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ABSTRACT
Replicas of the same data item often exhibit varying consistency

levels when executing read and write requests due to system avail-

ability and network limitations. When one or more replicas respond

to a query, estimating the currency (or staleness) of the returned

data item (without accessing the other replicas) is essential for

applications requiring timely data. Depending on how confident

the estimation is, the query may dynamically decide to return the

retrieved replicas, or wait for the remaining replicas to respond.

The replica currency estimation is expected to be accurate and ex-

tremely time efficient without introducing large overhead during

query processing. In this paper, we provide theoretical bounds on

the confidence of replica currency estimation. Our system computes

with a minimum probability p, whether the retrieved replicas are

current or stale. Using this confidence-bounded replica currency

estimation, we implement a novel DYNAMIC read consistency level

in the open-source, NoSQL database, Cassandra. Experiments show

that the proposed replica currency estimation is intuitive and effi-
cient. In most tested scenarios, with various query loads and cluster

configurations, we show our estimations with confidence levels of

at least 0.99 while keeping query latency low (close to reading ONE

replica).
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1 INTRODUCTION
Data currency is often synonymously referred to as data fresh-

ness in distributed database settings, and a critical data quality

dimension [18]. One of the primary problems in data currency

is to determine whether a value at a replica is stale, as it makes

answering queries across these multiple value versions challeng-

ing. Distributed data stores with replication, such as BigTable [12],

HBase [20], Dynamo [17], and Cassandra [27], carry different ver-

sions of a data item (i.e., a key-value pair, a tabular cell), where

timestamps (or global version numbers) are used to determine cur-

rency. Replicated storage for large-scale applications such as Web

services [30], and in e-commerce platforms [25] must consider the

trade-off between stronger forms of consistency and performance

requirements. Although stronger consistency provides improved

guarantees of data currency, it often requires heavier-weight imple-

mentations that increase latency and/or decrease throughput [30].

Therefore, systems providing strong consistency guarantees are

limited in scalability and availability [21], and are unable to handle

network partitions [23]. Referring to Brewer’s CAP theorem [9] on

consistency, availability, and partition tolerance, many distributed

systems [10, 12, 17, 20, 27, 31] choose weaker forms of consistency

to provide low latency and high throughput [30].

By manually specifying a consistency level, existing systems

such as Cassandra wait for a fixed number of replicas (e.g., ONE,

QUORUM, ALL) to respond with respect to (w.r.t.) the success of

read/write operations. In cases of workload surge, for example, as

reported by Alibaba, there are up to 491,000 sales transactions per

second, during the 2018 Singles’ Day Global Shopping Festival [25].

To handle this, the write consistency level ONE is preferred, i.e.,

returning to the client as long as one node is written, to ensure high

throughput. The remaining replicas cannot guarantee immediate

and perfect consistency, especially in Wide Area Networks (WANs)

with frequent network issues, hardware unreliability, or overloaded

nodes that experience pauses due to garbage collection. In addition,

studies have shown that periods of inconsistency follow write re-

quests as updates are not uniformly propagated to all replicas due

to buffering and communication delays [7].

To achieve strong consistency, where all client reads view the

most recent write, the read consistency level ALL is required, which

waits for all replicas to respond, given the aforesaid write consis-

tency level ONE. However, this increases latency, which is undesir-

able in many real applications [37]. For example, 500 ms of latency

in Google’s search leads to 20% decrease in traffic [29], and 100
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(a) Four replicas in a cluster of cross data center nodes

(b) v𝑖 𝑗 the 𝑗-th version written in replica 𝑟𝑖 at different times

Figure 1: Motivating example showing a cluster with replica-
tion factor 4, andwrite consistency level ONE, running across
multiple data centers. A read returns the most recently writ-
ten version, i.e., v24, the 4th version stored in replica 𝑟2. Unfor-
tunately, this does not always occur due to system availability
and network partitioning. For downstream applications, it is
critical to estimate whether the response replica, e.g., v44, is
current or stale.

ms of latency has resulted in a 1% drop in sales at Amazon [28].

Therefore, existing tunable consistency levels sacrifice some con-

sistency to achieve total availability. For instance, in Cassandra,

the read consistency level ONE or QUORUM chooses to retrieve,

respectively, one or more than half of the replicas. Obviously, the

returned replicas may be stale (as illustrated in Figure 1), given the

aforesaid write consistency level ONE. This solution falls short in

two aspects: (1) The client has no information about the currency

of the returned values from part of the replicas. (2) The consistency

level is tuned w.r.t. the number of responding replicas rather than

the likelihood of returning replicas with current values, i.e., not

intuitive. Without any estimation of data currency, it is difficult for

users to configure an appropriate consistency level. In particular,

data currency varies over time such that a fixed consistency level

does not always apply.

Example 1. Consider a vehicle sensor monitoring application at
our industrial partner. The workload is write-intensive with a mean
inter-arrival of 2 ms, requiring write consistency ONE. The application
must retrieve the current engine oil pressure values to trigger safety
alarms. In such critical settings, having high confidence, current and
accurate readings is essential. Relying on consistency level ONE may
trigger false positive alerts, e.g., in Cassandra, and using fixed ALL
and QUORUM levels leads to unnecessary delays.

Figure 1(a) shows a system with replication factor 4. A cell t [A]
in row t, and column A of a table denoting the oil pressure value is
replicated in four nodes in the cluster. Let v𝑖 𝑗 denote the 𝑗-th version
of the oil pressure value in the 𝑖-th replica. Figure 1(b) shows the
latest version v24 of the oil pressure value is stored only in replica 𝑟2
with write consistency level ONE, due to write efficiency or network
partitioning tolerance. Read requests are also processed at different
consistency levels, again, for either read efficiency or network failure.
With read consistency level ONE, Cassandra immediately returns the
version held by the first node that responds to the query [27], i.e., v44
of replica r4. We can see that version v44 is stale, given the more recent
v24. However, without accessing the other replicas, r1 − r3, the system
cannot determine whether the retrieved version v44 is current or stale,
hindering the real-time monitoring of oil pressure values.

In this paper, we propose to (1) estimate the currency of a re-

turned replica, and (2) devise a new consistency level DYNAMIC

with a tunable confidence level of replica currency, such that the

system intelligently determines the number of replicas to retrieve.

Specifically, we estimate whether the returned replicas are current

or stale, together with a guaranteed confidence (with at least proba-

bility p) of the estimation. This enables systems to adaptively decide

the number of replicas to retrieve instead of a fixed ONE, QUO-

RUM or ALL, thereby improving system efficiency. If the retrieved

versions are known to be current with a high probability, the query

can directly return these values as results without incurring the

additional latency.

Note that reading the latest version (using strong consistency)

is not always possible due to the underlying network partitioning

scheme. Therefore, the new consistency level DYNAMIC provides

a tunable confidence level of replica currency that is user-intuitive,
rather than relying on a fixed number of replicas to retrieve with

no guidance on the currency of results. The proposed DYNAMIC

read consistency level is especially preferred in write intensive

workloads, since replicas are more likely to be inconsistent among

such intensive writes, and need currency estimation during reads.

1.1 Challenges
The problem of computing a lower confidence bound for replica

currency estimation is challenging. (1) While efficient learning

models are directly applicable, we expect a guaranteed confidence

for the currency prediction. It is highly non-trivial to derive a lower

bound of the probability of whether the replica is current or stale,

with respect to the ground truth. (2) The problem becomes even

harder, given that the replicas are distributed across cluster nodes

with limited synchronization. Our currency prediction models need

to be learned locally in each replica node, such that they are small

enough to propagate to the other nodes with low overhead.

1.2 Contributions
Our major contributions in this study are as follows.

(1) We derive a theoretical bound on the confidence that a replica is

current or stale, with respect to the ground truth (Section 2). The

derivation is first based on idealistic scenarios, where the model

is learned over the full update history across all replicas.

(2) We extend the theoretical bound for the replica currency estima-

tion confidence to realistic scenarios in Section 3. We develop
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Table 1: Notation

Symbol Description

r𝑖 the 𝑖-th replica of the data item (queried by the user)

v𝑖 𝑗 the j-th version of the i-th replica for the data item

T𝑖 𝑗 time stamp of replica version v𝑖 𝑗
t𝑖 𝑗 time distance of replica version v𝑖 𝑗 to the previous

version v𝑖, 𝑗−1, i.e., t𝑖 𝑗 = T𝑖 𝑗 − T𝑖, 𝑗−1
𝜁 the current time of user query to the database

f model for predicting t𝑖 𝑗
𝜙 parameter of model f
Z a number of z samples for training model f

models that are learned locally within each replica node, and

together with the queried data, sent to the coordinator node for

query processing and confidence-bounded currency estimation.

(3) We implement a novel read consistency level DYNAMIC, in Sec-

tion 4. The system immediately returns the response replicas if

the currency estimation confidence is greater than a threshold 𝜂.

Instead of the fixed options (ONE, QUORUM, ALL), the proposed

DYNAMIC consistency level offers more intuitive, finely tunable

confidence levels (e.g., 𝜂 = 0.99, 0.999, 0.9999, . . . ) to evaluate the

trade-off between replica currency and query efficiency.

(4) We conduct extensive experiments with various query loads and

cluster configurations. In the tested scenarios, our replica cur-

rency estimation demonstrates high confidence levels (at least

0.99), and is efficient, incurring only 0.76%-1.17% of the original

query processing and replica synchronization time costs. Remark-

ably, the proposed DYNAMIC consistency level achieves higher

accuracy to return current answers than QUORUM (comparable

to ALL), while keeping latency low (close to ONE).

Table 1 lists frequently used notations.

2 IDEALISTIC SCENARIOS
Wefirst consider an idealistic scenario, where the full update history

across all replicas is available, and is propagated to the responding

node. Although this is costly in practice, we consider this scenario

for the following reasons: (1) By predicting a bounded confidence

over the full history with an idealistic node, we can extend this to

use a partial history in a realistic node, as presented in Section 3. (2)

Prediction using an idealistic node (by propagating the full write

history at no cost) serves as a baseline of the best effort results. This

enables us to demonstrate the accuracy of our estimation models

(in practice) to the ideal case (Section 5).

2.1 Replica Currency in Idealistic Scenarios
Let v𝑛 with timestamp T𝑛 be the most recent version of the queried

data item in the response nodes, and 𝜁 be the query time. Replica

currency is determined by the next version v𝑛+1 with timestamp

T𝑛+1, which may not have been retrieved yet from the remaining

replicas, or is beyond the query time. If

T𝑛+1 ≤ 𝜁 , (1)

(a) Stale replica version v5

(b) Current replica version v5

Figure 2: Replica currency estimation in an idealistic sce-
nario. The update history for all replicas is propagated to a
responding node for learning and currency estimation.

Figure 3: Prediction model for consecutive replica versions.

the version v𝑛 is stale, i.e., a more recent version v𝑛+1 is written to

the other replicas but not yet retrieved. Otherwise, if

𝜁 < T𝑛+1, (2)

we can conclude that v𝑛 is current, i.e., the next write operation

has not yet occurred and will happen beyond the query time.

Example 2. Figure 2(a) shows that version v5 is the latest version
with timestamp T5 from responding replica r4. However, if there is a
version v6 written to replica r2 with timestamp T6 < 𝜁 that has not
responded, then v5 is a stale version. In contrast, Figure 2(b) shows
that if there is no write between T5 and 𝜁 , i.e., the next version v6 does
not occur, then the retrieved version v5 is current.

Example 2 shows two cases should be considered to determine

the currency of a data item v𝑛 : (i) whether the next version v𝑛+1
exists in a replica, but has not been retrieved; or (ii) v𝑛+1 has not
yet occurred (written) w.r.t. the current query time, i.e., the cor-

responding time stamp T𝑛+1 is unknown. Thus, we can evaluate

replica currency by estimating the predicted T ′
𝑛+1 from T𝑛+1. By

bounding the generalization error in the prediction (Section 2.1.2),

we derive a lower bound on the confidence for replica currency

estimation of T ′
𝑛+1 (Propositions 1 and 2).

2.1.1 Prediction Model. Let v = {v1, . . . , v𝑘 , . . . , v𝑛} be the replica
versions that are ideally propagated to the response node of replica

r𝑖 . Rather than directly predicting the timestamp of the next version

v𝑛+1, as illustrated in [15, 16], it is more reasonable to train a model
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over the time distance to the last version. That is, we consider the

time distance t𝑘 = T𝑘 − T𝑘−1 of replica version v𝑘 to the previous

version v𝑘−1. Since the data may be skewed [25], it is more intu-

itive to apply a machine learning model for prediction, rather than

basic statistical analysis. Figure 3 illustrates the Bayesian model for

prediction [19]. The prediction model f predicts t𝑘 referring to the

previous time distance t𝑘−1,

f (t𝑘−1) → t𝑘 , (3)

having t𝑘 = f (t𝑘−1) + 𝜀, where 𝜀 is the error term. We use a simple

linear regression model [39] as f , for the following reasons,

t ′
𝑘
= 𝜙1t𝑘−1 + 𝜙0, (4)

where 𝜙0 and 𝜙1 are the parameters. (1) The generalization error

of the linear regression model is bounded [39], as shown in Section

2.1.2. This serves as a foundation for the confidence-guaranteed

replica currency estimation in Section 2.2. (2) The model is small

enough to be propagated efficiently among the nodes in a cluster.

This will be particularly important in the realistic scenarios consid-

ered in Section 3, and in our Cassandra implementation in Section

4. (3) Linear regression can be efficiently trained, incrementally, as

new versions arrive [33].

Consider a sample of training data Z = ((t1, t2), . . . , (t𝑛−1, t𝑛))
obtained from the write history v of replica versions, for learning

the model parameters in f . Let X =

(
t1 · · · t𝑛−1
1 · · · 1

)
and Y =

©­­«
t2
.
.
.

t𝑛

ª®®¬.
The linear regression parameters can be learned by setting 𝜙 =

(X⊤X )−1X⊤Y . As new versions arrive, v𝑛+1, this leads to an in-

crement Z ′ = (t𝑛, t𝑛+1) of training data, the new parameters w.r.t.

Z ∪ Z ′
are incrementally updated

𝜙 ′ = (X⊤X + X ′⊤X ′)−1 (X⊤Y + X ′⊤Y ′).

2.1.2 Generalization Bound. The generalization error of the linear

regression model is bounded [39]. This guarantees the prediction

accuracy of the estimated t ′
𝑛+1 (computed by model f ) is bounded

compared to the true t𝑛+1. We derive the lower bound for the con-

fidence of replica currency estimation in Propositions 1 and 2.

Let R̂𝑍 (𝑓 ) denote the empirical loss over the sample training

data Z , where |Z | = 𝑧, and ♭ be the bound of the absolute loss

function, i.e., |f (t𝑘−1) − t𝑘 | ≤ ♭. According to [39], for any 𝛿 > 0,

with probability at least 1 − 𝛿 over the sample Z , we have

|t ′n+1 − tn+1 | < R̂𝑍 (𝑓 ) + ♭

√︄
4 log

𝑒𝑧
2

𝑧
+ ♭

√︄
log

1

𝛿

2𝑧
.

That is, the following probabilistic inequality holds

𝑃
(
|t ′n+1 − tn+1 | < 𝛾

)
> 1 − 𝛿,

where

𝛾 = R̂𝑍 (𝑓 ) + ♭

√︄
4 log

𝑒𝑧
2

𝑧
+ ♭

√︄
log

1

𝛿

2𝑧
. (5)

2.2 Confidence Bounds for Replica Currency
Based on the predicted t ′

𝑛+1 in Formula 4 and timestamp T𝑛 of the

last retrieved version v𝑛 , we estimate the timestamp of the next

version v𝑛+1, i.e., T ′
𝑛+1 = T𝑛 + t ′

𝑛+1. Referring to Formulas 1 and 2,

if T ′
𝑛+1 ≤ 𝜁 , we estimate that v𝑛 is stale; otherwise, v𝑛 is current.

In this section, we derive a theoretical bound on the confidence

to estimate whether a replica is current or stale. Specifically, what

is the probability of the true T𝑛+1 ≤ 𝜁 , given the stale estimation

T ′
𝑛+1 ≤ 𝜁 ? Similarly, for currency estimation, T ′

𝑛+1 > 𝜁 , what is the

confidence that the true T𝑛+1 > 𝜁 ?

2.2.1 Confidence of Currency Estimation. The replica currency of

v𝑛 is determined by the next version v𝑛+1. If 𝜁 < T𝑛+1, i.e., the
next replica version v𝑛+1 occurs after the current query time, we

conclude the retrieved version v𝑛 is current. From Formula 2, we

denote the confidence of a replica version v𝑛 being current by

P (v𝑛 is current) = P (𝜁 < T𝑛+1) = P (𝜁 < T𝑛 + tn+1). (6)

Based on the generalization bound between t𝑛+1 and the predicted

t ′
𝑛+1 in Section 2.1.2, we derive the lower bound on the confidence

P (𝜁 < T𝑛+1), given the estimation 𝜁 < T ′
𝑛+1 = T𝑛 + t ′

𝑛+1.

Proposition 1. To estimate a current replica,

𝜁 < T ′
𝑛+1,

we have the estimation confidence as

P (v𝑛 is current) = P (𝜁 < T𝑛+1) > 1 − 𝛿,

where

𝛿 = 𝑒−2𝑧 (
T′
𝑛+1−𝜁−R̂𝑍 (𝑓 )

♭
−
√︃

4 log
𝑒𝑧
2

𝑧
)2 .

As shown in Figure 4, since T ′
𝑛+1 = T𝑛 + t ′

𝑛+1 and the prediction

accuracy of t ′
𝑛+1 is bounded by Section 2.1.2, the timestamp T𝑛+1 is

in the range of (T ′
n+1 − 𝛾, T ′

n+1 + 𝛾) with probability at least 1 − 𝛿 .

If the query time has 𝜁 = T ′
n+1 − 𝛾 , as illustrated in Figure 4(a), we

have 𝜁 = T ′
n+1 − 𝛾 < Tn+1, i.e., the version v𝑛 is current as defined

in Formula 2.

2.2.2 Confidence of Stale Estimation. We estimate the probability

that v𝑛 is stale, i.e., if Tn+1 < 𝜁 , then v𝑛+1 will occur before the

query time 𝜁 , but the replica version has not yet been retrieved.

Referring to Formula 1, the confidence of version v𝑛 being stale is

P (v𝑛 is stale) = P (T𝑛+1 ≤ 𝜁 ) = P (T𝑛 + tn+1 ≤ 𝜁 ) . (7)

Similarly, the lower bound of the confidence P (T𝑛+1 ≤ 𝜁 ), given
the estimation for a stale replica T ′

𝑛+1 ≤ 𝜁 , is guaranteed by the

generalization error on t ′
𝑛+1 and t𝑛+1 in Section 2.1.2.

Proposition 2. To estimate a stale replica,

T ′
n+1 ≤ 𝜁 ,

we have the estimation confidence as

P (v𝑛 is stale) = P (T𝑛+1 ≤ 𝜁 ) > 1 − 𝛿,

where

𝛿 = 𝑒−2𝑧 (
−T′n+1+𝜁−R̂𝑍 (𝑓 )

♭
−
√︃

4 log
𝑒𝑧
2

𝑧
)2 .

Similar to the proof of Proposition 1, in Figure 4(b), if the query

time is 𝜁 = T ′
n+1 + 𝛾, we have Tn+1 ≤ 𝜁 = T ′

n+1 + 𝛾, i.e., the version
v𝑛 is stale (Formula 1).
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(a) Current estimation of version v𝑛

(b) Stale estimation of version v𝑛

Figure 4: Replica currency estimation with model generaliza-
tion bound w.r.t. 𝛾 in Formula 5.

3 REALISTIC SCENARIOS
Assuming the complete update history exists in a single node for

model training and scoring is expensive and unrealistic in our

settings with heterogeneous clusters of varying response times,

node availability, and writes not being propagated to all nodes. In

this section, we consider more realistic scenarios where models are

learned locally at each replica node, and together with the data,

sent to the coordinator node for query processing and currency

estimation. We extend the theoretical bound of the replica currency

estimation confidence (derived under a centralized environment in

Section 2.2) to distributed scenarios. This facilitates implementation

of replica currency estimation in industrial-strength distributed

database systems (Section 4).

We first illustrate the distributed settings in Section 3.1. In Section

3.2, we describe the realistic settings of replica currency estimation

in a distributed environment. We then present our solution that

trains individual prediction models for each replica, and compute

the corresponding theoretical bounds for the confidence estimation.

Lastly, we assemble the currency estimation results across all the

unseen replicas in Section 3.4.

3.1 System Model
To define the most recent item, we use a global version number

(global time) as shown in Figure 1(b). The communication and

synchronization time is modeled in Equation 13, where the last syn-

chronization occurs at time T𝑞𝑤 with version number v𝑞𝑤 , due to a
read repair request or anti-entropy. We visually depict the synchro-

nization time at T3 in Figure 1(b) where versions are synchronized

across all replicas, i.e., v11, v22, v31, v42 are the same version stored

in replicas r1, r2, r3, r4, respectively. In our evaluation, we study the

impact of varying time intervals between synchronizations. Figure

9 shows that frequent communication and synchronization leads

to higher estimation confidence, and accuracy.

Synchronization methods and triggers. In the realistic scenarios,

synchronization among the replicas is triggered minimally, i.e., dur-

ing regular anti-entropy, and occasionally by read repair, as in Cas-

sandra. During synchronization, e.g., at time T3 in Figure 1(b), not

only the versions of data v11, v22, v31, v42 are shared among replicas,

but also their individually learned models known as f11, f22, f31, f42
for currency estimation. Our methods make no assumptions on the

frequency of node synchronization. When there are more frequent

read repairs or anti-entropy operations, we expect our models to

compute more accurate currency estimations, as evaluated in Fig-

ures 9 and 10, albeit with longer wait times, as the latest models

and values are exchanged between replicas.

Relation to federated learning problems. Our problem shares con-

ceptual similarity to the federated learning problem where our

local models contain partial data and exchange model parameters.

We consider a federated learning system as a learning process in

which the data owners collaboratively train a model, and do not ex-

pose their data to others [41]. However, in our distributed database

setting, data is periodically synchronized between replicas during

anti-entropy or read repair operations, which is not the case in

federated systems.

3.2 Replica Currency
In a distributed database system, the communication cost among

different nodes is extremely sensitive. This is especially evident in

WANs, with geographically distributed nodes, where data exchange

between replicas should be minimized as much as possible. At the

same time, low response times are critical to satisfy strict perfor-

mance targets, leading to weaker consistency levels. In addition to

the above settings, we assume the replicas are asynchronous, i.e., a

specific replica version may only exist in a subset of replicas in the

distributed system. For example, as shown in Figure 5, version v44
is written only in replica r4. Synchronization among the replicas

occurs minimally, e.g., regularly by anti-entropy or occasionally by

read repair, as in Cassandra. For instance, at time T42 in Figure 5,

versions are synchronized in all replicas, i.e., v42 and v22 are the
same version stored in replicas r4 and r2, respectively.

In such a real, distributed setting, propagating the full history of

all writes among nodes as in Figure 2 in Section 2.1, is unlikely. For

a specific replica, we learn a local model based on its own replica

versions. Our goal is to introduce minimal overhead, where the

learned models are incidentally shared with other replicas during

regular and irregular synchronization. For instance, in Figure 5,

the model f2 learned locally in replica r2 is propagated to r4 when
performing a read repair at time T42.

Once the latest synchronization is complete, subsequent writes

are not visible between replicas. For example, in Figure 5, the version

v23 written in r2 after timestamp T42 cannot be seen by replica r4. In
addition, we do not assume in this scenario that all versions before

the latest version are available for model training and scoring, i.e.,

v5 in Figure 2. This relaxation introduces new challenges to estimate

the currency of the retrieved version v44 in Figure 5.

Let v𝑝𝑛 with timestamp T𝑝𝑛 be the most recent version of the

queried data item in the response nodes, and 𝜁 be the query time.

The replica’s currency is dependent on the invisible versions v𝑞𝑚
with timestamp T𝑞𝑚 , in a replica r𝑞 that is not yet retrieved. If there

exists a version v𝑞𝑚 having

T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 , (8)

then version v𝑝𝑛 is stale. Otherwise, with

T𝑞,𝑚−1 ≤ T𝑝𝑛 , and 𝜁 < T𝑞𝑚, (9)
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(a) Stale replica version v44

(b) Current replica version v44

Figure 5: Replica currency estimation in a realistic scenario,
where versions since the last synchronization are not avail-
able nor shared, such as at T42.

we can conclude that v𝑝𝑛 is current. In this case, no writes have

occurred between the latest version v𝑝𝑛 and the query time 𝜁 , and

the next write operation will occur beyond the current query time.

Example 3. Figure 5 shows v44 is the latest retrieved version with
timestamp T44 at response replica r4. If there is a version v24 written
in replica r2 with timestamp T44 < T24 < 𝜁 , and replica r2 has not
responded yet, as illustrated in Figure 5(a), then v44 is stale. In contrast,
if there is no version (across all the invisible replicas) between T44 and
𝜁 , i.e., v24 has not yet occurred, then v44 is current.

3.3 Estimating Single Invisible Replica
To estimate the currency of the observed replica version v𝑝𝑛 , similar

to the idealistic scenario, we need to predict the timestamp T𝑞𝑚 of

unseen version v𝑞𝑚 , namely T ′
𝑞𝑚 . Specifically, we predict t ′𝑞𝑚 , for

each invisible replica r𝑞 that has not yet responded to the query.

Let f𝑞 be the model in Formula 3 that is learned locally over the

written versions in replica r𝑞 . According to Formula 4, we have

t ′
𝑞,𝑘+1 = 𝜙𝑞1t𝑞𝑘 + 𝜙𝑞0, (10)

where v𝑞𝑘 denotes the k-th version of the q-th replica r𝑞 (that

has not yet responded to the query), and 𝜙𝑞0, 𝜙𝑞1 be the model

parameters. Referring to Section 2.1.2 with

𝛾𝑞 = R̂𝑍𝑞
(𝑓𝑞) + ♭

√︄
4 log

𝑒𝑧𝑞
2

𝑧𝑞
+ ♭

√︄
log

1

𝛿

2𝑧𝑞
,

the generalization error between t ′
𝑞𝑘

and t𝑞𝑘 is bounded by

P (t ′
𝑞𝑘

− 𝛾𝑞 < t𝑞𝑘 < t ′
𝑞𝑘

+ 𝛾𝑞) > 1 − 𝛿. (11)

Figure 6: Predicting multiple, unseen replica versions. The
predictions (shown as red arrows) are introduced in Formula
10, and the computed bounds (shown as blue arrows) are
guaranteed by Formula 11.

3.3.1 Predicting Timestamps for Currency Estimation. There may

exist multiple versions of r𝑞 that are invisible to the responding

replica r𝑝 , after the last synchronization at time T𝑞𝑤 with version

number v𝑞𝑤 , due to a read repair request or anti-entropy.

To predict T𝑞𝑚 , or equivalently t𝑞𝑚 , we iteratively apply the pre-

diction in Formula 10, starting from the known version v𝑞𝑤 of the

last synchronization. By estimating the distance between adjacent

time intervals, instead of simpler methods such as averaging over

any two timestamps, our model more accurately captures periods of

skewed updates. The predicted time distance t ′𝑞𝑚 of replica version

v𝑞𝑚 to v𝑞,𝑚−1 has

t ′𝑞𝑚 = (𝜙𝑞1)𝑚−𝑤 t𝑞𝑤 + 𝜙𝑞0

𝑚−𝑤−1∑︁
𝑙=0

(𝜙𝑞1)𝑙 . (12)

Given T ′
𝑞𝑚 = T ′

𝑞,𝑚−1 + t ′𝑞𝑚 for the predicted timestamp of replica

version v𝑞𝑚 , it follows that

T ′
𝑞𝑚 = T𝑞𝑤 +

𝑚∑︁
𝑘=𝑤+1

t ′
𝑞𝑘

= T𝑞𝑤 +
𝑚−𝑤+1∑︁
𝑘=2

((𝜙𝑞1)𝑘−1t𝑞𝑤 + 𝜙𝑞0

𝑘−2∑︁
𝑙=0

(𝜙𝑞1)𝑙 ) . (13)

Referring to Formula 8, if the predicted time stamp T ′
𝑞𝑚 , T𝑝𝑛 <

T ′
𝑞𝑚 ≤ 𝜁 , the observed version v𝑝𝑛 is estimated to be stale. Oth-

erwise, as in Formula 9, with T ′
𝑞,𝑚−1 ≤ T𝑝𝑛 and 𝜁 < T ′

𝑞𝑚, we can

estimate that v𝑝𝑛 is current. The confidence of this currency estima-

tion is the probability of T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 , given the stale estimation

T𝑝𝑛 < T ′
𝑞𝑚 ≤ 𝜁 , and similarly for the current estimation.

3.3.2 Generalization Bound of Timestamp Prediction. To compute

the confidence bound, P (T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 ) of the stale estima-

tion T𝑝𝑛 < T ′
𝑞𝑚 ≤ 𝜁 , we first derive the bounds of T𝑞𝑚 w.r.t. the

timestamp T𝑞𝑤 of the last known synchronization, by iteratively

applying the bounds in Formula 11. We combine the relationships

between T ′
𝑞𝑚 and T𝑞𝑤 in Formula 13, to get the bounds on T𝑞𝑚

and T ′
𝑞𝑚 below, which we use to derive the confidence bounds in

Propositions 4 and 5.

Lemma 3. Let R̂𝑍𝑞
(𝑓𝑞) denote the empirical loss over sample train-

ing data Z𝑞 in replica r𝑞 , where |Z𝑞 | = 𝑧𝑞 , and ♭ be the bound of
absolute loss function, i.e., |f𝑞 (t𝑞,𝑘−1) − t𝑞,𝑘 | ≤ ♭. For any 𝛿 > 0, the
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following probabilistic inequality holds

P (𝑇 ′
𝑞𝑚 − 𝛽𝑞𝑚𝛾𝑞 < T𝑞𝑚 < 𝑇 ′

𝑞𝑚 + 𝛽𝑞𝑚𝛾𝑞) > (1 − 𝛿)
(𝑚−𝑤) (𝑚−𝑤+1)

2 ,

(14)

where

𝛽𝑞𝑚 =

𝑚−𝑤+1∑︁
𝑘=2

𝑘−2∑︁
𝑙=0

(𝜙𝑞1)𝑙 (15)

and

𝛾𝑞 = R̂𝑍𝑞
(𝑓𝑞) + ♭

√︄
4 log

𝑒𝑧𝑞
2

𝑧𝑞
+ ♭

√︄
log

1

𝛿

2𝑧𝑞
. (16)

We iteratively apply Formulas 10 and 11 to derive the generaliza-

tion bound of t ′𝑞𝑚 , as shown in Figure 6. We guarantee the bound of

T ′
𝑞𝑚 via the error bounds of all previous time difference predictions

t ′
𝑞𝑘
, w < 𝑘 ≤ m.

3.3.3 Confidence of Currency Estimation. As shown in Section 3.2,

if T𝑞,𝑚−1 ≤ T𝑝𝑛 and 𝜁 < T𝑞𝑚 , i.e., no writes occur between the

latest version v𝑝𝑛 and the query time 𝜁 , we consider the retrieved

version v𝑝𝑛 to be current. According to Formula 9, we have the

confidence of a replica version v𝑝𝑛 being current as,

P (v𝑝𝑛 is current) = P (T𝑞,𝑚−1 ≤ T𝑝𝑛)P (𝜁 < T𝑞𝑚) . (17)

Referring to the generalization bound between T𝑞𝑚 and the pre-

dicted value T ′
𝑞𝑚 in Lemma 3, we derive the lower bound of the

confidence P (T𝑞,𝑚−1 ≤ T𝑝𝑛)P (𝜁 < T𝑞𝑚), given the current estima-

tion T ′
𝑞,𝑚−1 ≤ T𝑝𝑛 and 𝜁 < T ′

𝑞𝑚 .

Proposition 4. For a currency replica estimation on v𝑝𝑛 having

T ′
𝑞,𝑚−1 ≤ T𝑝𝑛 and 𝜁 < T ′

𝑞𝑚,

the corresponding estimation confidence is bounded by

P (v𝑝𝑛 is current) =P (T𝑞,𝑚−1 ≤ T𝑝𝑛)P (𝜁 < T𝑞𝑚)

>(1 − 𝛿𝑚−1)
(𝑚−𝑤−1) (𝑚−𝑤)

2 (1 − 𝛿𝜁 )
(𝑚−𝑤) (𝑚−𝑤+1)

2 ,

where

𝛿𝑚−1 = 𝑒
−2𝑧𝑞 (

T𝑝𝑛−T′
𝑞,𝑚−1−𝛽𝑞,𝑚−1 R̂𝑍𝑞 (𝑓𝑞 )

♭𝛽𝑞,𝑚−1
−
√︂

4 log

𝑒𝑧𝑞
2

𝑧𝑞
)2

and

𝛿𝜁 = 𝑒
−2𝑧𝑞 (

T′𝑞𝑚−𝜁−𝛽𝑞𝑚 R̂𝑍𝑞 (𝑓𝑞 )
♭𝛽𝑞𝑚

−
√︂

4 log

𝑒𝑧𝑞
2

𝑧𝑞
)2
.

According to Lemma 3, T𝑞𝑚 and T𝑞,𝑚−1 can be theoretically

bounded, as shown in Figure 7. If the query time 𝜁 has 𝜁 = T ′
𝑞𝑚 −

𝛽𝑞𝑚𝛾𝑞, as illustrated in Figure 7(a), we have 𝜁 < T ′
𝑞𝑚 . Moreover, if

the retrieved replica version v𝑝𝑛 has T𝑝𝑛 = T ′
𝑞,𝑚−1 + 𝛽𝑞,𝑚−1𝛾𝑞, we

have T𝑝𝑛 ≥ T𝑞,𝑚−1.

3.3.4 Confidence of Stale Estimation. Recall if there exists at least
one replica version v𝑞𝑚 such that T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 , then v𝑝𝑛 is stale.

Referring to Formula 8, the corresponding confidence of the replica

version r𝑝𝑛 being stale is

P (v𝑝𝑛 is stale) = P (T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 ) = P (T𝑝𝑛 < T𝑞𝑚)P (T𝑞𝑚 ≤ 𝜁 ) .
Similarly, the lower bounds of the confidence P (T𝑝𝑛 < T𝑞𝑚 ≤

𝜁 ), given a stale replica version estimation T𝑝𝑛 < T ′
𝑞𝑚 ≤ 𝜁 , are

guaranteed by generalization error on T ′
𝑞𝑚 and T𝑞𝑚 in Lemma 3.

(a) Current estimation of version v𝑝𝑛

(b) Stale estimation of version v𝑝𝑛

Figure 7: Replica currency estimation with model generaliza-
tion bound w.r.t. 𝛽𝑞 (Formula 15), and 𝛾𝑞 (Formula 16).

Proposition 5. For a stale replica estimation on v𝑝𝑛 having

T𝑝𝑛 < T ′
𝑞𝑚 ≤ 𝜁 ,

the corresponding estimation confidence is bounded by

P (v𝑝𝑛 is stale) =P (T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 )

>(1 − 𝛿𝑚)
(𝑚−𝑤) (𝑚−𝑤+1)

2 (1 − 𝛿𝜁 )
(𝑚−𝑤) (𝑚−𝑤+1)

2 , (18)

where

𝛿𝑚 = 𝑒
−2𝑧𝑞 (

T′𝑞𝑚−T𝑝𝑛−𝛽𝑞𝑚 R̂𝑍𝑞 (𝑓𝑞 )
♭𝛽𝑞𝑚

−
√︂

4 log

𝑒𝑧𝑞
2

𝑧𝑞
)2

and

𝛿𝜁 = 𝑒
−2𝑧𝑞 (

𝜁−T′𝑞𝑚−𝛽𝑞𝑚 R̂𝑍𝑞 (𝑓𝑞 )
♭𝛽𝑞𝑚

−
√︂

4 log

𝑒𝑧𝑞
2

𝑧𝑞
)2
.

Similar to the proof of Proposition 4, if the query time 𝜁 has 𝜁 =

T ′
𝑞𝑚 +𝛽𝑞𝑚𝛾𝑞, as illustrated in Figure 7(b), we have 𝜁 ≥ T𝑞𝑚 . For the

retrieved version v𝑝𝑛 , if its timestamp T𝑝𝑛 has T𝑝𝑛 = T ′
𝑞𝑚 − 𝛽𝑞𝑚𝛾𝑞,

we have T𝑝𝑛 < T𝑞𝑚 .

We note that there may exist multiple versions v𝑞𝑚 , having

T𝑝𝑛 < T ′
𝑞𝑚 ≤ 𝜁 , all of which estimate the version v𝑝𝑛 being stale.

The overall (enhanced) confidence of the stale replica estimation

on v𝑝𝑛 is thus obtained by aggregating the confidences of all v𝑞𝑚 ,

P (v𝑝𝑛 is stale) = 1 −
∏

𝑚∈{𝑚 |T𝑝𝑛<T ′
𝑞𝑚≤𝜁 }

(1 − P (T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 )) .

(19)

3.4 Assembling Multiple Invisible Replicas
Section 3.3 studies currency estimation w.r.t. one invisible replica,

such as r2 in Figure 5. In real scenarios, there may exist multiple

replicas that do not reply. The estimation and confidence from

each invisible replica may not be equal, and we aggregate these

(potentially conflicting) currency estimations on the last version

v𝑝𝑛 retrieved, as well as their corresponding confidence values.

Intuitively, if there exist one invisible replica r𝑞 that estimates

the retrieved version v𝑝𝑛 is stale, e.g., r2 in Figure 5(a), it is sufficient

to conclude a stale estimation. Similar to Formula 19, we aggregate

the corresponding confidence values over all the invisible replicas

that have a stale estimation on v𝑝𝑛 ,

P (v𝑝𝑛 is stale) (20)

=1 −
∏

𝑞∈{𝑞 |r𝑞 invisible}

∏
𝑚∈{𝑚 |T𝑝𝑛<T ′

𝑞𝑚≤𝜁 }
(1 − P (T𝑝𝑛 < T𝑞𝑚 ≤ 𝜁 )).
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For currency, only when all the invisible replicas estimate the re-

trieved version v𝑝𝑛 is current, e.g., in Figure 5(b), we then conclude

v𝑝𝑛 is current. The confidence is also calculated by combining the

estimations of all the invisible replicas in Proposition 4,

P (v𝑝𝑛 is current) =
∏

𝑞∈{𝑞 |r𝑞 invisible}
P (T𝑞,𝑚−1 ≤ T𝑝𝑛)P (𝜁 < T𝑞𝑚),

(21)

where 𝑚 corresponds to version v𝑞𝑚 for the invisible replica r𝑞 ,
leading to the current estimation T ′

𝑞,𝑚−1 ≤ T𝑝𝑛 and 𝜁 < T ′
𝑞𝑚 .

4 CASSANDRA IMPLEMENTATION
We implement our currency estimation models in an open-source,

distributed database, Apache Cassandra [1]. Two major modifi-

cations are made in Cassandra: (1) we deploy training models in

individual nodes, and propagate them during node synchroniza-

tion; and (2) we perform replica currency estimation, and enable

the novel DYNAMIC consistency level during query processing.

4.1 Replica Synchronization
In the realistic scenarios as in Figure 5, a prediction model f𝑝 is

learned locally in each replica r𝑝 following the incremental learning

method (Section 2.1.1). However, it is not necessary to immediately

update the model after each write, which degrades write perfor-

mance. Instead, model training can either be scheduled regularly

(daily/weekly), with regular anti-entropy operations, or irregularly

when read repair on a data item occurs. Thus, our implementation

introduces no additional overhead costs for write operations.

The learned model f𝑝 is propagated to all the other replicas of

the data item for currency estimation and query processing. Let

T𝑝𝑢 be the timestamp of a replica synchronization operation e.g.,

during anti-entropy or by read repair. The latest version v𝑝𝑢 of the

data item will be synchronized across all replicas. Let f𝑝𝑢 be the

latest version of model f𝑝 at time T𝑝𝑢 , which is also propagated to

all replicas. That is, when a node is re-synchronized (e.g., recovers

from failure or offline), the process learns and propagates the lat-

est models 𝑓𝑝𝑢 across all replicas. After the synchronization, each

replica r𝑞 carries both the latest version of the data item and the

latest prediction models f𝑝𝑢 from the other replicas r𝑝 . For instance,
at time T42 in Figure 5, versions are synchronized across all replicas,

i.e., v42 and v22 are the same version stored in replicas r4 and r2,
respectively. Moreover, in addition to the data values, after incre-

mental learning as new versions arrive, the latest prediction model

f22 of replica r2 is also sent to replica r4, and vice versa.

Our work enables systems to reduce query latency when there

is variance among the replica response times. This occurs in cases

such as network performance instability, varying node reliability,

and geographic distribution of replicas. We study the latter two

cases in our evaluation. For instance, in Section 5.3, we deploy

servers globally using AWS. We empirically find that increasing

synchronization time intervals, and time from synchronization to

user query time, results in an average 2.07% and 2.94% decline in

query accuracy, as expected, as more stale data arises.

4.2 Query Processing
We introduce the necessary changes to query processing to sup-

port replica currency estimation, as illustrated in Figure 1(a) and

Figure 5. The client connects to any node in the cluster as the co-

ordinator for the read requests. The coordinator then contacts all

the replicas of the requested data item. Responding replicas r𝑝 send

their latest version v𝑝𝑛 of the data item, and the additional version

v𝑝𝑢 (synchronized with v𝑞𝑤 ), and the models f𝑞𝑤 of all replicas

r𝑞 (including v𝑝𝑢 itself) during the last synchronization. This is

necessary to predict T ′
𝑞𝑚 for currency estimation in Formula 13.

Based on the responding replicas thus far, the coordinator dy-

namically determines whether waiting for the remaining replicas

is warranted, namely using the DYNAMIC consistency level. First,

it estimates whether the retrieved latest version v𝑝𝑛 is stale or cur-

rent, and with a bounded confidence, as per Formulas 20 and 21,

respectively. Rather than retrieving a fixed number of replicas, in

the case of existing protocols (ONE, QUORUM, ALL), the system

immediately returns v𝑝𝑛 if its currency estimation confidence satis-

fies threshold 𝜂. Our proposed DYNAMIC consistency level offers

more finely tunable confidence (e.g., 𝜂 = 0.99, 0.999, 0.9999, . . . )

to enable users and applications to evaluate the trade-off between

replica currency and query efficiency.

For instance, in Figure 5 at query time 𝜁 , replica r4 responds

to the coordinator, by returning the latest version v44 (as in the

Cassandra implementation), and also v42 that is synchronized with

other replicas such as v22, and their correspondingmodels f22. Recall
that this information is propagated and stored in all the replicas

including r4 during the last synchronization at time T42. If version
v44 is estimated to be current, with confidence at least 𝜂, say 0.999,

it will be returned as the query answer together with the lower

bound of the currency estimation confidence.

5 EXPERIMENTS
We implement ourmodels usingApache Cassandra 4.0, and evaluate

our models with the following objectives:

1) We compare our prediction models under the idealistic and real-

istic scenarios, and against a state-of-the-art deep learning model

and a probabilistic approach.

2) We evaluate the accuracy, confidence, and time costs for varying

node synchronization time intervals from the latest node sync

time to the query read time, and to the next node sync time.

3) We measure performance for varying query workload character-

istics such as # skewed updates/accesses, # write replicas, hetero-

geneous replicas, and # dynamic clients.

4) We compare our DYNAMIC read consistency level against ex-

isting consistency levels, and show its improved accuracy and

reduced time costs.

Our experimental highlights are: (i) the replica currency estimation

is accurate with high confidence; (ii) the DYNAMIC consistency

level built on replica currency estimation is effective and efficient.

5.1 Experimental Setup
We setup a global data centre topology consisting of 10 Amazon

EC2 m5.4xlarge instances, where each server contains 16 CPU

cores and 64 GB memory, running Ubuntu 18.04 LTS. The servers
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are distributed across 5 regions, namely, Canada, China, Germany,

South Africa, and the US.

5.1.1 Datasets. Three real datasets are used to model query up-

dates.

HHAR [38]: contains 43,930,257 sensor readings from smart phones

and watches for human activity recognition. Readings occur irregu-

larly to reflect heterogeneous devices, and varying user behaviour.

Btcusd [35]: contains trading data (open price) of ‘Bitcoin vs. US

dollar’ from the Bitfinex exchange, occurring between 1 - 23 mins,

with a mean 1.4 mins inter-arrival time, variance 1.6, and 5,176

writes.

Vehicle: collects from a vehicle monitoring application at our in-

dustrial partner. It is a write intensive workload, with a mean inter-

arrival of 2 ms and 62,219 writes.

5.1.2 Evaluation. We generate the writes to the distributed system

following the inter-arrival time between adjacent updates, given in

the datasets. For adjacent updates, we randomly generate a read

request between them. The arrival rate of writes/reads distributed

to a replica is controlled by specifying an acceptance rate at each

replica, which is defined per workload. For instance, for workloads

with larger skewness S, this leads to a larger variance of acceptance

rates across replicas (Section 5.4.1). Larger Poisson distribution

parameter 𝜆 values lead to larger acceptance rate of the replica in

Section 5.4.2.

We use the update history stored in replicas to incrementally

train the prediction model f . For each read request, estimation of

the returned replica is a binary classification, i.e., current or stale.

F1-score [39] and the confidence (in the form of − log(1 − 𝜂)) are
reported as the metrics to evaluate the currency estimation.

5.2 Comparing Prediction Models
We evaluate our Confidence Bounded Replica Currency (CBRC)

estimation models against the state-of-the-art methods TLSTM [6]

and PBS [5]. TLSTM extends the deep learning model LSTM [24] by

supporting irregular time intervals. We use its open-source imple-

mentation [2]. Similar to our work, the TLSTM prediction applies in

idealistic and realistic settings. It considers the time between adja-

cent updates, as well as the update values as additional input. Given

the differing staleness semantics with PBS, discussed in Section 6,

we make the following adaptations to ensure a fair comparative

evaluation. (1) In PBS, we set 𝑘 = 1 to estimate staleness w.r.t. the

latest version. (2) We set parameter 𝑡 as the difference between

the latest committed write among all the responding replicas and

the current (read) time. (3) Similar to our proposal, we specify a

staleness threshold for PBS. If the computed staleness probability

is less than the threshold, the responding replica result will be im-

mediately returned. Otherwise, we wait for more replica responses.

Our work achieves comparable accuracy to TLSTM (Figure 8(a)),

but with significantly lower training time (Figure 8(c)), and scor-

ing time (Figure 8(d)) costs. Figure 8(c) shows that TLSTM spends

between 14.56 - 129.07 mins to train the prediction model during

synchronization, when training rates range from 1% to 20%. TLSTM

incurs a training time between 610,258 - 5,408, 600 times larger than

the synchronization time cost (shown in Figure 11(a)) making it

infeasible to train between synchronizations. TLSTM costs between
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Figure 8: Replica currency estimation vs. training rates over
HHAR data

1.2 - 1.3 ms in Figure 8(d) to score the response in query process-

ing, taking longer than the query time, making it very costly to

score. These results show that models such as TLSTM, which may

achieve higher accuracy for large training rates, incur much higher

overhead. These models are more complex, difficult to implement

in distributed settings, are large to exchange between nodes, more

expensive to train and evaluate during query processing, and have

unknown error bounds.

In short, while more complex models may outperform for larger

training sizes, our models achieve comparable accuracy but with

much lower overhead. In our problem setting, where communi-

cation costs and latency must be minimized, and having current

reads with high confidence is critical (e.g., our vehicle engine sensor

example), using such complex models is not feasible.

In Figure 8(a), our models achieve higher accuracy than PBS as

our workmodels write-arrival rates locally at each node. In contrast,

PBS assumes all replicas share the same model, leading to less

accurate probability estimations. Figure 8(b) shows, as expected, our

model confidence increases as the training rate increases. Figure 8(c)

shows that PBS incurs higher training overhead than our models.

To estimate the probability of 𝑡-visibility, PBS must compute the

CDF describing the number of write replicas containing a value 𝑣

within 𝑡 time units ago, which requires summing the conditional

probabilities for varying numbers of write replicas (as writes are

asynchronously propagated). This overhead is not incurred by our

models. In Figure 8(d), our models and PBS incur comparably low

scoring time costs, both less than 0.02 ms for each estimation. Both

inference costs are tiny compared to the query processing time

costs (0.92 ms) as illustrated in Figure 11(b), and much lower than

those of LSTM. PBS assumes a single model configuration among

all read operations, thereby reducing scoring times. In our work,

we differentiate the number of replicas to return over the read

operations to efficiently guarantee currency estimation bounds.

5.3 Node Synchronization Evaluation
We evaluate the node synchronization strategies described in Sec-

tion 4.1, where model training can be scheduled. Figures 9 and 10
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Figure 9: Varying time intervals between synchronizations
intervals with two consecutive node synchronizations (e.g.,
T42 in Figure 5 and the one before it) using Btcusd data
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Figure 10: Varying time intervals between the latest node
synchronization and query time (e.g., T42 and 𝜁 in Figure 5)
using Btcusd data
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Figure 11: Time cost for varying synchronization and query
time intervals using Btcusd data

vary the time intervals from the last node synchronization to the

next node synchronization, and to the user query time, respectively.

According to Propositions 4 and 5, larger intervals lead to lower

confidence and accuracy, as we empirically show in Figures 9 and

10. Figure 11(a) shows the time costs for read repair and training

under varying synchronization time intervals. The corresponding

query and estimation scoring time costs are reported in Figure 11(b).

Note that the estimation scoring and training time costs are only

0.76%-1.17% of the original costs in query processing and replica

synchronization (i.e., during read repair).

5.4 Varying Workloads
We evaluate currency estimation in query processing (as introduced

in Section 4.2) under varying workloads.

5.4.1 Skewed Updates and Accesses. We study the impact of vary-

ing read/write distributions on our estimation accuracy. Figure 12(a)

shows homogeneous reads/writes across the replicas. Figure 12(b)

illustrates skewed reads/writes, which reflect data access patterns

varying across time, e.g., more frequent reads/writes during the
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Figure 12: Query loads with (a) homogeneous and (b) skewed
updates and reads

Idealistic-CBRC Realistic-CBRC

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2.7 3.7 4.7 5.7 6.7

F
1

-s
c
o

re

Skewness

(a)

 25

 30

 35

 40

 45

 50

 55

2.7 3.7 4.7 5.7 6.7

C
o

n
fi
d

e
n

c
e

Skewness

(b)

Figure 13: Replica currency estimation by varying the skew-
ness of updates and accesses (Figure 12(b)) using Btcusd data
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Figure 14: Query performance under various confidence
threshold 𝜂 = 1 − 𝑒−𝑥 using Btcusd data with the skewed
updates and accesses (skewness = 6.7)

weekdays vs. the weekends. Skewness is used to measure the lack

of homogeneity for read/write distributions [11].

Figure 13 shows the accuracy and confidence as we vary the

skewness S, where a value of S = 2.7 indicates the homogeneous

case of the original dataset (Figure 12(a)). Our estimation accuracy

and confidence decline for increasing data skew, albeit rather slowly,

reflecting the model’s adaptivity to changing read/write patterns.

That is, our model learns over data with increasing data skew.

It is possible that new data does not follow previously seen

patterns. As shown in Figure 12(b), updates are clustered at the

beginning (during training), followed by (previously unseen) sparse

updates and reads (during testing). Figures 13(a) and 13(b) show

that under skewed workloads with irregularities not necessarily

seen during the training phase, our models achieve lower accuracy

and confidence, respectively. We address this by increasing the

confidence threshold and waiting for more replica responses. Figure

14(a) shows that with a higher confidence threshold, the query

accuracy increases, and as expected, more replicas must be retrieved

as reported in Figure 14(b). These cases highlight the trade-off

between accuracy and the time cost.
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Figure 15: Query load by varying number of write replicas
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Figure 16: Replica currency estimation by varying write repli-
cas according to 𝜆 using Btcusd data

5.4.2 Varying Write Replicas. We evaluate the impact of varying

the number of write replicas. We use the Poisson distribution [14]

to model the number of replicas that are written in a fixed interval

of time, i.e., replica arrival rates. For instance, the blue dots in

Figure 15(a) denote the write events in replicas. Figure 15(b) counts

the corresponding number of write replicas in each time interval.

It follows a Poisson distribution with parameter 𝜆 = 2, i.e., the

expected number of write replicas arrived in each time interval is 2.

Figure 16 reports the results as we vary 𝜆 from 0.5 to 2.5, where

larger 𝜆 leads to more write replicas. The results show that our

models learn and adapt to increases in 𝜆, with higher F1 scores and

confidence. As the number of write replicas increases, we develop

a more complete picture of the update history, which improves the

reliability and accuracy of locally trained prediction models.

5.4.3 Heterogeneous Replicas. In practice, geographic proximity,

priority reads, and SLAs influence how reads/writes are serviced

across the replicas. In this work, our objective was to take the first

steps towards a confidence-bounded currency estimation model,

while keeping the model simple to minimize overhead. When we

consider these factors, we have a set of heterogeneous replicas

with varying rates of reads/writes. Our model is able to learn local

read/write patterns per replica and thus treat them differently. We

use the exponential distribution to model the heterogeneity among

the replicas, by varying a parameter 𝜏 , where larger values repre-

sent greater heterogeneity. Figure 17(a) shows the heterogeneous

distribution of reads/writes for six replicas. Figure 18 shows that

the F1-accuracy and confidence increase for increasing heterogene-

ity among the replicas. When this occurs, a larger proportion of

the reads/writes are propagated to a subset of the nodes. Replicas

receiving more data will achieve more accurate models, leading

to higher confidence estimations. In the case of 𝜏 = 2.5, this is

analogous to the idealistic scenario, where all the updates are avail-

able in almost one node, with a high estimation accuracy close to

the idealistic scenario. Overall, our models are able to adapt to the
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Figure 17: Query loads over (a) heterogeneous replicas and
(b) dynamic clients
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Figure 18: Replica currency estimation by varying the replica
heterogeneity (Figure 17(a)) using 𝜏 in Btcusd data
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Figure 19: Replica currency estimation by varying clients
over time (Figure 17(b)) using Vehicle data

evolving read/write distributions caused by geographic and SLA

factors that lead to heterogeneous nodes.

5.4.4 Dynamic Clients. We measure our estimation performance

in dynamic workloads that vary the number of clients over time.

Figure 17(b) shows the dynamic workload with six different periods,

where # clients ranges from one to six. Initially, there is only one

client to service reads and writes, and more clients are added as time

passes, thereby distributing the read and write responses. If there

is only a single client, this is analogous to the idealistic scenario,

where all updates are available in a single node for model training

and currency estimation. Therefore, the idealistic model and the

realistic model achieve the same performance in this case, with the

same prediction model and replica responses. Under the dynamic

workload, Figure 19 shows that as we increase the number of clients,

the F1-score and the confidence decrease, since the updates are

distributed among different replicas and fewer updates are available

for local model learning and currency estimation. With less updates,

this leads to a less complete picture of the update history, which

reduces the reliability and accuracy of locally trained prediction

models, in addition to lower estimation confidence.
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Figure 20: DYNAMIC read consistency level vs. existing
read/write consistency levels
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Figure 21: DYNAMIC consistency level under various confi-
dence threshold 𝜂 = 1 − 𝑒−𝑥 in write-intensive Vehicle data
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Figure 22: DYNAMIC consistency level under various number
of replicas using Btcusd data

5.5 DYNAMIC Read Consistency
We evaluate our DYNAMIC read consistency level in decentral-

ized system Cassandra considered in Section 3, and leader-based

mechanism HBase analogous to Section 2.

5.5.1 Decentralized System. We evaluate the performance of DY-

NAMIC consistency level in write intensive dataset Vehicle, by com-

paring against existing read consistency levels (ONE, QUORUM,

ALL) with ONE write, and with QUORUM writes. As discussed

in the Introduction, our proposed DYNAMIC performs especially

when strong consistency cannot be achieved. Therefore, as illus-

trated in Figure 20, we mainly study the write consistency levels

ONE and QUORUM in this experiment. Read consistency levels

ONE, QUORUM and ALL are compared with the proposed DY-

NAMIC. We will show that DYNAMIC is almost as accurate as the

strong consistency settings, while much more efficient (with time

cost close to reading ONE replica).

Figures 21(a) and 21(b) present comparative results using ONE

write, followed by QUORUM write in Figures 21(c) and 21(d). Fig-

ures 21(a) and 21(c) report the accuracy of returning current repli-

cas in query answering, guaranteed by QUORUM-read+QUORUM-

write and ALL-read. As expected, as we increase the confidence

threshold, the accuracy of returning responses increases, with

higher accuracy using QUORUM write. In Figure 21(a), DYNAMIC

achieves a higher accuracy of returning current answers than QUO-

RUM reads (comparable to ALL). Figure 21(b) shows that DYNAMIC

outperforms fixed QUORUM w.r.t. the time cost. DYNAMIC imme-

diately returns the query answer after retrieving a high confidence

current replica, thereby avoiding additional latency. This perfor-

mance gain is more significant under QUORUM write in Figure

21(d), as there exist more current replicas. The results demonstrate

that our DYNAMIC consistency level performs well in the write

intensive workloads, by offering great opportunity for systems to

decrease latency costs, and to reduce query processing times.

Moreover, we consider a real application, WAN deployment with

varying network performance and replica locations. We use the

AWS cloud to geographically distribute cluster nodes across conti-

nental regions to model real communication delays and network

latencies within a region and across regions. Figure 22 shows accu-

racy and time costs as we vary the number of replicas. Figure 22(a)

and Figure 22(c) show that as the number of replicas increases, the

likelihood of a replica with the current version decreases, under

ONE write and QUORUM write, leading to lower accuracy. It is not

surprising that the time cost increases as the number of replicas in-

creases (Figure 22(b) and Figure 22(d)), which leads to the variance

in production latency. While we note that DYNAMIC may produce

higher tail latency than QUORUM read to obtain the current replica

and to satisfy 𝜂, our DYNAMIC consistency level achieves clearly

lower time cost in average compared to QUORUM read.

In Figures 22(a) and 22(c), DYNAMIC achieves improved accu-

racy as PBS does not directly model inter-arrival writes among the

replicas. In DYNAMIC, we immediately return the responding repli-

cas if the currency thresholds are satisfied. For PBS, its inaccurate

currency estimation leads to more reads of replicas and thus higher

query overhead. Even worse, as mentioned in [5], the probability of

achieving 𝑡-visibility decreases for an increasing number of replicas.

This is shown in Figures 22(b) and 22(d) as longer wait times occur

to satisfy currency thresholds for an increasing number of replicas.

5.5.2 Leader-based Mechanism. In a leader-based mechanism, a

centralized leader sequences all writes, exactly the idealistic sce-

narios in Section 2. That is, the problem setting is simplified, and
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Figure 23: DYNAMIC consistency level in HBase under vari-
ous confidence threshold 𝜂 = 1 − 𝑒−𝑥 using Btcusd data

it is easier to reason about the freshness of the data given the full

history in the centralized leader. We conduct an evaluation using

HBase [3], a leader-based system. Since all the updates are written

to the primary region first, and then propagated to the other sec-

ondary regions by StoreFile refresher or asynchronous replication

mechanisms, we train a global model in the primary region and

propagate it to replicas as well. With the TIMELINE consistency,

the read request will be sent to the primary region server first. After

a short interval, if the primary region replica does not respond, the

read request for secondary region replicas will also be sent. HBase

returns the result from the first responding replica, possibly stale.

In contrast, our DYNAMIC consistency determines the currency

of the returned replica and dynamically decides whether to wait

for more replicas. It guarantees that the returned data satisfies the

expected currency confidence bounds. Figure 23 shows our work

with HBase. By using the update history for model training, we

achieve improved accuracy compared to the standard TIMELINE

read, and adaptively retrieve the number of replicas to satisfy cur-

rency thresholds. Our proposal thus shows very good performance

to estimate the data currency for the leader-based mechanism, with

a time cost comparable to TIMELINE read.

6 RELATEDWORK
Prior approaches have used two common metrics to measure stale-

ness: absolute time and versions. In lazy-group replication, existing

works have studied techniques to satisfy currency thresholds (in

absolute time) using freshness locks [4]. In LazyBase, updates are

batched and pipelined to answer read queries over consistent ver-

sions of the data, where more stringent currency thresholds impose

higher costs [13]. In FRACS, replicas buffer updates up to a stale-

ness window 𝛼 , forcing a synchronization among all replicas, and a

pause of new service requests until all buffered updates are cleared.

Larger 𝛼 values sacrifice consistency for improved availability [42].

In DVDC, a read replica set is used to control the divergence of

data currency across the replicas by sending updates to the read

set most likely to satisfy given staleness (time) bounds [40].

Adaptive approaches have traditionally studied the trade-off be-

tween consistency and availability. In network partitioned systems,

methods such as inflation and deflation are proposed to dynami-

cally balance replica availability, system efficiency, and reduce la-

tency [23]. Inflation reduces write quorums to improve availability,

whereas deflation shrinks read quorums to improve efficiency and

decrease latency. The goal is to maximize transaction availability

and completion in a single node.

Probabilistically Bounded Staleness (PBS) measures staleness

across a set of replicas w.r.t. version history and time [5]. Despite

this similar goal, there are several notable differences with our work.

(1) PBS considers the last k versions to be current (k-staleness),

while we impose a more strict notion with k = 1, i.e., only the

latest version. (2) PBS requires the last write commit to occur t

time units ago (t-visibility). Since in-flight writes may be posed by

other clients, PBS does not consider this, thereby increasing #false

positives. In contrast, we adaptively learn the time interval between

writes to provide more accurate estimations. (3) PBS assumes all

nodes share the same model (a cumulative density function), while

our proposal learns a local model for each node, i.e., to accurately

capture a cluster of heterogeneous nodes with various response

times and availability.

Deterministic solutions have studied service protocols for reads/

writes to satisfy currency and staleness bounds under different

replication settings [4, 8, 13, 22, 26, 32, 34, 36, 40, 42], such as the

currency-bounded replication protocol [36], relaxed currency con-

straint [22], freshness constraints [8]. Our work does not focus on

the update propagation strategy which varies across workloads.

We take a probabilistic approach to predict the currency of a read

among a replica set. We address shortcomings of PBS to define

localized models per replica that provide more accurate estimations.

By specifying a target confidence, we dynamically adjust the num-

ber of responding replicas to guarantee a desired currency bound.

We believe that our solution provides a more intuitive confidence

bound for users to set rather than explicit time or version currency

bounds which vary and are difficult to tune across workloads.

7 CONCLUSIONS
In this paper, we study how machine learning techniques advance

replica currency estimation in distributed databases, and enable

a novel DYNAMIC consistency level. Remarkably, the confidence

of replica currency estimation is theoretically bounded (in Propo-

sitions 4 and 5). By referring to the guaranteed confidence of a

replica’s currency, the system dynamically decides whether to wait

for other replicas to respond. We integrate our techniques in the

open-source, distributed database Apache Cassandra [1], and con-

duct an extensive evaluation under various query loads and cluster

configurations. The replica currency estimation is highly confident

(at least 0.99 confidence levels) without introducing much overhead

(incurring only about 0.76%-1.17% of the original query processing

and replica synchronization time costs). The proposed DYNAMIC

consistency level is effective and efficient compared to existing con-

sistency levels (ONE, QUORUM, ALL) in Cassandra that retrieve a

fixed number of replicas.
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