
BatchHL: Answering DistanceQueries on Batch-Dynamic
Networks at Scale

Muhammad Farhan

Australian National University

Canberra, Australia

muhammad.farhan@anu.edu.au

Qing Wang

Australian National University

Canberra, Australia

qing.wang@anu.edu.au

Henning Koehler

Massey University

Palmerston North, New Zealand

H.Koehler@massey.ac.nz

ABSTRACT

Many real-world applications operate on dynamic graphs that un-

dergo rapid changes in their topological structure over time. How-

ever, it is challenging to design dynamic algorithms that are capable

of supporting such graph changes efficiently. To circumvent the

challenge, we propose a batch-dynamic framework for answering

distance queries, which combines offline labelling and online search-

ing to leverage the advantages from both sides - accelerating query

processing through a partial distance labelling that is of limited size

but provides a good approximation to bound online searches. We

devise batch-dynamic algorithms to dynamize a distance labelling

efficiently in order to reflect batch updates on the underlying graph.

In addition to providing theoretical analysis for the correctness,

labelling minimality, and computational complexity, we have con-

ducted experiments on 14 real-world networks to empirically verify

the efficiency and scalability of the proposed algorithms.

CCS CONCEPTS

• Theory of computation→ Data structures and algorithms

for data management;

KEYWORDS

Shortest-path distance; batch-dynamic graphs; 2-hop cover; high-

way cover; distance labelling maintenance; graph algorithms

ACM Reference Format:

Muhammad Farhan, Qing Wang, and Henning Koehler. 2022. BatchHL: An-

swering Distance Queries on Batch-Dynamic Networks at Scale. In Proceed-

ings of the 2022 International Conference onManagement of Data (SIGMOD

’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3514221.3517883

1 INTRODUCTION

Graphs in real-world applications are typically dynamic, undergo-

ing discrete changes in their topological structure by either adding

or deleting edges and vertices. However, due to the rapid nature of

data acquisition, it is often unrealistic to process single changes se-

quentially on graphs. Rather, updates may be aggregated in batches,

and graphs are updated by large batches of updates [14].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17,2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517883

Applications. There are various real-world applications operating

on graphs that undergo rapid changes [7, 8, 35, 36], such as com-

munication networks, context-aware search in web graphs [32, 35],

social network analysis in social networks [7, 36], route-planning

in road networks [1, 13], management of resources in computer

networks [8], and so on. We discuss a few examples below.

• In communication networks, links between network devices (e.g.

routers) may become slow or broken due to congestion of infor-

mation flow over a network or a deadly fault in a network device.

Efficient maintenance of shortest paths to reflect the underlying

changes helps vendors to activate new links and preserve the

quality of their service [8].

• In social networks, Twitter is highly dynamic [28] – about 9% of

all connections change in a month. Users having 100 followers

on average were found to obtain 10% more new followers but

lose about 3% of existing followers in a given month. Distance

information is often used to recommend the relevant content or

new connections [36, 39].

Although the batch-dynamic setting is increasingly important

and desired for real-world applications, it poses significant chal-

lenges on algorithm design due to the combinatorial explosion

of different interactions possibly occurring among updates. Very

recently, several batch-dynamic algorithms have been reported,

mostly focusing on traditional graph problems such as graph con-

nectivity [2], dynamic trees [3] and k-clique counting [15]. As of yet,

batch-dynamic algorithms for shortest-path distance have been left

unexplored, despite the fact that computing the distance between

an arbitrary pair of vertices (i.e., distance queries) is a fundamental

problem in many real-world applications. Up to now, only several

dynamic labelling algorithms for distance queries have been studied

in the single-update setting, which handles one single update (e.g.,

edge insertion or edge deletion) at a time [5, 12, 21, 33]. Unlike

previous studies, in this work, we are interested in exploring the

following research questions:

– Is it possible to design batch-dynamic algorithms for distance

queries, which can efficiently reflect batch updates on graphs?

– Can such batch-dynamic algorithms offer significant performance

gains in comparisonwith state-of-the-art algorithms in the single-

update setting?

– Can we parallelize such batch-dynamic algorithms to further

boost performance in a parallel setting, whenever parallel com-

puting resources are available?

Present work. The goal of this work is to answer the aforemen-

tioned research questions on complex networks (e.g., social net-

works and web graphs). It is known that complex networks exhibit

different properties (e.g., small diameter) from road networks [4].

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2020

https://doi.org/10.1145/3514221.3517883
https://doi.org/10.1145/3514221.3517883
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3517883&domain=pdf&date_stamp=2022-06-11

Batch	Search Batch	RepairLandm
ark-Level	Parallelism

Label Entries

L(1) (5,	1)

L(6) (5,	1)	(10,	1)

L(7) (5,	2)	(10,2)

L(9) (8,	1)

… …

1 2

10
8

3

7
6

11

5 4
9

1312

𝑮 1 2

10
8

3

7
6

11

5 4

9

1312

5 8 10
5 0 1 1
8 1 0 2
10 1 2 0

𝑮′ 1 2

10
8

3

7
6

11

5 4

9

1312
1 2

10
8

3

7
6

11

5 4
9

1312

Landmark Composite-Path	Affected Landmark-Distance	Affected Repaired

Label Entries

L(1) (5,	1)

L(6) (10,	1)

L(7) (10	,2)

L(9) (8,	1)

… …

𝚪 = (𝐋,𝐇) 𝚪′ = (𝐋′,𝐇′)

5 8 10
5 0 1 1
8 1 0 1
10 1 1 0

Figure 1: A high-level overview of our batch-dynamic method (BatchHL) which performs a batch update in two phases: 1) Batch

Search: find vertices that are affected, and 2) Batch Repair: repair vertices returned by Batch Search.

Specifically, we thus aim to develop an efficient and scalable so-

lution for answering distance queries on complex networks that

undergo batch updates. This solution should have the following

properties: (1) Time efficiency: it can quickly answer distance queries

in a way that reflects batch updates on graphs, e.g., microseconds

for large-scale graphs, since distances are used as a building block

in many graph analysis tasks; (2) Space efficiency: it can use an

efficient data structure for storing distance labellings, which ideally

grows linearly or sublinearly with the number of vertices in a graph;

(3) Scalability: it can scale to large graphs with millions of vertices

and edges without compromising query and update performance.

To derive these properties, firstly, we choose to combine offline

labelling and online searching so as to leverage the advantages from

both sides - accelerating query processing through a partial distance

labelling that is of limited size but provides a good approximation

to bound online searches. Traditional labelling methods such as

pruned landmark labelling (PLL) [4] can efficiently answer distance

queries using a full distance labelling; however, their labelling size

grows quadratically with the size of a graph and the computational

cost of updating such labellings to reflect rapid changes is often un-

bearably high. Hence, we consider to use a partial distance labelling

for providing an upper bound for online search (with theoretical

guarantees for exact answers, which will be discussed in Section 4).

This brings two significant computational benefits: (i) labelling con-

struction can scale to very large graphs; (ii) labelling maintenance

can be efficiently handled on dynamic graphs.

We propose a batch-dynamic method, BatchHL, to dynamize

distance labellings efficiently in order to reflect large batches of

updates on a graph. BatchHL consists of two phases: (1) Batch search

finds vertices whose labels are affected by batch updates; (2) Batch

repair changes the labels of affected vertices to ensure correctness

and minimality of labelling. The main challenges are the following:

– Unifying edge insertion and deletion: We explore the core proper-

ties shared by edge insertion and edge deletion. Based on this, we

unearth an elegant pattern that unifies these two fundamental

kinds of graph updates.

– Avoiding unnecessary and repeated computation: We analyse how

updates interact with each other, and based on that, design prun-

ing rules to reduce search and repair spaces so as to leverage the

computational efficiency of batch updates.

– Exploiting the potential of parallelism: We consider to parallelize

batch search and batch repair in a simple but easy-to-implement

way to speedup the performance.

To the best of our knowledge, this is the first study to develop a

batch-dynamic solution for answering distance queries on large-

scale graphs. Figure 1 presents the high-level overview of BatchHL

which performs batch search and then batch repair. Figure 2 shows

the gaps in the number of vertices affected by batch updates when

different variants of our method are used in the batch-update set-

ting, in comparison with the single-update setting. Notice that the

number of affected vertices in the single-update setting (i.e., UHL)

is much higher than the ones in the batch-update setting (i.e., BHL
𝑠
,

BHL and BHL
+
). This is because one vertex may be affected by mul-

tiple updates in a batch, which would unavoidably lead to repeated

and unnecessary computations in the single-update setting.

Contributions. The main contributions of this work are as follows:

• We propose a batch-dynamic method which can handle batch

updates efficiently and uniformly so as to reflect batch updates

on graphs into a highway cover labelling. Previous studies [5, 12]

reported that handling edge deletions on a graph has been recog-

nized as being computational expensive and difficult, even in the

single-update setting. Our method alleviates this challenge and

can handle both edge insertions and edge deletions in batches

efficiently.

• We develop efficient pruning strategies in our method, i.e., in

both batch search and batch repair, to eliminate repeated and

unnecessary computations on graphs. As a result, when dealing

with batch updates, we traversemuch smaller numbers of vertices

than in the single-update setting where each update is handled

independently. We also design an inference mechanism to com-

pute new distances based on boundary vertices and incorporate

this into batch repair in our method.

• We prove that the proposed method can preserve the minimality

of labelling on batch-dynamic graphs. Notice that, as discussed

in [12], minimality is a difficult but highly desirable property to

have for designing a distance labelling over dynamic graphs. Oth-

erwise, a distance labelling may have increasingly unnecessary

entries left in its labels and query performance would deteriorate

over time.

• Our proposed method can scale to very large dynamic graphs.

This is due to several reasons: the design choices on combining

offline labelling and online searching, the properties of highway

cover labelling, the pruning strategies in batch search and batch

repair, and landmark-based parallelism. We will discuss these in

detail in Section 7.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2021

500 2500 5000 7500 10000
Batch Size

102

103

104

Af
fe

ct
ed

 V
er

tic
es

 (%
)

Indochina
BHL +

BHL
BHLs
UHL

500 2500 5000 7500 10000
Batch Size

103

104

Twitter
BHL +

BHL
BHLs
UHL

Figure 2: Number of vertices affected by batch updates of

varying sizes. BHL and BHL
+
are our batch dynamic algo-

rithms, BHL
𝑠
is a variant of BHL which splits edge insertions

and deletions into sub-batches and performs them sequen-

tially, and UHL handles updates in the single-update setting.

We have evaluated our method on 14 real-world networks to verify

their efficiency and scalability. The results show that our method

significantly improves both time and space efficiency compared to

the state-of-the-art methods. It can maintain a very small labelling

size, while still answering queries in the order of milliseconds, even

on large-scale graphs with several billions of edges that undergo

large batch updates. For example, the average distance query time

for the UK dataset with 3.7 billions of edges is around 1 millisecond,

and the average update time for each update is 14.45 milliseconds;

similarly, the average distance query time for Twitter dataset is

0.86 millisecond and the average update time is 13.29 milliseconds,

more than 300 times faster than the state-of-the-art method.

2 RELATEDWORK

Answering distance queries has been an active research topic for

many years. Traditionally, distance queries can be answered using

Dijkstra’s search on positively weighted graphs or a breadth-first

search (BFS) on unweighted graphs [34] or a bidirectional scheme

combining two such searches: one from the source vertex and the

other from the destination vertex [31]. However, these algorithms

may traverse an entire network when two query vertices are far

apart from each other and become too slow for large networks. To

accelerate response time in answering distance queries, labelling-

based methods have emerged as an attractive way, which precom-

pute a data structure, called distance labelling [1, 4, 6, 10, 11, 13,

17, 20, 22, 26, 37, 38]. For example, Akiba et al. [4] proposed the

pruned landmark labelling (PLL) to pre-compute a 2-hop distance

labelling [11] by performing a pruned breadth-first search from

every vertex, and Li et al. [25] developed a parallel algorithm for

constructing PLL which achieved the state-of-the-art results for

answering distance queries on static graphs.

So far, several attempts have been made to study distance queries

over dynamic graphs [5, 12, 16, 18, 21, 29, 33, 40] which only consid-

ered the unit-update setting i.e., to perform updates one at a time.

Akiba et al. [5] studied the problem of updating PLL for incremental

updates (i.e. edge additions). This work however does not remove

outdated entries because the authors considered it too costly. Qin

et al. [33] and D’angelo et al. [12] studied the problem of updating

PLL for decremental updates (i.e. edge deletions). Note that, in the

decremental case, outdated distance entries have to be removed;

otherwise distance queries cannot be correctly answered. Their

methods suffer from high time complexities and cannot scale to

large graphs, e.g., the average update time of an edge deletion on a

network with 19M edges is 135 seconds in [33] and on a network

with 16M edges is 19 seconds in [12]. D’angelo et al. [12] combined

the algorithm for incremental updates proposed in [5] with their

method for decremental updates to form a fully dynamic algorithm,

which can only be applied to networks with around 20M of edges.

Hayashi et al. [21] proposed a fully dynamic method which com-

bines a distance labelling with online search to answer distance

queries. Their method pre-computes bit-parallel shortest-path trees

(SPTs) rooted at each 𝑟 ∈ 𝑅 for a small subset of vertices 𝑅 and

dynamically maintain the correctness of these bit-parallel SPTs

for every edge insertion and deletion. Then, an online search is

performed under an upper distance bound computed via the bit-

parallel SPTs on a sparsified graph. Unlike these approaches, our

present work considers the batch-update setting. Designing dy-

namic algorithms is usually quite complex and difficult, as reported

by these approaches in the single-update setting, and arguably even

more so in the batch-dynamic setting or parallel setting.

Another line of research studied streaming graph algorithms. In

the streaming setting, a rapidly changing graph is often modeled

using certain compressed data structures due to space constraints.

Updates are received as a stream, but may be accumulated into

batches through a sliding window and applied to the underlying

graph. In this setting, a number of methods [19, 27, 30] have been

proposed to address distance queries. However, these methods

operate under certain constraints, e.g., limited amount of memory

and accuracy of graph structure. Different from these streaming

graph methods, our work considers applications which operate

on batch-dynamic graphs that are explicitly stored and can be

processed in the main memory of a single machine. Nevertheless,

the ideas of our algorithm can be easily extended to deal with batch

updates in the streaming setting.

3 PRELIMINARIES

Let𝐺 = (𝑉 , 𝐸) be a graph where𝑉 is a set of vertices and 𝐸 ⊆ 𝑉 ×𝑉
is a set of edges. The distance between two vertices 𝑠 and 𝑡 in𝐺 , de-

noted as 𝑑𝐺 (𝑠, 𝑡), is the length of a shortest path between 𝑠 and 𝑡 . If

there does not exist any path between 𝑠 and 𝑡 , then𝑑𝐺 (𝑠, 𝑡) = ∞. We

use 𝑃𝐺 (𝑠, 𝑡) to denote the set of all shortest paths between 𝑠 and 𝑡 in
𝐺 , and 𝑁 (𝑣) the set of neighbors of a vertex 𝑣 ∈ 𝑉 , i.e. 𝑁 (𝑣) = {𝑣 ′ ∈
𝑉 | (𝑣, 𝑣 ′) ∈ 𝐸}. Without loss of generality, we focus our discussion

on unweighted, undirected graphs in this paper and discuss the ex-

tension to directed and non-negative weighted graphs in Section 6.

There are two fundamental types of updates on graphs: edge

insertion, i.e., add an edge (𝑎, 𝑏) into 𝐸, and edge deletion, i.e., delete
an edge (𝑎, 𝑏) from 𝐸. Note that node insertion or deletion can be

treated as a batch update containing only edge insertions or only

edge deletions, respectively. A batch update is a sequence of edge

insertions and deletions. In the case that the same edge is being

inserted and deleted within one batch update, we simply eliminate

both of them. An update is valid if it makes a change on a graph,

i.e., inserting an edge (𝑎, 𝑏) into𝐺 when (𝑎, 𝑏) ∉ 𝐸, and deleting an

edge (𝑎, 𝑏) from 𝐺 when (𝑎, 𝑏) ∈ 𝐸. We ignore invalid updates.

Let 𝑅 ⊆ 𝑉 be a subset of special vertices in 𝐺 , called land-

marks. A label 𝐿(𝑣) for each vertex 𝑣 ∈ 𝑉 is a set of distance

entries {(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑣))}𝑛𝑖=1 where 𝑟𝑖 ∈ 𝑅, 𝛿𝐿 (𝑟𝑖 , 𝑣) = 𝑑𝐺 (𝑟𝑖 , 𝑣) and
𝑛 ≤ |𝑅 |. We call (𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑣)) the 𝑟𝑖 -label of vertex 𝑣 . The set of

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2022

labels for all vertices in 𝑉 , i.e., {𝐿(𝑣)}𝑣∈𝑉 , form a distance labelling

over 𝐺 . The size of a distance labelling is defined as

∑
𝑣∈𝑉 |𝐿(𝑣) |.

In the literature, a distance labelling is often constructed following

the 2-hop cover property [11] which requires at least one vertex

𝑤 ∈ 𝐿(𝑢) ∩ 𝐿(𝑣) to be on a shortest path between 𝑢 and 𝑣 .

Definition 3.1 (2-hop cover labelling). A distance labelling

𝐿 over 𝐺 = (𝑉 , 𝐸) is a 2-hop cover labeling if for any 𝑠, 𝑡 ∈ 𝑉 ,

𝑑𝐺 (𝑠, 𝑡) = min{𝛿𝐿 (𝑟𝑖 , 𝑠) + 𝛿𝐿 (𝑟𝑖 , 𝑡) |
(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑠)) ∈ 𝐿(𝑠), (𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑡)) ∈ 𝐿(𝑡)}. (1)

In our work, we consider a labelling property based on the notion

of highway, i.e., highway cover labelling [17].

Definition 3.2 (Highway). A highway𝐻 = (𝑅, 𝛿𝐻) consists of a
set 𝑅 of landmarks and a distance decoding function 𝛿𝐻 : 𝑅×𝑅 → N+
s.t. 𝛿𝐻 (𝑟1, 𝑟2) = 𝑑𝐺 (𝑟1, 𝑟2) for any two landmarks 𝑟1, 𝑟2 ∈ 𝑅.

Definition 3.3 (Highway cover labelling). A highway cover

labelling Γ = (𝐻, 𝐿) consists of a highway 𝐻 and a distance labelling

𝐿 satisfying that, for any 𝑣 ∈ 𝑉 \𝑅 and 𝑟 ∈ 𝑅,

𝑑𝐺 (𝑟, 𝑣) = min{𝛿𝐿 (𝑟𝑖 , 𝑣) + 𝛿𝐻 (𝑟, 𝑟𝑖) |
(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑣)) ∈ 𝐿(𝑣)} (2)

Intuitively, a highway cover labelling requires that the label 𝐿(𝑣)
of every vertex 𝑣 ∈ 𝑉 must contain a distance entry to each land-

mark 𝑟 ∈ 𝑅 unless there is another landmark on a shortest path

between 𝑟 and 𝑣 . Unlike a 2-hop cover labelling that can answer

distance queries for any two vertices in a graph, i.e., a full dis-

tance labelling, a highway cover labelling can only answer distance

queries between any landmark and any vertex in a graph, i.e., a

partial distance labelling.

Definition 3.4 (Minimality). A highway cover labelling Γ =

(𝐻, 𝐿) over 𝐺 is minimal if, for any highway cover labelling Γ′ =
(𝐻, 𝐿′) over 𝐺 , 𝑠𝑖𝑧𝑒 (𝐿′) ≥ 𝑠𝑖𝑧𝑒 (𝐿) holds.

It has been shown in [17] that for any fixed set of landmarks,

there exists a unique minimal highway cover labelling, which is

contained in every highway cover labelling.

4 APPROACH OVERVIEW

In this section, we present how to answer distance queries for

any two vertices in a batch-dynamic graph by combining highway

cover labelling with online searching. The key idea is to dynamically

maintain a highway cover labelling on a batch-dynamic graph, and

then use such a highway cover labelling to bound online searches

on a sparsified search space in order to accelerate query processing.

Given a highway cover labeling Γ = (𝐻, 𝐿), an upper bound on

the distance between any pair of vertices 𝑠, 𝑡 ∈ 𝑉 in a graph 𝐺 is

computed as follows:

𝑑⊤𝑠𝑡 = min{𝛿𝐿 (𝑟𝑖 , 𝑠) + 𝛿𝐻 (𝑟𝑖 , 𝑟 𝑗) + 𝛿𝐿 (𝑟 𝑗 , 𝑡) |
(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑠)) ∈ 𝐿(𝑠), (𝑟 𝑗 , 𝛿𝐿 (𝑟 𝑗 , 𝑡)) ∈ 𝐿(𝑡)} (3)

Here,𝑑⊤𝑠𝑡 is the minimal length amongst all paths between 𝑠 and 𝑡

that pass through the highway. Since there may exist a shorter path

not passing through the highway, we conduct a distance-bounded

shortest-path search over a sparsified graph𝐺 [𝑉 \𝑅] (i.e., removing

Algorithm 1: BatchHL (BHL)

1 Function BatchHL(𝐺 ′, 𝐵, 𝑅, Γ)
2 Γ′ ← Γ

3 foreach 𝑟 ∈ 𝑅 do

4 𝑉aff ← BatchSearch(𝐺 ′, 𝐵, 𝑟, Γ)
5 BatchRepair(𝐺 ′,𝑉aff, 𝑟 , Γ, Γ′)
6 return Γ′

all landmarks in 𝑅 from 𝐺) under the upper bound 𝑑⊤𝑠𝑡 to answer

the distance query 𝑄 (𝑠, 𝑡) such that

𝑄 (𝑠, 𝑡) = min(𝑑𝐺 [𝑉 \𝑅] (𝑠, 𝑡), 𝑑⊤𝑠𝑡)

In the implementation, 𝑑𝐺 [𝑉 \𝑅] (𝑠, 𝑡) can be computed by con-

ducting a bidirectional BFS search from both 𝑠 and 𝑡 [17] which

terminates either after 𝑑⊤𝑠𝑡 − 1 steps or when the searches from both

directions meet.

The major challenge is: how to design an algorithm that can effi-

ciently maintain a highway cover labelling for answering distance

queries on graphs that undergo batch updates, particularly when

graphs are very large?

5 PROPOSED METHOD

In this section, we present our batch-dynamic method, BatchHL,

which can efficiently maintain a minimal highway cover labelling

for dynamic graphs. As described in Algorithm 1, BatchHL involves

two phases: Batch Search and Batch Repair.

5.1 Batch Search

In the following let𝐺 = (𝑉 , 𝐸) be a graph, 𝑅 ⊆ 𝑉 a set of landmarks

and 𝐵 a batch update resulting in the updated graph 𝐺 ′ = (𝑉 ′, 𝐸 ′).
We denote the unique minimal highway labellings on 𝐺 and 𝐺 ′ by
Γ and Γ′, respectively. Our first aim is to identify vertices for which

the set of shortest paths to a given landmark changes.

Definition 5.1 (affected). A vertex 𝑣 ∈ 𝑉 is affected by a batch

update 𝐵 w.r.t. a landmark 𝑟 ∈ 𝑅 iff 𝑃𝐺 (𝑟, 𝑣) ≠ 𝑃𝐺′ (𝑟, 𝑣).

We use 𝑉aff (𝑟, 𝐵) = {𝑣 ∈ 𝑉 |𝑃𝐺 (𝑣, 𝑟) ≠ 𝑃𝐺′ (𝑣, 𝑟)} to denote the

set of all affected vertices by a batch update 𝐵 w.r.t. a landmark 𝑟 .

The following lemma states how affected vertices relate to a single

update (either edge insertion or edge deletion).

Lemma 5.2. A vertex 𝑣 is affected w.r.t. a landmark 𝑟 iff there exists

a shortest path between 𝑣 and 𝑟 in 𝐺 ∪ 𝐺 ′ that passes through an

inserted edge (𝑎, 𝑏) in 𝐺 ′ or a deleted edge (𝑎, 𝑏) in 𝐺 .

An edge insertion or deletion (𝑎, 𝑏) can create or eliminate short-

est paths starting from 𝑟 and passing through (𝑎, 𝑏). By this lemma,

we know that any update on an edge (𝑎, 𝑏) with 𝑑𝐺 (𝑟, 𝑎) = 𝑑𝐺 (𝑟, 𝑏)
is trivial w.r.t. a landmark 𝑟 , since such an update does not affect

any vertices w.r.t. the landmark 𝑟 .

A naive way of finding affected vertices would be to apply Defi-

nition 5.1 directly, by computing the set of all shortest paths from

a landmark to each vertex on 𝐺 and 𝐺 ′, respectively, and com-

paring them. However, the computational cost of this would be

prohibitive, even for small graphs. Until now, the standard way of

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2023

Algorithm 2: Batch Search

1 Function BatchSearch(𝐺 ′, 𝐵, 𝑟 , Γ)
2 foreach (𝑎, 𝑏) ∈ 𝐵 do

3 if 𝑑𝐺 (𝑟, 𝑎) < 𝑑𝐺 (𝑟, 𝑏) then
4 add (𝑑𝐺 (𝑟, 𝑎) + 1, 𝑏) to Q
5 else if 𝑑𝐺 (𝑟, 𝑎) > 𝑑𝐺 (𝑟, 𝑏) then
6 add (𝑑𝐺 (𝑟, 𝑏) + 1, 𝑎) to Q

7 while Q is not empty do

8 remove minimal (𝑑, 𝑣) from Q
9 if 𝑣 ∉ 𝑉aff+ then

10 add 𝑣 to 𝑉aff+

11 foreach𝑤 ∈ 𝑁𝐺′ (𝑣) do
12 if 𝑑 + 1 ≤ 𝑑𝐺 (𝑟,𝑤) then
13 add (𝑑 + 1,𝑤) to Q

14 return 𝑉aff+

r a

b c d

e f
g

+

+-

-

(a)

r a

b c d

e f
g

+

+

(b)

r a

b c d

e f
g

-

-

(c)

𝑣 = 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

𝑑𝐺 (𝑟, 𝑣) = 1 3 2 3 4 5 6

𝐴𝑛𝑐ℎ𝑜𝑟 𝑑𝐺′ (𝑏, 𝑣) = 1 0 1 2 3 4 5

𝑏 𝐸𝑞. 4 = 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝐴𝑛𝑐ℎ𝑜𝑟 𝑑𝐺′ (𝑐, 𝑣) = 2 1 0 1 2 3 4

𝑐 𝐸𝑞. 4 = 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒

𝐴𝑛𝑐ℎ𝑜𝑟 𝑑𝐺′ (𝑒, 𝑣) = 4 3 2 1 0 1 2

𝑒 𝐸𝑞. 4 = 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒

Figure 3: Example graphs, where edges marked by + are in-
serted and edges marked by − are deleted.

handling graph changes is to treat edge insertion and edge deletion

separately, since they have opposite effects on a graph. A natural

extension on batch updates would then be to devise an incremental

algorithm for batch edge insertions and a decremental algorithm

for batch edge deletions. However, for a batch update that contains

both edge insertions and edge deletions, we would then need to split

it into two sub-batches - one for edge insertions and the other for

edge deletions, and apply incremental and decremental algorithms,

respectively. Thus, repeated computations across edge insertions

and deletions cannot be eliminated because no interaction between

edge insertion and deletion can be captured.

Example 5.3. Consider Figure 3.a with four updates. If handling

edge insertions and deletions separately in two sub-batches as shown

in Figure 3.b-3.c, insertions of (𝑎, 𝑏) and (𝑑, 𝑒) lead to affected vertices
{𝑏, 𝑒, 𝑓 , 𝑔}, while deletions of (𝑎, 𝑐) and (𝑏, 𝑒) lead to affected vertices
{𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}. The traversal on edges (𝑒, 𝑓) and (𝑓 , 𝑔) is repeated.

To overcome the aforementioned shortcomings, we propose an

efficient algorithm that unifies edge insertions and deletions. The

key idea is based on our observation of a “shared pattern” that

characterises affected vertices w.r.t. a landmark in a unified way

for both edge insertions and edge deletions.

Let 𝑟 ∈ 𝑅 and (𝑎, 𝑏) ∈ 𝐵. Here, (𝑎, 𝑏) is any update, i.e., ei-

ther inserted or deleted edge. The anchor of (𝑎, 𝑏) is either 𝑎 or 𝑏,

whichever is further away from 𝑟 , and the pre-anchor of (𝑎, 𝑏) is a
vertex in {𝑎, 𝑏} that is not the anchor. The anchor distance of (𝑎, 𝑏)
is defined as 𝑑𝐺 (𝑟,𝑢 ′) + 1 where 𝑢 ′ is the pre-anchor of (𝑎, 𝑏). Note
that when 𝑑𝐺 (𝑟, 𝑎) = 𝑑𝐺 (𝑟, 𝑏), there is no anchor nor pre-anchor

corresponding to the update (𝑎, 𝑏). For each 𝐵, there exists a set of

anchors corresponding to updates in 𝐵. An affected vertex 𝑣 in 𝐺

w.r.t. 𝑟 by a batch update 𝐵 can be found if the following condition

is satisfied by at least one anchor 𝑢 from 𝐵:

𝑑𝐺 (𝑟, 𝑣) ≥ (𝑑𝐺 (𝑟,𝑢 ′) + 1) + 𝑑𝐺′ (𝑢, 𝑣). (4)

Example 5.4. Consider Figure 3.a again, which has three anchors

𝑏, 𝑐 and 𝑒 corresponding to the four updates. By applying Eq. 4, we

can identify affected vertices {𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔} as shown in the table.

This striking pattern enables us to design a simple yet efficient

algorithm for finding affected vertices which only needs to traverse

local neighbors 𝑣 of each anchor𝑢 on𝐺 ′ recursively, i.e., computing

𝑑𝐺′ (𝑢, 𝑣), regardless whether updates are edge insertions or dele-
tions. The anchor distance 𝑑𝐺 (𝑟,𝑢 ′) + 1 and the distance 𝑑𝐺 (𝑟, 𝑣)
on𝐺 can be efficiently computed from the highway cover labelling

Γ. The searches by different updates can be combined into a single

search in the order of the anchor distances plus their distances to

the anchors to avoid unnecessary computation.

We note that due to this unified handling of insertions and dele-

tions, optimization that apply to only one of these operations cannot

simply be applied to the combined algorithm. However, we show

how one such optimization can still be leveraged in Section 5.2.

Armed with these ideas, Algorithm 2 eliminates unnecessary

searches on unaffected vertices 𝑣 with 𝑑𝐺 (𝑟, 𝑣) < 𝑑𝐺 (𝑟,𝑢 ′) + 1 and
also avoids traversing vertices affected by multiple updates more

than once. However, Algorithm 2 does not precisely compute the set

of all affected vertices, but a superset of it. The following example

illustrates why this happens, and why it is difficult to avoid.

Example 5.5. Consider the graph in Figure 4.a. The dotted edge

between 𝑟 and 𝑢 indicates a long path between them, and the dotted

edge between 𝑟 and 𝑣 indicates an even longer path. When both edge

deletion (𝑟,𝑢) and edge insertion (𝑢, 𝑣) occur, the distance between 𝑟
and 𝑢 in 𝐺 is used to compute the anchor distance of 𝑣 for the update

(𝑢, 𝑣), ignoring that the distance between 𝑟 and 𝑢 has changed. It is

difficult to identify whether 𝑣 is affected – it hinges on whether the

long path between 𝑟 and 𝑣 is longer than the long path between 𝑟 and

𝑢 plus 1, which cannot be ascertained by Γ.

We now characterize the set of vertices returned by Algorithm 2.

Definition 5.6 (composite path). A path from 𝑟 to 𝑣 in 𝐺 ∪𝐺 ′
is a composite path iff it consists of two parts: a part that lies in 𝐺

followed by a part in 𝐺 ′.

A composite path is significant iff it passes through at least one

deleted and at least one inserted edge. In Figure 3.a, 𝑟 − 𝑎 − 𝑏 − 𝑐
and 𝑟 − 𝑎 − 𝑐 −𝑑 are insignificant composite paths, 𝑟 − 𝑎 − 𝑐 −𝑑 − 𝑒

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2024

r

u

v

-

+

(a)

a b c

v

r d e

-

𝑟 -label changes

(b)

a b

r

c d

-

(c)

Figure 4: Example graphs for illustrating batch search.

is a significant composite path, and 𝑟 − 𝑎 − 𝑏 − 𝑒 is not a composite

path as a deleted edge comes after an inserted edge.

Definition 5.7 (composite-path affected). A vertex 𝑣 ∈ 𝑉 is

composite-path-affected (CP-affected) by a batch update 𝐵 w.r.t. a

landmark 𝑟 ∈ 𝑅 iff

(i) 𝑣 is affected w.r.t. 𝑟 , or

(ii) there exists a significant composite path from 𝑟 to 𝑣 of length

𝑑𝐺 (𝑟, 𝑣) or less.

We will show that Algorithm 2 returns the set of all composite-

path-affected vertices. Clearly this includes all affected vertices.

Additional vertices due to condition (ii) are undesirable but hard to

avoid, as illustrated in Example 5.5. From an algorithmic perspective,

it happens because our starting distance is calculated w.r.t. 𝐺 , so

we are effectively considering paths for which the first part (from 𝑟

to an anchor) lies in 𝐺 , and the rest in 𝐺 ′.

Lemma 5.8. Algorithm 2 returns the set of all CP-affected vertices.

Proof. We show that a vertex is CP-affected iff it lies in 𝑉aff+
returned by Algorithm 2. We prove the “if” and “only if” below.

(if) Let 𝑣 ∈ 𝑉aff+. Then there must exist a composite path 𝑝 from

𝑟 to 𝑣 of length at most 𝑑𝐺 (𝑟, 𝑣) that passes through at least one

edge in 𝐵. If 𝑝 lies in 𝐺 then it lies in 𝑃𝐺 (𝑟, 𝑣) but not in 𝑃𝐺′ (𝑟, 𝑣),
so 𝑣 is affected. If 𝑝 lies in𝐺 ′, then either it lies in 𝑃𝐺′ (𝑟, 𝑣) or there
exists an strictly shorter path 𝑝 ′ in 𝑃𝐺′ (𝑟, 𝑣). Neither 𝑝 nor 𝑝 ′ lies
in 𝑃𝐺 (𝑟, 𝑣), so 𝑣 is affected. If 𝑝 lies neither in 𝐺 nor in 𝐺 ′ then it

must be significant. Thus 𝑣 is CP-affected. in all cases.

(only if) Reversely, let 𝑣 be CP-affected. If 𝑃𝐺 (𝑟, 𝑣) ⊈ 𝑃𝐺′ (𝑟, 𝑣)
then there exists a path 𝑝 in𝐺 of length𝑑𝐺 (𝑟, 𝑣) that passes through
a deleted edge. If 𝑃𝐺 (𝑟, 𝑣) ⊊ 𝑃𝐺′ (𝑟, 𝑣) then there exists a path 𝑝 in

𝐺 ′ of length at most 𝑑𝐺 (𝑟, 𝑣) that passes through an inserted edge.

Otherwise the exists a significant composite path of length at most

𝑑𝐺 (𝑟, 𝑣). Thus, in all cases, there exists a composite path 𝑝 of length

at most 𝑑𝐺 (𝑟, 𝑣) that passes through an edge in 𝐵.

Let (𝑎, 𝑏) be either the last deleted edge that 𝑝 passes through,

or the first inserted edge, with 𝑑𝐺 (𝑟, 𝑎) < 𝑑𝐺 (𝑟, 𝑏). Then 𝑝 can be

split into 𝑝𝑟𝑎 from 𝑟 to 𝑎, (𝑎, 𝑏) and 𝑝𝑏𝑣 from 𝑏 to 𝑣 such that 𝑝𝑟𝑎
lies in𝐺 and 𝑝𝑏𝑣 in𝐺

′
. The search in Algorithm 2 starting at 𝑏 will

use |𝑝𝑟𝑏 | = 𝑑𝐺 (𝑟, 𝑎) + 1 as the anchor distance for 𝑏, and proceed

along 𝑝𝑏𝑣 . Thus for every vertex𝑤 ∈ 𝑝𝑏𝑣 , including 𝑣 , it will obtain
|𝑝𝑟𝑤 | ≤ 𝑑𝐺 (𝑟,𝑤) and add𝑤 to 𝑉aff+. □

5.2 Improved Batch Search

So far we aimed at computing affected vertices. However, changes

to shortest paths between 𝑟 and 𝑣 do not always cause a change in

distance. Thus we shall differentiate between new and eliminated

paths, and strengthen the pruning condition 𝑑 + 1 ≤ 𝑑𝐺 (𝑟,𝑤) in
Line 12 of Algorithm 2 to 𝑑 + 1 < 𝑑𝐺 (𝑟,𝑤) for new paths.

Things get a little trickier though, as we may need to eliminate

redundant labels, or restore previously eliminated labels when they

become non-redundant. Thus even if the distance between 𝑟 and 𝑣

does not change, the highway labeling may need to be updated.

Example 5.9. Consider the following graphs and updates, where

the landmarks are circled. In all cases, vertex 𝑣 is affected, but the

distance between 𝑟 and 𝑣 does not change. For case (a) adding the

edge (𝑏, 𝑣) does not cause a label change for 𝑣 . It does however for

case (b) where b is a landmark, causing the 𝑟 -label of 𝑣 to be deleted.

Deletion of (𝑏, 𝑣) does not cause a change on the label of 𝑣 in case (c),

but causes a change in case (d) where an 𝑟 -label needs to be inserted.

r

a b

v

+

(a) no change

r

a b

v

+

(b) change

r

a b

v

-

(c) no change

r

a b

v

-

(d) change

A core difficulty in identifying whether affected vertices have

changes on their labels is that label changes can happen far away

from updates, and computing the changed labels of such vertices

may require the consideration of vertices whose labels do not

change, as illustrated by the example below.

Example 5.10. Consider the graph in Figure 4.b, where 𝑟 and 𝑏 are

landmarks and the edge (𝑟, 𝑏) is deleted. The distance between 𝑟 and 𝑐
changes, but the label of 𝑐 does not change. That is because the shortest

path between 𝑟 and 𝑐 goes through landmark 𝑏 without change. At the

same time the label of 𝑣 does change, as the edge (𝑟, 𝑏) eliminates a

shortest path between 𝑟 and 𝑣 that passes through landmark 𝑏, similar

to case (d) in Example 5.9. Although the label of 𝑐 does not change,

the changed distance between 𝑟 and 𝑐 is needed for computing the

changed label of 𝑣 . Therefore, 𝑐 needs to be captured as well.

We thus need to reexamine exactly which vertices need to be

returned. Firstly, this includes any vertex 𝑣 for which the highway

labeling must be updated. For non-landmarks the only possible

change is to their 𝑟 -label. For landmarks their distance to 𝑟 is stored

as part of the highway, and needs to be updated when it changes.

Secondly, we must return any vertex for which the distance to 𝑟

changes. That is because the batch repair algorithm computes the

updated distance of a vertex to 𝑟 from that of its neighbors, so using

outdated values for a neighbor could lead to errors.

Example 5.11. Consider the graph in Figure 4.c, where 𝑟 , 𝑎 and 𝑐

are landmarks and the edge (𝑟, 𝑎) is getting deleted. The only node

for which the highway labeling needs to be updated is 𝑎. For 𝑏 the

distance to 𝑟 changes, but its 𝑟 -label is still redundant. Using the old

distance between 𝑟 and 𝑏 would cause our batch repair algorithm to

compute 𝑑𝐺′ (𝑟, 𝑎) as 𝑑𝐺 (𝑟, 𝑏) + 1 = 3.

By considering vertices forwhich either label or distance changes,

we can address both of the issues illustrated in Examples 5.10

and 5.11. This motivates the following definition.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2025

Definition 5.12 (landmark-distance affected). A vertex 𝑣 is

landmark-distance-affected (LD-affected) by a batch update 𝐵 w.r.t.

a landmark 𝑟 ∈ 𝑅 iff it is

(i) label-affected: the 𝑟 -label of 𝑣 changes, or

(ii) distance-affected: the distance between 𝑟 and 𝑣 changes.

As seen in Example 5.9, changes to 𝑟 -label without changes to

distance happen whenever a new shortest path passing through

another landmark is created where none existed previously, or

when the last such path is deleted. To identify such cases, we track

whether a shortest path to 𝑟 passes through another landmark.

Definition 5.13 (landmark length). The landmark length of

a path 𝑝 starting from 𝑟 ∈ 𝑅 is a tuple (𝑑, 𝑙) ∈ N × B where

• 𝑑 is the length of 𝑝 (number of edges), and

• 𝑙 is the landmark flag, with 𝑙 = True iff 𝑝 passes through a

landmark other than 𝑟 .

We denoted this landmark length as |𝑝 |l. The landmark distance

between 𝑟 and 𝑣 in𝐺 is the minimal landmark length of paths between

them, denoted as

𝑑𝐿𝐺 (𝑟, 𝑣) := min

{
|𝑝 |l | 𝑝 is a path between 𝑟 and 𝑣 in 𝐺

}
The ordering used to compare landmark length tuples is the lexico-

graphical one, with True < False. The latter ensures that the land-

mark flag of 𝑑𝐿
𝐺
(𝑟, 𝑣) is set iff any of the shortest paths between 𝑟

and 𝑣 passes through another landmark.

Lemma 5.14. Let 𝑑𝐿
𝐺′ (𝑟, 𝑣) = (𝑑, 𝑙). If 𝑑 = ∞ or 𝑙 = True then 𝑣

has no 𝑟 -label in Γ′. Otherwise 𝑣 has the 𝑟 -label (𝑟, 𝑑).

Proof. If 𝑣 has any 𝑟 -label in Γ′ it must be (𝑟, 𝑑). As Γ′ is mini-

mal, this 𝑟 -label exists iff it is not redundant. For 𝑑 = ∞ redundancy

of (∞, 𝑟) is obvious. Otherwise (𝑑, 𝑟) is redundant iff the correct dis-

tance could also be computed using the highway. This happens iff

a shortest path between 𝑟 and 𝑣 passes through another landmark,

which is indicated by the landmark flag. □

Lemma 5.15. A vertex 𝑣 is LD-affected iff 𝑑𝐿
𝐺
(𝑟, 𝑣) ≠ 𝑑𝐿

𝐺′ (𝑟, 𝑣).

Proof. Let 𝑙𝐺 and 𝑙𝐺′ denote the landmark flags of 𝑑𝐿
𝐺
(𝑟, 𝑣)

and 𝑑𝐿
𝐺′ (𝑟, 𝑣), respectively. Condition (ii) of Definition 5.12 states

𝑑𝐺 (𝑟, 𝑣) ≠ 𝑑𝐺′ (𝑟, 𝑣). It suffices to show that for 𝑑𝐺 (𝑟, 𝑣) = 𝑑𝐺′ (𝑟, 𝑣)
condition (i) holds iff 𝑙𝐺 ≠ 𝑙𝐺′ . This is trivial for𝑑𝐺 (𝑟, 𝑣) = 𝑑𝐺′ (𝑟, 𝑣) =
∞. For finite distances it follow from Lemma 5.14. □

Like Algorithm 2, our improved batch search algorithm computes

a superset of the set of all LD-affected vertices, albeit a smaller one.

By Lemma 5.15 we need to return a vertex whenever its landmark

distance changes. Thus we improve upon Algorithm 2 by tweaking

the pruning conditions:

– Insertion: To affect the landmark distance, the landmark length

of a new path 𝑝new from 𝑟 to 𝑣 must be strictly smaller than

the current landmark distance between 𝑟 and 𝑣 . Thus we check

|𝑝new |l < 𝑑𝐿
𝐺
(𝑟, 𝑣).

– Deletion: A deleted path 𝑝
del

can only affect landmark distance if

its landmark length was minimal, i.e., equal to the old landmark

distance. This suggests checking |𝑝
del
|l = 𝑑𝐿

𝐺
(𝑟, 𝑣). However,

deleted paths may be obscured by shorter composite paths, so

we check |𝑝
del
|l ≤ 𝑑𝐿

𝐺
(𝑟, 𝑣) instead.

The effects of these optimizations can be observed in Example 5.9,

where 𝑣 will not be returned for case (𝑎) and case (𝑐).
To apply the new pruning conditions, we must know the land-

mark length of a path we are following, and whether or not it passes

through a deleted edge. Thus we track not only the length of each

path, but also a landmark flag and a deletion flag.

Definition 5.16 (extended landmark length). The extended

landmark length of a path 𝑝 starting from 𝑟 ∈ 𝑅 is a tuple (𝑑, 𝑙, 𝑒) ∈
N × B × B where

• (𝑑, 𝑙) is the landmark length of 𝑝 , and

• 𝑒 is the deletion flag, with 𝑒 = True iff 𝑝 passes through a

deleted edge.

We use lexicographical order for comparison, with True < False.

For ease of extending landmark length values we will flatten

tuples implicitly, i.e., we treat ((𝑑, 𝑙), 𝑒) as (𝑑, 𝑙, 𝑒). The choice of the
ordering True < False for the deletion flag is not arbitrary. When

multiple search paths merge, we only track the length of the shorter

one w.r.t. extended landmark length. To ensure that deleted paths

will not be pruned using the stricter condition for insertion, we

need to keep the deletion flag if any path has it, which is achieved

by ordering True < False.

We apply our pruning conditions by comparing the extended

landmark lengths computed for paths ending in 𝑣 to the landmark

distance of 𝑣 in 𝐺 . For this we identify the minimal extended land-

mark length that indicates LD-affectedness.

Lemma 5.17. Let 𝑣 be LD-affected w.r.t. 𝑟 , and 𝛽 defined as

𝛽 (𝑟, 𝑣) :=
(
𝑑𝐿𝐺 (𝑟, 𝑣), True

)
Any composite path of minimal extended landmark length equals to

𝛽 (𝑟, 𝑣) or less and pass through an updated edge.

Proof. In the following we shall always refer to composite paths

from 𝑟 to 𝑣 . By Lemma 5.15 we have 𝑑𝐿
𝐺
(𝑟, 𝑣) ≠ 𝑑𝐿

𝐺′ (𝑟, 𝑣).
(1) If 𝑑𝐿

𝐺
(𝑟, 𝑣) < 𝑑𝐿

𝐺′ (𝑟, 𝑣) then all paths of minimal landmark

length must pass through a deleted edge. That makes their extended

landmark length 𝛽 (𝑟, 𝑣) or less.
(2) If 𝑑𝐿

𝐺
(𝑟, 𝑣) > 𝑑𝐿

𝐺′ (𝑟, 𝑣) then all paths of minimal landmark

length must pass through an inserted edge. Their landmark length

is at most 𝑑𝐿
𝐺′ (𝑟, 𝑣), so their extended landmark length is strictly

less than 𝛽 (𝑟, 𝑣). □

Batch search with improved pruning is described in Algorithm 3.

As we frequently need to update the landmark length of a path

when appending another vertex, we define an operator for this:

(𝑑, 𝑙) ⊕𝑤 :=

{
(𝑑 + 1,True) if𝑤 is a landmark

(𝑑 + 1, 𝑙) otherwise

We finally show the correctness of Algorithm 3, i.e., that all

LD-affected vertices are included in its result set. Note that some

additional vertices may be returned as well.

Lemma 5.18. Algorithm 3 returns all LD-affected vertices.

Proof sketch. Let 𝑣 be LD-affected, and 𝑃min be the set of

all composite paths from 𝑟 to 𝑣 of minimal landmark length. By

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2026

Algorithm 3: Improved Batch Search

1 Function BatchSearch(𝐺 ′, 𝐵, 𝑟 , Γ)
2 foreach (𝑎, 𝑏) ∈ 𝐵 do

3 𝑒 ← (𝑎, 𝑏) is deleted
4 if 𝑑𝐺 (𝑟, 𝑎) < 𝑑𝐺 (𝑟, 𝑏) then
5 add

(
𝑑𝐿
𝐺
(𝑟, 𝑎) ⊕ 𝑏, 𝑒, 𝑏

)
to Q

6 else if 𝑑𝐺 (𝑟, 𝑎) > 𝑑𝐺 (𝑟, 𝑏) then
7 add

(
𝑑𝐿
𝐺
(𝑟, 𝑏) ⊕ 𝑎, 𝑒, 𝑎

)
to Q

8 while Q is not empty do

9 remove minimal (𝑑, 𝑙, 𝑒, 𝑣) from Q
10 if 𝑣 ∉ 𝑉aff+ then

11 add 𝑣 to 𝑉aff+

12 foreach𝑤 ∈ 𝑁𝐺′ (𝑣) do
13 𝑑𝑤 ←

(
(𝑑, 𝑙) ⊕𝑤, 𝑒

)
14 if 𝑑𝑤 ≤ 𝛽 (𝑟,𝑤) then
15 add (𝑑𝑤 ,𝑤) to Q

16 return 𝑉aff+

Lemma 5.17 these (and all their prefixes) meet the pruning condi-

tion in line 14 and pass through an updated edge. Thus the search

in Algorithm 3 will follow them, starting from the last deleted or

first inserted edge. While some paths may be pruned in line 10, the

search will still follow at least one path 𝑝 ∈ 𝑃min with minimal

landmark length. While its extended landmark length may not be

minimal, this only causes 𝑝 to be pruned if its landmark length

equals 𝑑𝐿
𝐺
(𝑟, 𝑣) and 𝑝 does not pass through a deleted edge. But in

this case, 𝑣 is not LD-affected. □

5.3 Batch Repair

In the following, we develop an efficient algorithm to repair labels.

At its core is an inference mechanism for the distances of affected

vertices, which allows us to update their labels. Here we start with

boundary vertices that lie on the boundary of affected and unaffected

vertices, and for which the distance to 𝑟 can be computed from

neighboring vertices whose distance did not change. Importantly,

even though a vertex may be affected by multiple edge updates in

a batch, its 𝑟 -label only needs to be updated once.

Let 𝑣 ∈ 𝑉aff+. For every neighbour𝑤 of 𝑣 in 𝐺 ′, 𝑑𝐺′ (𝑟, 𝑣) must

be upper-bounded by 𝑑𝐺′ (𝑟,𝑤) + 1. If such a neighbour lies outside

of 𝑉aff+, the value of 𝑑𝐺′ (𝑟,𝑤) = 𝑑𝐺 (𝑟,𝑤) can easily be obtained.

By taking the minimum of such known upper bounds, we get a

readily available distance bound for 𝑣 . As we wish to eliminate

redundant 𝑟 -labels, we track landmark distance.

Definition 5.19 (Landmark distance bound). Let 𝑆 ⊂ 𝑉 \ {𝑟 }
be a set of vertices. The landmark distance bound of 𝑣 w.r.t. 𝑆 is:

𝑑𝐿
bou
(𝑣, 𝑆) := min{𝑑𝐿𝐺′ (𝑟,𝑤) ⊕ 𝑣 | 𝑤 ∈ 𝑁𝐺′ (𝑣) \ 𝑆};

and the distance bound of 𝑣 w.r.t. 𝑆 is:

𝑑bou (𝑣, 𝑆) := min{𝑑𝐺′ (𝑟,𝑤) + 1 | 𝑤 ∈ 𝑁𝐺′ (𝑣) \ 𝑆}.

Note that the distance bound of a vertex is simply the distance

component of its landmark distance bound. The following lemma

Algorithm 4: Batch Repair

1 Function BatchRepair(𝐺 ′, 𝑉aff, 𝑟𝑖 , Γ, Γ′)
2 foreach 𝑣 ∈ 𝑉aff do
3 𝐷bou [𝑣] ← 𝑑𝐿

bou
(𝑣,𝑉aff) // use Γ to compute

4 while 𝑉aff is not empty do

5 𝑉min ← {𝑣 ∈ 𝑉aff | 𝐷bou [𝑣] .𝑑 is minimal}
6 remove 𝑉min from 𝑉aff

7 foreach 𝑣 ∈ 𝑉min do

8 if 𝐷bou [𝑣] .𝑑 = ∞∨ 𝐷bou [𝑣] .𝑙 then
9 remove 𝑟 -label from Γ′(𝑣)

10 else

11 set 𝑟 -label of Γ′(𝑣) to (𝑟𝑖 , 𝐷bou [𝑣] .𝑑)
12 if 𝑣 is a landmark then

13 𝛿 ′
𝐻
(𝑟𝑖 , 𝑣) ← 𝐷bou [𝑣] .𝑑

14 foreach𝑤 ∈ 𝑁𝐺′ (𝑣) ∩𝑉aff do
15 𝐷bou [𝑤] ← min(𝐷bou [𝑤], 𝐷bou [𝑣] ⊕𝑤)

allows us to compute the (landmark) distance of vertices in 𝑉aff+
from 𝑟 in 𝐺 ′ using their (landmark) distance bounds.

Lemma 5.20. Let 𝑆 ⊂ 𝑉 \ {𝑟 } and 𝑣 ∈ 𝑆 with minimal distance

bound. Then 𝑑𝐿
𝐺′ (𝑟, 𝑣) = 𝑑𝐿

bou
(𝑣, 𝑆).

Proof. For 𝑑𝐺′ (𝑟, 𝑣) = ∞ this is trivial. Otherwise let 𝑝 be a

shortest path from 𝑟 to 𝑣 in 𝐺 ′ w.r.t. landmark length, 𝑣 ′ the first
vertex in 𝑝 that lies in 𝑆 , and 𝑤 its predecessor in 𝑝 . Since 𝑤 ∉ 𝑆

we have 𝑑𝐿
bou
(𝑣 ′, 𝑆) ≤ 𝑑𝐿

𝐺′ (𝑟,𝑤) ⊕ 𝑣 = 𝑑𝐿
𝐺′ (𝑟, 𝑣

′). If 𝑣 ′ ≠ 𝑣 then

𝑑𝐺′ (𝑟, 𝑣 ′) < 𝑑𝐺′ (𝑟, 𝑣) ≤ 𝑑bou (𝑣, 𝑆), and therefore 𝑑bou (𝑣 ′, 𝑆) <

𝑑bou (𝑣, 𝑆). This contradicts the minimality of 𝑑bou (𝑣, 𝑆), so 𝑣 ′ = 𝑣 .

It follows that 𝑑𝐿
bou
(𝑣, 𝑆) = 𝑑𝐿

𝐺′ (𝑟, 𝑣). □

Note that 𝑑𝐿
𝐺′ (𝑟, 𝑣) = 𝑑𝐿

bou
(𝑟, 𝑆) does not generally hold for ev-

ery boundary vertex 𝑣 . This can e.g. be seen in the graph of Exam-

ple 5.22: when computing distances to 𝑟1, 𝑒 must be repaired before

𝑓 , as the new shortest path between 𝑟1 and 𝑓 passes through 𝑒 . The

situation is reversed when computing distance to 𝑟2. Algorithm

4 shows the pseudo-code of our batch repair algorithm. Given a

graph𝐺 ′ and a set of all affected vertices𝑉aff, we first compute the

landmark distance bounds of vertices in𝑉aff using their unaffected

neighbors. We then find vertices in 𝑉aff with minimal distance

bounds and remove them from𝑉aff. By Lemma 5.20 their landmark

distance to 𝑟 in 𝐺 ′ equals their landmark distance bounds. We use

these landmark distances to update their 𝑟 -labels, as well as their

highway distances in the case of landmarks. Finally we update

the landmark distance bounds of neighboring vertices in 𝑉aff. We

continue this process until 𝑉aff is empty.

5.4 Analysis of BatchHL

In the following we will show correctness of Algorithm 1 and

analyse its time complexity.

Theorem 5.21. The highway labeling Γ′ returned by Algorithm 1

is the minimal highway labeling for 𝐺 ′.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2027

Proof. By Lemmas 5.8 and 5.18, the vertex set 𝑉aff returned

by BatchSearch contains all LD-affected vertices, regardless of

which Algorithm (2 or 3) is used. By Lemma 5.15 this means that for

vertices outside of𝑉aff the landmark distance to 𝑟𝑖 does not change,

so that in line 3 of Algorithm 1 the value of 𝑑𝐿
bou
(𝑣,𝑉aff) can be

computed from Γ. From Lemma 5.20 it follows that 𝐷bou [𝑣] =

𝑑𝐿
𝐺′ (𝑟𝑖 , 𝑣) whenever vertex 𝑣 lies in 𝑉min.

For each landmark 𝑟 and each vertex LD-affected w.r.t. 𝑟 we

update the 𝑟 -label of 𝑣 in Γ′ based on its landmark distance to 𝑟

in 𝐺 ′. By Lemma 5.14 these updates are correct. As the 𝑟 -labels of

vertices outside of 𝑉aff do not change, and we initialized Γ′ using
Γ, this leave all vertices with correct 𝑟 -labels, for all 𝑟 ∈ 𝑅, so the

distance labeling of Γ′ is correct and minimal. Highway is updated

for vertices in 𝑉aff as well, for all 𝑟 ∈ 𝑅, and do not change for

others by Definition 5.12. □

The following example illustrates the individual steps that our

BatchHL algorithm runs through.

Example 5.22. Consider the following graph and updates:

a

b 𝑟1 c 𝑟2 d

e f g
h i

-

+

+

The initial highway labeling Γ = (𝐻, 𝐿) will look like this:

𝐻 = {𝛿𝐻 (𝑟1, 𝑟2) = 2},

𝐿 =

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

(𝑟1, 1) (𝑟1, 1) (𝑟1, 1) (𝑟1, 2) (𝑟1, 1) (𝑟1, 2) (𝑟1, 3)
(𝑟2, 1) (𝑟2, 1) (𝑟2, 2) (𝑟2, 1) (𝑟2, 2) (𝑟2, 2)

BatchHLwill initialize Γ′ as Γ, and then run BatchSearch and BatchRe-
pair for both 𝑟1 and 𝑟2.

For 𝑟1 the basic BatchSearch described as Algorithm 2 returns

𝑉aff+ = {𝑟2, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖}

Here vertex 𝑒 is not actually affected, but still returned due to the

composite path 𝑟1 − 𝑓 − 𝑒 . Algorithm 3 returns only

𝑉aff+ = {𝑒, 𝑓 , 𝑔, ℎ}

For 𝑟2, 𝑑 and 𝑖 , the new paths through 𝑎 have the same landmark

length as existing ones and are thus pruned. The eliminated path

𝑟1− 𝑓 −𝑔−ℎ−𝑖 has strictly greater landmark length than the existing

path through 𝑟2, and thus is pruned. Note that 𝑒 is still returned due

to the composite path 𝑟1 − 𝑓 − 𝑒 , despite not being LD-affected.
One of these sets is then used as input for BatchRepair, say 𝑉aff =

{𝑒, 𝑓 , 𝑔, ℎ}. The initial landmark bounds for this set are

𝑑𝐿
bou
(𝑟1, . . .) =

𝑒 𝑓 𝑔 ℎ

(2, False) (∞, False) (3,True) (5,True)

Here 𝑒 has the minimal distance bound, so we update 𝐿(𝑒) by setting

its 𝑟1-label to 2 (which does not actually change 𝐿′(𝑒)). Afterwards
𝑒 is removed from 𝑉aff and the landmark bound of 𝑓 is updated to

(3, False). In the next iteration 𝑓 and 𝑔 are minimal, so the 𝑟1-label

in 𝐿(𝑓) is updated to (𝑟1, 3) and the 𝑟1-label in 𝐿′(𝑔) is removed.

Finally 𝑑𝐿
bou
(𝑟1, ℎ) is updated to (4,True) and the 𝑟1-label in 𝐿′(ℎ)

is removed. This leaves 𝐿′ as

𝐿′ =
𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

(𝑟1, 1) (𝑟1, 1) (𝑟1, 1) (𝑟1, 2) (𝑟1, 3)
(𝑟2, 1) (𝑟2, 1) (𝑟2, 2) (𝑟2, 1) (𝑟2, 2) (𝑟2, 2)

Running BatchSearch for 𝑟2 gives us one of

𝑉aff = {𝑟1, 𝑎, 𝑏, 𝑒} or 𝑉aff = {𝑎, 𝑒}
depending on which algorithm (Algorithms 2 or 3) is used. Running

BatchRepair on either of those inserts (𝑟2, 1) into 𝐿′(𝑎) and (𝑟2, 2)
into 𝐿′(𝑒) for the final updated highway labeling

𝐿′ =
𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ 𝑖

(𝑟1, 1) (𝑟1, 1) (𝑟1, 1) (𝑟1, 2) (𝑟1, 3)
(𝑟2, 1) (𝑟2, 1) (𝑟2, 1) (𝑟2, 3) (𝑟2, 2) (𝑟2, 1) (𝑟2, 2) (𝑟2, 2)

Complexity analysis. Table 1 compares the time and space com-

plexity of the state-of-the-art methods and our proposed method

BatchHL for constructing and updating a distance labelling, and

querying a distance. Let 𝑎 be the total number of affected vertices,

𝑙 be the maximum label size and 𝑑 be the maximum degree. In our

method, 𝑎 refers to CP-affected vertices in the batch-update setting

which is different from FulFD [21] and FulPLL [12] in the single-

update setting. We perform |𝑅 | BFSs to construct highway labelling
in 𝑂 (|𝑅 | · |𝑉 |) time and space. Then, we update highway labelling

in Algorithm 1 where Algorithm 2 visits𝑂 (𝑎) vertices and for each
affected vertex performs 𝑑 queries to check its affected neighbors

in𝑂 (𝑑 · 𝑙) time. Thus, the time complexity of Algorithms 2 and 3 is

𝑂 (𝑎 · 𝑑 · 𝑙). Note that Algorithm 3 further reduces the total number

of CP-affected vertices and is naturally faster than Algorithm 2. In

practice, 𝑙 and 𝑑 are closer to the average values, and 𝑎 is usually

orders of magnitudes smaller than the total number of vertices in

a graph. Next, Algorithm 4 repairs CP-affected vertices returned

by Algorithm 2 which in the worse case could repair the labels of

all CP-affected vertices. To decide whether the label of an affected

vertex needs to be repaired, we check its neighbors in 𝑂 (𝑑). Thus,
the time complexity of Algorithm 4 is (𝑎 · 𝑑), and the overall time

complexity of Algorithm 1 is 𝑂 (|𝑅 | · 𝑎 · 𝑑 · 𝑙) using 𝑂 (𝑉) space.
We omit 𝑙 from the time complexity of Algorithm 4 because we

store distances for all unaffected neighbors of affected vertices in

Algorithms 2 and 3.

FulFD constructs a bit-parallel shortest-path tree for each 𝑟 ∈ 𝑅
and 64 of its neighbors 𝑁 and requires𝑂 (𝑅 · 𝑁) time and space for

every vertex 𝑣 ∈ 𝑉 which is huge for a large network because 𝑉

could be very large. Similarly, the construction time and space of

FulPLL (PLL) and PSL
∗
[25] (Parallel PLL using 𝑡 cores) is prohib-

itive and this is the reason why we do not have results on large

datasets for these methods in our experiments. For state-of-the-art

dynamic methods FulFD and FulPLL, 𝑎 is the sum over all affected

vertices by each update in a batch and is very large in practice be-

cause of unnecessary computations due to which they take longer

to update a distance labelling.

6 VARIANTS

Parallel batch updates. BatchHL can be parallelized at the land-

mark level. Let Γ = (𝐻, 𝐿) be the unique minimal highway cover

labelling over𝐺 . Then the unique minimal highway cover labelling

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2028

Table 1: Complexity analysis and comparison.

Method

Construction Update Query

Time Space Time Space Time Space

BatchHL 𝑂 (𝑅 ·𝑉) 𝑂 (𝑅 ·𝑉) 𝑂 (𝑅 ·𝑎 ·𝑑 ·𝑙) 𝑂 (𝑉) 𝑂 (𝐸) 𝑂 (𝑉)
FulFD 𝑂 (𝑅 ·𝑁 ·𝑉) 𝑂 (𝑅 ·𝑁 ·𝑉) 𝑂 (𝑅 ·𝑁 ·𝑎 ·𝑑 ·𝑙) 𝑂 (𝑉) 𝑂 (𝐸) 𝑂 (𝑉)
FulPLL 𝑂 (𝑙2 ·𝐸) 𝑂 (𝑉 ·𝑙) 𝑂 (𝑎 · (𝐸+𝑉 ·𝑙)) 𝑂 (𝑉) 𝑂 (𝑙) -

PSL
∗ 𝑂 (𝑙2 ·𝐸/𝑡) 𝑂 (𝑉 ·𝑙) - - 𝑂 (𝑑 ·𝑙) -

BiBFS - - - - 𝑂 (𝐸) 𝑂 (𝑉)

Γ′ = (𝐻 ′, 𝐿′) over 𝐺 ′ may differ from Γ in: (1) highway: 𝐻 is

changed to 𝐻 ′; and (2) labels: 𝐿 is changed to 𝐿′.
To enable the parallelism on highway, we store 𝐻 using a high-

way matrix such that ℎ𝑖 𝑗 = ℎ 𝑗𝑖 for each pair of landmarks (𝑟𝑖 , 𝑟 𝑗).
Then, searches can be conducted in parallel to update the entries in

this highway matrix. In the second case, for any vertex 𝑣 , distance

entries in 𝐿(𝑣) w.r.t. different landmarks are disjoint subsets. Thus

updating distance entries in 𝐿(𝑣) w.r.t. different landmarks can be

processed in parallel. Putting it all together, for any batch update,

we run batch search and batch repair w.r.t. each landmark in parallel

to speed up the performance.

Directed and weighted graphs. Our methods can be extended to

directed and non-negative weighted graphs. For directed graphs, we

use𝑑𝐺 (𝑠, 𝑡) to refer to the distance from vertex 𝑠 to vertex 𝑡 and store

two sets of labels for each vertex 𝑣 , forward 𝐿𝑓 (𝑣) and backward

𝐿𝑏 (𝑣) labels, containing pairs (𝑟𝑖 , 𝛿𝑟𝑖 𝑣) after performing forward

and backward pruned BFSs w.r.t. every 𝑟𝑖 ∈ 𝑅. Accordingly, we

store forward𝐻𝑓 = (𝑅, 𝛿𝐻𝑓
) and backward highway𝐻𝑏 = (𝑅, 𝛿𝐻𝑏

),
where for any two landmarks {𝑟𝑖 , 𝑟 𝑗 } ∈ 𝑅, 𝛿𝐻𝑓

(𝑟𝑖 , 𝑟 𝑗) = 𝑑𝐺 (𝑟𝑖 , 𝑟 𝑗)
and 𝛿𝐻𝑏

(𝑟𝑖 , 𝑟 𝑗) = 𝑑𝐺 (𝑟𝑖 , 𝑟 𝑗). To repair the affected labels and high-

ways affected by a batch update, we perform our batch search and

batch repair methods twice: once in the forward direction and once

in the backward direction. Then the upper bound for a distance

query (𝑠, 𝑡) can be computed using 𝐿𝑓 (𝑠), 𝐿𝑏 (𝑡), 𝛿𝐻𝑓
and 𝛿𝐻𝑏

in

the same way as described in Equation 3. For weighted graphs, we

can use pruned Dijkstra’s algorithm in place of pruned BFSs. We

consider updates in the form of edge weight increase or decrease

instead of edge insertion or deletion. Our methods can then handle

weight increases in a similar way to edge deletions, and weight

decreases in a similar way to edge insertions.

7 EXPERIMENTS

We have implemented our algorithm to experimentally verify its

efficiency and scalability on real-world large networks.

7.1 Experimental Setup

In our experiments, all algorithms are implemented in C++11 and

compiled with g++ 5.5.0 using the -O3 option. All the experiments

are performed on a Linux server Intel Xeon W-2175 (2.50GHz CPU)

with 28 cores and 512GB of main memory.

Baseline methods. We consider the following variants of our

batch dynamic algorithm, (1) BHL: which uses the batch search

described in Algorithm 2 and the batch repair described in Algo-

rithm 4, (2) BHL
+
: which uses the improved batch search described

in Algorithm 3 and the batch repair described in Algorithm 4, and

(3) BHL
𝑝
: which is a parallel variant of BHL

+
. We compare these

variants with the state-of-the-art methods as follows:

– FulFD [21]: A fully dynamic method that incorporates two algo-

rithms IncFD and DecFD to update distance labelling for edge

Table 2: Summary of datasets.

Dataset Type |𝑉 | |𝐸 | avg. deg max. deg

Youtube social 1.1M 3M 5.265 28754

Skitter comp 1.7M 11M 13.08 35455

Flickr social 1.7M 16M 18.13 27224

Wikitalk comm 2.4M 5M 3.890 100029

Hollywood social 1.1M 114M 98.91 11467

Orkut social 3.1M 117M 76.28 33313

Enwiki social 4.2M 101M 43.75 432260

Livejournal social 4.8M 69M 17.68 20333

Indochina web 7.4M 194M 40.73 256425

Twitter social 42M 1.5B 57.74 2997487

Friendster social 66M 1.8B 55.06 5214

UK web 106M 3.7B 62.77 979738

Italianwiki social 1.2M 35M 33.25 81090

Frenchwiki social 2.2M 59M 26.36 137021

insertions and deletions, and then combines it with a graph tra-

versal algorithm to answer distance queries.

– FulPLL [12]: A fully dynamic 2-hop cover labellingmethodwhich

is composed of two separate dynamic algorithms. The first algo-

rithm was proposed in [5] to answer distance queries on graphs

undergoing edge insertions and the second algorithm was pro-

posed in [12] to answer distance queries on graphs undergoing

edge deletions. This method is based on the pruned landmark

labelling (PLL) [4].

– PSL* [25]: A parallel algorithm which constructs pruned land-

mark labelling for static graphs to answer distance queries.

– BiBFS [21]: An online bidirectional BFS algorithm which answers

distance queries using an optimized strategy to expand searches

from the direction with fewer vertices.

Note that FulFD and FulPLL can handle only a single edge inser-

tion/deletion at a time. Thus, for a fair comparison, we also consider

a unit-update variant of our algorithm: treating our method BHL
+

in the unit update setting by performing one update at a time. We

call this unit-update variant as UHL
+
. The code for FulFD, FulPLL

and PSL* was provided by their authors and implemented in C++.

We use the same parameter settings as suggested by their authors

unless otherwise stated. For a fair comparison, we also select high

degree landmarks and set them to 20 in the same way as FulFD for

our methods. We set the number of threads to 20 for PSL* as well

as for the parallel variant of our method BHL
𝑝
.

Datasets.We use 14 large real-world networks from a variety of

domains to verify the efficiency, scalability and robustness of our

algorithm. Among them, Italianwiki and Frenchwiki are two real

dynamic networks whose topology evolves over time. We treat

these networks as undirected and unweighted graphs, and their

statistics are summarized in Table 2. They are accessible at Stanford

Network Analysis Project [24], Laboratory for Web Algorithmics

[9], and the Koblenz Network Collection [23].

Test data generation. For our batch dynamic variants, we gener-

ate 10 batches for the first 12 datasets, where each batch contains

1,000 edges randomly selected. We use three batch update settings

for testing: (1) decremental - delete these batches and measure the

average deletion time, (2) incremental - add these batches followed

by decremental updates and measure the average insertion time,

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2029

Table 3: Comparing update time of our methods BHL
+
, BHL and BHL

𝑝
with the state-of-the-art dynamic methods, where the

batch size is 1,000 and thus the update time reported for every method is for 1,000 updates.

Dataset

Fully Dynamic Batch Update Time (sec.) Incremental Batch Update Time (sec.) Decremental Batch Update Time (sec.)

BHL
𝑝

BHL
+

BHL UHL
+

FulFD FulPLL BHL
𝑝

BHL
+

UHL
+

IncFD IncPLL BHL
𝑝

BHL
+

UHL
+

DecFD DecPLL

Youtube 0.046 0.070 0.208 0.091 1.249 9.110 0.003 0.008 0.048 0.154 0.194 0.070 0.169 0.239 3.181 9.850

Skitter 0.147 0.601 0.902 1.587 5.986 8.770 0.002 0.006 0.069 0.117 1.312 0.163 0.751 2.382 14.15 31.50

Flickr 0.024 0.026 0.130 0.099 2.152 6.300 0.003 0.008 0.072 0.053 1.259 0.030 0.041 0.107 3.364 13.40

Wikitalk 0.029 0.025 0.101 0.134 2.926 4.550 0.002 0.005 0.097 0.029 0.081 0.046 0.044 0.147 5.674 9.820

Hollywood 0.008 0.014 0.115 0.056 4.423 - 0.001 0.002 0.046 0.090 27.53 0.017 0.031 0.071 8.401 -

Orkut 0.537 1.775 5.855 4.539 13.30 - 0.005 0.014 0.127 0.367 - 0.677 0.035 5.921 23.94 -

Enwiki 0.508 1.681 10.50 3.952 121.7 - 0.008 0.012 0.168 0.316 4.916 0.770 3.079 8.194 251.2 -

Livejournal 0.221 0.306 0.873 0.379 4.736 - 0.006 0.010 0.202 0.244 - 0.299 0.570 0.731 4.736 -

Indochina 0.543 1.181 1.547 9.575 20.63 - 0.015 0.011 0.308 0.141 4.680 0.553 1.346 19.20 44.92 -

Twitter 13.29 49.62 115.7 125.6 5103 - 0.125 0.024 13.09 0.263 - 19.17 68.85 231.8 9460 -

Friendster 0.409 0.410 0.811 21.93 23.27 - 0.163 0.035 20.96 0.254 - 0.420 0.738 21.87 30.38 -

UK 14.45 41.46 40.79 56.50 110.1 - 0.218 0.055 4.349 0.258 - 14.99 42.29 75.20 257.3 -

Italianwiki 0.001 0.001 0.025 0.051 6.623 - - - - - - - - - - -

Frenchwiki 0.003 0.004 0.067 0.098 5.289 - - - - - - - - - - -

Figure 5: Distance distribution of batch updates.

and (1) fully dynamic - randomly select 50% updates in each of

these 10 batches to delete and then measure the average update

time after applying these batches. For the last two datasets, we

select 10 batches in the order of their timestamps, each containing

1,000 real-world inserted/deleted edges and measure the average

update time after applying them in a streaming fashion.

For the methods FulFD, FulPLL and UHL
+
, we randomly sample

1000 edges and follow the same update settings as above to measure

the update time of performing updates one by one. These settings

enable us to explore the impacts of edge insertions and edge dele-

tions respectively, in addition to their combined impact. In Figure

5, we report the distance distribution of edges in these batches

after deleting. As we can see, the distances in all datasets are small

ranging from 1 to 6. This shows that the updates are mostly from

densely connected components of these networks which may cause

fewer vertices to be affected in the incremental setting. Further, only

a small number of updates are disconnected (i.e., have distance∞)
in most of these datasets.

For queries, we randomly sample 100,000 pairs of vertices in

each dataset to evaluate the average querying time on graphs being

changed as a result of fully dynamic batch updates. We also report

the average size of labelling in the fully dynamic setting.

7.2 Performance Comparison

7.2.1 Update Time. Tables 3 and 4 show the average update time

of our proposed and the baseline methods.

Fully dynamic setting. From Table 3, we see that our proposed

methods BHL
𝑝
, BHL

+
, and BHL significantly outperform FulFD

and FulPLL on all datasets w.r.t. update time. In particular, our

methods BHL
𝑝
and BHL

+
are over 15 times faster than FulFD on

most of the datasets and several orders of magnitude faster than

FulPLL. FulPLL only works on four graphs and fails to scale to

large graphs with more than 100 millions. Further, the performance

difference of BHL
+
and BHL is due to the fact that our improved

batch search in BHL
+
can further prune away affected vertices that

do not need to be repaired, and in practice they are significant in

amount as can be seen in Table 5. Our methods also significantly

outperform FuLFD on the real-world dynamic networks: Italianwiki

and Frenchwiki. We can also observe that the average update time

of BHL
+
, BHL and BHL

𝑝
is always by far smaller than recomputing

labelling from scratch, i.e., construction time of BHL
+
in Table

4. Notice that, we consider the same construction time for BHL
𝑝

and BHL as BHL
+
, which is smaller than the construction time of

baseline methods FulFD [21] and PSL* [25] on all datasets. We can

see that the parallel variant of PLL (PSL*) still failed to construct

labelling for the largest three datasets.

Incremental setting. Table 3 also shows that our methods BHL
+
,

BHL
𝑝
are considerably faster than the baseline methods IncFD

and IncPLL. Even though IncFD and IncPLL do not preserve the

minimality of distance labellings and thus do not spend time to

delete outdated and redundant label entries, they are still slower

than our methods. We can also see BHL
+
and BHL

𝑝
in the batch

update setting are significantly faster than UHL
+
in the unit update

setting. This is because UHL
+
requires extra usage of resource

for each single update and involves in repeated and unnecessary

computations. Here it is also to note that BHL
𝑝
does not perform

well on the last four datasets as compared to BHL. This is because

there only exist a very small number of average affected vertices

against the total number of affected vertices as shown in Table 5.

This confirms that the parallel variant of our method works very

well when a large number of vertices are affected by batch updates;

otherwise it may introduce unneeded thread overhead.

Decremental setting. It is evident from Table 3 that our methods

BHL
+
and BHL

𝑝
are much faster than DecFD and DecPLL on all

the datasets in this setting. Especially, BHL and BHL
𝑝
can achieve

outstanding performance on networks which have a high average

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2030

Table 4: Comparing performance of our method BHL
+
with the baseline methods in terms of construction time, query time

and labelling size. Note that when a method did not finish the labelling construction in 24 hours, we denote it as “-”.

Dataset

Construction Time (CT) [s] Query Time (QT) [ms] Labelling Size (LS)

BHL
+

FulFD FulPLL PSL* BHL
+

FulFD FulPLL PSL* BHL
+

FulFD FulPLL PSL*

Youtube 2 4 84 4 0.005 0.010 0.045 0.002 20 MB 83 MB 3.14 GB 318 MB

Skitter 3 8 511 21 0.029 0.020 0.082 0.007 42 MB 153 MB 11.9 GB 1.01 GB

Flickr 3 10 546 23 0.007 0.013 0.102 0.005 34 MB 152 MB 13.1 GB 0.98 GB

Wikitalk 2 5 92 4 0.006 0.008 0.031 0.001 41 MB 74 MB 5.22 GB 160 MB

Hollywood 6 24 9,782 377 0.026 0.036 - 0.143 27 MB 263 MB - 4.15 GB

Orkut 24 88 - 26,310 0.102 0.156 - 0.203 70 MB 711 MB - 121 GB

Enwiki 25 88 7,382 389 0.053 0.051 - 0.021 82 MB 608 MB - 7.04 GB

Livejournal 20 46 - 4,441 0.043 0.051 - 0.047 122 MB 663 MB - 50.5 GB

Indochina 9 30 3,205 86 0.788 0.767 - 0.007 85 MB 838 MB - 3.39 GB

Twitter 549 1,928 - - 0.868 0.174 - - 1.14 GB 3.83 GB - -

Friendster 1,181 3,365 - - 0.815 0.902 - - 2.43 GB 9.14 GB - -

UK 178 621 - - 1.174 5.233 - - 1.78 GB 11.8 GB - -

Italianwiki 6 15 - 215 0.008 0.014 - 0.006 23 MB 159 MB - 0.81 GB

Frenchwiki 11 25 - 433 0.009 0.016 - 0.006 46 MB 272 MB - 1.54 GB

Table 5: Average number of vertices affected by BHL
+
and BHL after performing batch updates on all the datasets.

Method Type Youtube Skitter Flickr Wikitalk Hollywood Orkut Enwiki Livejournal Indochina Twitter Friendster UK Italianwiki Frenchwiki

Delete 366 K 971 K 55 K 127 K 14 K 503 K 1,220 K 276 K 2,079 K 10,622 K 66 K 54,515 K - -

BHL
+

Add 23 K 11 K 22 K 16 K 2 K 3 K 4 K 12 K 15 K 2 K 6 K 12 K - -

Mix 166 K 834 K 42 K 81 K 7 K 293 K 712 K 156 K 200 K 8,341 K 36 K 54,026 K 337 3 K

BHL Mix 476 K 1,266 K 157 K 474 K 41 K 982 K 3,587 K 454 K 3,085 K 20,705 K 80 K 54,864 K 9 K 45 K

degree such as Twitter, Flickr and Hollywood. Due to inherent com-

plexity of edge deletion on graphs (i.e., increasing distances), DecFD

and DecPLL take very long in identifying and updating labels of

affected vertices. As we can see, DecPLL does not have results on

8 out of 12 datasets. This is because while applying decremental

updates their software either crashed or did not finish when the

datasets are large that is whywe don’t have query time and labelling

size after updates for these datasets in Table 4. Furthermore, our

methods BHL
+
and BHL

𝑝
outperform UHL

+
because both leverage

the benefit of handling updates in a batch and significantly reduce

repeated computations during identifying and repairing the labels

of affected vertices.

7.2.2 Labelling Size. Table 4 shows that BHL
+
has significantly

smaller labelling size than FulFD, FulPLL and PSL* on all the

datasets. When an update occurs, the labelling size of FulFD re-

mains unchanged because they store complete shortest-path trees

at all times. In contrast, BHL
+
stores pruned shortest-path trees

preserving the property of minimality. Nonetheless, the labelling

size of BHL
+
remains stable in practice because the average label

size is bounded by a constant, i.e., the number of landmarks. The

labelling size of FulPLL may increase significantly because IncPLL

does not remove outdated and redundant distance entries and there

is also no bound on labelling size. The parallel variant of PLL (PSL*)

which exploit PLL properties to reduce labelling size still produces

labelling of very large size as compared to BHL
+
.

7.2.3 Query Time. Table 4 shows that the average query time

of BHL
+
is comparable with FulFD and faster than FulPLL. It

has been previously shown [12] that the average query time is

largely dependent on labelling size. Since the dynamic operations

do not considerably affect the labelling size for BHL
+
and FulFD,

their query times remain stable. On Twitter, the query time of

BHL
+
underperforms FulFD because FulFD also maintains the

shortest-path information for the neighborhood of landmarks and

we can see that the maximum degree of Twitter is very high which

might cause many pairs to be covered by landmarks. However,

the query time for FulPLL may considerably increase over time

because they do not remove outdated entries, leading to labelling

of increasing sizes. Although the query time of PSL* in Table 4 is

better than BHL
+
on some datasets, it only handles static graphs.

For dynamic graphs, it has the following limitations: (1) the cost

of re-constructing labelling from scratch after each batch update

is too high to afford, particularly when batch updates are frequent

or when underlying dynamic graph is large which is evident from

Table 4, (2) the labelling size is much larger than BHL
+
. As we can

see in Table 4, PSL* produces the labelling of size almost 99% larger

than the labelling of BHL
+
for Orkut thus possess a high query

cost as well. Considering the overall performance w.r.t. three main

factors i.e., query time, labelling size and construction time, BHL
+

stands out in claiming the best trade-off between these factors.

7.3 Performance under Varying Landmarks

Figure 7 shows how the update time of ourmethod BHL
+
in the fully

dynamic setting behaves when increasing the number of landmarks.

We can see that the update time for almost all datasets grows till

30 landmarks and then either decreases or remains stable. This is

because selecting a larger number of landmarks can better leverage

the pruning power of our method. On Twitter, we observe that

the update time grows linearly due to its very high average degree

which leads to a large fraction of vertices to be affected as can

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2031

5 25 50 75 104

Batch Size

10−4

10−3

10−2

To
ta

l T
im

e
(s

ec
.) Youtube

5 25 50 75 104

Batch Size

10−4

10−3

10−2

10−1
Skitter

5 25 50 75 104

Batch Size

10−5
10−4
10−3
10−2
10−1

Flickr

5 25 50 75 104

Batch Size

10−5

10−4

10−3

10−2

Wikitalk

5 25 50 75 104

Batch Size

10−5
10−4
10−3
10−2
10−1

Hollywood

5 25 50 75 104

Batch Size

10−3

10−2

10−1

100
Orkut

5 25 50 75 104

Batch Size

10−3

10−2

10−1

100

To
ta

l T
im

e
(s

ec
.) Enwiki

5 25 50 75 104

Batch Size

10−3

10−2

10−1

100
Livejournal

5 25 50 75 104

Batch Size

10−3

10−2

10−1

Indochina

5 25 50 75 104

Batch Size
10−2

10−1

100

101

102
Twitter

5 25 50 75 104

Batch Size

10−3
10−2
10−1
100
101

Friendster

5 25 50 75 104

Batch Size
10−2

10−1

100

101 UK

BiBFS BHL + +QT BHLp+QT FulFD+QT

Figure 6: Total time of querying and updating by the proposed methods against online search methods.

10 20 30 40 50
Landmarks

10−2

10−1

100

Up
da

te
 T

im
e

(s
ec

.)

10 20 30 40 50
Landmarks

100

101

102

Youtube
Skitter
Flickr

Wikitalk
Hollywood
Enwiki

Friendster
Orkut
Indochina

Twitter
Livejournal
UK

Figure 7: Update time under 10-50 landmarks.

10 20 30 40 50
Landmarks

10−2

10−1

Qu
er

y
Ti

m
e

(m
s.)

10 20 30 40 50
Landmarks

10−1

100

Youtube
Skitter
Flickr

Wikitalk
Hollywood
Livejournal

Orkut
Enwiki
Indochina

Twitter
Friendster
UK

Figure 8: Query time under 10-50 landmarks.

be seen in Table 5 for 20 landmarks. We can also see in Figure 8

that the query time decreases or remains the same for almost all

datasets with the increased number of landmarks. Particularly, the

query time of Twitter, Orkut and Livejournal decreases because

they have a very high average degree and selecting a larger number

of high degree landmarks contributes greatly towards shortest-path

coverage and makes querying process faster.

7.4 Performance under Varying Batch Sizes

We also compare the total time of querying and updating on dy-

namic graphs. To make a fair comparison, the total time of our

methods BHL
+
and BHL

𝑝
, and the baseline method FulFD is the

total time to perform a batch update plus the query time to perform

1000 queries after the batch update and then averaged over 1000

queries, denoted as BHL
+
+QT, BHL

𝑝
+QT and FulFD+QT, respec-

tively. We conduct the experiments for 5 randomly sampled fully

dynamic batch updates of varying sizes, i.e., 500 to 10,000 in each

batch. Figure 6 presents the results. For the baseline method BiBFS,

we take only the query time averaged over 1000 queries after ap-

plying a batch update. We see that, the overall performance of our

methods is significantly better than the baseline methods on all the

datasets. It is worth noticing that BHL
𝑝
is not only more efficient

than BHL
+
, but also their efficiency gap becomes larger when the

size of batch updates increases. This shows that the parallelism

power of BHL
𝑝
can be better leveraged for batch updates of larger

sizes. We can also observe that the update time along with the

query time of our methods grows fast for batches of smaller sizes

(with up to 1000 updates) and then grows very slowly when batch

sizes become very large which shows that our methods are robust

w.r.t the increased batch size.

7.5 Performance on Directed Graphs

We also conduct experiments on directed graphs. We can see in

Table 6 that the update time of our methods is significantly smaller

than the construction time of labelling from scratch. The update

time of our optimized method BHL
+
is faster than the method BHL

on all datasets except Livejournal. On Livejournal, the amount of

affected vertices traversed by both BHL and BHL
+
is the same; how-

ever, due to additional overhead of computing extended landmark

lengths, BHL
+
under-performs BHL. BHL

𝑝
is still the fastest among

all methods. Our methods are also efficient in performing queries

and have small labelling sizes.

Table 6: Comparing update time, construction time (CT),

query time (QT) and labelling size (LS) on directed graphs.

Datasets BHL
𝑝
[s] BHL

+
[s] BHL[s] CT[s] QT[ms] LS

Wikitalk 0.02 0.04 0.17 2.03 0.001 54 MB

Enwiki 2.98 12.5 28.0 46.8 0.023 177 MB

Livejournal 7.54 18.9 15.1 44.6 0.050 222 MB

Twitter 16.2 64.4 142 931 0.312 1.7 GB

8 CONCLUSION

Wehave proposed a novel method for answering distance queries on

dynamic graphs undergoing batch updates. Our proposed approach

exploits properties of updates in a batch to improve efficiency of

maintaining distance labelling. We have analyzed the correctness

and complexity of our approach and showed that they preserve the

labelling minimality. We have empirically verified the efficiency

and scalability of our approach on 14 real-world networks. For

future work, we plan to explore the following directions: 1) the ap-

plicability and extension of the proposed method to road networks;

2) potential optimizations in designing separate batch-dynamic

algorithms for edge insertion and edge deletion in dynamic graphs.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2032

REFERENCES

[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.

2012. Hierarchical hub labelings for shortest paths. In European Symposium on

Algorithms. Springer, 24–35.

[2] Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. 2019.

Parallel batch-dynamic graph connectivity. In SPAA. 381–392.

[3] Umut A Acar, Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, and Sam

Westrick. 2020. Parallel batch-dynamic trees via change propagation. In ESA.

[4] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. InACMSIGMOD.

349–360.

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2014. Dynamic and historical

shortest-path distance queries on large evolving networks by pruned landmark

labeling. InWWW. 237–248.

[6] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. 2012. Shortest-

path queries for complex networks: exploiting low tree-width outside the core.

In EDBT. 144–155.

[7] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group formation in large social networks: membership, growth, and evolution.

In ACM SIGKDD. 44–54.

[8] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

2006. Complex networks: Structure and dynamics. Physics reports 424, 4-5 (2006),

175–308.

[9] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compres-

sion Techniques. InWWW. 595–601.

[10] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. 2012. The

exact distance to destination in undirected world. The VLDB Journal 21, 6 (2012),

869–888.

[11] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.

[12] Gianlorenzo D’angelo, Mattia D’emidio, and Daniele Frigioni. 2019. Fully Dy-

namic 2-Hop Cover Labeling. JEA 24, 1 (2019), 1–6.

[13] Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. 2014.

Robust distance queries on massive networks. In ESA. 321–333.

[14] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh

Sawlani, and Xiaorui Sun. 2020. Parallel batch-dynamic graphs: Algorithms and

lower bounds. In SODA. 1300–1319.

[15] Laxman Dhulipala, Quanquan C Liu, and Julian Shun. 2020. Parallel Batch-

Dynamic 𝑘-Clique Counting. arXiv preprint arXiv:2003.13585 (2020).

[16] Muhammad Farhan and Qing Wang. 2021. Efficient Maintenance of Distance

Labelling for Incremental Updates in Large Dynamic Graphs. arXiv preprint

arXiv:2102.08529 (2021).

[17] Muhammad Farhan, Qing Wang, Yu Lin, and Brendan Mckay. 2018. A Highly

Scalable Labelling Approach for Exact Distance Queries in Complex Networks.

In EDBT.

[18] Muhammad Farhan, Qing Wang, Yu Lin, and Brendan McKay. 2021. Fast fully

dynamic labelling for distance queries. The VLDB Journal (2021), 1–24.

[19] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. 2005. Graph distances in the streaming model: the value of space.. In

SODA, Vol. 5. Citeseer, 745–754.

[20] Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing Wong.

2013. Is-label: an independent-set based labeling scheme for point-to-point

distance querying. VLDB 6, 6 (2013), 457–468.

[21] Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. 2016. Fully

Dynamic Shortest-Path Distance Query Acceleration on Massive Networks. In

CIKM. 1533–1542.

[22] Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. 2012. A highway-centric

labeling approach for answering distance queries on large sparse graphs. In ACM

SIGMOD. 445–456.

[23] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In WWW. 1343–

1350.

[24] Jure Leskovec and Andrej Krevl. 2015. SNAP Datasets:Stanford Large Network

Dataset Collection. (2015).

[25] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.

Scaling distance labeling on small-world networks. In Proceedings of the 2019

International Conference on Management of Data. 1060–1077.

[26] Ye Li, Man Lung Yiu, Ngai Meng Kou, et al. 2017. An experimental study on hub

labeling based shortest path algorithms. VLDB 11, 4 (2017), 445–457.

[27] Andrew McGregor. 2014. Graph stream algorithms: a survey. ACM SIGMOD

Record 43, 1 (2014), 9–20.

[28] Seth A Myers and Jure Leskovec. 2014. The bursty dynamics of the twitter

information network. InWWW. 913–924.

[29] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Efficient shortest path index maintenance on dynamic road networks with

theoretical guarantees. Proceedings of the VLDB Endowment 13, 5 (2020), 602–615.

[30] Anil Pacaci, Angela Bonifati, and M Tamer Özsu. 2020. Regular Path Query

Evaluation on Streaming Graphs. In ACM SIGMOD. 1415–1430.

[31] Ira Pohl. 1971. Bi-derectional search. Machine intelligence 6 (1971), 127–140.

[32] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. 2009.

Fast shortest path distance estimation in large networks. In CIKM. 867–876.

[33] Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Lina Yao, and Simon Parkinson.

2017. Efficient computation of distance labeling for decremental updates in large

dynamic graphs. WWW 20, 5 (2017), 915–937.

[34] Robert Endre Tarjan. 1983. Data structures and network algorithms. Vol. 44. Siam.

[35] Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. 2008.

Searching the wikipedia with contextual information. In CIKM. 1351–1352.

[36] Monique V Vieira, Bruno M Fonseca, Rodrigo Damazio, Paulo B Golgher, Davi

de Castro Reis, and Berthier Ribeiro-Neto. 2007. Efficient search ranking in social

networks. In CIKM. 563–572.

[37] Ye Wang, Qing Wang, Henning Koehler, and Yu Lin. 2021. Query-by-sketch:

Scaling shortest path graph queries on very large networks. In Proceedings of the

2021 International Conference on Management of Data. 1946–1958.

[38] Fang Wei. 2010. TEDI: efficient shortest path query answering on graphs. In

ACM SIGMOD. 99–110.

[39] Sihem Amer Yahia, Michael Benedikt, Laks VS Lakshmanan, and Julia Stoy-

anovich. 2008. Efficient network aware search in collaborative tagging sites.

VLDB 1, 1 (2008), 710–721.

[40] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. 2021. Efficient 2-hop

labeling maintenance in dynamic small-world networks. In 2021 IEEE 37th Inter-

national Conference on Data Engineering (ICDE). IEEE, 133–144.

Session 27: Graph Data Management and Social Networks SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2033

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Preliminaries
	4 Approach Overview
	5 Proposed Method
	5.1 Batch Search
	5.2 Improved Batch Search
	5.3 Batch Repair
	5.4 Analysis of BatchHL

	6 Variants
	7 Experiments
	7.1 Experimental Setup
	7.2 Performance Comparison
	7.3 Performance under Varying Landmarks
	7.4 Performance under Varying Batch Sizes
	7.5 Performance on Directed Graphs

	8 Conclusion
	References

