝑁𝑡

∫ ∞

𝑡𝑢

P𝑢 (𝑢)𝑑𝑢 + (1 − 𝑠𝑡 )𝑁𝑡

∫ ∞

𝑡𝑣

P𝑣 (𝑣)𝑑𝑣 = 𝑎𝑁𝑡 . (15)

Let us now consider the maximization of the greedy reward.

Given state 𝑠𝑡 , and generic distributions P𝑢 and P𝑣 , we need to

set the thresholds 𝑡𝑢 and 𝑡𝑣 for the respective groups such that the

sum of scores of all admitted candidates is maximized. We show

by contradiction that to maximize the greedy reward, we require

𝑡𝑢 = 𝑡𝑣 .

Assume a pair of thresholds (𝑡𝑢 , 𝑡𝑣) that result in the maximiza-

tion of the greedy reward, and 𝑡𝑢 < 𝑡𝑣 . Let us denote the expected

sum of scores of the admitted candidates by 𝑆 (𝑡𝑢 , 𝑡𝑣), which is the

optimum. One can construct thresholds 𝑡 ′𝑢 = 𝑡𝑢 +𝜖1 and 𝑡
′
𝑣 = 𝑡𝑣 −𝜖2

(where 𝜖1, 𝜖2 > 0, infinitesimally small for large 𝑁𝑡 ), such that we

admit one more candidate from group 𝑣 (as a result of the decreased

threshold) and one less from group 𝑢 (as a result of the increased

threshold) as compared to the case with thresholds (𝑡𝑢 , 𝑡𝑣). As long
as 𝑡 ′𝑣 > 𝑡 ′𝑢 , we have 𝑆 (𝑡 ′𝑢 , 𝑡 ′𝑣) > 𝑆 (𝑡𝑢 , 𝑡𝑣), which contradicts the
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assumption that (𝑡𝑢 , 𝑡𝑣) maximize the greedy reward. Similarly, if

we begin with a pair of optimal (𝑡𝑢 , 𝑡𝑣) such that 𝑡𝑢 > 𝑡𝑣 , we can

construct thresholds 𝑡 ′𝑢 = 𝑡𝑢 − 𝜖3 and 𝑡 ′𝑣 = 𝑡𝑣 + 𝜖4, so that we admit

one more candidate from group 𝑢 and one less from group 𝑣 . As

long as 𝑡 ′𝑢 > 𝑡 ′𝑣 , we arrive at the contradiction 𝑆 (𝑡 ′𝑢 , 𝑡 ′𝑣) > 𝑆 (𝑡𝑢 , 𝑡𝑣).
Thus the greedy reward is optimized when thresholds across the

groups are equal, irrespective of the nature of P𝑢 and P𝑣 .

Thus, for arbitrary score distributions, the action that maximizes

the greedy reward is such that:

𝑡𝑢 = 𝑡𝑣

=⇒ 𝐹−1

𝑢

(
1 − 𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡

)
= 𝐹−1

𝑣

(
1 − (1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡

)
(16)

If P𝑢 and P𝑣 are identical, the arguments of the inverse CDFs in

(16) need to be equal. Thus the optimal action should be such that:

1 − 𝑎𝑡𝐴𝑡

𝑠𝑡𝑁𝑡
= 1 − (1 − 𝑎𝑡 )𝐴𝑡

(1 − 𝑠𝑡 )𝑁𝑡

=⇒ 𝑎𝑡 = 𝑠𝑡 .

Thus, the greedy reward is maximized by choosing the admission

proportion of group 𝑢 to be same as the applicant proportion of

group 𝑢:

𝑎∗G = 𝑠𝑡 .

□

Employing theorem 4.1, we arrive at the the following theorem

which informs us about the convergence of the applicant pool and

characterizes the FG policy.

Theorem 4.2. For identical score distributions across the groups,
the Fair-Greedy policy satisfies the following properties:

𝑠𝑡 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠, if 𝑠𝑡 < 𝑠

𝑠 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠𝑡 , if 𝑠𝑡 > 𝑠

𝜋∗𝐹𝐺 (𝑠𝑡 ) = 𝑠, if 𝑠𝑡 = 𝑠

Furthermore, if the step-size [𝑡 decays with time and satisfies the
conditions (i)

∑
𝑡 [𝑡 = ∞ and (ii)

∑
𝑡 [

2

𝑡 < ∞, the applicant pool
proportion converges to the target proportion 𝑠 . This implies that the
admission or action at equilibrium also approaches the societal or
target proportion, in the asymptotic regime that the total applicants
in every round are large.

Proof. Under the FG policy, 𝑎𝑡 = 𝜋∗
𝐹𝐺

(𝑠𝑡 ). The applicant pool
update for the mean parameter is:

\𝑡+1 = [\𝑡 + [ (𝜋∗𝐹𝐺 (𝑠𝑡 ) − 𝑠𝑡 )]C . (17)

The fairness loss in (2) is minimized when the admission propor-

tion is same as the target, formalized as:

𝑎∗F = arg min

𝑎𝑡
𝐿F (𝑎𝑡 ) = 𝑠

The overall reward 𝑅(𝑠𝑡 , 𝑎𝑡 ) is a sum of the greedy reward and

fairness loss (scaled by _). The fairness loss is convex (hence−𝐿F (𝑎𝑡 )
is concave) in 𝑎𝑡 . It can be seen that the greedy reward monotoni-

cally decreases in either directions around 𝑎𝑡 = 𝑠𝑡 , and in addition

it possesses continuity in 𝑎𝑡 . When at state 𝑠𝑡 , suppose the optimal

action 𝑎∗ of the FG policy is such that 𝑎∗ < 𝑠𝑡 , when 𝑠𝑡 < 𝑠 . Then

by continuity and since the greedy reward is maximized at 𝑠𝑡 , ∃
some 𝑎′ > 𝑠𝑡 , such that 𝑅G (𝑠𝑡 , 𝑎′) ≥ 𝑅G (𝑠𝑡 , 𝑎∗), and moreover has

a smaller fairness loss, i.e., 𝐿F (𝑎′) < 𝐿F (𝑎∗), which violates the

optimality of 𝑎∗. Thus the optimal action for the FG policy must be

𝑎∗ > 𝑠𝑡 , if 𝑠𝑡 < 𝑠 . Similar arguments hold if 𝑠𝑡 > 𝑠 , and here we can

show that the optimal action must be such that 𝑎∗ < 𝑠𝑡 . Hence, it

follows that the optimal action for overall utility lies between the

optimal actions for greedy and fairness terms:

𝑠𝑡 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠, if 𝑠𝑡 < 𝑠 (18)

𝑠 < 𝜋∗𝐹𝐺 (𝑠𝑡 ) < 𝑠𝑡 , if 𝑠𝑡 > 𝑠 (19)

𝜋∗𝐹𝐺 (𝑠𝑡 ) = 𝑠, if 𝑠𝑡 = 𝑠 (20)

Now we show the convergence of the applicant pool to its equi-

librium. Let us consider a step-size that decays with time such that∑
𝑡 [𝑡 = ∞ and

∑
𝑡 [

2

𝑡 < ∞. Consider the case when 𝑠𝑡 < 𝑠 , where

we have: 𝑠𝑡 < 𝜋∗
𝐹𝐺

(𝑠𝑡 ) < 𝑠 . From (17), we can see that the mean

proportion parameter \𝑡+1 increases. Similarly, when 𝑠𝑡 > 𝑠 , it fol-

lows that 𝑠 < 𝜋∗
𝐹𝐺

(𝑠𝑡 ) < 𝑠𝑡 , and the mean proportion parameter

decreases. Note that the target proportion is a fixed point of the

FG policy, i.e., 𝜋∗
𝐹𝐺

(𝑠) = 𝑠 . Due to the above characterization of

𝜋∗
𝐹𝐺

(𝑠𝑡 ) and the model for the update of the applicant pool, the

mean parameter \𝑡 grows or reduces in the direction of 𝑠 . Hence,

as the step-size is decaying, one can show that the mean param-

eter \𝑡 converges to 𝑠 (see appendix A for details). Moreover, the

variance of the number of group 𝑢 applicants is 𝑣𝑎𝑟 (𝑁𝑢
𝑡 ) = \𝑡𝑁𝑡

due to the Poisson distribution. Thus, the state 𝑠𝑡 = 𝑁𝑢
𝑡 /𝑁𝑡 has

variance 𝑂 (1/𝑁𝑡 ). Consequently, in the asymptotic regime that

𝑁𝑡 is large, using Chebyshev’s inequality one can show that 𝑠𝑡
also converges to \𝑡 in probability. This implies that the applicant

proportion approaches 𝑠 , which completes the proof. □

5 EXPERIMENTAL EVALUATION
5.1 Evaluation on synthetic data
We begin by employing synthetic data to demonstrate the fair-

ness framework we develop in this paper, and study interesting

scenarios.

Optimal policy based on value iteration. Let us first consider
the MDP setting from Section 3, where the policy learnt is the

optimal policy (8) maximizing the accumulated utilities. Consider

the case where the two groups have identical score distributions.

This may often be the case in real-world scenarios when there

is no inherent reason for the sensitive attribute to influence the

scores or proficiency of a candidate. Let the score distributions be

Gaussian with means `𝑢 = `𝑣 = 5 and variances 𝜎2

𝑢 = 𝜎2

𝑣 = 1.

The societal/target proportion can be set by employing guidance

from the societal state or based upon the long-term target that the

selector has in mind. For example, suppose our application is to

hire software engineers, then representing women as group 𝑢, one

can set the target proportion to be the proportion of women in

computer science, or in the society in general. Or, if we target to

have a certain proportion of women in the company in the long-

term, we could set 𝑠 accordingly. In this experiment, we set 𝑠 = 0.4

and the admission rate is fixed to 𝑎 = 0.3, or in other words, the

selector aims to admit only 30% of the total applied candidates.

The other parameter values used for this experiment are 𝛾 = 0.99,

_ = 1.5, a fixed step-size of [ = 0.05. Figure 1 shows how the

proportion of applicants, admitted candidates and mean parameter
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Figure 1: Optimal policy under identical score distributions
across the groups.

\𝑡 vary for group 𝑢. We see in the figure that beginning the process

from different initial states \0 = 0.1, 0.9, we observe convergence

of the applicant pool proportion for group 𝑢. The optimal policy

under the evolution model considered has resulted in close to 40%

of the applicants belonging to group 𝑢, and also approximately the

same proportion of the admitted candidates are from group 𝑢.

FG policy under identical score distributions. Let us now
consider the same score distributions, target proportion and overall

admission rate 𝑎 as above, but with the FG policy in (9), described in

Section 4. The step-size for changes in applicant pool mean parame-

ter is fixed to [ = 0.05, though a decaying step-size would in fact aid

in smoother convergence behavior. Figure 2 shows the convergence

of the applicant pool to the target proportion of 40%, and the pro-

portion of admitted candidates belonging to group 𝑢 is also around

0.4, as guaranteed by our analysis of the FG policy. We also observe

that the FG policy follows the structure stated in Theorem 4.2. The

framework is capable of handling an inversion in the majority and

minority proportions as supported by the evolutions shown from

two distinct initial applicant mean proportion parameters \0 = 0.1

and \0 = 0.9. We report on the dynamics for the proportion of

applicants and admitted candidates for individual sample paths in

which the number of applicants is randomly drawn as in (3). We do

not smooth over multiple sample paths in such figures because our

objective is to highlight the convergence of the mean parameter \𝑡
over each sample path. Note that tuning of the hyperparameter _

is not required when score distributions are identical (here we set

_ = 2). As long as _ > 0, the applicant pool converges to the target

proportion, with only the rate of convergence increasing with _, as

we depict in Figure 3.

FG policy: under selective applications. Next, we focus on
a setting where the underprivileged class 𝑢 has larger variance,

but slightly smaller mean (𝜎2

𝑢 = 1.5, `𝑢 = 4.9). We set 𝑠 = 0.4, and

consider a more selective process, with 𝑎 = 0.1. Typically, such cases

might occur when the data about unprivileged group is unreliable

or there is imbalance in the amount of samples available, leading to

a larger variance. From Figure 4, we note that the applicant mean

and also the group admission converges to a proportion larger than

𝑠 . This is due to the fact that as the admission rate gets selective,
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Figure 2: FG policy under identical score distribution across
groups, showing convergence from distinct initial mean pa-
rameters \0 = 0.1, 0.9.
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Figure 3: Applicant pool converges to the target proportion
for identical score distributions under the FG policy.
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Figure 4: FG policy under selective system, lower mean and
larger variance for group 𝑢. Shows convergence from \0 =

0.1, 0.9.

the greedy part of the reward is optimized by an action that admits

more from the group with longer tail (larger variance), which is

the unprivileged group 𝑢 in this case. Hence the greedy reward
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Figure 5: Applicant pool convergence for the selective system
under FG policy.

promotes more admission from group 𝑢. This is also evident in

Figure 5, where we observe that for smaller values of _, i.e., when

more weight is assigned to the greedy reward, the mean parameter

\𝑡 , which measures the expected proportion of group 𝑢 applicants,

converges to larger values. However with enough weight being

given to fairness, the applicant pool still converges to the desired

ratio.

5.2 Dynamically adapted real-world datasets
We simulate the dynamics by considering the following: (i) the

law school bar study dataset, applying our framework from the

viewpoint of a recruiter selecting candidates who are likely to

be successful in the bar exam, based on features such as LSAT

scores, undergraduate GPA, law school GPA and others, while

maintaining equity based on race as the sensitive attribute. The aim

of positive reinforcement is to drive the system towards a richer

pool of applicants. (ii) German credit dataset with gender as the

sensitive attribute, where the motivation is to encourage higher

levels of participation of women in the financial lending system.

The law school bar study dataset [23] consists of data collected by

a Law School Admission Council survey across law schools in the

United States. The predictions indicate whether or not a candidate

would pass the bar exam based on features such as LSAT scores,

undergraduate GPA, law school GPA, race, sex, family income, age

and so on. We consider race as the sensitive attribute, and though

originally there are 8 distinct races in the dataset, we group the

samples by combining samples corresponding to all others except

‘white’, giving rise to binary groups ‘white’ and ‘non-white’. We

observe that the data is imbalanced – about only 25% of the samples

belong to group ‘non-white’, which we will label as group 𝑢. This

proportion will serve as a starting point for the applicant pool

composition. We use a version of the bar study dataset found at [1]

with around 1800 instances. A longer and more popular version of

the same in fairness literature is the law school GPA admissions

dataset which comprises of about 21, 790 samples and the labels

indicate if an applicant will have a high first year average GPA. We

fit score distributions on this dataset as well, but choose the bar

study dataset to study the dynamics of positive reinforcement and

observe how the decisions of admitting candidates who are more
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Figure 6: Histograms and Gaussian fit for score distributions
of law school bar study dataset
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Figure 7: Histograms and Gaussian fit for score distributions
of German credit dataset

likely to eventually succeed in the bar exam affects the composition

of the applicant pool.

The German credit dataset [9] consists of 1000 instances, with

20 features (both numeric and qualitative), such as credit history,

account history, employment status, age, gender and so on. This is

typically used to assess the risk of lending loans to people, i.e., to

determine if granting credit is risky or not. We consider gender as

the binary valued sensitive attribute, labeling women as group 𝑢

and men as group 𝑣 . The dataset is imbalanced – about 31% of the

instances belong to group 𝑢.

After pre-processing the datasets to suit our usage, our first

step is to learn score distributions that measure the proficiency

of candidates. To achieve this, we fit a predictor based on logistic

regression that uses the features and labels to fit scores, which are

the derived as the product of the model coefficients and the features.

We observe that the histograms of the scores of the two groups

reveal that they are indeed Gaussian in nature. We fit a Gaussian for

each of the histograms, to obtain the mean and variance parameters

of the score distributions P𝑢 and P𝑣 .

The histograms and the Gaussian fit for the score distributions

for the law school bar study and German credit dataset are depicted

in Figures 6 and 7 respectively. For the law school bar study dataset

the parameters of scores are `𝑢 = −1.46, 𝜎2

𝑢 = 2.73, `𝑣 = 0.79,
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Figure 8: Law school bar study dataset: applicant pool con-
vergence with initial mean proportion parameter \0 = 0.25,
as _ is varied.
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Figure 9: German credit dataset: applicant pool convergence
with initial mean proportion parameter \0 = 0.31, as _ is
varied.

𝜎2

𝑣 = 3.16. For the German credit dataset the score distributions are

closer with parameters `𝑢 = 0.32, 𝜎2

𝑢 = 1.93, `𝑣 = 0.85, 𝜎2

𝑣 = 2.06.

We now simulate the dynamics of the application process, under

the FG policy, by sampling from these distributions with initial state

of the applicant process \0 determined by the number of instances

of respective groups, which is 0.25 for the law school bar study

and 0.31 for the German credit datasets respectively. The variation

of the applicant pool for different values of hyperparameter _ are

shown for the datasets in Figures 8 and 9 respectively. The evolu-

tion step size used in these simulations is [ = 0.025, admission rate

is set to 𝑎 = 0.3 and the target proportion is set to 𝑠 = 0.5, which

is equivalent to demographic parity, i.e., admitting same number

proportion of candidates from both groups. In both the figures, we

observe that when the greedy reward is favored (lower values of

_), the applicant pool in fact converges to a point lesser than the

target, while it approaches the target as _ increases. This means

that for maximizing the utility, more samples need to be admitted

from group 𝑣 , due to the nature of their score distributions, when

less importance is allotted to fairness objective. The tuning of the

Table 1: Gaussian score distribution parameters for different
datasets

Dataset Sensitive `𝑢 `𝑣 𝜎2

𝑢 𝜎2

𝑣

attribute

LS bar study included -1.46 0.79 2.73 3.16

LS bar study excluded -1.33 0.76 2.85 3.23

German credit included 0.32 0.85 1.93 2.06

German credit excluded 0.62 0.84 2.03 2.14

LS GPA admissions included 1.45 3.14 2.44 1.89

LS GPA admissions excluded 1.51 3.13 2.50 1.93

hyperparameter _ to achieve desired level of applicant pool pro-

portion depends on the order statistics of P𝑢 and P𝑣 . The step-size

parameter [ can be set appropriately based on how quickly we wish

to achieve convergence.

These experiments with real-world datasets indicate that scores

which are fit after learning predictors based on logistic regression

are distributed like Gaussians. Once we have the parameters of

the scores, the application of the FG policy and the applicant pool

evolution follows.

It is interesting to examine how the score distributions change

when we approach fairness through unawareness, that is, by omit-

ting the sensitive attributes while learning the logistic regression

based predictor. Note that we learn a single predictor based on

all samples and then distinguish the scores based on the sensitive

attribute. Table 1 lists the score parameters when the predictor is

learnt with or without the inclusion of the sensitive attribute for

the law school bar study, the law school GPA admissions and the

German credit datasets. Similar to bar study dataset, we employ

race as the sensitive attribute to the GPA admissions dataset as

well. For both the law school datasets, we observe that the score

distributions are not very different, although the difference between

the means of minority and majority groups has decreased slightly

when the sensitive attribute is dropped during the learning. For

the German credit dataset, the distributions are significantly closer

when the sensitive attribute is omitted, and there is a clear drop in

the difference between the group means.

6 CONCLUSION
As AI-based decision-making becomes increasingly impactful on

human society, the study of the influence of fairness-aware poli-

cies on the population becomes important. In this paper, we pro-

posed a framework for fair selection of applicants to a system,

and studied the long-term effects of decisions on the composition

of the applicant pool. We proposed an optimal policy based on

dynamic programming, and also a simple Fair-Greedy policy that

optimizes for instantaneous utility. We characterized the FG pol-

icy for general score distributions and proved that the applicant

pool approaches the target proportion when score distributions are

identical across groups. Experimental evaluation reveals that by

appropriately choosing the hyperparameter _, a desired equilibrium

point in the applicant pool composition can be achieved for generic

score distributions.
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Our results indicate the potential of achieving long-term fairness

objectives through positive reinforcement via decision making. We

hope that this work stimulates the collaboration between machine

learning researchers and social scientists required for these ideas

to make real-world impact. A key future direction is to devise and

conduct experiments for measuring, understanding and shaping

the evolution dynamics posited in our framework.
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A APPENDIX: PROOF DETAILS
Lemma A.1. If the step-size [𝑡 decays with time and satisfies the

conditions (i)
∑
𝑡 [𝑡 = ∞ and (ii)

∑
𝑡 [

2

𝑡 < ∞, the mean of the appli-
cant pool proportion for group 𝑢 converges to the target proportion 𝑠
under the FG policy, when the score distributions across the groups
are identical.

Proof. We wish to show that \𝑡 → 𝑠 as 𝑡 → ∞. Let 𝑑𝑡 =
1

2
(\𝑡 − 𝑠)2

. Fix an 𝜖 > 0. We need to show that there exists some

𝑡0 (𝜖) such that when 𝑡 ≥ 𝑡0 (𝜖),
𝑑𝑡+1 ≤ 𝑑𝑡 − 𝛾𝑡 , if 𝑑𝑡 ≥ 𝜖 (21)

𝑑𝑡+1 < 𝑐𝜖, if 𝑑𝑡 < 𝜖 (22)

where 𝑐 is a positive constant. Moreover 𝛾𝑡 > 0 and

∑
𝑡 𝛾𝑡 = ∞. If

the above hold, then eventually for some 𝑡 = 𝑡1 (𝜖) ≥ 𝑡0 (𝜖), one has
𝑑𝑡 < 𝜖 . But due to (21) and (22) 𝑑𝑡 < 𝑐𝜖 for all 𝑡 > 𝑡1 (𝜖). Since 𝜖 is
arbitrary, \𝑡 → 𝑠 as 𝑡 → ∞.

We first show that (22) holds.

𝑑𝑡+1 =
1

2

(\𝑡+1 − 𝑠)2

=
1

2

( [\𝑡 − [𝑡 (𝑠𝑡 − 𝑎𝑡 )]C − 𝑠)2

≤ 1

2

(\𝑡 − [𝑡 (𝑠𝑡 − 𝑎𝑡 ) − 𝑠)2

= 𝑑𝑡 + [𝑡 (𝑠 − \𝑡 ) (𝑠𝑡 − 𝑎𝑡 ) +
1

2

[2

𝑡 (𝑠𝑡 − 𝑎𝑡 )2

≤ 𝑑𝑡 + [𝑡 (𝑠 − \𝑡 ) (𝑠𝑡 − 𝑎𝑡 ) +
1

2

[2

𝑡

≤ 𝑑𝑡 +
[𝑡

2

((𝑠 − \𝑡 )2 + 1) + 1

2

[2

𝑡

Since [𝑡 is arbitrarily small, if 𝑑𝑡 < 𝜖 , we have:

𝑑𝑡+1 < 𝑐𝜖. (23)

When 𝑑𝑡 ≥ 𝜖 , we want to first show that

(𝑠 − \𝑡 ) (\𝑡 − 𝑎𝑡 ) ≤ −𝛿 (𝜖) (24)
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where 𝛿 (𝜖) > 0. If this holds, we have,

𝑑𝑡+1 ≤ 𝑑𝑡 − [𝑡𝛿 (𝜖) +
1

2

[2

𝑡 . (25)

Let us denote 𝛾𝑡 = [𝑡𝛿 (𝜖) − 1

2
[2

𝑡 . Since [𝑡 → 0, there exists some

𝑡2 (𝜖) such that 𝛾𝑡 > 0 for 𝑡 > 𝑡2 (𝜖). Moreover, due to conditions on

step size, we have

∑
𝑡 𝛾𝑡 = ∞.

Next, we will account for the stochasticity of 𝑠𝑡 . We have 𝑠𝑡 −𝑎𝑡 =
\𝑡 + (𝑠𝑡 − \𝑡 ) − 𝑎𝑡 . Denoting 𝑧𝑡 = 𝑠𝑡 − \𝑡 , we have

𝑑𝑡+1 ≤ 𝑑𝑡 + [𝑡 (𝑠 − \𝑡 ) (\𝑡 + 𝑧𝑡 − 𝑎𝑡 ) +
1

2

[2

𝑡 (26)

𝑧𝑡 is a zero-mean random variable. Also 𝐸 [𝑧2

𝑡 ] = 𝑣𝑎𝑟 (𝑠𝑡 ) = \𝑡/𝑁𝑡 ,

which is bounded. Therefore 𝑣𝑡 :=
∑𝑡
𝑚=0

[𝑚𝑧𝑚 is a martingale, and

𝐸 [𝑣2

𝑡 ] is also bounded. This implies, by the martingale convergence

theorem, that 𝑣𝑡 converges to a finite random variable. Therefore,

we have

∑∞
𝑚=𝑡 [𝑚𝑧𝑚 → 0. Since | \𝑡 − 𝑠 | is bounded, the effect of

noise 𝑧𝑡 is asymptotically negligible.

What remains to be shown is (24). In the regime of large num-

ber of applicants 𝑁𝑡 , we can see that the state 𝑠𝑡 is equal to its

mean \𝑡 with probability approaching one, through the Chebyshev

inequality.

When 𝑑𝑡 ≥ 𝜖 , since 𝑠𝑡 is equal to \𝑡 , we need to consider only

the cases (i) 𝑠𝑡 > 𝑠 and (ii) 𝑠𝑡 < 𝑠 . Under both these cases, we

have (𝑠 − \𝑡 ) (\𝑡 − 𝑎𝑡 ) < 0 due to the structure of the FG policy in

(18) and (19), when the score distributions across the groups are

identical. □
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