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ABSTRACT
Research in artificial intelligence (AI)-assisted decision-making is
experiencing tremendous growth with a constantly rising number
of studies evaluating the effect of AI with and without techniques
from the field of explainable AI (XAI) on human decision-making
performance. However, as tasks and experimental setups vary due
to different objectives, some studies report improved user decision-
making performance through XAI, while others report only negligi-
ble effects. Therefore, in this article, we present an initial synthesis
of existing research on XAI studies using a statistical meta-analysis
to derive implications across existing research. We observe a statis-
tically positive impact of XAI on users’ performance. Additionally,
the first results indicate that human-AI decision-making tends to
yield better task performance on text data. However, we find no
effect of explanations on users’ performance compared to sole AI
predictions. Our initial synthesis gives rise to future research in-
vestigating the underlying causes and contributes to further devel-
oping algorithms that effectively benefit human decision-makers
by providing meaningful explanations.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Over the last years, the rapid developments in artificial intelligence
(AI) have increased its use in many application domains. In this
context, AI’s continuously rising capabilities have surpassed human
performance in an increasing number of tasks, such as playing
poker [7], go [56], or correctly recognizing various categories of
interest in images [24]. Due to these remarkable developments, AI
is increasingly applied to support decision-makers in an increasing
number of domains, such as medicine [42, 63], finance [16], law
[33] or manufacturing [57].

To offer decision-makers meaningful support, AI models are
expected to provide accurate predictions and a notion of how a
particular decision has been derived. In particular, explaining the
rationale behind an algorithmic decision should enable domain
experts to learn when to trust the recommendations of the AI and
when to question it [67]. This requirement fueled the continuous
development of explainability techniques from the field of explain-
able AI (XAI), intending to make the decision-making process of
black-box AI models more transparent and, thus, comprehensible
for domain experts [1]. Common approaches include among others
feature importance-based [49], example-based [10], or rule-based
methods [50]. A better understanding of how the AI’s decision was
derived should subsequently enable the user to appropriately rely
on the AI’s suggestions on a case-by-case basis [4, 38]. For instance,
explanations contradicting the AI’s prediction could signify the user
to become skeptical, consequently considering the AI prediction
less in the final decision-making process.

With the ongoing development of XAI techniques, researchers
have started to evaluate AI with and without explanations to assess
whether their utility for better decision-making can be quantified
[4, 8, 9, 12, 14, 22, 23, 27, 36, 37, 39, 60, 65, 67]. Whereas some re-
searchers identify a benefit of XAI-based decision support in user
studies [8, 36], others find only negligible evidence [12, 39], with the
underlying causes remaining partly unexplored [28, 54]. Therefore,
in this article, we aim to clarify the current “snapshot” of the utility
of XAI-based decision support. We conduct a meta-analysis of user
studies identified in a structured literature review to shed light on
the effect of XAI-assisted decision-making on user performance.
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In detail, our analysis encompasses studies that allow a compari-
son between human, AI-, and XAI-assisted task performance. Our
initial findings are the following: First, on average, XAI-assisted
decision-making enhances human task performance compared to
no assistance at all. However, we find no additional effect of ex-
planations on users’ performance in XAI-assisted decision-making
compared to isolated AI predictions, which raises questions on how
to further develop current XAI methods that improve users’ task
performance. Second, we find that distinct data types affect user
performance differently. In this context, human-AI decision-making
turns out to be more effective on text data compared to tabular data.

The remainder of this article is structured as follows. In Section 2,
we first outline related work in the context of human-AI decision-
making. In Section 3, we describe the methodological approach of
our meta-study. Subsequently, we present the results of the meta-
study, including a subgroup analysis in Section 4. In this context,
we provide additional qualitative insights on an individual level. We
outline the current limitations of our work in Section 5, followed by
a discussion on relevant implications that result from these findings
for the future development of XAI algorithms in Section 6. Finally,
Section 7 concludes our work.

2 RELATEDWORK
Over the last years, research has focused on developing algorithms
that provide explanations for AI predictions [1, 15]. By now, these
algorithms are increasingly employed in a growing number of prac-
tical use cases such as in manufacturing [55, 59], medicine [47], or
the hospitality industry [62]. Usually, XAI is utilized in scenarios
that involve humans-in-the-loop processes. The underlying idea is
that humans will benefit from the AI’s suggestion if it is accompa-
nied with an explanation. Therefore, a constantly rising number
of studies has started to analyze the effects of explanations in be-
havioral experiments [28]. In these experiments, many different
target variables are taken into consideration, e.g., whether humans
are capable of predicting what a model would recommend (proxy
tasks) [8, 13, 23] or whether explanations support them in model
debugging [2, 32].

In the scope of this study, we explicitly focus on AI-assisted
decision-making—a setting in which an AI supports a human with
the goal of improving the decision-making quality. The prediction
of the AI might be accompanied by additional information, e.g.,
about its prediction uncertainty or different types of explanations.
After receiving the AI’s advice, the human decision-maker is re-
sponsible for making the final decision. A scenario, which is often
also required from a legal perspective, as the human needs to make
the final decision [5]. By providing either additional information on
the AI’s prediction uncertainty [43, 67] or explanations on how a
decision was derived [4, 37], humans shall be enabled to better ques-
tion the AI’s decision. To develop a deeper understanding of this
assumption, research has evaluated the effect of explanations on
users’ trust and how reliance on AI decisions can be appropriately
calibrated [4, 9, 34, 52, 66, 67]. In this context, providing humans
not only with the AI’s prediction and respective explanations but
also with a notion about its global performance can influence the
overall team performance [37]. Additional benefits can be found
when humans are provided with model-driven tutorials about AI

functionality and the task itself [36]. Further work in this line of
research has investigated the influence of AI advice in the out-of-
distribution setting—instances differing from the distribution used
for AI training—on the final human decision [39].

Besides these factors, the explanation type of an AI prediction
can play a decisive role. In this context, research has developed var-
ious explainability techniques [1] ranging from feature importance
methods [49] over example-based approaches [10] to rule-based ex-
planations [50] that have been evaluated in user studies accordingly
[28]. However, the current picture emerging from the results of dif-
ferent studies regarding the effects of XAI methods on AI-assisted
decision-making performance is not unambiguous. Whereas, e.g.,
Carton et al. [12] conclude that feature-based explanations do not
help users in classification tasks, Hase and Bansal [23] find some
of them to be effective in model simulatability, which refers to
the ability to predict the model behavior given an input and an
explanation. In this context, further studies demonstrate the utility
of explanations [8], whereas others find that they can convince
humans to follow incorrect suggestions more easily [4, 60].

Of course, ambiguous findings can also be attributed to the spe-
cific setups of each study and the different goals pursued by the
researchers. We aim to shed light on this ambiguity by conducting
a meta-analysis of human-AI decision-making—particularly on the
influence of explainability.

3 METHODOLOGY
We elaborate on our data collection approach to identify relevant
articles, followed by the statistical analysis conducted on the final
set of user studies.

3.1 Data Collection
For the collection of empirical user studies in the field of XAI, we
conducted a structured literature review based on the methodology
outlined by vom Brocke et al. [61]. In detail, we developed a search
string focusing on XAI and behavioral experiments. For both top-
ics, several synonyms were included after an explorative search.
Subsequently, the search string was iteratively refined, resulting in
the following final search string:
TITLE-ABS-KEY("explainable artificial intelligence" OR XAI OR
"explainable AI" OR ( ( interpretability OR explanation ) AND (
"artificial intelligence" OR AI OR "machine learning" ) ) ) AND (
"human performance" OR "human accuracy" OR "user study" OR
"empirical study" OR "online experiment" OR "human experiment"
OR "behavioral experiment" OR "human evaluation" OR "user

evaluation")

To ensure comprehensive coverage of relevant articles, we chose
the SCOPUS database for our initial search [53]. We filtered iden-
tified articles according to the following three criteria: an article
identified with the search string was included if it (a) conducted at
least one empirical user study and (b) reported the task performance
as a performance measure for humans and AI- or XAI-assisted
decision-making on the same task.

Additionally, we conducted a forward and backward search start-
ing from the articles that fulfill our inclusion criteria. We extracted
all individual treatments and outcomes for each article. For instance,
if an experiment compared AI- with XAI-assisted decision-making
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Source Dataset Datatype Studies

Alufaisan et al. [3] COMPAS [48] Tabular AI-, XAI-assisted (Anchor)
Census [19] AI-, XAI-assisted (Anchor)

Bansal et al. [4]
LSAT [58]

Text
XAI-assisted (Confidence, Explain Top-1 Expert, Explain Top-2 Expert, Adaptive Expert)

Book reviews [25] XAI-assisted (Confidence, Explain Top-1 AI, Explain Top-2 AI, Adaptive AI, Adaptive Expert)
Beer reviews [41] XAI-assisted (Confidence, Explain Top-1 AI, Explain Top-2 AI, Adaptive AI, Adaptive Expert)

Buçinca et al. [8] Fat content prediction [8] Image AI-, XAI-assisted (Inductive & Deductive Explanation)
Carton et al. [12] Online toxicity [64] Text AI-, XAI-assisted (Keyword, Partial, Full Explanation)
Fügener et al. [21] Dog breed ImageNet [51] Image AI-, XAI-assisted (Certainty)
Lai et al. [36] Deception detection [45, 46] Text XAI-assisted (Signed & Predicted Label, Signed & Predicted Label & Guidelines, Signed & Predicted Label & Guidelines & Accuracy)

Liu et al. [39]
COMPAS [48] Tabular XAI-assisted (Static/Static, Interactive/Static, Interactive/Interactive)
ICPSR [44] XAI-assisted (Static/Static, Interactive/Static, Interactive/Interactive)
BIOS [17] Text XAI-assisted (Static/Static, Interactive/Static, Interactive/Interactive)

van der Waa et al. [60] Diabetes mellitus type 1 [60] Tabular AI-, XAI-assisted (Rule-based, Example-based)
Zhang et al. [67] Census [19] Tabular AI-, XAI-assisted (Confidence, Feature Importance)

Table 1: Overview of articles that were identified in the structured literature review and are analyzed in this work. All articles
are peer-reviewed at the time of the meta-study.

in a between-subject design in two separate treatments, each of
them was registered as a separate record in our database. If an arti-
cle includes multiple experiments, we perform the data extraction
process for each experiment separately. We contacted authors by
email in case of missing or not reported information in the articles
regarding the conducted user studies.

The collected studies vary considerably in terms of tasks, prob-
lem settings, and reported performance metrics. Accordingly, we
filter our set of studies in the following way: First, we focus on
studies assessing classification tasks as they account for the largest
subset across all entries in our database. Second, we restrict the sub-
set of relevant studies to those reporting the mean accuracy as the
performance measurement in each study since we require a com-
mon metric across multiple studies. This ensures that we base our
meta-analysis on comparable and interpretable effect sizes. Third,
we only include studies that have been conducted as a between-
subject design. By excluding studies conducted in a within-subject
design, we avoid taking into account the learning effect of partici-
pants between treatments that might distort the effect sizes of our
analysis.

Subsequently, we extract all necessary performance metrics from
the articles. Next, we define the case in which the human performs
the task without any AI support as human performance. If the
human is additionally equipped with AI advice, but without ex-
planations, we call the performance AI-assisted performance. AI
assistance with explanations is called XAI assistance, and the result-
ing performance measure is denoted as XAI-assisted performance.
Based on these definitions, we excluded all studies that do not report
human performance and either AI-assisted or XAI-assisted perfor-
mance. Based on the resulting sample, we conduct the following
statistical analysis.

3.2 Statistical Analysis
For each study, we calculate the effect size as the between-group
standardized mean difference (SMD) of the task performance. Fur-
thermore, we report Hedges’𝑔 [26] to correct the SMD for a possible
upward bias of the effect size when the sample size of a study is
small (𝑛 ≤ 20). Thus, Hedges’ 𝑔 is smaller for n≤20 than the uncor-
rected SMD but approximately the same for larger sample sizes. We
obtain the standard deviations from standard errors and confidence
intervals for group means reported for each treatment following

Total records identified (𝑛 = 393).

Number of records after filtering ac-
cording to eligibility criteria and for-
ward/backward search (𝑛 = 33).

Records after excluding studies with
incomplete information and filtering
for classification tasks (metric: accu-
racy) conducted in a between-subject
design (𝑛 = 9).

Figure 1: Flowchart describing the data collection and article
selection procedure.

the procedure outlined in Higgins et al. [29]. In case an article en-
compasses multiple studies with a single control group, we divide
the size of this control group by the number of studies to avoid
multiple comparisons against the same group [29].

For our meta-analytic model and the pooling of effect sizes, we
estimate a random-effects model as the setups and populations
are considerably heterogeneous between studies. Hence, we cal-
culate the distribution mean of effect sizes instead of estimating
and assuming one single true effect size underlying the studies
(fixed-effect model [6]). To assess the between-study heterogeneity
variance 𝜏2 and its confidence intervals we use the DerSimonian-
Laird estimator [18] and Jackson’s method [31], respectively.

Additionally, we conduct a subgroup analysis to provide further
insights across current XAI studies. Several studies have discussed
that task choice has a strong influence on the experimental outcome
[21, 35]. This article focuses on the influence of the task’s data type.
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In this context, many researchers have argued about the importance
of data types in human-AI decision-making. For example, Fügener
et al. [21] reason that image recognition, in general, is well suited for
human-AI decision-making since it is an intuitive task for humans.

4 RESULTS
We start by presenting the final set of included studies, then outline
the meta-study results, including the respective subgroup analyses.
Finally, we provide additional qualitative insights on an article level.

4.1 Data Collection
As of February 2022, we identified a total number of 393 articles.
After applying our inclusion criteria and conducting a forward and
backward search, the number of relevant articles is reduced to 33.

As classification tasks form the largest subset, we focus on this
particular prediction problem. After filtering for accuracy as a com-
mon metric and removing articles with missing information, e.g.,
sample size or dispersion measures, we include 9 articles in the
meta-analysis and the respective subgroup analyses. Figure 1 vi-
sualizes the entire filtering process. Moreover, Table 1 provides an
overview of all included articles together with information about
each dataset, datatype, and treatments extracted from the articles.
Each article contains at least one behavioral experiment conducted
with a particular dataset. Each experiment consists of several ex-
perimental treatments. The treatment in which humans conducted
a task on their own without AI assistance is referred to as a control
group. In the following, we denote each treatment as an individual
study. Overall, we thereby have a sample size of 44 studies.

4.2 AI Assistance vs. XAI Assistance
We start our meta-analysis by investigating AI- and XAI-assisted
performance. For this reason, we first focus on all studies that report
AI- and XAI-assisted performance, which leads us to a sample of
11 studies and a total number of 999 observations.

Figure 2 displays the forest plot of the standardized mean dif-
ference (SMD) between AI-assisted and XAI-assisted performance.
The results of the analysis reveal that, on average, the SMD of
all studies that reported AI- and XAI-assisted performance is 0.07
with a 95% confidence interval (CI) [-0.15, 0.30]. A z-test against
the null-hypothesis that the effect size is 0 cannot be rejected
(𝑧 = 0.63, 𝑝 = 0.53). This means we do not find a significant dif-
ference between AI-assisted and XAI-assisted performance in our
current sample of studies. Regarding heterogeneity, we find an 𝐼2

of 57.00% (95% CI [15.70%, 78.00%]), which can be considered mod-
erate [29]. The 𝜏2 is 0.07 (95% CI [0.01, 0.54]) and Q is significantly
different from 0 (𝑄 = 23.24, 𝑑 𝑓 = 10, 𝑝 < 0.01). Thus, we can reject
the null hypothesis that the true effect size is identical in all studies.
To provide an intuitive understanding of the heterogeneity, we also
report the prediction interval that represents the expected range
of true effects in other studies [30]. The prediction interval ranges
from -0.59 to 0.74. That means we can expect negative as well as
positive effects of XAI assistance in comparison to AI assistance. In
summary, on average, XAI-assisted decision-making does not sig-
nificantly influence the performance of human-AI decision-making
in our sample. The highest improvement was measured by van der

Waa et al. [60]. Contrary, the highest negative impact of XAI is
measured by Alufaisan et al. [3].

4.3 Human vs. XAI Assistance
We analyze the overall effect of XAI in comparison with human
performance. Therefore, we filter all studies that report human and
XAI-assisted performance. This results in a sample of 33 studies and
a total number of 5,083 participants. Based on this sample, we ana-
lyze whether XAI-assisted decision-making improves performance
compared to humans conducting a task alone.

Figure 3 visualizes the forest plot of the standardized mean dif-
ference between human and XAI-assisted performance. The meta-
analysis indicates that, on average, XAI assistance increases task
performance by 0.59 SMD as compared to humans conducting the
tasks alone. The 95% CI of the SMD ranges from 0.39 to 0.79. As
this range does not include an effect size of 0 and a z-test is signifi-
cant (𝑧 = 5.73, 𝑝 < 0.0001), we can reject the null hypothesis con-
cluding that, on average, XAI-assisted decision-making improves
human task performance. Looking at heterogeneity, we can reject
the null hypothesis that the true effect size is identical in all studies
(𝑄 = 219.24, 𝑑 𝑓 = 32, 𝑝 < 0.0001). Moreover, 𝐼2 is 85.40% with a 95%
CI of 80.50% to 89.10%. The estimated 𝜏2 is 0.29 (95% CI [0.18, 0.59]).
Thus, the level of heterogeneity can be considered substantial [29].
The prediction interval in the analysis is -0.54 to 1.71. This means
that we cannot say with certainty that XAI always has a positive
impact on human decision-making as the prediction interval is
not exclusively larger than 0. Even though most studies report a
performance improvement through XAI assistance, we also find
studies that report a performance decline. In this context, one of the
two studies conducted by Alufaisan et al. [3] encountered the most
negative effects with a human performance decline. Participants are
asked to predict whether a defendant will recidivate in two years
and receive AI predictions with decision rules aiming to support
users’ understanding of the AI’s decisions. However, this reduction
is not statistically significant due to a high level of dispersion. The
most considerable improvement can be found in a study by Buçinca
et al. [8]. Here, participants have to decide based on an image of a
meal whether the fat content of this meal on a food plate exceeds a
certain threshold.

It is important to highlight that the significant SMD does not
imply that including explanations will improve performance over
simply providing AI advice without any form of explainability, as
we did not find a significant difference between AI-assisted and XAI-
assisted performance in Section 4.2. Instead, it can be interpreted
as a positive effect of some form of AI advice.

4.4 Tabular vs. Text Data
Additionally, we conduct a subgroup analysis based on three data
types used in our sample—tabular, text, and image data. As only
two articles report experiments using image data, the interpretation
of this data type is not conclusive. Thus, we focus on tabular and
text data types for the subgroup analysis resulting in a total sample
size of 31 studies and 4,702 participants. Figure 4 displays the forest
plot of the standardized mean difference between human and XAI-
assisted performance with regard to both data types.
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Study

Random effects model
Prediction interval
Heterogeneity: I2 = 57%, τ2 = 0.0737, χ10

2  = 23.24 (p < 0.01)

Alufaisan et al. [3], COMPAS − Anchor
Zhang et al. [67], Census − Feature Importance
Carton et al. [12], Online toxicity − Keyword Explanation
Zhang et al. [67], Census − Confidence
Carton et al. [12], Online toxicity − Full Explanation
Carton et al. [12], Online toxicity − Partial Explanation
Fügener et al. [21], Dog breed ImageNet − Certainty
Alufaisan et al. [3], Census − Anchor
Buçinca et al. [8], Fat content prediction − Inductive & Deductive Explanation
van der Waa et al. [60], Diabetes mellitus type 1 − Rule−based
van der Waa et al. [60], Diabetes mellitus type 1 − Example−based

Total

605

 50
  9

 80
  9

 80
 80

152
 50
 65
 15
 15

Mean

60.00
65.50
51.80
69.80
52.40
52.60
80.10
73.00
74.00
70.00
73.00

SD

7.0409
10.5000

8.6705
5.4000
6.8451
8.6705

10.9000
10.5614
12.0934

9.0853
5.4512

XAI−assisted
Total

394

 50
  9
 27
  9
 27
 27

160
 50
 19
  8
  8

Mean

63.90
70.00
52.50
70.00
52.50
52.50
79.90
70.00
68.00
65.00
65.00

SD

7.0409
6.6000
4.8116
6.6000
4.8116
4.8116
9.8000

10.5614
10.8972

6.1327
6.1327

AI−assisted

−2 −1 0 1 2

Standardized Mean
Difference SMD

0.07

−0.55
−0.49
−0.09
−0.03
−0.02

0.01
0.02
0.28
0.50
0.59
1.36

95%−CI

[−0.15;  0.30]
[−0.59;  0.74]

[−0.95; −0.15]
[−1.43;  0.45]
[−0.52;  0.35]
[−0.96;  0.89]
[−0.45;  0.42]
[−0.42;  0.45]
[−0.20;  0.24]
[−0.11;  0.68]
[−0.01;  1.02]
[−0.29;  1.46]
[ 0.40;  2.32]

Weight

100.0%

11.8%
4.5%

11.0%
4.6%

11.0%
11.0%
15.7%
11.9%

9.5%
4.9%
4.3%

Figure 2: Forest plot of the standardized mean difference between AI-assisted and XAI-assisted performance.

Study

Random effects model
Prediction interval
Heterogeneity: I2 = 85%, τ2 = 0.2931, χ32

2  = 219.24 (p < 0.01)

Alufaisan et al. [3], COMPAS − Anchor
Carton et al. [12], Online toxicity − Keyword Explanation
Carton et al. [12], Online toxicity − Full Explanation
Carton et al. [12], Online toxicity − Partial Explanation
Liu et al. [39], COMPAS − Interactive/Static
Liu et al. [39], COMPAS − Static/Static
Liu et al. [39], COMPAS − Interactive/Interactive
Liu et al. [39], ICPSR − Interactive/Interactive
Liu et al. [39], ICPSR − Static/Static
Liu et al. [39], ICPSR − Interactive/Static
Bansal et al. [4], Book reviews − Confidence
Bansal et al. [4], Book reviews − Explain Top−2, AI
Bansal et al. [4], Beer reviews − Explain Top−2, AI
Bansal et al. [4], Book reviews − Adaptive, Expert
Bansal et al. [4], Book reviews − Adaptive, AI
Liu et al. [39], BIOS − Interactive/Interactive
Liu et al. [39], BIOS − Interactive/Static
Liu et al. [39], BIOS − Static/Static
Bansal et al. [4], Beer reviews − Adaptive, AI
Alufaisan et al. [3], Census − Anchor
Fügener et al. [21], Dog breed ImageNet − Certainty
Bansal et al. [4], LSAT − Explain Top−2, Expert
Bansal et al. [4], Book reviews − Explain Top−1, AI
Bansal et al. [4], LSAT − Explain Top−1, Expert
Bansal et al. [4], Beer reviews − Explain Top−1, AI
Bansal et al. [4], Beer reviews − Adaptive, Expert
Bansal et al. [4], LSAT − Confidence
Bansal et al. [4], Beer reviews − Confidence
Lai et al. [36], Deception detection − Signed & Predicted Label & Guidelines
Bansal et al. [4], LSAT − Adaptive, Expert
Lai et al. [36], Deception detection − Signed & Predicted Label
Lai et al. [36], Deception detection − Signed & Predicted Label & Guidelines & Accuracy
Buçinca et al. [8], Fat content prediction − Inductive & Deductive Explanation

Total

4141

  50
  80
  80
  80

 216
 216
 216
 216
 216
 216
 100
 100
 100
 100
 100
 216
 216
 216
 100
  50

 152
 100
 100
 100
 100
 100
 100
 100
  80

 100
  80
  80
  65

Mean

60.00
51.80
52.40
52.60
56.90
58.60
59.40
60.70
61.50
62.00
90.50
91.00
87.50
91.00
92.00
72.40
72.80
73.40
88.00
73.00
80.10
68.00
92.00
68.50
88.00
89.50
69.50
89.00
70.50
70.00
72.30
74.00
74.00

SD

7.0409
8.6705
6.8451
8.6705

14.9969
14.9969
14.9969
14.9969
14.9969
14.9969

7.6531
7.6531

10.2041
6.3776
7.6531

14.9969
14.9969
14.9969

7.6531
10.5614
10.9000
12.7551

5.1020
12.7551

6.0000
7.6531

12.7551
5.0000
8.9443

10.2041
8.9443
8.9443

12.0934

XAI−assisted
Total
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Figure 3: Forest plot of the standardized mean difference between human and XAI-assisted performance.

The SMD of the tabular subgroup is 0.01 (95% CI [-0.24, 0.26]).
As this range does include an effect size of 0 and the z-value is
0.08 with a corresponding p-value of 0.94, we cannot reject the
null hypothesis. That means we cannot conclude that the SMD
is significantly different from 0. Regarding heterogeneity, we can
reject the null hypothesis that the true effect size is identical in all
studies (𝑄 = 20.30, 𝑑 𝑓 = 7, 𝑝 < 0.005). The 𝐼2 is 65.50% with a 95%
CI ranging from 26.70% to 83.80% and 𝜏2 has a value of 0.09 (95%
CI [0.01, 0.48]). Finally, the prediction interval ranges from -0.77
to 0.79. That means we can expect future negative impacts of XAI
assistance on human decision performance in certain situations.

The text data subgroup has a higher SMD of 0.72 (95% CI [0.50,
0.93]). This range does not include an effect size of 0. Additionally,
the z-value is 6.65 with 𝑝 < 0.0001 denoting that the SMD is sig-
nificantly different from 0. In terms of heterogeneity, we can reject
the null hypothesis that the true effect size is identical in all studies
(𝑄 = 103.57, 𝑑 𝑓 = 22, 𝑝 < 0.0001). In this context, 𝜏2 is 0.21 (95% CI
[0.10, 0.47]) and 𝐼2 is 78.80% (95% CI [68.70%; 85.60%]). Thus, the
heterogeneity of the text data subgroup can be considered higher
than the tabular data subgroup. The prediction interval ranges from
-0.26 to 1.69, which means we can also expect some negative XAI
effects with text data.
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Figure 4: Forest plot of the standardized mean difference between human and XAI-assisted performance considering the sub-
groups tabular and text data.

Lastly, comparing both subgroups, we observe significant per-
formance differences between tabular and text data suggesting that
the data type in our sample influences the effect of XAI assistance
on the performance (𝑄 = 17.81, 𝑑 𝑓 = 1, 𝑝 < 0.0001).

4.5 Summary of the Articles
Having analyzed the collected studies in the form of ameta-analysis,
we pursue a discussion and summarization of the individual arti-
cles from a qualitative perspective. We focus on extracting further
insights that can be derived from comparing human performance
without any assistance and AI or XAI assistance. In particular, we
are interested in the question of why XAI assistance did or did not
improve AI assistance.

Alufaisan et al. [3] draw upon rule-based explanations generated
by anchor LIME [50] for two real-world tabular datasets—an in-
come prediction task using the Census dataset [19] and a recidivism
prediction task using the COMPAS dataset [48]. The XAI algorithm
provides rules which are denoted as anchors to explain a prediction
on an instance level. A rule is considered an anchor if any changes
in the features that are not included in the anchor do not impact
the AI decision [3]. The authors find that AI assistance improves
human performance. However, they find no additional benefit of

XAI assistance regarding decision-making performance. They hy-
pothesize that one reason for the negligible effects of XAI could
be information overload. When taking a closer look at the indi-
vidual decision level, humans tend to follow AI predictions more
often when the AI makes a correct prediction than when it makes
an incorrect one. In this context, explanations did not alter this
observation.

Bansal et al. [4] compare multiple forms of explanations of AI
predictions on three tasks. Two of them are about sentiment analysis
of book [25], and beer reviews [41]. The third task consists of a set
of law school admission test questions requiring logical reasoning
[58]. All three datasets consist of text data. As explanations, they use
feature importance generated by LIME [49] and feature importance
generated by human experts. Additionally, the authors evaluate the
effect of providing only confidence ratings of the AI’s prediction,
which we consider as a form of explanation as well to ensure that
AI assistance encompasses in all studies only the predictions of
the AI. Therefore, we are restricted to the comparison of human
performance with XAI assistance in themeta-analysis. Interestingly,
the authors find no performance improvements of explanations over
confidence ratings. However, they find that providing explanations
tends to increase the chance that humans accept the AI’s prediction
regardless of its correctness—which shows contrary results to the
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observations of Alufaisan et al. [3]. Moreover, participants receiving
XAI assistance outperform both participants and AI alone.

Buçinca et al. [8] analyze two different techniques for evaluating
XAI systems. First, a proxy task, e.g., asking humans to predict the
AI’s decision. Second, an actual decision-making task, e.g., asking
humans to make a decision with XAI assistance. We consider the ac-
tual decision-making task for the meta-analysis. The authors show
participants images of different food plates and ask them to predict
the fat content of the meal. The participants are requested to decide
whether the fat content in percent is higher than a threshold. Users
are provided with inductive (i.e., example-based) and deductive
(i.e., rule-based) explanations. With XAI assistance, the users sig-
nificantly outperform users with AI assistance, which yields better
performance than users conducting the task without any support.
Interestingly, example-based explanations enable users to identify
erroneous AI predictions better. However, they prefer and trust the
rule-based explanations more.

Carton et al. [12] consider a social media comment toxicity pre-
diction task for their experiment by sampling comments from the
dataset provided by Wulczyn et al. [64]. They utilize feature im-
portance by highlighting passages and words pointing towards a
toxic comment. In detail, three different forms of explanations are
analyzed—full, partial, and keyword explanations. The full expla-
nations are generated by an attention model [11] that produces a
discrete attention mask over the input text for toxic content. Partial
explanations refer to reducing the mask to the most toxic passage.
Keyword explanations are derived from a bag-of-words logistic re-
gression classifier that highlights only the most toxic single words
instead of considering the context. Their study shows a marginal
negative trend of AI assistance performance in comparison to users
with no assistance at all. However, the effect does not vary sig-
nificantly regardless of explanations being present or not. In this
context, users tend to follow the AI prediction without an effect
of the different explanations provided. A detailed analysis of false
negative and false positive rates reveals that explanations tend to
increase false negatives and reduce false positives. The authors hy-
pothesize that this might indicate a reduced cognitive engagement
with the social media comments by focusing on the highlighted
text without considering the not highlighted passages.

Fügener et al. [21] use a dog breed image classification task. They
evaluate the effect of AI assistance with and without additional con-
fidence ratings and compare both treatments with the performance
of users that do not receive any AI support. While the authors find
that AI assistance significantly improves human performance, no
additional effect of providing confidence ratings can be identified.
In this context, both AI-assisted performance and the one with
additional confidence ratings outperform humans and AI when
conducting the task alone. Interestingly, a detailed analysis of the
confidence rating treatment reveals that providing AI certainty
decreases AI adherence. The authors hypothesize that a decrease in
users’ trust might explain this effect as it declines in this treatment
as well.

Lai et al. [36] consider a deception detection task which is about
identifying fake hotel reviews [45, 46]. The authors analyze the ef-
fect of three types of XAI assistance provided together with the AI
prediction. First, they provide users with signed feature importance,
i.e., they highlight the most important words that indicate real and

fake reviews. Word importance is derived from the absolute value
of the coefficients using a linear SVM with a unigram bag-of-words.
Second, they additionally provide the participants with supporting
guidelines derived from related research and observations of the
model, which are paraphrased by the authors. Third, they provide
an additional AI accuracy performance statement on top. Before
the actual decision-making task, participants had to undergo a
task-specific training phase. In a prior experiment, the authors
demonstrated that these so-called tutorials enhance participants’
performance without any further assistance from the AI. In gen-
eral, they find an improvement in XAI-assisted performance over
human performance in all three treatments. However, no statistical
significance between the different forms of XAI assistance can be
detected. Moreover, the authors also emphasize that XAI-assisted
performance remains inferior to the AI performing the task alone,
even though a small proportion of participants can be identified
that were able to outperform the AI. The authors do not consider
an AI-assisted treatment in their experiment.

Liu et al. [39] explore the effect of out-of-distribution data in-
stances and interactive explanations on human-AI decision-making.
For the meta-analysis, we focus on the in-distribution setting, in-
cluding a comparison of static with interactive explanations, as
out-of-distribution data might impede the comparability with the
other studies. The authors draw upon three tasks in their article.
In the first, participants predict whether arrested defendants will
violate the terms of pretrial release using the ICPSR dataset [44].
The second task is about predicting whether defendants will recidi-
vate in two years using the COMPAS dataset [48]. Both are tabular
datasets. The third task requires participants to predict a person’s
profession given a textual biography using the BIOS dataset [17].
Regarding the AI model, a linear SVM classifier with unigram bag-
of-words for BIOS and one-hot encoded features for ICPSR and
COMPAS is employed. The static explanations consist of feature
importance by coloring features that contribute to the AI predic-
tion. Interactive explanations offer users the possibility to explore
what-if scenarios. In general, the authors find that XAI assistance
improves users’ performance in predicting a person’s profession
compared to users without any assistance. However, no significant
performance difference between static and interactive explanations
can be found. For the two recidivism prediction datasets, they find
no significant difference between the performance of XAI assistance
and human alone. The authors hypothesize that the complexity
of both recidivism tasks might have prevented noticeable perfor-
mance improvements. Interestingly, even though no performance
difference can be observed, users rate interactive explanations more
useful in the recidivism prediction tasks. The authors do not con-
sider sole AI-assisted decision-making in their article.

van der Waa et al. [60] evaluate the effect of example- and rule-
based explanations in the context of a diabetes self-management
task where participants are requested to select the appropriate dose
of insulin. The authors compare AI assistance with both types of
explanations but do not report sole human performance. In this
context, the presence of either example- or rule-based explanations
does not result in a significant performance difference compared to
pure AI assistance. A closer analysis of explanations’ “persuasive
power”, i.e., how often humans agree with the AI recommenda-
tion regardless of being correct or not, reveals that users without
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explanations follow the AI prediction significantly less than with
example- or rule-based explanations.

Zhang et al. [67] compare the effect of additional confidence
ratings with feature importance explanations using Shapley values
[40] in the context of human-AI decision-making. They utilize the
Census dataset [19] for asking participants to predict whether a per-
son’s income would exceed $50,000. In the experiment, the authors
find no significant difference between additional confidence ratings
and feature importance explanations in terms of task performance.
Moreover, both treatments do not differ significantly from sole AI
assistance. Even though displaying confidence scores does not af-
fect task performance, it can be found that it improves overall trust
and contributes to a calibration over different confidence levels. The
authors explain this phenomenon with a high correlation between
human and AI confidence, showing a large overlap of instances
with low AI and human confidence. In contrast, explanations do
not affect users’ trust in their experiment.

In summary, most studies, except for Buçinca et al. [8], found
no significant differences when comparing XAI and AI assistance
on an individual study level. Alufaisan et al. [3] argue that this
negligible effect of XAI might stem from information overload.
Carton et al. [12] discuss that XAI, in the case of feature importance,
might reduce the amount of data that humans process as they just
focus on the features that are relevant for the AI. Liu et al. [39]
discuss whether task complexity could be a reason for no significant
improvements of XAI assistance over AI assistance. We also observe
some contrasting results that require further investigation in future
work. Fügener et al. [21] find a general decrease in AI adherence
in the context of confidence ratings. In contrast, van der Waa et al.
[60] and Bansal et al. [4] find that explanations just increase the
general probability of accepting AI advice.

Based on the qualitative review, we derive two potential factors
influencing the utility of XAI: First, XAI could improve decision-
making performance by increasing the acceptance of AI advice.
Note that the performance improvement will just happen if the AI,
on average, performs significantly better than the human [67]. Sec-
ond, XAI assistance could influence appropriate trust and reliance,
which means humans can discriminate between correct and incor-
rect AI advice [4]. The idea is that humans will be better able to
distinguish between correct and incorrect advice if the AI conveys
its reasoning. Our qualitative review showed that while there is ev-
idence for increased acceptance of AI advice due to XAI [4, 60, 67],
just one article reports some form of appropriate reliance [8].

5 LIMITATIONS
As XAI is a relatively new field of research, at least in comparison
to research domains where meta-analyses are more common, e.g.,
medical research [20], we encounter some major limitations that
form around the current existing sample of XAI studies.

First, the current existing sample of XAI studies contains just
online studies. In these online studies, people are recruited via on-
line platforms such as Mechanical Turk. They conduct a task not in
a controlled lab environment inducing higher variability. Second,
the studies use different XAI algorithms ranging from providing
an additional confidence score to personalized explanations. We
also considered a subgroup analysis for the XAI algorithm category

but are limited due to the current sample size. Therefore, inter-
pretable findings cannot be derived yet. Third, also task design
differs between the studies. Some studies use more intuitive tasks
for humans, such as sentiment analysis of reviews, while others
consider more complicated ones, such as income prediction. Future
studies should evaluate other task-related factors beyond data type.
Fourth, in the data type subgroup, the tabular subgroup contains
just two articles [3, 39]. Even though it contains 8 studies, this poses
a possible limitation.

Moreover, as many studies did not report dispersion metrics
numerically, we needed to extract them from the plots. However,
we conducted a multi-step approach. Two researchers extracted
the values individually and afterward discussed the differences.
Furthermore, we want to highlight that the meta-analysis is limited
with regard to drawing causal conclusions. Our analysis should
instead be considered as a synthesis of existing research. The main
limitation of the comparison of AI-assisted and XAI-assisted perfor-
mance is the small sample size due to many studies not reporting
the dispersion of their AI-assisted condition.

6 DISCUSSION AND FUTUREWORK
In this work, we conducted the first meta-analysis of XAI-assisted
decision-making. Based on a structured data collection process,
we collected 393 XAI-related articles. After applying our inclusion
criteria, we identified a set of 9 articles encompassing 44 studies
for the meta-analysis.

In the current sample, we find no statistically significant differ-
ence between XAI- and AI-assisted performance. In this context,
we observed that some studies reported positive XAI assistance per-
formance effects, whereas others found no effects or even slightly
negative effects.

Additionally, we find a positive effect of XAI assistance on human
task performance. Since we do not identify a difference between
XAI and AI assistance, the results need to be interpreted carefully.
Therefore, we cannot conclude that XAI will lead to an overall per-
formance superior to AI assistance. However, we observe a positive
tendency of AI to support humans in decision-making, either with
explanations or without. A promising avenue for future research is
to investigate the factors that determine consistent performance
gains in human-AI decision-making. In this context, the work of
Lai et al. [35] could be a foundation for the data collection.

Furthermore, our subgroup analysis indicates a stronger posi-
tive effect on task performance with text data than tabular data. If
this effect can be confirmed in future studies, more work would be
required regarding human-AI decision-making with tabular data.
Reasons for this difference could be that text data is a more intuitive
data type for humans. Additionally, analyzing the utility of expla-
nations and AI predictions concerning image data requires more
attention, as we found a total of only 2 articles that used image data.
Future work should explicitly investigate performance differences
induced by different data types.

Moreover, due to the currently high heterogeneity of the stud-
ies, future analyses could consider not only a distinction by data
type but also by task type, e.g., complexity, and users’ task-specific
knowledge. For example, in easy tasks, humans might be able to
evaluate better whether AI advice is correct or not.
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Our qualitative review of the collected studies highlights that
explanations can easily lead to increased acceptance of AI advice. In
the scenario in which AI performs, on average, better than humans,
its performance might bound the maximum joint performance of
both. However, if the goal is that human-AI decision-making ideally
results in superior team performance [4], appropriate reliance on
the AI’s decision becomes indispensable. Therefore, future research
should investigate design mechanisms that enable appropriate re-
liance. Additionally, from this observation emerges the need to
discuss the ethical implications of pure acceptance increase in fu-
ture work as it can be understood as a form of manipulating people
to blindly accept AI advice.

7 CONCLUSION
This article presents the results of a meta-analysis of the utility of
XAI-assisted decision-making. We identify a total sample of 9 arti-
cles that report all necessary information as a prerequisite through a
structured literature review. We analyze whether humans’ decision-
making can benefit from AI support with and without explanations
and derive three major findings: First, we do not find a significant
effect of state-of-the-art explainability techniques on AI-assisted
performance. Second, we observe a significant positive effect of XAI
assistance on human performance. Third, our analysis indicates that
XAI assistance is more effective on text than tabular data. We hope
that our work will motivate scholars to pursue meta-analyses in
future human-AI research to systematically assess previous studies
to derive conclusions about the current body of research.
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