
Pythia: Unsupervised Generation of Ambiguous Textual Claims
from Relational Data

Enzo Veltri
enzo.veltri@unibas.it
University of Basilicata

Donatello Santoro
donatello.santoro@unibas.it
University of Basilicata

Gilbert Badaro
gilbert.badaro@eurecom.fr

EURECOM

Mohammed Saeed
mohammed.saeed@eurecom.fr

EURECOM

Paolo Papotti
papotti@eurecom.fr

EURECOM

ABSTRACT
Applications such as computational fact checking and data-to-text
generation exploit the relationship between relational data and
natural language text. Despite promising results in these areas, state
of the art solutions simply fail in managing “data-ambiguity”, i.e.,
the case when there are multiple interpretations of the relationship
between the textual sentence and the relational data. To tackle this
problem, we introduce Pythia, a system that, given a relational
table𝐷 , generates textual sentences that contain factual ambiguities
w.r.t. the data in 𝐷 . Such sentences can then be used to train target
applications in handling data-ambiguity.

In this demonstration, we first show how our system generates
data ambiguous sentences for a given table in an unsupervised fash-
ion by data profiling and query generation. We then demonstrate
how two existing applications benefit from Pythia’s generated
sentences, improving the state-of-the-art results. The audience will
interact with Pythia by changing input parameters in an interac-
tive fashion, including the upload of their own dataset to see what
data ambiguous sentences are generated for it.

ACM Reference Format:
Enzo Veltri, Donatello Santoro, Gilbert Badaro, Mohammed Saeed, and Paolo
Papotti. 2022. Pythia: Unsupervised Generation of Ambiguous Textual
Claims from Relational Data. In Proceedings of the 2022 International Confer-
ence on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia,
PA, USA.ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3514221.
3520164

1 INTRODUCTION
Ambiguity is common in natural language in many forms [7]. We
focus on the ambiguity of a factual sentence w.r.t. the data in a table,
or relation. The problem of data ambiguities in sentences is relevant
for many natural language processing (NLP) applications that use
relational data, from computational fact checking [4, 6, 11] to data-
to-text generation [8, 10], and question answering in general [2, 9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3520164

Table 1: Dataset 𝐷 . The sentence “Carter has higher shooting
than Smith” is data ambiguous w.r.t. 𝐷 .

Player Team FG% 3FG% fouls apps
𝑡1 Carter LA 56 47 4 5
𝑡2 Smith SF 55 50 4 7
𝑡3 Carter SF 60 51 3 3

Consider a fact checking application, where the goal is to verify
a textual claim against relational data, and the sentence “Carter LA
has higher shooting than Smith SF” to be checked against the dataset
𝐷 in Table 1. Even as humans, it is hard to state if the sentence
is true or false w.r.t. the data in 𝐷 . The challenge is due to the
two different meanings that can be matched to shooting percentage:
the claim can refer to statistics about Field Goal (FG%) or 3-point
Field Goal (3FG%). We refer to this issue as data ambiguity, i.e.,
the existence of more than one unique interpretation of a factual
sentence w.r.t. the data for a human reader.

Sentences with data ambiguities are not present in existing cor-
pora with sentences annotated w.r.t. the data, which leads target
applications to simply fail in these scenarios. In existing fact check-
ing applications, the sentence above leads to a single interpretation,
that is incorrect in 50% of the cases. This problem is important
in practice. In the log of an online application for fact checking
(https://coronacheck.eurecom.fr/), we found that more than 20 thou-
sand claims submitted by the users are data ambiguous, over 80%
of the submitted sentences!

While traditionally high quality corpora of annotated text sen-
tences come from extensive and expensive manual work, in this
work we demonstrate that by exploiting deep learning over the
input table, we can automatically generate SQL scripts that output
data ambiguous annotated sentences. SQL enables the efficient gen-
eration of a large number of annotated sentences for a given table,
which in turn can be used as training data to significantly advance
the target downstream applications.

In this demonstration we show Pythia, a system for the auto-
matic generation of sentences with data ambiguities, which effec-
tively solves the problem of crafting training examples at scale.
More precisely, we first introduce our solution based on data profil-
ing, query generation, and a novel algorithm to detect ambiguous
attributes (Section 2). We then illustrate how the users will engage
with Pythia with interactive parameters, including the ability to
load their own datasets and automatically obtain data ambiguous
sentences. We will also demonstrate how the generated sentences
are used as training data to improve the coverage and quality of
two target applications (Section 3).

https://doi.org/10.1145/3514221.3520164
https://doi.org/10.1145/3514221.3520164
https://doi.org/10.1145/3514221.3520164
https://coronacheck.eurecom.fr/

Figure 1: Pythia takes as input any relational table and generates data ambiguous sentences.

2 SYSTEM OVERVIEW
Consider again the sentence about the higher shooting percentage.
The sentence can be obtained from a SQL query over 𝐷 comparing
the FG% and 3FG% attributes for pairs of players.
q1: SELECT CONCAT(b1.Player, b1.Team, 'has higher

shooting than', b2.Player, b2.Team)
FROM D b1, D b2
WHERE b1.Player <> b2.Player AND

b1.Team <> b2.Team AND
b1.FG% > b2.FG% AND b1.3FG% < b2.3FG%

Another example is “Carter has higher 3FG% than Smith”. There
are two players named ‘Carter’ and the sentence is true for the one
in team ‘SF’, but it is false for the one in team ‘LA’. This sentence
can also be generated with a query over 𝐷 .

Given a relation, the key idea is to model a sentence as the
result of a query over the data. However, coming up with the query
automatically from a given relational table is challenging. Consider
again query𝑞1 above. First, the ambiguous attribute pair is not given
with the table, e.g., FG% and 3FG% in 𝑞1 must be identified. Second,
an ambiguous sentence requires a label, words in the Select clause
that plausibly refer to the two attributes, e.g., “shooting” in 𝑞1 is the
label for FG% and 3FG%. To handle these challenges, we restrict the
query generation search space by making use of templates, which
get instantiated with deep learning models predicting the query
parameters from the given table, as detailed next.

Data Ambiguity with A-Queries. Sentences can be data ambigu-
ous in different ways. For example, the claim 𝑠1: “Carter LA has
better shooting than Smith SF” is ambiguous w.r.t. relation 𝐷 in
Table 1 because even as humans we cannot state for sure if it refers
to regular Field Point statistics or performance for the 3 point range.
This is an example of attribute ambiguity over two attributes, but
the same sentence can be ambiguous to more than two attributes.

Sentence 𝑠2: “Carter commit 4 fouls” shows a different kind of
data ambiguity. As rows are identified by two attributes in 𝐷 , a
reference to only part of the composite key makes it impossible to
identify the right player. This is a row ambiguity over two rows,
but the same sentence can be ambiguous to more rows.

A sentence can also be ambiguous in the two dimensions, both
over the attributes and the rows. With more dimensions, also the
number of possible interpretations increases. We therefore dis-
tinguish between attribute, row, and full for the structure of the
ambiguity. We further distinguish between contradictory and uni-
form sentences. The first type leads to interpretations that have

opposite factual match w.r.t. the data. Sentences 𝑠1 and 𝑠2 are both
contradictory, as one interpretation is confirmed from the data and
the other is refuted. For uniform sentences, all interpretations have
equal matching w.r.t. the data, e.g., sentence “Carter has more ap-
pearances than Smith” is refuted for both Carter players in 𝐷 . We
found the distinction between contradictory and uniform sentences
crucial in target applications as they guarantee more control over
the output corpora.

An ambiguity query (or a-query) executed over table 𝐷 returns
𝑠1, . . . , 𝑠𝑛 sentences with data ambiguity w.r.t. 𝐷 . Consider again
𝑞1 defined over 𝐷 , it returns all the pairs of distinct players that
lead to contradictory sentences. The same query can be modified
to obtain uniform sentences by changing one operator in one of
the WHERE clause comparing statistics, e.g., change ‘<’ to ‘>’ in
the last clause. Finally, by removing the last two WHERE clauses,
the query returns both contradictory and uniform sentences.

From the Table to the Sentences. A-queries can be obtained
from parametrized SQLA-Query Templates. The parameters identify
the elements of the query and can be assigned to (i) relation and
attribute names, (ii) a set of labels, i.e. words with a meaning that
applies for two or more attributes, (iii) comparison operators.

Given an A-Query Template is possible to generate multiple a-
queries. Pythia already stores multiple handcrafted SQL templates
that cover different ambiguity types and can be widely used with
different datasets, but it also allows users to add other custom
templates using a predefined syntax.

Figure 1 summarizes the overall process. Starting from dataset 𝐷 ,
key/FDs profiling methods and our ambiguous attribute discovery
algorithm identify the metadata to fill up the A-Templates provided
in Pythia. All compatible operators are used by default. Metadata,
operators, and templates can be refined and extended manually
by users. Once the template is instantiated, the A-Query is ready
for execution over 𝐷 to obtain the data ambiguous sentences, each
annotated with the relevant cells in 𝐷 .

Parameter values to instantiate the templates are automatically
populated by Pythia using existing profiling methods and a novel
deep learning method to find attribute ambiguities with the corre-
sponding ambiguous words. This method takes as input all attribute
pairs in a schema and uses a pre-trained model [3] fine-tuned with
examples obtained with weak-supervision over a corpus of tables.
We remark our focus on generating sentences with genuine data
ambiguity, which is in contrast to other cases where the correct
meaning of the text is clear to a human but an algorithm detects

2

Figure 2: Pythia configuration of a scenario for a new table.

more than one interpretation in the data. For example, “Carter SF
has played 3 times” clearly refers to the player Appearances (apps),
but an algorithm could be uncertain between fouls and apps.

3 DEMONSTRATION
The demonstration will be organized in two parts. In the first part,
we focus on the data ambiguity sentences from a given table. In the
second part, we show how the generated corpus can improve three
target applications.

3.1 Dataset Generation
At the beginning of the demo, the visitor will be able to use
preloaded scenarios or create a new one. Figure 2 shows the con-
figuration of a new scenario. First, the visitor uploads a dataset.
Then metadata such as primary keys, composite keys and FDs can
be manually provided or obtained with profiling [1]. The core of

Figure 3: Output visualizationwith data ambiguous sentences
and corresponding cells from the table.

Pythia is built on top of A-Query Templates. Pythia comes with a
set of three generic default templates that were manually crafted
from the analysis of an online fact checking application’s log. The
three templates cover more than 90% of user submitted claims with
data ambiguities. More A-Query Templates can be provided by
the visitor. Parameters’ values of the templates are automatically
populated by Pythia using the schema metadata and a novel deep
learning module to find ambiguous attributes and the word that
describes both attributes (label). Pythia allows the visitor to sub-
mit more ambiguous attributes and labels, ultimately submitting
feedback that further improves the underlying ML module.

After the scenario’s definition, the visitor will generate ambigu-
ous sentences as depicted in Figure 3. To control the type of ambi-
guities of the generated dataset, it is possible to select the structure
type, i.e., the A-Query Templates to use, strategies (Contradictory,
Uniform True, Uniform False), and the number of output sentences
per a-query. Depending on the dataset and schema size, the number
of generated sentences can vary between thousands and millions
even for medium size datasets. The system outputs for every gen-
erated sentence the pair of template and a-query that generated it,
together with the data in the table that relates to the sentence. In
this step, the users can also fine-tune templates and queries inter-
actively. The generated corpus can then be exported in CSV, JSON,
and application specific formats.

3

3.2 Use cases
The visitor will use seven preloaded datasets. Training data for
downstream applications will be generated using three datasets,
the remaining datasets will be used for test data. For each dataset
the visitor will generate sentences with contradictory, uniform true
and uniform false strategies. We denote with 𝑃𝑡 and 𝑃𝑑 the training
and developing (testing) data generated with Pythia, respectively.

Table 2: Impact of 𝑃𝑡 data on table-to-text generation.

BLEU ROUGE

Original (ToTTo [8]) 0.547 0.202
ToTTo fine-tuned with Pythia’s output 37.631 0.631

ToTTo. ToTTo [8] is a dataset for table-to-text generation,
i.e., given a set of cells, the goal is to generate a sentence
describing the input data. ToTTo contains annotated sentences
that involve reasoning and comparisons among rows, columns,
or cells. The visitor will test a T5 model [3] trained on the
original ToTTo for sentence generation. The results will show
that ambiguities are not handled in ToTTo, and thus, the model
simply fails when it makes predictions over 𝑃𝑑 . The visitor will
then use the 𝑃𝑡 to fine-tune the model. Such fine-tuning step will
improve the performance of the model in terms of BLEU and
ROUGEmetrics according to the results in Table 2 (higher is better).

Table 3: Impact of 𝑃𝑡 data on fact checking (Feverous).

CLASS P R F1

Ambiguous n.a. n.a. n.a.
Feverous Baseline Supports 0.33 1.00 0.49

Refutes 0.00 0.00 0.00

Ambiguous 0.92 0.85 0.89
Feverous Baseline trained on 𝑃𝑡 Supports 0.96 0.95 0.95

Refutes 0.88 0.95 0.92

Feverous. Feverous [5] is a dataset for fact checking containing
textual claims. Every claim is annotated with the data identified
by human annotators to Support or Refute a claim. We show the
attendant that a model trained with the Feverous baseline pipeline
fails on the classification of an ambiguous claim from 𝑃𝑑 , as the
Ambiguous label is not present in the original dataset. Training the
same model with 𝑃𝑡 , which contains also examples of ambiguity,
radically improves the performance for all classes. Table 3 reports
the results in terms of precision, recall, and f-measure.

CoronaCheck. As a second fact checking application, we will
show the verification of statistical claims related to COVID-19 [6].
We incorporate the contributions of Pythia to improve an existing
system (https://coronacheck.eurecom.fr/). The original system was
not able to handle attribute ambiguity. Also, row ambiguity caused
the original system to hallucinate with lower classification accu-
racy for ambiguous claims. One of the tables used for verifying the
statistical claims consists of the following attributes, among others:
country, date, total_confirmed, new_confirmed, total_fatality_rate,

total_mortality_rate. From the analysis of the log of claims submit-
ted by users, an example of common attribute ambiguity is between
attributes total_fatality_rate and total_mortality_rate for sentences
containing “death rate”. Another example of attribute ambiguity
is between total_confirmed and new_confirmed when sentences
that only mention “cases” are verified. Examples of row ambiguity
consist of claims that refer to two records with same location but
different timestamps, such as “In France, 10k confirmed cases have
been reported” (today or yesterday?).

Table 4: Impact of 𝑃𝑡 data on fact checking (CoronaCheck).

Users’ Accuracy Accuracy
Claims original original+ Pythia

Row Amb. 44 25/44 36/44
Attribute Amb. 9 0/9 6/9
No Ambiguity 6 6/6 6/6

Total 50 31/50 42/50

Pythia enabled us to improve CoronaCheck by automatically
generating ambiguity aware training data. The new corpora have
been used to train new classifiers that allowed the extension of
the original system. We consider 50 claims from the log of Coro-
naCheck and we study the types of ambiguities they include. As
shown in Table 4, 88% include a row or attribute ambiguities. 83%
of those ambiguous claims have row ambiguity, and 17% have both
attribute and row ambiguity. The original CoronaCheck fails to
classify claims with ambiguity. However, training the system with
the output of Pythia leads to handling most of the row and at-
tribute ambiguity. To show the benefit of using Pythia compared
to the original system, we consider the following example: “June
2021: France has 111,244 Covid-19 deaths”. (True for total_deaths,
False for new_deaths). The original system returns a false decision
by checking against new_deaths only. With Pythia support, the
decision is True for total_deaths and False otherwise.

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.

2018. Data Profiling. Morgan & Claypool Publishers.
[2] Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Yang Wang, and

William W. Cohen. 2021. Open Question Answering over Tables and Text. In
ICLR. OpenReview.net.

[3] Colin Raffel et al. 2020. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research 21, 140 (2020).

[4] Preslav Nakov et al. 2021. Automated Fact-Checking for Assisting Human Fact-
Checkers. In IJCAI. 4551–4558.

[5] Rami Aly et al. 2021. FEVEROUS: Fact Extraction and VERification Over Unstruc-
tured and Structured information. In Thirty-fifth Conference on Neural Information
Processing Systems (NIPS - Datasets and Benchmarks).

[6] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer.
2020. Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven
Claim Verification. Proc. VLDB Endow. 13, 11 (2020), 2508–2521.

[7] [n.d.]. 2021. Notes on Ambiguity. https://cs.nyu.edu/~davise/ai/ambiguity.html.
(2021).

[8] Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan
Dhingra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A Controlled Table-To-Text
Generation Dataset. In EMNLP. ACL, 1173–1186.

[9] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Y. Levy. 2021. From Natural Language Processing to Neural Databases.
Proc. VLDB Endow. 14, 6 (2021), 1033–1039.

[10] Immanuel Trummer. 2019. Data Vocalization with CiceroDB. In CIDR.
www.cidrdb.org.

[11] You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Compu-
tational Fact Checking through Query Perturbations. ACM Trans. Database Syst.
42, 1 (2017), 4:1–4:41.

4

https://coronacheck.eurecom.fr/
https://cs.nyu.edu/~davise/ai/ambiguity.html

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration
	3.1 Dataset Generation
	3.2 Use cases

	References

