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ABSTRACT
Within the rapidly expanding Internet of Things (IoT), growing
amounts of spatially referenced data are being generated. Due to
the dynamic, decentralized, and heterogeneous nature of the IoT,
spatial IoT data (SID) quality has attracted considerable attention in
academia and industry. How to invent and use technologies for man-
aging spatial data quality and exploiting low-quality spatial data
are key challenges in the IoT. In this tutorial, we highlight the SID
consumption requirements in applications and offer an overview
of spatial data quality in the IoT setting. In addition, we review
pertinent technologies for quality management and low-quality
data exploitation, and we identify trends and future directions for
quality-aware SID management and utilization. The tutorial aims
to not only help researchers and practitioners to better comprehend
SID quality challenges and solutions, but also offer insights that
may enable innovative research and applications.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Sensor
networks; Geographic information systems.
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Internet of Things; geo-sensory data; quality management
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1 TUTORIAL OVERVIEW
The Internet of Things (IoT) encompasses numerous devices (e.g.,
sensors, actuators, wearables, and vehicles) to enable functional-
ity such as ubiquitous perception and decision-making [80]. The
IoT enables applications in smart cities [92], transportation [99],
healthcare [72], energy [101], etc. An annual growth rate of 25% in
IoT devices [1] is evidence of explosive growth in IoT data. Indeed,
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market intelligence provider IDC predicts that IoT data volume will
reach 80 ZB by 2025 [2].

The geographic information and mobile computing communities
are finding opportunities from IoT data, as IoT data is often spatially
referenced by means of different positioning technologies [94]. In
this tutorial, we concentrate on such spatially referenced data from
IoT devices, called spatial IoT data and abbreviated as SID. Two
important special cases of SID are distinguished: trajectories, time
series of location values; and spatiotemporal IoT data (STID), general
sensory values with temporal and spatial references. SID includes
substantial observations in potentially large spatial regions, thus
offering an exciting foundation for new insights that may benefit
diverse IoT-enabled applications, including congestion control [99],
urban planning [92], air quality monitoring [60], and POI recom-
mendations [41, 128].

However, applications are often challenged by a variety of SID
quality issues, mostly caused by the distinct properties of the IoT [50].
First, IoT devices are often limited by production specifications and
resources, resulting in erroneous, incomplete, or duplicated spa-
tial information [67, 97, 130]. Second, the IoT is decentralized and
encompasses a wide range of dynamic devices that emit and con-
sume data, which can lead to excessive, deferred, disordered, or
inconsistent data [8, 95, 122]. Third, IoT devices use diverse posi-
tioning technologies, causing the spatial information generated to
be heterogeneous, potentially resulting in incompatible formats,
resolutions, and semantics [49, 87, 124].

Since SID is a treasure trove of spatial information that may ben-
efit many spatial applications [5, 47, 80], resolving quality issues is
essential. Researchers are continuously making efforts on related
topics, including a large number of recent studies [23, 62, 95, 98].
The popularity of the studies on SID quality issues is also evidenced
by an increasing emergence of survey papers. However, most of
existing survey papers focus on synergies between two of the three
related areas, i.e., the IoT, data quality, and spatial computing, cov-
ering topics such as IoT data quality [11, 50, 71, 96], spatial data
quality [28, 35, 38, 135, 140, 141], and IoT-enabled spatial applica-
tions [5, 80, 94]. Although several survey papers [66, 80] on IoT-
enabled spatial applications mention quality issues, they do not
analyze and summarize DQ technologies.

In contrast to existing survey papers, this tutorial consolidates
the IoT, data quality (DQ), and spatial computing. The scope of the
tutorial is shown in Figure 1. We organize the related work into two
overall lines: 1) SID quality management, where the aim is to
control or enhance the quality of SID, and 2) exploitation of low-
quality SID, where the focus is on querying, analysis, and decision-
making over low-quality SID. For both of these lines of research, the
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Figure 1: Tutorial scope.

goal of the tutorial is to provide unique insights to researchers who
are interested in IoT DQ aspects and to practitioners who intend to
develop IoT-enabled applications.

The tutorial utilizes the structure of our survey paper [59] in
the ACM Computing Surveys. Due to the time limit, the tutorial
will be a condensed version of our full survey paper, focusing on
comparing the methodologies of representative works. We start by
presenting a framework of SID quality aspects, covering the major
DQ dimensions, data characteristics, and quality issues, as well as
means to address quality issues. We then present key technologies
for SID quality management, encompassing location refinement,
uncertainty elimination, outlier removal, fault correction, data inte-
gration, and data reduction. Furthermore, we cover technologies
for low-quality SID exploitation, addressing the tasks of querying,
analysis, and decision-making. We end by describing emerging
trends and open issues related to SID quality and identify research
directions that are important for efficient, effective, and innovative
quality-aware SID computing.

2 TUTORIAL OUTLINE
The intended 1.5-hour tutorial will be tailored for the SIGMOD
attendees who are aware of general data management topics, but
may not be working on spatial IoT data. We use the first 5 minutes
to present the overall background, challenges, and applications of
SID, followed by 15 minutes to establish a general picture of SID
quality aspects (see Section 2.1). We then cover SID quality man-
agement (see Section 2.2) and the exploitation of low-quality SID
(see Section 2.3), each for 30 minutes. The last 10 minutes conclude
with prospects on SID quality technologies (see Section 2.4).

2.1 SID Quality Framework (20 mins)
DQ Dimensions. DQ reflects how well data satisfies the purpose
of data consumption [50]. Therefore, data consumers have their
own criteria for assessing the DQ for a task at hand. These criteria,
known asDQ dimensions, differ across application areas or scenarios.
In this tutorial, we cover the most important data consumption
requirements in IoT-enabled spatial applications, and based on this,
we define and discuss the major DQ dimensions of spatial data in
the IoT context.

SID is treated as observations of real phenomena or processes
through IoT devices. There is inevitably a difference between the

Table 1: SID Characteristics and Resulting Quality Issues

SID Characteristic Quality Issues (�: low; �: high)

[omnipresent in IoT setting]
Noisy and erroneous � precision, � accuracy, � consistency
Temporally discrete � time sparsity, � completeness, � staleness
Decentralized and heterogeneous � consistency, � latency, � interpretability
Dynamic � precision
Voluminous and duplicated � redundancy, � latency, � data volume
Isolated and conflicting � consistency, � interpretability
Varying smoothly -
Markovian -

[specific in spatial data domain]
Unverifiable � truth volume
Hierarchical and multi-scaled � consistency, � resolution, � interpretability
Spatially discrete � space coverage
Spatially autocorrelated -
Spatially anisotropic -

true states of the underlying phenomena or processes and the mea-
surements due to imperfections in the IoT technologies [50, 60].
From a high-level perspective, quality requirements to SID posed
by the consuming IoT-enabled applications span three aspects, each
with several major DQ dimensions.
• SID should be accurate and reliable. In this setting, we review
the concepts and applications of the DQ dimensions Precision,
Accuracy, and Consistency.

• SID should be comprehensive and informative. Here, we introduce
the DQ dimensions Time Sparsity, Space Coverage, Complete-
ness, and Redundancy.

• SID should be easy to use. Here, we cover the DQ dimensions
Latency, Staleness, Data Volume, Truth Volume, Resolution, and
Interpretability.

Quality Issues. IoT devices continuouslymonitor variables of inter-
est (e.g., position [94], check-ins [102], or air quality [60]) in specific
spatial ranges using some form of positioning. Due to the particular
working mechanism of IoT devices and the application need, SID
is associated with characteristics. Identifying these characteristics
helps find the causes of quality issues and the corresponding solu-
tions. Table 1 presents a brief overview of SID characteristics and
their resulting quality issues. A detailed analysis of SID character-
istics and quality issues will be offered in the tutorial.
Means to Resolve DQ Issues. Referring to Figure 2, we organize
DQ technologies from two perspectives.

Task Perspective. We consider the technologies according to the
IoT layers that their tasks concern. The DQ tasks in the perception
and transport layers optimize mainly the infrastructure (cf. our
survey [59]). Taking into account the audience, we exclude these
and focus on data handling for DQ in higher IoT layers.
• The localization layer estimates object locations, thus produc-
ing spatial data. A key DQ task is Location Refinement that
accompanies or follows the positioning process and adjusts ini-
tial location estimates to reduce system and random errors. Its
main goals concern � precision, � accuracy, and � resolution.

• The pre-processing layermanages SID, encompassing DQ tasks
that explicitly target improvements of input data quality. These
tasks are 1) Uncertainty Elimination that reduces uncertain or
imprecise measurements and imputes unknown measurements
at unsampled points, thus addressing � precision, � completeness,
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Figure 2: Task and technique perspective of the categorization of data quality technologies.

� resolution, and � time sparsity; 2) Outlier Removal that detects
and removes items in a collection that do not conform to their
context, addressing � precision, � accuracy, and � consistency;
3) Fault Correction that finds and repairs wrong, conflicting, or
missing data values, addressing � accuracy, � consistency, and �
completeness; 4) Data Integration that obtains a unified data rep-
resentation by comparing, combining, and fusing data sets from
multiple sources, thereby addressing � accuracy, � completeness,
� data volume, � resolution, and � interpretability; 5) Data Re-
duction that converts a data set into a corrected and simplified
form, addressing � data volume, � latency, and � redundancy.

• The DQ tasks in the business layer aim to ensure that the data
can support specific needs of diverse spatial applications. Con-
cerning SID quality, these tasks span Querying, Analysis, and
Decision-making in the setting of low-quality SID. Different sub-
categories of these tasks consider different DQ issues. We there-
fore do not list the specific DQ goals here.
Technique Perspective. We also categorize technologies accord-

ing to different technical viewpoints.
• From a data modeling viewpoint, we categorize techniques into
1) Probabilistic Modeling that combats uncertainty and noise by
generating probabilistic representations of observations [27] or
results [128] in dynamic and complex settings; 2) Spatiotemporal
Dependency Modeling that derives spatiotemporal correlations
from the inherent characteristics of SID (including the charac-
teristics of varying smoothly [138], Markovian [8, 108], spatially
autocorrelated [60], and spatially anisotropic [7], as listed in
Table 1) for handling noise [108, 138], missing or unknown val-
ues [7, 60], errors [8], etc.; 3) Spatiotemporal RegularityModeling
that targets the discovery and extraction of spatial and temporal
regularities (often formed by external rules and factors derived
from the context) [58, 108, 130, 132] from SID collections; and 4)
Spatial Constraint Modeling that utilizes additional spatial and
motion constraints to contend with noisy, incomplete, and faulty
SID [20, 32, 108, 113].

• From a learning paradigm viewpoint, techniques choose ap-
propriate schemes or strategies to mitigate low DQ issues in

learning: 1) Unsupervised Learning like EM algorithm [41], Au-
toEncoders [23, 76], and GAN [23] can address the scarcity of
labels (ground-truth data); 2) Semi-supervised Learning can ad-
dress partial availability of labels (e.g., co-training [22]) and im-
balanced labels (e.g., positive-unlabeled learning methods [18]);
3) Reinforcement Learning can address the incompleteness [99]
and dynamics [98, 106] in sequential decision-making; 4) Multi-
task Learning [83, 132] andMulti-view Learning [124, 126] can
contend with scarcity of labels and bias/heterogeneity of data in
training; 5) Transfer Learning [116], borrowing labeled data or
knowledge from related domains, can address limited data avail-
ability and biased data; and 6) Federated Learning can address
the scarcity of data across multiple domains [55] and facilitate
decentralized model training [75].

• From a computingmode viewpoint, useful paradigms include: 1)
Distributed Computing [111, 119] for improving system through-
put and reducing single points of failure; 2) Stream Comput-
ing [19, 48, 62] for timely data exploitation; 3) Collaborative
Computing for improving consistency, completeness, and avail-
ability of SID with multiple computing nodes [24, 127] and their
data [128, 133] involved; and 4) Fog/Edge Computing [62, 130]
for reducing data volumes, redundancy, latency, and staleness of
SID by pushing computing tasks closer to data sources.

2.2 SID Quality Management (30 mins)
2.2.1 Location Refinement (LR). Given a set x of IoTmeasurements,
a positioning function f : X ↦→ Y maps x ∈ X to a location y ∈ Y.
Due to the non-stationary and noisy nature of IoT measurements,
y can be imprecise and erroneous. Adopting a probabilistic method,
LR aims to find optimal result ŷ ∈ Y that maximizes P(Y | X, 𝐹 ,𝐶),
where 𝐹 = {f1, . . .} is a family of positioning functions and𝐶 refers
to spatial constraints. Based on the specifics of X, we consider three
categories of LR technologies.

Ensemble LR. X refers to an individual object’s multi-variable
measurements at a single time point 𝑡𝑖 , and the output ŷ is a loca-
tion estimate at 𝑡𝑖 . X may consist of different components that are
measured by different sensors, including sensors of varying types.
Within Ensemble LR, single-source methods [31] aggregate a set of



possible results y = {𝑦1, . . .} produced by a single process f (x);
multi-source methods [21] involve multiple independent processes
as 𝐹 = {f1, . . .} and fuse their results for more accurate location ŷ.

Motion-based LR. Here, X refers to an individual object’s se-
quential observationswhere each observation can be single-variable
or multivariable. Accordingly, the output ŷ is a location sequence.
Motion-based LR introduces knowledge of motion dynamics and
historical measurements to improve the positioning results, and
this is achieved mainly by capturing spatiotemporal dependencies
in observation sequences. Representative techniques include Bayes
Filters [34], Probabilistic Graph Models [30], and Recurrent Neural
Networks [40].

Collaborative LR. Here, X refers to multiple objects’ obser-
vations at a single time. In the spirit of collaborative computing,
collaborative LR optimizes all objects’ positions altogether. Two
subcategories are identified: joint denoising [127] assumes system
noise and distills the actual locations by eliminating system noise
that best meets a statistical hypothesis; iterative optimization [24]
assumes random errors and iteratively reduces the random errors
of a batch of observed locations.

2.2.2 Uncertainty Elimination (UE). We consider both imprecise
measurements and unknown values at unmeasured points. We
present trajectory UE and STID UE as trajectories and STID are
used frequently in applications.

Trajectory UE roughly falls into three categories. Calibration-
based approaches align noisy and incomplete trajectories with ref-
erence points or ranges obtained from maps [97] or extracted from
a large set of trajectories [61, 97]. Inference-based approaches ex-
ploit structural regularities across trajectories to restore complete
paths that connect observed locations of a trajectory, using ex-
plicit [108, 137] or implicit [65] spatial constraints. Smoothing-based
approaches utilize temporal autocorrelation of consecutive data
points to mitigate volatility [138].

STID UE has often been regarded as a spatiotemporal inter-
polation process, which estimates and inserts thematic values at
unsampled location-time points that align with spatiotemporally
nearby samples [7]. The interpolation performance degrades with
the expansion of the spatiotemporal range covered, and data (with
ground-truth labels) needs to be pre-analyzed for model selection.
Recently, data fusion has been incorporated into reducing measure-
ment uncertainty in STID [85]. One main challenge faced by data
fusion is how to find additional relevant and reliable data sources.

2.2.3 Outlier Removal (OR). Probabilistic modeling [86, 113, 121],
spatiotemporal dependencies [14] and regularity [121], and spatial
constraints [138] have been used widely in OR.

Trajectory Point OR aims to remove location points that are
clearly different from their nearby points and do not accord with
expected mobility behavior. Constraint-based methods [113, 138]
detect abnormal points that violate mobility constraints based on
neighborhood information. Such methods may not contend well
with dynamic and noisy trajectories. Statistics-based methods [86]
detect anomalous points based on statistical profiling of a single or
a set of trajectories. These methods may be restricted by the avail-
ability of historical data. Prediction-based methods [121] identify a
value as an outlier if it differs from a value predicted from historical
data. Outliers are then repaired with predicted values. Relying on

accurate predictions, these methods entail trustworthy input data
and regularly updated models.

STID OR targets temporal, spatial, or spatiotemporal outliers.
The last refers to the items whose thematic attribute values devi-
ate clearly from those of other items in their spatial and tempo-
ral neighborhoods. Temporal OR has been investigated systemat-
ically [15, 36], with trajectory point outliers being a special case.
Aggarwal [4] reviews spatial and then spatiotemporal OR using
spatial OR as an initial step; this study also reveals the close re-
lationship between temporal OR and spatial OR when regarding
temporal and spatial attributes as contextual attributes (as opposed
to thematic attributes). Some classic studies specific to spatiotempo-
ral OR are based on neighborhoods [14] or set theory [6]. Compared
to neighborhood-based approaches, set theory-based approaches
require holistic data and are more suitable for simple data attributes.

2.2.4 Fault Correction (FC). FC technologies are generally based
on comparative analyses within or between data collections.

Trajectory FC mainly considers a type of symbolic trajectory, a
time-ordered sequence of categorical values referring to the detect-
ing sensors or covered regions. Symbolic trajectories are commonly
seen in RFID, Infrared, and Bluetooth tracking scenarios, in which
false negatives [20, 32, 45] occur when a sensor fails to detect an ob-
ject, while false positives [8, 20, 32] occur when an object is detected
by multiple sensors simultaneously. FC technologies generally use
probabilistic modeling to detect and repair faults. In addition, many
studies [8, 20, 32, 45] consider spatiotemporal regularities of inter-
actions between sensors and objects, spatiotemporal dependencies
among trajectory records, and spatial constraints caused by the
sensor deployment and the underlying space.

STID FC repairs faulty thematic values [90] or imprecise times-
tamps [48, 95]. These methods rely mostly on modeling spatiotem-
poral dependencies among neighboring [48, 90] and autocorre-
lated [95] collections/(sub)sequences.

2.2.5 Data Integration (DI). These technologies are classified based
on whether or not semantic aspects are involved or not.

SemanticDI involves semantic and comprehensible data sources
and concerns their integration with raw SID to enrich the inter-
pretability of the SID. Semantic DI for trajectories aims to annotate
raw location traces with concepts/labels [58, 113] or complemen-
tary knowledge [84] at particular times or during time intervals,
facilitating direct, concise, and explainable utilization of trajecto-
ries. These technologies often exploit spatiotemporal regularity
incurred by geo-semantics (e.g., POI category [113] and spatial
constraints [57, 58]). Semantic DI for STID enriches spatial data in-
frastructures (SDI) with standardized [10] or application-specific [9]
geo-semantic meta-information. Edge computing [9] can be em-
ployed to efficiently assign semantics to data at the IoT far end.

Non-semantic DI compares and combines multifaceted spa-
tiotemporal observations to eliminate inconsistencies and to en-
hance the reliability of the integrated data, relying mainly on
pure spatiotemporal data dependencies. Trajectory+trajectory tech-
niques target unified representations of trajectories in different
formats [87] and scales [124], or using different ID systems [49].
Trajectory+STID techniques [125] attach spatial or spatiotempo-
ral measurements to location points or segments based on simi-
larities of their spatial or temporal attributes. Finally, STID+STID



techniques [139] fuse multi-source spatiotemporal measurements
according to their spatial and temporal commonality.

2.2.6 Data Reduction (DR). DR aims to improve throughput and
computing efficiency in general while minimizing the loss of infor-
mation as seen from the business layer.

Trajectory Compression compacts either raw trajectories [17,
54, 69, 73, 77, 82, 133] or network-constrained (map-matched) tra-
jectories [39, 51, 62, 63, 115]. Each category can be divided further
into online [54, 62, 69, 73, 73, 82, 106] and offline [17, 39, 51, 63, 77,
115, 133] approaches. The related notation of trajectory simplifica-
tion [17, 54, 69, 73, 77, 82] can be regarded as a special form of com-
pression that focuses on removing trajectory points and does not
consider compression techniques such as binary encoding. A main-
stream technology for trajectory simplification is error-bounded
line simplification [70].

STID Reduction leverages compression [56, 101] or predic-
tions [130]. Compression-based approaches can be divided further
into lossless compression [101], for applications that demand accu-
racy, and lossy compression [56] that achieves a higher compression
ratio with some precision loss. Prediction-based approaches [130]
are often used to reduce communication data volume between IoT
nodes. Data can be dropped if the prediction error is within an
acceptable range. Compression-based approaches fit well in batch
processing scenarios, while prediction-based approaches are chal-
lenged by the robustness and timeliness of prediction models.

2.3 Exploitation of Low-Quality SID (30 mins)
2.3.1 Queries over Low-Quality SID. The uncertainty, dynamics,
and decentralization of data are three major obstacles to effective
and efficient SID query processing.

Data Uncertainty is a key issue in spatial querying, and proba-
bilistic modeling techniques are exploited widely to contend with
this. In this setting, algorithms estimate upper and lower bounds
of query objects based on probability models to enable priority-
oriented processing and object pruning. A taxonomy of probabilistic
spatial queries is available [27], and a recent survey [140] catego-
rizes queries over uncertain spatial data. In contrast, the tutorial
presents query processing techniques based on the type of location
uncertainty they handle in the context of IoT-based positioning
or tracking: First, to handle uncertainty caused by location inaccu-
racy, an object’s location at a single time is usually described as a
probability density function (pdf), which occurs in continuous (a
closed-form distribution) [12, 13, 26, 68, 100] or discrete (a set of
samples with occurrence probabilities) cases [43, 120, 131]. Second,
to handle uncertainty caused by discrete sampling, a moving object’s
location(s) at unsampled time points is modeled by a distribution
that is referenced to its sampled, known location(s) [3, 89]. The dis-
tribution can be modeled to infer the location at a single time point
(e.g., uniform circular [114] or velocity vector [44]) or the locations
across a time interval (e.g., particles [118], first-order Markovian
grids [129], Markovian Gaussian distributions [46], combination
of road segments [136], combination of sample connections [79],
beads/necklaces [52, 103], etc.).

Data Dynamics bring issues of data volume, data evolution, and
data skew to query processing. To efficiently process queries over
massive SID, distributed computing [25, 81, 111, 119] and stream

computing [25, 48, 81] have been employed. For queries over evolving
SID, object locations and other information arrive in a streaming
fashion. Safe regions [91] and incremental evaluation [123] have
been proposed to reduce communication and computation overhead.
For queries over skewed SID, node load-balancing [93] and data
partitioning [93, 104] have been studied.

DataDecentralization poses challenges to processing encrypted
data [117] and heterogeneous data [29, 112]. To enable outsourcing
of queries on private location data, spatial and cryptographic trans-
formation schemes [117] have been invented to balance efficiency
and privacy. To enable spatial queries over heterogeneous location
data sources, generic location representation [112] and a unified
data management platform [29] have been proposed.

2.3.2 Analyses on Low-Quality SID. The tutorial categorizes exist-
ing analysis techniques targeting low-quality SID based mainly on
quality issues related to uncertainty and dynamics. Within each
category, studies are organized according to the tasks they consider.

Uncertainty in SID. To combat data inaccuracy and incom-
pleteness, data analysis techniques often exploit probabilistic mod-
eling [64, 67, 102], spatiotemporal dependencies [72, 74, 134], and
spatial constraints [88, 102, 107]. Tasks span clustering [88], anom-
aly detection [72], frequent-pattern mining [64, 67, 102, 134], and
popular-route discovery [107]. The existing techniques are gener-
ally batch-oriented and centralized, leaving techniques for real-time
and decentralized settings as an open issue.

Dynamics (Volume and Evolution) in SID. To handle high
data volumes in analytics, indexing and pruning [16, 105, 122], dis-
tributed computing [42, 110], and stream computing [19, 33] tech-
niques have been proposed. Spatiotemporal dependency modeling
and online learning [76, 109] have been utilized to facilitate the
analysis of evolving SID. Typical applications are discussed, includ-
ing clustering [105], anomaly detection [16, 19, 76, 109], frequent-
pattern mining [122], and event discovery [33]. How to migrate
the functionality covered above to edge devices to reduce cost and
latency are highly relevant future topics.

2.3.3 Decision-Making using Low-Quality SID. Avariety of decision-
making tasks leverage SID, such as the prediction of next loca-
tion(s) [23, 53, 55, 126], traffic volume [75, 99], and spatiotemporal
variables [78, 83, 116]; the recommendation of POIs [41, 128]; and
the planning of task assignments [98] and site selection [18]. Re-
lated studies are organized based on the DQ issues they address
during learning as follows.
• Scarcity of Labels has been addressed in unsupervised learn-
ing [23, 41], semi-supervised learning [18], and multi-task learn-
ing [132].

• Limited Availability and Bias of Data have been addressed in
transfer learning [116] and federated learning [55].

• Uncertainty of Data has been handled in probabilistic model-
ing [128] and reinforcement learning [99].

• Dynamics of Data has been explored in reinforcement learn-
ing [98], incremental learning [53], and edge computing [78].

• Heterogeneity and Decentralization of Data have been stud-
ied in multi-task learning [83] and multi-view learning [126] for
integrating multi-source data, and in federated learning [75] for
constructing decentralized models.



2.4 Trends and Future Directions (10 mins)
2.4.1 Emerging Trends. Having reviewed DQ technologies for a
variety of tasks, we observe that SID quality management is being
integrated with different learning techniques. Moreover, SID quality
related computing is becoming increasingly relevant in dynamic,
decentralized, and heterogeneous settings. The tutorial highlights
several emerging trends, namely Privacy-preserving Comput-
ing (effective generation and exploitation of encrypted or obscured
SID) [76, 117], Edge/Fog Computing (improving efficiency and re-
ducing central, single-point workloads) [62, 130], Reinforcement
and Incremental Learning (models with corresponding capabili-
ties of dynamic and incremental processing) [98, 99, 106, 108], and
Comprehensive Data Fusion for Improved DQ (integrating
diverse and rich, but also biased, spatiotemporal data sources) [23,
55, 83, 99, 116, 124, 132].

2.4.2 Open Issues and Future Directions. Although many studies
consider the quality of SID, no systematic studies exist on how to
coordinate DQ technologies in IoT settings. The tutorial covers
several promising directions from this perspective.
• Dynamic DQModeling, which is needed for guiding an individ-
ual IoT node’s data handling and interactions with other nodes
in heterogeneous and dynamic IoT architectures.

• Secure SID Sharing, which enables the discovery of valuable
insights across IoT data repositories that currently form silos.

• DQ-aware Task Planning, which lays the foundation for effi-
cient coordination of multiple DQ-related services.

• Cross-layer DQManagement, which aims to make DQ-related
services sufficiently general to support diverse applications.

• Quality Management Middleware for SID, which serves to
integrate the technical directions mentioned above.

3 TUTORIAL INFORMATION
Target Audience. Focusing on quality-aware SIDmanagement and
utilization, the tutorial targets researchers with interests in DQ in
IoT settings and practitioners who aim to develop IoT-enabled appli-
cations. The tutorial benefits attendees with different experiences.
Beginners in the area will build an overall impression of spatial
data quality in the context of the IoT and will learn about the latest
achievements in DQ technologies. Experts in related topics will
learn techniques and methodologies of particular DQ technologies
in-depth and will gain insight into trends and new challenges in
quality-aware SID computing.
Excellence. Building on a newACMComputing Surveys paper [59],
the tutorial provides a comprehensive introduction to cutting-edge
developments in a good deal of sub-topics onmultiple aspects of spa-
tial IoT data quality. The tutorial spotlights the unique challenges
of the IoT that are brought to spatial computing, and it expands
substantially the techniques and methodology for handling trajec-
tories and spatiotemporal data in IoT settings. By cutting across
the IoT, data quality, and spatial computing, the tutorial is different
from the KDD’21 tutorial presented by Gupta et al. [37] on DQ for
machine learning, the CIKM’20 tutorial by Song and Zhang [96] on
IoT data quality, and the ICDE’17 tutorial by Züfle et al. [141] on
handling geospatial data uncertainties. Covering topics including

data preprocessing tasks as well as querying, analysis, and decision-
making, the tutorial inspires a wide spectrum of new research and
applications related to spatial IoT data.
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